Collaborative caching relay algorithm based on recursive deep reinforcement learning in mobile vehicle edge network
With the rapid development of Internet of vehicles (IoV) and the continuous emergence of vehicle information applications, the demand for content in vehicle networking is growing at an alarming speed. Mobile vehicular edge caching is regarded as a promising technology in improving Quality of Service...
Saved in:
Published in | Ad hoc networks Vol. 152; p. 103313 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the rapid development of Internet of vehicles (IoV) and the continuous emergence of vehicle information applications, the demand for content in vehicle networking is growing at an alarming speed. Mobile vehicular edge caching is regarded as a promising technology in improving Quality of Service (QoS) and reducing latency. Many caching algorithms have been proposed, which usually place contents in the Road Side Units (RSUs) to provide services to users near them. However, due to the high-speed movement of vehicles and limitations of RSU coverage, caching interrupts often occur frequently, leading to a deterioration in service quality. To deal with this problem, we make full use of Vehicle-to-Vehicle (V2V) collaboration to construct a caching system which does not require RSU support, and propose a Recursive Deep Reinforcement Learning based Collaborative Caching Relay strategy (RDRL-CR). On purpose to minimize the service delay under capacity constraints, the caching problem is formulated as an integer linear programming problem, and caching decisions are achieved through partially observable Markov Decision Process (MDP). Specifically, this strategy utilizes a Graph Neural Network (GNN) to predict vehicle trajectories, and then selects vehicles that can serve as caching nodes by calculating link stability metrics between vehicles. The Long Short Term Memory (LSTM) network is embedded into a deep deterministic strategy gradient algorithm to achieve the final caching decision. Compared with existing caching strategies, the proposed caching strategy in this paper improves the caching hit rate by about 25% and reduces content access latency by about 20%. |
---|---|
AbstractList | With the rapid development of Internet of vehicles (IoV) and the continuous emergence of vehicle information applications, the demand for content in vehicle networking is growing at an alarming speed. Mobile vehicular edge caching is regarded as a promising technology in improving Quality of Service (QoS) and reducing latency. Many caching algorithms have been proposed, which usually place contents in the Road Side Units (RSUs) to provide services to users near them. However, due to the high-speed movement of vehicles and limitations of RSU coverage, caching interrupts often occur frequently, leading to a deterioration in service quality. To deal with this problem, we make full use of Vehicle-to-Vehicle (V2V) collaboration to construct a caching system which does not require RSU support, and propose a Recursive Deep Reinforcement Learning based Collaborative Caching Relay strategy (RDRL-CR). On purpose to minimize the service delay under capacity constraints, the caching problem is formulated as an integer linear programming problem, and caching decisions are achieved through partially observable Markov Decision Process (MDP). Specifically, this strategy utilizes a Graph Neural Network (GNN) to predict vehicle trajectories, and then selects vehicles that can serve as caching nodes by calculating link stability metrics between vehicles. The Long Short Term Memory (LSTM) network is embedded into a deep deterministic strategy gradient algorithm to achieve the final caching decision. Compared with existing caching strategies, the proposed caching strategy in this paper improves the caching hit rate by about 25% and reduces content access latency by about 20%. |
ArticleNumber | 103313 |
Author | Ma, Huahong Wang, Baibing Xing, Ling Wu, Honghai |
Author_xml | – sequence: 1 givenname: Honghai surname: Wu fullname: Wu, Honghai email: honghai2018@haust.edu.cn – sequence: 2 givenname: Baibing orcidid: 0009-0008-8901-2433 surname: Wang fullname: Wang, Baibing email: wbb19980111@163.com – sequence: 3 givenname: Huahong surname: Ma fullname: Ma, Huahong email: mhh@haust.edu.cn – sequence: 4 givenname: Ling surname: Xing fullname: Xing, Ling email: xingling_my@haust.edu.cn |
BookMark | eNqFkL1OwzAQgC1UJNrCE7D4BVrsOGmSgQFV_ElILDBbF_vSuDh2ZYeivj0ORQwMMN3vd9J9MzJx3iEhl5wtOeOrq-0SdOfVMmOZSB0huDghU16UbFGVXEx-clackVmMW8ayOmN8SuLaWwuNDzCYPVIFqjNuQwNaOFCwGx_M0PW0gYiaepcG6j3EcVUj7lJpXOuDwh7dQC1CcCNuHO19YyzSPXZGpYh6g9Th8OHD2zk5bcFGvPiOc_J6d_uyflg8Pd8_rm-eFkowMSzyOmuaAkWpgSmtIG-Kiilkpc6A12lY5CuOdVG1bV0ClBwbhchUqvIKMi3mpD7eVcHHGLCVygzpT--GAMZKzuRoT27llz052pNHe4kVv9hdMD2Ewz_U9ZHC9NbeYJBRGXQKtUniBqm9-ZP_BEcRj4E |
CitedBy_id | crossref_primary_10_1016_j_icte_2024_11_006 crossref_primary_10_1109_TITS_2024_3500093 crossref_primary_10_1109_ACCESS_2024_3383474 crossref_primary_10_1109_JIOT_2024_3392329 crossref_primary_10_1109_TVT_2023_3335990 |
Cites_doi | 10.1109/MWC.2016.7553031 10.1109/JIOT.2021.3056084 10.1109/ACCESS.2021.3080512 10.1109/TNSM.2022.3198074 10.3390/s18124198 10.1109/TWC.2017.2721938 10.1109/MNET.011.2000561 10.1109/TVT.2018.2880969 10.1109/TITS.2018.2818888 10.1007/s11390-022-1573-3 10.1007/978-3-642-27645-3_12 10.1109/JSAC.2018.2844681 10.1109/JIOT.2019.2945640 10.1109/TVT.2019.2899923 10.1109/LCOMM.2019.2941482 10.1109/TCC.2016.2551747 10.1109/JSAC.2021.3087232 10.1109/TWC.2022.3212830 10.3390/s22041387 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.adhoc.2023.103313 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1570-8713 |
ExternalDocumentID | 10_1016_j_adhoc_2023_103313 S1570870523002330 |
GrantInformation_xml | – fundername: Science and Technology Research Project of Henan Province, China grantid: 222102210001 – fundername: Henan Province Science Fund for Distinguished Young Scholars, China grantid: 222300420006 – fundername: Key Science and the Research Program in University of Henan Province, China grantid: 21A510001 – fundername: Leading Talent in Scientific and Technological Innovation in Zhongyuan, China grantid: 234200510018 – fundername: National Natural Science Foundation of China grantid: 62272146; 62071170; 62171180; 62072158 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Program for Innovative Research Team in University of Henan Province, China grantid: 21IRTSTHN015 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION EJD HZ~ RIG SSH UHS |
ID | FETCH-LOGICAL-c303t-492bb5e37da0cdca4b580ce07d2a1992b5461e958ff97aa71ebcee0cf9748a2d3 |
IEDL.DBID | .~1 |
ISSN | 1570-8705 |
IngestDate | Tue Jul 01 01:11:26 EDT 2025 Thu Apr 24 23:03:24 EDT 2025 Fri Feb 23 02:33:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Collaborative Cache Relay Recursive Deep Reinforcement Learning Mobile vehicle edge network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-492bb5e37da0cdca4b580ce07d2a1992b5461e958ff97aa71ebcee0cf9748a2d3 |
ORCID | 0009-0008-8901-2433 |
ParticipantIDs | crossref_citationtrail_10_1016_j_adhoc_2023_103313 crossref_primary_10_1016_j_adhoc_2023_103313 elsevier_sciencedirect_doi_10_1016_j_adhoc_2023_103313 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 2024-01-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Ad hoc networks |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Erhan, Courville, Bengio, Vincent (b25) 2010 Zhou, Zhang, Li, Su (b2) 2022 Wu, Shi, Wan, Fan, Fan, Zhang (b7) 2022 Qiao, Leng, Maharjan, Zhang, Ansari (b18) 2019; 7 Zhang, Li, Luan, Fu, Shi, Zhu (b20) 2019; 68 Bitaghsir, Dadlani, Borhani, Khonsari (b16) 2019; 23 Zhao, Guardalben, Karimzadeh, Silva, Braun, Sargento (b17) 2018; 36 Hu, Fang, Cheng, Yang (b19) 2018; 68 Shojafar, Cordeschi, Baccarelli (b4) 2016; 7 Rossi, Rossini (b29) 2011; 2011 Song, Sheng, Quek, Xu, Wang (b24) 2017; 65 Tian, Feng, Zhou, Huang, Sood, Yu, Zhang (b31) 2022; 20 Zhang, Huang, Zhou, Wang, Wang, Long (b5) 2022; 22 Yang, Fang, Cai, Cai (b32) 2023; 38 Wang, Huang, Cheng, Zhou, Yang (b27) 2019; PP Mahananda, Yovita, Negara (b28) 2022 Javed, Zeadally (b13) 2021; 35 Wang, Kan, Cui, Wu, Zhen (b21) 2021; 8 Zhu, Sun, Li, Qu, Hu, Dong, Zhou, Cao, Du (b6) 2020; 63 Lu, Qu, Liu (b3) 2018; 20 Hu, Zheng, Wang, Song, Li (b15) 2017; 16 Spaan (b26) 2012 Xiong, Zhang, Liu, Zhou, Luo (b22) 2020; 7 Liu, Mao, Shang, Liu, Yang (b30) 2022 Zhou, Wu, Zhang, Wu (b9) 2021; 39 Wu, Xia, Fan, Fan, Li (b8) 2018; 18 Su, Hui, Guo (b12) 2016; 23 Khanal, Thar, Huh (b14) 2021; 9 Zhou, Jiang, He, Min, Wu (b23) 2023 Lei, Chen, Jie, Qingqi, Ci, Zhibin (b1) 2021; 42 Zhou, Wu, Chen, He, Guo, Wu (b10) 2022 Musa, Zennaro, Libsie, Pietrosemoli (b11) 2022; 22 Wu (10.1016/j.adhoc.2023.103313_b8) 2018; 18 Musa (10.1016/j.adhoc.2023.103313_b11) 2022; 22 Zhao (10.1016/j.adhoc.2023.103313_b17) 2018; 36 Liu (10.1016/j.adhoc.2023.103313_b30) 2022 Tian (10.1016/j.adhoc.2023.103313_b31) 2022; 20 Zhang (10.1016/j.adhoc.2023.103313_b5) 2022; 22 Zhou (10.1016/j.adhoc.2023.103313_b9) 2021; 39 Zhang (10.1016/j.adhoc.2023.103313_b20) 2019; 68 Lei (10.1016/j.adhoc.2023.103313_b1) 2021; 42 Song (10.1016/j.adhoc.2023.103313_b24) 2017; 65 Wang (10.1016/j.adhoc.2023.103313_b27) 2019; PP Zhu (10.1016/j.adhoc.2023.103313_b6) 2020; 63 Spaan (10.1016/j.adhoc.2023.103313_b26) 2012 Su (10.1016/j.adhoc.2023.103313_b12) 2016; 23 Rossi (10.1016/j.adhoc.2023.103313_b29) 2011; 2011 Yang (10.1016/j.adhoc.2023.103313_b32) 2023; 38 Qiao (10.1016/j.adhoc.2023.103313_b18) 2019; 7 Zhou (10.1016/j.adhoc.2023.103313_b2) 2022 Lu (10.1016/j.adhoc.2023.103313_b3) 2018; 20 Wu (10.1016/j.adhoc.2023.103313_b7) 2022 Javed (10.1016/j.adhoc.2023.103313_b13) 2021; 35 Wang (10.1016/j.adhoc.2023.103313_b21) 2021; 8 Khanal (10.1016/j.adhoc.2023.103313_b14) 2021; 9 Bitaghsir (10.1016/j.adhoc.2023.103313_b16) 2019; 23 Erhan (10.1016/j.adhoc.2023.103313_b25) 2010 Hu (10.1016/j.adhoc.2023.103313_b19) 2018; 68 Mahananda (10.1016/j.adhoc.2023.103313_b28) 2022 Shojafar (10.1016/j.adhoc.2023.103313_b4) 2016; 7 Zhou (10.1016/j.adhoc.2023.103313_b10) 2022 Hu (10.1016/j.adhoc.2023.103313_b15) 2017; 16 Zhou (10.1016/j.adhoc.2023.103313_b23) 2023 Xiong (10.1016/j.adhoc.2023.103313_b22) 2020; 7 |
References_xml | – year: 2022 ident: b2 article-title: Joint optimization of computing offloading and service caching in edge computing-based smart grid publication-title: IEEE Trans. Cloud Comput. – volume: 42 year: 2021 ident: b1 article-title: Joint intelligent optimization of task offloading and service caching for vehicular edge computing publication-title: J. Commun./Tongxin Xuebao – volume: 20 start-page: 760 year: 2018 end-page: 776 ident: b3 article-title: A survey on recent advances in vehicular network security, trust, and privacy publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 2011 start-page: 1 year: 2011 end-page: 6 ident: b29 article-title: Caching performance of content centric networks under multi-path routing (and more) publication-title: Relat. Téc. Telecom ParisTech – volume: 9 start-page: 73495 year: 2021 end-page: 73505 ident: b14 article-title: Dcol: Distributed collaborative learning for proactive content caching at edge networks publication-title: IEEE Access – volume: 7 start-page: 196 year: 2016 end-page: 209 ident: b4 article-title: Energy-efficient adaptive resource management for real-time vehicular cloud services publication-title: IEEE Trans. Cloud Comput. – start-page: 387 year: 2012 end-page: 414 ident: b26 article-title: Partially observable Markov decision processes publication-title: Reinf. Learn.: State-of-the-Art – volume: 38 start-page: 391 year: 2023 end-page: 404 ident: b32 article-title: A machine learning-based prefetch adaptive intelligent cache replacement strategy publication-title: J. Comput. Sci. Tech. – volume: 23 start-page: 2321 year: 2019 end-page: 2324 ident: b16 article-title: Multi-armed bandit learning for cache content placement in vehicular social networks publication-title: IEEE Commun. Lett. – volume: 36 start-page: 1786 year: 2018 end-page: 1801 ident: b17 article-title: Mobility prediction-assisted over-the-top edge prefetching for hierarchical VANETs publication-title: IEEE J. Sel. Areas Commun. – volume: 7 start-page: 247 year: 2019 end-page: 257 ident: b18 article-title: Deep reinforcement learning for cooperative content caching in vehicular edge computing and networks publication-title: IEEE Internet Things J. – volume: 68 start-page: 3100 year: 2019 end-page: 3112 ident: b20 article-title: A mobility-aware vehicular caching scheme in content centric networks: Model and optimization publication-title: IEEE Trans. Veh. Technol. – start-page: 1049 year: 2022 end-page: 1058 ident: b30 article-title: Distributed cooperative caching in unreliable edge environments publication-title: IEEE INFOCOM 2022-IEEE Conference on Computer Communications – year: 2022 ident: b7 article-title: Towards V2I age-aware fairness access: a dqn based intelligent vehicular node training and test method – volume: 22 start-page: 2583 year: 2022 end-page: 2591 ident: b5 article-title: Capacity maximization in RIS-UAV networks: a DDQN-based trajectory and phase shift optimization approach publication-title: IEEE Trans. Wireless Commun. – year: 2022 ident: b10 article-title: Reverse auction-based computation offloading and resource allocation in mobile cloud-edge computing publication-title: IEEE Trans. Mob. Comput. – volume: 20 start-page: 246 year: 2022 end-page: 260 ident: b31 article-title: Efficient federated DRL-based cooperative caching for mobile edge networks publication-title: IEEE Trans. Netw. Serv. Manag. – volume: PP start-page: 1 year: 2019 ident: b27 article-title: The ApolloScape open dataset for autonomous driving and its application publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 18 start-page: 4198 year: 2018 ident: b8 article-title: Velocity-adaptive V2I fair-access scheme based on IEEE 802.11 DCF for platooning vehicles publication-title: Sensors – volume: 16 start-page: 6321 year: 2017 end-page: 6334 ident: b15 article-title: Roadside unit caching: Auction-based storage allocation for multiple content providers publication-title: IEEE Trans. Wireless Commun. – start-page: 120 year: 2022 end-page: 123 ident: b28 article-title: Performance of homogeneous and heterogeneous cache policy for named data network publication-title: 2022 10th International Conference on Information and Communication Technology (ICoICT) – volume: 65 start-page: 4309 year: 2017 end-page: 4324 ident: b24 article-title: Learning-based content caching and sharing for wireless networks publication-title: IEEE Trans. Commun. – volume: 39 start-page: 2445 year: 2021 end-page: 2460 ident: b9 article-title: Incentive-driven deep reinforcement learning for content caching and D2D offloading publication-title: IEEE J. Sel. Areas Commun. – volume: 22 start-page: 1387 year: 2022 ident: b11 article-title: Mobility-aware proactive edge caching optimization scheme in information-centric iov networks publication-title: Sensors – year: 2023 ident: b23 article-title: Distributed deep multi-agent reinforcement learning for cooperative edge caching in internet-of-vehicles publication-title: IEEE Trans. Wireless Commun. – volume: 68 start-page: 843 year: 2018 end-page: 855 ident: b19 article-title: In-vehicle caching (IV-cache) via dynamic distributed storage relay ( publication-title: IEEE Trans. Veh. Technol. – start-page: 201 year: 2010 end-page: 208 ident: b25 article-title: Why does unsupervised pre-training help deep learning? publication-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics – volume: 23 start-page: 90 year: 2016 end-page: 95 ident: b12 article-title: D2D-based content delivery with parked vehicles in vehicular social networks publication-title: IEEE Wirel. Commun. – volume: 7 start-page: 11972 year: 2020 end-page: 11983 ident: b22 article-title: Resource allocation based on deep reinforcement learning in IoT edge computing publication-title: IEEE Internet Things J. – volume: 8 start-page: 8964 year: 2021 end-page: 8975 ident: b21 article-title: Cooperative caching strategy with content request prediction in Internet of Vehicles publication-title: IEEE Internet Things J. – volume: 63 year: 2020 ident: b6 article-title: Massive files prefetching model based on LSTM neural network with cache transaction strategy publication-title: Comput. Mater. Contin. – volume: 35 start-page: 109 year: 2021 end-page: 115 ident: b13 article-title: Ai-empowered content caching in vehicular edge computing: Opportunities and challenges publication-title: IEEE Netw. – start-page: 120 year: 2022 ident: 10.1016/j.adhoc.2023.103313_b28 article-title: Performance of homogeneous and heterogeneous cache policy for named data network – volume: 23 start-page: 90 issue: 4 year: 2016 ident: 10.1016/j.adhoc.2023.103313_b12 article-title: D2D-based content delivery with parked vehicles in vehicular social networks publication-title: IEEE Wirel. Commun. doi: 10.1109/MWC.2016.7553031 – volume: 8 start-page: 8964 issue: 11 year: 2021 ident: 10.1016/j.adhoc.2023.103313_b21 article-title: Cooperative caching strategy with content request prediction in Internet of Vehicles publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3056084 – volume: 9 start-page: 73495 year: 2021 ident: 10.1016/j.adhoc.2023.103313_b14 article-title: Dcol: Distributed collaborative learning for proactive content caching at edge networks publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3080512 – year: 2022 ident: 10.1016/j.adhoc.2023.103313_b2 article-title: Joint optimization of computing offloading and service caching in edge computing-based smart grid publication-title: IEEE Trans. Cloud Comput. – volume: 20 start-page: 246 issue: 1 year: 2022 ident: 10.1016/j.adhoc.2023.103313_b31 article-title: Efficient federated DRL-based cooperative caching for mobile edge networks publication-title: IEEE Trans. Netw. Serv. Manag. doi: 10.1109/TNSM.2022.3198074 – volume: 18 start-page: 4198 issue: 12 year: 2018 ident: 10.1016/j.adhoc.2023.103313_b8 article-title: Velocity-adaptive V2I fair-access scheme based on IEEE 802.11 DCF for platooning vehicles publication-title: Sensors doi: 10.3390/s18124198 – volume: 16 start-page: 6321 issue: 10 year: 2017 ident: 10.1016/j.adhoc.2023.103313_b15 article-title: Roadside unit caching: Auction-based storage allocation for multiple content providers publication-title: IEEE Trans. Wireless Commun. doi: 10.1109/TWC.2017.2721938 – volume: 65 start-page: 4309 issue: 10 year: 2017 ident: 10.1016/j.adhoc.2023.103313_b24 article-title: Learning-based content caching and sharing for wireless networks publication-title: IEEE Trans. Commun. – year: 2022 ident: 10.1016/j.adhoc.2023.103313_b7 – start-page: 1049 year: 2022 ident: 10.1016/j.adhoc.2023.103313_b30 article-title: Distributed cooperative caching in unreliable edge environments – volume: PP start-page: 1 issue: 99 year: 2019 ident: 10.1016/j.adhoc.2023.103313_b27 article-title: The ApolloScape open dataset for autonomous driving and its application publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2022 ident: 10.1016/j.adhoc.2023.103313_b10 article-title: Reverse auction-based computation offloading and resource allocation in mobile cloud-edge computing publication-title: IEEE Trans. Mob. Comput. – volume: 35 start-page: 109 issue: 3 year: 2021 ident: 10.1016/j.adhoc.2023.103313_b13 article-title: Ai-empowered content caching in vehicular edge computing: Opportunities and challenges publication-title: IEEE Netw. doi: 10.1109/MNET.011.2000561 – volume: 68 start-page: 843 issue: 1 year: 2018 ident: 10.1016/j.adhoc.2023.103313_b19 article-title: In-vehicle caching (IV-cache) via dynamic distributed storage relay (d) in vehicular networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2018.2880969 – volume: 20 start-page: 760 issue: 2 year: 2018 ident: 10.1016/j.adhoc.2023.103313_b3 article-title: A survey on recent advances in vehicular network security, trust, and privacy publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2018.2818888 – volume: 38 start-page: 391 issue: 2 year: 2023 ident: 10.1016/j.adhoc.2023.103313_b32 article-title: A machine learning-based prefetch adaptive intelligent cache replacement strategy publication-title: J. Comput. Sci. Tech. doi: 10.1007/s11390-022-1573-3 – start-page: 387 year: 2012 ident: 10.1016/j.adhoc.2023.103313_b26 article-title: Partially observable Markov decision processes publication-title: Reinf. Learn.: State-of-the-Art doi: 10.1007/978-3-642-27645-3_12 – start-page: 201 year: 2010 ident: 10.1016/j.adhoc.2023.103313_b25 article-title: Why does unsupervised pre-training help deep learning? – volume: 36 start-page: 1786 issue: 8 year: 2018 ident: 10.1016/j.adhoc.2023.103313_b17 article-title: Mobility prediction-assisted over-the-top edge prefetching for hierarchical VANETs publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2018.2844681 – volume: 42 issue: 1 year: 2021 ident: 10.1016/j.adhoc.2023.103313_b1 article-title: Joint intelligent optimization of task offloading and service caching for vehicular edge computing publication-title: J. Commun./Tongxin Xuebao – volume: 7 start-page: 11972 issue: 12 year: 2020 ident: 10.1016/j.adhoc.2023.103313_b22 article-title: Resource allocation based on deep reinforcement learning in IoT edge computing publication-title: IEEE Internet Things J. – volume: 2011 start-page: 1 year: 2011 ident: 10.1016/j.adhoc.2023.103313_b29 article-title: Caching performance of content centric networks under multi-path routing (and more) publication-title: Relat. Téc. Telecom ParisTech – volume: 7 start-page: 247 issue: 1 year: 2019 ident: 10.1016/j.adhoc.2023.103313_b18 article-title: Deep reinforcement learning for cooperative content caching in vehicular edge computing and networks publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2945640 – volume: 68 start-page: 3100 issue: 4 year: 2019 ident: 10.1016/j.adhoc.2023.103313_b20 article-title: A mobility-aware vehicular caching scheme in content centric networks: Model and optimization publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2899923 – year: 2023 ident: 10.1016/j.adhoc.2023.103313_b23 article-title: Distributed deep multi-agent reinforcement learning for cooperative edge caching in internet-of-vehicles publication-title: IEEE Trans. Wireless Commun. – volume: 23 start-page: 2321 issue: 12 year: 2019 ident: 10.1016/j.adhoc.2023.103313_b16 article-title: Multi-armed bandit learning for cache content placement in vehicular social networks publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2019.2941482 – volume: 63 issue: 2 year: 2020 ident: 10.1016/j.adhoc.2023.103313_b6 article-title: Massive files prefetching model based on LSTM neural network with cache transaction strategy publication-title: Comput. Mater. Contin. – volume: 7 start-page: 196 issue: 1 year: 2016 ident: 10.1016/j.adhoc.2023.103313_b4 article-title: Energy-efficient adaptive resource management for real-time vehicular cloud services publication-title: IEEE Trans. Cloud Comput. doi: 10.1109/TCC.2016.2551747 – volume: 39 start-page: 2445 issue: 8 year: 2021 ident: 10.1016/j.adhoc.2023.103313_b9 article-title: Incentive-driven deep reinforcement learning for content caching and D2D offloading publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2021.3087232 – volume: 22 start-page: 2583 issue: 4 year: 2022 ident: 10.1016/j.adhoc.2023.103313_b5 article-title: Capacity maximization in RIS-UAV networks: a DDQN-based trajectory and phase shift optimization approach publication-title: IEEE Trans. Wireless Commun. doi: 10.1109/TWC.2022.3212830 – volume: 22 start-page: 1387 issue: 4 year: 2022 ident: 10.1016/j.adhoc.2023.103313_b11 article-title: Mobility-aware proactive edge caching optimization scheme in information-centric iov networks publication-title: Sensors doi: 10.3390/s22041387 |
SSID | ssj0029201 |
Score | 2.4015057 |
Snippet | With the rapid development of Internet of vehicles (IoV) and the continuous emergence of vehicle information applications, the demand for content in vehicle... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103313 |
SubjectTerms | Collaborative Cache Relay Mobile vehicle edge network Recursive Deep Reinforcement Learning |
Title | Collaborative caching relay algorithm based on recursive deep reinforcement learning in mobile vehicle edge network |
URI | https://dx.doi.org/10.1016/j.adhoc.2023.103313 |
Volume | 152 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL3oQn_hmDx6NTTabbnIsxVKfiA_wFvYxtZU2KVoLXvztzuShFaQHT2GzuyTMDvPtDN_MMHYscCKS1nqxBudJsMJLrJLo8wijwjAxAihR-Pqm2X2UF0_R0wJr17kwRKusbH9p0wtrXb1pVNJsjAeDxn0QKR-1jcKaCDwh-e1SKtLy089vmgc1Yyprpirfo9V15aGC46VdP6c6hiKk5PMwCP9GpxnE6ayx1eqqyFvl36yzBcg22MpMAcFN9tb-OcYpcFsyIzklqHxwPXzO0fXvjzhBleN5hhOWogO41AGMcVjUTbVFiJBXDSSe-SDjo9ygueBT6NO3OQXdeFYyxrfYY-fsod31qjYKnkV8mngyEcZEECqnfeusliaKfQu-ckIT-dREshlAEsW9XqK0VgEYRE7f4kjGWrhwmy1meQY7jBurtN8zTSNNII0EdNe0BbwkxZHQzsIuE7X4UlvVGKdWF8O0JpO9pIXMU5J5Wsp8l518bxqXJTbmL2_W55L-0pQUQWDexr3_btxnyziSZeDlgC1OXt_hEK8iE3NU6NoRW2q1765u6Xl-2b35Av6w4qI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsQwEB1xFECBOMWNC-gImzjOOikoEIeWswEkuuBjll0EyQoWEA0_xQ8yzsEhIQokSsd24oxHM_bozRuANU4dkTDGixVaT6DhXmKkoDsP1zIME83RJQqfnDZbF-LwMrocgLc6F8bBKivbX9r0wlpXTxqVNBu9brdxFkTSJ21zYU1yPKFfISuP8OWZ7m0PWwe7tMnrnO_vne-0vKq0gGfIZvc9kXCtIwylVb6xRgkdxb5BX1quHCBTR6IZYBLF7XYilZIBavImvqGWiBW3Ib13EIYFmQtXNmHz9QNX4qo_lSSt0vfc8mqqowJUpmwnd8SJPHTZ7mEQ_uwOv7i4_QkYr86mbLv8_UkYwGwKxr4wFk7Dw86n3jwhMyUUk7mMmBembq_z-26_c8ecb7Qsz6jDuHAEDbWIPWoWRK2miEmyqmLFNetm7C7XZJ_YE3bct5mL8rGshKjPwMW_CHcWhrI8wzlg2kjlt3VTCx0ILZDuh8ogncriiCtrcB54Lb7UVKTmrrbGbVqj127SQuapk3laynweNj4m9UpOj9-HN-t9Sb-pZkpe57eJC3-duAojrfOT4_T44PRoEUapR5RRnyUY6t8_4jKdg_p6pdA7Blf_rejvMEUeXA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collaborative+caching+relay+algorithm+based+on+recursive+deep+reinforcement+learning+in+mobile+vehicle+edge+network&rft.jtitle=Ad+hoc+networks&rft.au=Wu%2C+Honghai&rft.au=Wang%2C+Baibing&rft.au=Ma%2C+Huahong&rft.au=Xing%2C+Ling&rft.date=2024-01-01&rft.pub=Elsevier+B.V&rft.issn=1570-8705&rft.eissn=1570-8713&rft.volume=152&rft_id=info:doi/10.1016%2Fj.adhoc.2023.103313&rft.externalDocID=S1570870523002330 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-8705&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-8705&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-8705&client=summon |