Performance monitoring of heat exchanger networks using excess thermal and hydraulic loads
Fouling in heat exchanger networks (HENs) affects thermal and hydraulic efficiencies resulting in economic penalties to the process industries. Conventionally, overall heat transfer rates of the heat exchangers in HENs are monitored to identify fouling. However, apart from fouling, these rates also...
Saved in:
Published in | Chemical engineering research & design Vol. 200; pp. 225 - 243 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fouling in heat exchanger networks (HENs) affects thermal and hydraulic efficiencies resulting in economic penalties to the process industries. Conventionally, overall heat transfer rates of the heat exchangers in HENs are monitored to identify fouling. However, apart from fouling, these rates also vary with inlet conditions. Hence, estimating the degree of fouling accurately based only on heat transfer rates can fail. Previously, we had proposed the use of excess thermal and hydraulic loads as the basis for monitoring fouling in standalone exchangers (Patil et al., 2022). These are quantified as thermal and hydraulic performance indicators that can be easily tracked through suitably constructed charts. In this paper, we extend the approach to HENs wherein deviations in temperature drop across a heat exchanger vis-à-vis the clean condition also depends upon upstream heat exchanger(s). The network performance monitoring charts rely on normalized performance indicators and temperatures across heat exchangers and also have explicitly denoted normal, alert, and alarm regions. The proposed charts are applicable to HENs with or without temperature controllers. Two case studies comprising multiple scenarios of flow rate and setpoint changes are studied. The results show that the method can effectively identify the degree of fouling.
•Fouling is a widespread problem in heat exchanger networks and results in various inefficiencies.•We previously proposed a strategy to estimate fouling in standalone exchangers without lab tests or sophisticated models.•Here, we extend it to networks and account for interactions between exchangers.•Changes in pressure drop and mass flowrate vis-à-vis the clean state are calculated while accounting for input changes.•It is suitable for industrial settings and can accommodate even control loops. |
---|---|
AbstractList | Fouling in heat exchanger networks (HENs) affects thermal and hydraulic efficiencies resulting in economic penalties to the process industries. Conventionally, overall heat transfer rates of the heat exchangers in HENs are monitored to identify fouling. However, apart from fouling, these rates also vary with inlet conditions. Hence, estimating the degree of fouling accurately based only on heat transfer rates can fail. Previously, we had proposed the use of excess thermal and hydraulic loads as the basis for monitoring fouling in standalone exchangers (Patil et al., 2022). These are quantified as thermal and hydraulic performance indicators that can be easily tracked through suitably constructed charts. In this paper, we extend the approach to HENs wherein deviations in temperature drop across a heat exchanger vis-à-vis the clean condition also depends upon upstream heat exchanger(s). The network performance monitoring charts rely on normalized performance indicators and temperatures across heat exchangers and also have explicitly denoted normal, alert, and alarm regions. The proposed charts are applicable to HENs with or without temperature controllers. Two case studies comprising multiple scenarios of flow rate and setpoint changes are studied. The results show that the method can effectively identify the degree of fouling.
•Fouling is a widespread problem in heat exchanger networks and results in various inefficiencies.•We previously proposed a strategy to estimate fouling in standalone exchangers without lab tests or sophisticated models.•Here, we extend it to networks and account for interactions between exchangers.•Changes in pressure drop and mass flowrate vis-à-vis the clean state are calculated while accounting for input changes.•It is suitable for industrial settings and can accommodate even control loops. |
Author | Patil, Parag Srinivasan, Rajagopalan Srinivasan, Babji |
Author_xml | – sequence: 1 givenname: Parag orcidid: 0000-0002-1328-831X surname: Patil fullname: Patil, Parag organization: Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382355, India – sequence: 2 givenname: Babji surname: Srinivasan fullname: Srinivasan, Babji organization: Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India – sequence: 3 givenname: Rajagopalan orcidid: 0000-0002-8790-4349 surname: Srinivasan fullname: Srinivasan, Rajagopalan email: raj@iitm.ac.in organization: Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India |
BookMark | eNqFkD1PwzAQhj0UiRb4BSz-Awl2nK8ODKjiS6oEAyws0cU-Ny6JjWwX6L8noUwMMJ303j13umdBZtZZJOScs5QzXl5sU9mhV2nGMjEmKRN8RuYsK0VSV2V2TBYhbBljvMrrOXl5RK-dH8BKpIOzJjpv7IY6TTuESPFTdmA36KnF-OH8a6C7MA2MDQyBxvHWAD0Fq2i3Vx52vZG0d6DCKTnS0Ac8-6kn5Pnm-ml1l6wfbu9XV-tECiZiklcFaNVKVaBuNde5aIsaMNdcFnUmSqZZBdVSF6C0ZlxDXld5xbBEKcWSteKELA97pXcheNSNNBGicTZ6MH3DWTOJabbNt5hmEjOFo5iRFb_YN28G8Pt_qMsDheNb7wZ9E6TB0aAyHmVslDN_8l_i3YUo |
CitedBy_id | crossref_primary_10_3390_en18010071 |
Cites_doi | 10.1016/j.applthermaleng.2014.12.002 10.1016/j.compchemeng.2011.05.009 10.1016/S0894-1777(96)00146-X 10.1080/01457632.2021.1963542 10.1016/j.ijthermalsci.2014.11.030 10.1016/j.apenergy.2012.08.038 10.1016/j.applthermaleng.2010.04.027 10.1205/cherd06046 10.1021/ie901991g 10.1205/026387604772803070 10.1007/s41660-019-00104-8 10.1016/j.ces.2003.10.011 10.1080/00986440214999 10.1021/ie303020m 10.1080/01457639008939720 10.1016/j.cherd.2022.07.011 10.1021/acs.iecr.8b04343 10.1080/014576302753249589 10.1080/01457630902744119 10.1002/aic.15036 10.1021/ie034178g 10.1016/j.compchemeng.2011.01.027 10.1002/aic.12514 10.1080/01457632.2016.1206408 10.1080/01457638108939594 10.1016/j.apenergy.2017.10.018 10.1016/j.foodcont.2019.05.013 10.1080/01457632.2021.1963537 10.1016/j.fuel.2018.09.081 10.1021/ie900367j 10.1016/j.cherd.2022.02.032 10.1080/01457632.2019.1640487 10.2166/wst.2021.253 10.1002/aic.15457 10.1016/j.ijheatmasstransfer.2020.120112 10.1021/acs.iecr.9b05490 10.1021/ie4000097 10.1016/j.ces.2008.04.008 |
ContentType | Journal Article |
Copyright | 2023 Institution of Chemical Engineers |
Copyright_xml | – notice: 2023 Institution of Chemical Engineers |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cherd.2023.10.031 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 243 |
ExternalDocumentID | 10_1016_j_cherd_2023_10_031 S0263876223006676 |
GroupedDBID | --K --M -QF -~X .~1 0R~ 1B1 1~. 1~5 29B 3EH 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAHCO AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARJD AAXUO ABDBF ABFNM ABFRF ABJNI ABMAC ABNUV ABXDB ACDAQ ACGFO ACIWK ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHPOS AI. AIAGR AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CAG COF CS3 DU5 EBS EFJIC EJD ENUVR EO9 EP2 EP3 ESX FDB FEDTE FGOYB FIRID FNPLU FYGXN GBLVA HVGLF HZ~ I-F IHE J1W JARJE KOM M41 ML- MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SJN SPC SPCBC SSG SSR SSZ T5K T9H TUS UNMZH VH1 ~02 ~8M ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACUHS ACVFH ADCNI ADMLS ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c303t-475afdbcd5efbf1f43b58ae4f1c582360f07a79f5adff01fa487470e6ecc390b3 |
IEDL.DBID | .~1 |
ISSN | 0263-8762 |
IngestDate | Tue Jul 01 00:53:15 EDT 2025 Thu Apr 24 23:00:51 EDT 2025 Sat Aug 17 15:41:47 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Excess hydraulic load Fouling Heat exchanger network Excess thermal load Monitoring |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-475afdbcd5efbf1f43b58ae4f1c582360f07a79f5adff01fa487470e6ecc390b3 |
ORCID | 0000-0002-1328-831X 0000-0002-8790-4349 |
PageCount | 19 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cherd_2023_10_031 crossref_primary_10_1016_j_cherd_2023_10_031 elsevier_sciencedirect_doi_10_1016_j_cherd_2023_10_031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2023 2023-12-00 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering research & design |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wilson, Polley, Pugh, D (bib49) 2002; 23 Yeap, Wilson, Polley, Pugh (bib50) 2004; 82 Zettler (bib52) 2021 Diaz-Bejarano, Coletti, Macchietto (bib11) 2020; 59 Zabiri, Radhakrishnan, Ramasamy, Ramli, Do Thanh, Wah (bib51) 2007; 2 Ishiyama, Heins, Paterson, Spinelli, Wilson (bib22) 2010; 30 Diaz‐Bejarano, Coletti, Macchietto (bib12) 2016; 62 Epstein (bib16) 1983; 4 Chunangad, Chang, Curcio, Casebolt (bib4) 2016 Patil, Srinivasan, Srinivasan (bib36) 2022; 181 Sundar, Rajagopal, Zhao, Kuntumalla, Meng, Chang, Salapaka (bib44) 2020; 159 Wang, Tang, He, Kulacki, Yu (bib46) 2019; 236 Bouvier, Delaplace, Lalot (bib3) 2019 Escrig, Woolley, Rangappa, Simeone, Watson (bib17) 2019; 104 Diaz-Bejarano, Behranvand, Coletti, Mozdianfard, Macchietto (bib9) 2017; 206 Halim, Srinivasan (bib19) 2009; 48 Ishiyama, Juhel, Aquino, Hagi, Pugh, Gomez Suarez, Zettler (bib25) 2022; 43 Ebert, Panchal (bib15) 1995 . Ishiyama, Paterson, Wilson (bib21) 2008; 63 Diaz-Bejarano, Behranvand, Coletti, Mozdianfard, Macchietto (bib10) 2018; 58 Rafeen, M.S., Mohamed, M.F., Mamot, M.Z., Manan, N.A., Shafawi, D.A., & Ramasamy, D.M. (2007). Crude oil fouling: petronas refineries experience. Lavaja, Bagajewicz (bib29) 2004; 43 Müller-Steinhagen, Malayeri, Watkinson (bib33) 2009; 30 Coletti, Macchietto (bib5) 2011; 50 Bories, Patureaux (bib2) 2003 Benyekhlef, Mohammedi, Hassani, Hanini (bib1) 2021; 84 Markowski, Trafczynski, Urbaniec (bib31) 2013; 102 Smaïli, Vassiliadis, Wilson (bib42) 2002; 189 Waters, Akinradewo, Lamb (bib48) 2009 Ishiyama, Paterson, Ian Wilson (bib23) 2011; 57 Patil, Srinivasan, Srinivasan (bib35) 2022; 185 Coletti, Macchietto, Polley (bib6) 2011; 35 Rodriguez, Smith (bib38) 2007; 85 Halim, Srinivasan (bib20) 2011; 35 Wang, Smith (bib47) 2013; 52 Diaz‐Bejarano, Coletti, Macchietto (bib13) 2017; 63 Ishiyama, Pugh, Wilson (bib24) 2020; 4 Lozano-Santamaria, Macchietto (bib30) 2022; 43 Mohanraj, Jayaraj, Muraleedharan (bib32) 2015; 90 Romagnoli, Sánchez (bib39) 1999 Kakac, Liu, Pramuanjaroenkij (bib28) 2002 Grosfils, Kinnaert, Bogaerts, Hanus (bib18) 2004; 59 Somerscales (bib43) 1990; 11 Ishiyama, Simon (bib26) 2019 Shah, Sekulic (bib40) 2007 Diaz-Bejarano, Coletti, Macchietto (bib8) 2017; 38 Díaz-Bejarano, Santos, Dopico, Coletti (bib14) 2020; 41 TEMA) (9th ed.). (2007). TEMA. Jerónimo, Melo, Braga, Ferreira, Martins (bib27) 1997; 14 Pan, Bulatov, Smith (bib34) 2013; 52 Shi, Wang, Liu (bib41) 2015; 78 Crittenden, Kolaczkowski, Downey (bib7) 1992; 70 Mohanraj (10.1016/j.cherd.2023.10.031_bib32) 2015; 90 Somerscales (10.1016/j.cherd.2023.10.031_bib43) 1990; 11 Epstein (10.1016/j.cherd.2023.10.031_bib16) 1983; 4 Diaz-Bejarano (10.1016/j.cherd.2023.10.031_bib9) 2017; 206 Díaz-Bejarano (10.1016/j.cherd.2023.10.031_bib14) 2020; 41 Lavaja (10.1016/j.cherd.2023.10.031_bib29) 2004; 43 Ebert (10.1016/j.cherd.2023.10.031_bib15) 1995 Bouvier (10.1016/j.cherd.2023.10.031_bib3) 2019 Patil (10.1016/j.cherd.2023.10.031_bib35) 2022; 185 Halim (10.1016/j.cherd.2023.10.031_bib20) 2011; 35 10.1016/j.cherd.2023.10.031_bib37 Wang (10.1016/j.cherd.2023.10.031_bib46) 2019; 236 Wang (10.1016/j.cherd.2023.10.031_bib47) 2013; 52 Diaz‐Bejarano (10.1016/j.cherd.2023.10.031_bib13) 2017; 63 Romagnoli (10.1016/j.cherd.2023.10.031_bib39) 1999 Zabiri (10.1016/j.cherd.2023.10.031_bib51) 2007; 2 Coletti (10.1016/j.cherd.2023.10.031_bib6) 2011; 35 Ishiyama (10.1016/j.cherd.2023.10.031_bib24) 2020; 4 Diaz-Bejarano (10.1016/j.cherd.2023.10.031_bib8) 2017; 38 Ishiyama (10.1016/j.cherd.2023.10.031_bib21) 2008; 63 Kakac (10.1016/j.cherd.2023.10.031_bib28) 2002 Sundar (10.1016/j.cherd.2023.10.031_bib44) 2020; 159 Rodriguez (10.1016/j.cherd.2023.10.031_bib38) 2007; 85 Crittenden (10.1016/j.cherd.2023.10.031_bib7) 1992; 70 Shi (10.1016/j.cherd.2023.10.031_bib41) 2015; 78 Wilson (10.1016/j.cherd.2023.10.031_bib49) 2002; 23 Smaïli (10.1016/j.cherd.2023.10.031_bib42) 2002; 189 Ishiyama (10.1016/j.cherd.2023.10.031_bib25) 2022; 43 Ishiyama (10.1016/j.cherd.2023.10.031_bib22) 2010; 30 Patil (10.1016/j.cherd.2023.10.031_bib36) 2022; 181 Ishiyama (10.1016/j.cherd.2023.10.031_bib23) 2011; 57 Ishiyama (10.1016/j.cherd.2023.10.031_bib26) 2019 Shah (10.1016/j.cherd.2023.10.031_bib40) 2007 Pan (10.1016/j.cherd.2023.10.031_bib34) 2013; 52 Halim (10.1016/j.cherd.2023.10.031_bib19) 2009; 48 Escrig (10.1016/j.cherd.2023.10.031_bib17) 2019; 104 Benyekhlef (10.1016/j.cherd.2023.10.031_bib1) 2021; 84 10.1016/j.cherd.2023.10.031_bib45 Coletti (10.1016/j.cherd.2023.10.031_bib5) 2011; 50 Grosfils (10.1016/j.cherd.2023.10.031_bib18) 2004; 59 Diaz-Bejarano (10.1016/j.cherd.2023.10.031_bib10) 2018; 58 Lozano-Santamaria (10.1016/j.cherd.2023.10.031_bib30) 2022; 43 Diaz-Bejarano (10.1016/j.cherd.2023.10.031_bib11) 2020; 59 Waters (10.1016/j.cherd.2023.10.031_bib48) 2009 Zettler (10.1016/j.cherd.2023.10.031_bib52) 2021 Müller-Steinhagen (10.1016/j.cherd.2023.10.031_bib33) 2009; 30 Jerónimo (10.1016/j.cherd.2023.10.031_bib27) 1997; 14 Bories (10.1016/j.cherd.2023.10.031_bib2) 2003 Yeap (10.1016/j.cherd.2023.10.031_bib50) 2004; 82 Diaz‐Bejarano (10.1016/j.cherd.2023.10.031_bib12) 2016; 62 Markowski (10.1016/j.cherd.2023.10.031_bib31) 2013; 102 Chunangad (10.1016/j.cherd.2023.10.031_bib4) 2016 |
References_xml | – start-page: 451 year: 1995 end-page: 460 ident: bib15 article-title: Analysis of Exxon crude-oil-slip stream coking data publication-title: Fouling Mitig. Ind. Heat. Exch. – volume: 90 start-page: 150 year: 2015 end-page: 172 ident: bib32 article-title: Applications of artificial neural networks for thermal analysis of heat exchangers–a review publication-title: Int. J. Therm. Sci. – volume: 206 start-page: 1250 year: 2017 end-page: 1266 ident: bib9 article-title: Organic and inorganic fouling in heat exchangers–Industrial case study: Analysis of fouling state publication-title: Appl. Energy – start-page: 186b year: 2016 ident: bib4 article-title: Consider thermal and hydraulic impacts of fouling in crude preheat exchanger design – volume: 4 start-page: 187 year: 2020 end-page: 200 ident: bib24 article-title: Incorporating deposit ageing into visualisation of crude oil preheat train fouling. publication-title: Process Integr. Sustain. – volume: 50 start-page: 4515 year: 2011 end-page: 4533 ident: bib5 article-title: A dynamic, distributed model of shell-and-tube heat exchangers undergoing crude oil fouling publication-title: Ind. Eng. Chem. Res. – volume: 38 start-page: 681 year: 2017 end-page: 693 ident: bib8 article-title: Crude oil fouling deposition, suppression, removal, and consolidation—and how to tell the difference publication-title: Heat. Transf. Eng. – volume: 159 year: 2020 ident: bib44 article-title: Fouling modeling and prediction approach for heat exchangers using deep learning publication-title: Int. J. Heat. Mass Transf. – volume: 35 start-page: 907 year: 2011 end-page: 917 ident: bib6 article-title: Effects of fouling on performance of retrofitted heat exchanger networks: a thermo-hydraulic based analysis publication-title: Comput. Chem. Eng. – year: 2019 ident: bib3 article-title: Continuous monitoring of whey protein fouling using a nonintrusive sensor publication-title: Heat. Transf. Eng. – volume: 59 start-page: 489 year: 2004 end-page: 499 ident: bib18 article-title: Fouling resistance modelling, identification and monitoring of a thermosiphon reboiler publication-title: Chem. Eng. Sci. – year: 2002 ident: bib28 article-title: Heat exchangers: selection, rating, and thermal design – volume: 57 start-page: 3199 year: 2011 end-page: 3209 ident: bib23 article-title: Exploration of alternative models for the aging of fouling deposits publication-title: AIChE J. – volume: 30 start-page: 773 year: 2009 end-page: 776 ident: bib33 article-title: Heat exchanger fouling: environmental impacts publication-title: Heat. Transf. Eng. – start-page: 97 year: 2007 end-page: 231 ident: bib40 article-title: Basic thermal design theory for recuperators publication-title: Fundam. Heat. Exch. Des. – volume: 41 start-page: 1750 year: 2020 end-page: 1761 ident: bib14 article-title: Evaluation of heat exchanger network retrofit design using plant data publication-title: Heat. Transf. Eng. – volume: 236 start-page: 949 year: 2019 end-page: 959 ident: bib46 article-title: Heat transfer and fouling performance of finned tube heat exchangers: Experimentation via on line monitoring publication-title: Fuel – volume: 52 start-page: 2925 year: 2013 end-page: 2943 ident: bib34 article-title: Exploiting tube inserts to intensify heat transfer for the retrofit of heat exchanger networks considering fouling mitigation publication-title: Ind. Eng. Chem. Res. – start-page: 200 year: 2003 end-page: 210 ident: bib2 article-title: Preheat train crude distillation fouling propensity evaluation by the ebert and panchal model publication-title: ECI Conference on Heat Exchanger Fouling and Cleaning: Fundamentals and Applications, Santa Fe, New Mexico (USA) – volume: 58 start-page: 228 year: 2018 end-page: 246 ident: bib10 article-title: Organic and inorganic fouling in heat exchangers: industrial case study analysis of fouling rate publication-title: Ind. Eng. Chem. Res. – volume: 63 start-page: 984 year: 2017 end-page: 1001 ident: bib13 article-title: Thermo‐hydraulic analysis of refinery heat exchangers undergoing fouling publication-title: AIChE J. – volume: 43 start-page: 1349 year: 2022 end-page: 1364 ident: bib30 article-title: Assessment of a dynamic model for the optimization of refinery preheat trains under fouling publication-title: Heat. Transf. Eng. – volume: 59 start-page: 4602 year: 2020 end-page: 4619 ident: bib11 article-title: A model-based method for visualization, monitoring, and diagnosis of fouling in heat exchangers publication-title: Ind. Eng. Chem. Res. – volume: 85 start-page: 839 year: 2007 end-page: 851 ident: bib38 article-title: Optimization of operating conditions for mitigating fouling in heat exchanger networks publication-title: Chem. Eng. Res. Des. – reference: Rafeen, M.S., Mohamed, M.F., Mamot, M.Z., Manan, N.A., Shafawi, D.A., & Ramasamy, D.M. (2007). Crude oil fouling: petronas refineries experience. – volume: 78 start-page: 39 year: 2015 end-page: 50 ident: bib41 article-title: On-line monitoring of ash fouling and soot-blowing optimization for convective heat exchanger in coal-fired power plant boiler publication-title: Appl. Therm. Eng. – volume: 43 start-page: 3924 year: 2004 end-page: 3938 ident: bib29 article-title: On a new MILP model for the planning of heat-exchanger network cleaning publication-title: Ind. Eng. Chem. Res. – volume: 30 start-page: 1852 year: 2010 end-page: 1862 ident: bib22 article-title: Scheduling cleaning in a crude oil preheat train subject to fouling: incorporating desalter control publication-title: Appl. Therm. Eng. – reference: TEMA) (9th ed.). (2007). TEMA. – volume: 2 start-page: 2 year: 2007 ident: bib51 article-title: Development of heat exchanger fouling model and preventive maintenance diagnostic tool publication-title: Chem. Prod. Process Model. – year: 1999 ident: bib39 article-title: Data processing and reconciliation for chemical process operations – volume: 84 start-page: 538 year: 2021 end-page: 551 ident: bib1 article-title: Application of artificial neural network (ANN-MLP) for the prediction of fouling resistance in heat exchanger to MgO-water and CuO-water nanofluids publication-title: Water Sci. Technol. – start-page: 1 year: 2021 end-page: 2 ident: bib52 article-title: 13th heat exchanger fouling and cleaning conference-2019, Warsaw, Poland publication-title: Heat. Transf. Eng. – volume: 43 start-page: 1365 year: 2022 end-page: 1377 ident: bib25 article-title: Advanced fouling management through use of HTRI SmartPM: case studies from total refinery CDU preheat trains publication-title: Heat. Transf. Eng. – start-page: 33 year: 2009 end-page: 38 ident: bib48 article-title: Fouling: implementation of a crude preheat train performance monitoring application at the irving oil refinery publication-title: Int. Conf. Heat. Exch. Fouling Clean. VIII – volume: 35 start-page: 1575 year: 2011 end-page: 1597 ident: bib20 article-title: Sequential methodology for integrated optimization of energy and water use during batch process scheduling publication-title: Comput. Chem. Eng. – volume: 104 start-page: 358 year: 2019 end-page: 366 ident: bib17 article-title: Clean-in-place monitoring of different food fouling materials using ultrasonic measurements publication-title: Food Control – volume: 14 start-page: 455 year: 1997 end-page: 463 ident: bib27 article-title: Monitoring the thermal efficiency of fouled heat exchangers: a simplified method publication-title: Exp. Therm. Fluid Sci. – volume: 63 start-page: 3400 year: 2008 end-page: 3410 ident: bib21 article-title: Thermo-hydraulic channelling in parallel heat exchangers subject to fouling publication-title: Chem. Eng. Sci. – volume: 4 start-page: 43 year: 1983 end-page: 56 ident: bib16 article-title: Thinking about heat transfer fouling: A 5 × 5 matrix publication-title: Heat. Transf. Eng. – volume: 181 start-page: 41 year: 2022 end-page: 54 ident: bib36 article-title: Monitoring fouling in heat exchangers under temperature control based on excess thermal and hydraulic loads publication-title: Chem. Eng. Res. Des. – volume: 82 start-page: 53 year: 2004 end-page: 71 ident: bib50 article-title: Mitigation of crude oil refinery heat exchanger fouling through retrofits based on thermo-hydraulic fouling models publication-title: Chem. Eng. Res. Des. – volume: 11 start-page: 19 year: 1990 end-page: 36 ident: bib43 article-title: Fouling of heat transfer surfaces: an historical review publication-title: Heat. Transf. Eng. – volume: 23 start-page: 24 year: 2002 end-page: 37 ident: bib49 article-title: Mitigation of crude oil preheat train fouling by design publication-title: Heat. Transf. Eng. – volume: 189 start-page: 1517 year: 2002 end-page: 1549 ident: bib42 article-title: Optimization of cleaning schedule sin heat exchanger networks subject to fouling publication-title: Chem. Eng. Commun. – reference: . – volume: 70 year: 1992 ident: bib7 article-title: Fouling of crude oil preheat exchangers publication-title: Chem. Eng. Res. Des. – year: 2019 ident: bib26 article-title: Effect of flow distribution in parallel heat exchanger networks: Use of thermo-hydraulic channeling model in refinery operation publication-title: Heat. Transf. Eng. – volume: 185 start-page: 326 year: 2022 end-page: 343 ident: bib35 article-title: A simple model-based methodology to characterize foulants in heat exchangers using excess thermal and hydraulic loads publication-title: Chem. Eng. Res. Des. – volume: 62 start-page: 90 year: 2016 end-page: 107 ident: bib12 article-title: A new dynamic model of crude oil fouling deposits and its application to the simulation of fouling‐cleaning cycles publication-title: AIChE J. – volume: 48 start-page: 8551 year: 2009 end-page: 8565 ident: bib19 article-title: Sequential methodology for scheduling of heat-integrated batch plants publication-title: Ind. Eng. Chem. Res. – volume: 102 start-page: 755 year: 2013 end-page: 764 ident: bib31 article-title: Identification of the influence of fouling on the heat recovery in a network of shell and tube heat exchangers publication-title: Appl. Energy – volume: 52 start-page: 8527 year: 2013 end-page: 8537 ident: bib47 article-title: Retrofit of a heat-exchanger network by considering heat-transfer enhancement and fouling publication-title: Ind. Eng. Chem. Res. – year: 1999 ident: 10.1016/j.cherd.2023.10.031_bib39 – volume: 78 start-page: 39 year: 2015 ident: 10.1016/j.cherd.2023.10.031_bib41 article-title: On-line monitoring of ash fouling and soot-blowing optimization for convective heat exchanger in coal-fired power plant boiler publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.12.002 – volume: 35 start-page: 1575 issue: 8 year: 2011 ident: 10.1016/j.cherd.2023.10.031_bib20 article-title: Sequential methodology for integrated optimization of energy and water use during batch process scheduling publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2011.05.009 – volume: 14 start-page: 455 issue: 4 year: 1997 ident: 10.1016/j.cherd.2023.10.031_bib27 article-title: Monitoring the thermal efficiency of fouled heat exchangers: a simplified method publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/S0894-1777(96)00146-X – volume: 43 start-page: 1365 issue: 15–16 year: 2022 ident: 10.1016/j.cherd.2023.10.031_bib25 article-title: Advanced fouling management through use of HTRI SmartPM: case studies from total refinery CDU preheat trains publication-title: Heat. Transf. Eng. doi: 10.1080/01457632.2021.1963542 – volume: 2 start-page: 2 year: 2007 ident: 10.1016/j.cherd.2023.10.031_bib51 article-title: Development of heat exchanger fouling model and preventive maintenance diagnostic tool publication-title: Chem. Prod. Process Model. – volume: 90 start-page: 150 year: 2015 ident: 10.1016/j.cherd.2023.10.031_bib32 article-title: Applications of artificial neural networks for thermal analysis of heat exchangers–a review publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2014.11.030 – volume: 102 start-page: 755 year: 2013 ident: 10.1016/j.cherd.2023.10.031_bib31 article-title: Identification of the influence of fouling on the heat recovery in a network of shell and tube heat exchangers publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.08.038 – volume: 30 start-page: 1852 issue: 13 year: 2010 ident: 10.1016/j.cherd.2023.10.031_bib22 article-title: Scheduling cleaning in a crude oil preheat train subject to fouling: incorporating desalter control publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2010.04.027 – volume: 85 start-page: 839 issue: 6 year: 2007 ident: 10.1016/j.cherd.2023.10.031_bib38 article-title: Optimization of operating conditions for mitigating fouling in heat exchanger networks publication-title: Chem. Eng. Res. Des. doi: 10.1205/cherd06046 – volume: 50 start-page: 4515 issue: 8 year: 2011 ident: 10.1016/j.cherd.2023.10.031_bib5 article-title: A dynamic, distributed model of shell-and-tube heat exchangers undergoing crude oil fouling publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie901991g – year: 2019 ident: 10.1016/j.cherd.2023.10.031_bib3 article-title: Continuous monitoring of whey protein fouling using a nonintrusive sensor publication-title: Heat. Transf. Eng. – year: 2002 ident: 10.1016/j.cherd.2023.10.031_bib28 – volume: 82 start-page: 53 issue: 1 year: 2004 ident: 10.1016/j.cherd.2023.10.031_bib50 article-title: Mitigation of crude oil refinery heat exchanger fouling through retrofits based on thermo-hydraulic fouling models publication-title: Chem. Eng. Res. Des. doi: 10.1205/026387604772803070 – volume: 4 start-page: 187 issue: 3 year: 2020 ident: 10.1016/j.cherd.2023.10.031_bib24 article-title: Incorporating deposit ageing into visualisation of crude oil preheat train fouling. Process Integration and Optimization for publication-title: Process Integr. Sustain. doi: 10.1007/s41660-019-00104-8 – volume: 59 start-page: 489 issue: 3 year: 2004 ident: 10.1016/j.cherd.2023.10.031_bib18 article-title: Fouling resistance modelling, identification and monitoring of a thermosiphon reboiler publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2003.10.011 – volume: 189 start-page: 1517 issue: 11 year: 2002 ident: 10.1016/j.cherd.2023.10.031_bib42 article-title: Optimization of cleaning schedule sin heat exchanger networks subject to fouling publication-title: Chem. Eng. Commun. doi: 10.1080/00986440214999 – volume: 52 start-page: 2925 issue: 8 year: 2013 ident: 10.1016/j.cherd.2023.10.031_bib34 article-title: Exploiting tube inserts to intensify heat transfer for the retrofit of heat exchanger networks considering fouling mitigation publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie303020m – ident: 10.1016/j.cherd.2023.10.031_bib45 – start-page: 186b year: 2016 ident: 10.1016/j.cherd.2023.10.031_bib4 article-title: Consider thermal and hydraulic impacts of fouling in crude preheat exchanger design publication-title: AIChE Spring Meet. 12th Glob. Congr. Process Saf. – volume: 11 start-page: 19 issue: 1 year: 1990 ident: 10.1016/j.cherd.2023.10.031_bib43 article-title: Fouling of heat transfer surfaces: an historical review publication-title: Heat. Transf. Eng. doi: 10.1080/01457639008939720 – volume: 185 start-page: 326 year: 2022 ident: 10.1016/j.cherd.2023.10.031_bib35 article-title: A simple model-based methodology to characterize foulants in heat exchangers using excess thermal and hydraulic loads publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2022.07.011 – volume: 58 start-page: 228 issue: 1 year: 2018 ident: 10.1016/j.cherd.2023.10.031_bib10 article-title: Organic and inorganic fouling in heat exchangers: industrial case study analysis of fouling rate publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b04343 – volume: 23 start-page: 24 issue: 1 year: 2002 ident: 10.1016/j.cherd.2023.10.031_bib49 article-title: Mitigation of crude oil preheat train fouling by design publication-title: Heat. Transf. Eng. doi: 10.1080/014576302753249589 – start-page: 451 year: 1995 ident: 10.1016/j.cherd.2023.10.031_bib15 article-title: Analysis of Exxon crude-oil-slip stream coking data publication-title: Fouling Mitig. Ind. Heat. Exch. – volume: 30 start-page: 773 issue: 10–11 year: 2009 ident: 10.1016/j.cherd.2023.10.031_bib33 article-title: Heat exchanger fouling: environmental impacts publication-title: Heat. Transf. Eng. doi: 10.1080/01457630902744119 – volume: 62 start-page: 90 issue: 1 year: 2016 ident: 10.1016/j.cherd.2023.10.031_bib12 article-title: A new dynamic model of crude oil fouling deposits and its application to the simulation of fouling‐cleaning cycles publication-title: AIChE J. doi: 10.1002/aic.15036 – volume: 43 start-page: 3924 issue: 14 year: 2004 ident: 10.1016/j.cherd.2023.10.031_bib29 article-title: On a new MILP model for the planning of heat-exchanger network cleaning publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie034178g – volume: 35 start-page: 907 issue: 5 year: 2011 ident: 10.1016/j.cherd.2023.10.031_bib6 article-title: Effects of fouling on performance of retrofitted heat exchanger networks: a thermo-hydraulic based analysis publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2011.01.027 – volume: 57 start-page: 3199 issue: 11 year: 2011 ident: 10.1016/j.cherd.2023.10.031_bib23 article-title: Exploration of alternative models for the aging of fouling deposits publication-title: AIChE J. doi: 10.1002/aic.12514 – start-page: 1 year: 2021 ident: 10.1016/j.cherd.2023.10.031_bib52 article-title: 13th heat exchanger fouling and cleaning conference-2019, Warsaw, Poland publication-title: Heat. Transf. Eng. – volume: 38 start-page: 681 issue: 7–8 year: 2017 ident: 10.1016/j.cherd.2023.10.031_bib8 article-title: Crude oil fouling deposition, suppression, removal, and consolidation—and how to tell the difference publication-title: Heat. Transf. Eng. doi: 10.1080/01457632.2016.1206408 – volume: 4 start-page: 43 issue: 1 year: 1983 ident: 10.1016/j.cherd.2023.10.031_bib16 article-title: Thinking about heat transfer fouling: A 5 × 5 matrix publication-title: Heat. Transf. Eng. doi: 10.1080/01457638108939594 – volume: 206 start-page: 1250 year: 2017 ident: 10.1016/j.cherd.2023.10.031_bib9 article-title: Organic and inorganic fouling in heat exchangers–Industrial case study: Analysis of fouling state publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.10.018 – volume: 104 start-page: 358 year: 2019 ident: 10.1016/j.cherd.2023.10.031_bib17 article-title: Clean-in-place monitoring of different food fouling materials using ultrasonic measurements publication-title: Food Control doi: 10.1016/j.foodcont.2019.05.013 – volume: 43 start-page: 1349 issue: 15–16 year: 2022 ident: 10.1016/j.cherd.2023.10.031_bib30 article-title: Assessment of a dynamic model for the optimization of refinery preheat trains under fouling publication-title: Heat. Transf. Eng. doi: 10.1080/01457632.2021.1963537 – volume: 236 start-page: 949 year: 2019 ident: 10.1016/j.cherd.2023.10.031_bib46 article-title: Heat transfer and fouling performance of finned tube heat exchangers: Experimentation via on line monitoring publication-title: Fuel doi: 10.1016/j.fuel.2018.09.081 – volume: 48 start-page: 8551 issue: 18 year: 2009 ident: 10.1016/j.cherd.2023.10.031_bib19 article-title: Sequential methodology for scheduling of heat-integrated batch plants publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie900367j – year: 2019 ident: 10.1016/j.cherd.2023.10.031_bib26 article-title: Effect of flow distribution in parallel heat exchanger networks: Use of thermo-hydraulic channeling model in refinery operation publication-title: Heat. Transf. Eng. – start-page: 97 year: 2007 ident: 10.1016/j.cherd.2023.10.031_bib40 article-title: Basic thermal design theory for recuperators publication-title: Fundam. Heat. Exch. Des. – volume: 181 start-page: 41 year: 2022 ident: 10.1016/j.cherd.2023.10.031_bib36 article-title: Monitoring fouling in heat exchangers under temperature control based on excess thermal and hydraulic loads publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2022.02.032 – ident: 10.1016/j.cherd.2023.10.031_bib37 – start-page: 33 year: 2009 ident: 10.1016/j.cherd.2023.10.031_bib48 article-title: Fouling: implementation of a crude preheat train performance monitoring application at the irving oil refinery publication-title: Int. Conf. Heat. Exch. Fouling Clean. VIII – volume: 41 start-page: 1750 issue: 19–20 year: 2020 ident: 10.1016/j.cherd.2023.10.031_bib14 article-title: Evaluation of heat exchanger network retrofit design using plant data publication-title: Heat. Transf. Eng. doi: 10.1080/01457632.2019.1640487 – volume: 84 start-page: 538 issue: 3 year: 2021 ident: 10.1016/j.cherd.2023.10.031_bib1 article-title: Application of artificial neural network (ANN-MLP) for the prediction of fouling resistance in heat exchanger to MgO-water and CuO-water nanofluids publication-title: Water Sci. Technol. doi: 10.2166/wst.2021.253 – volume: 63 start-page: 984 issue: 3 year: 2017 ident: 10.1016/j.cherd.2023.10.031_bib13 article-title: Thermo‐hydraulic analysis of refinery heat exchangers undergoing fouling publication-title: AIChE J. doi: 10.1002/aic.15457 – volume: 159 year: 2020 ident: 10.1016/j.cherd.2023.10.031_bib44 article-title: Fouling modeling and prediction approach for heat exchangers using deep learning publication-title: Int. J. Heat. Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2020.120112 – volume: 59 start-page: 4602 issue: 10 year: 2020 ident: 10.1016/j.cherd.2023.10.031_bib11 article-title: A model-based method for visualization, monitoring, and diagnosis of fouling in heat exchangers publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b05490 – volume: 52 start-page: 8527 issue: 25 year: 2013 ident: 10.1016/j.cherd.2023.10.031_bib47 article-title: Retrofit of a heat-exchanger network by considering heat-transfer enhancement and fouling publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie4000097 – start-page: 200 year: 2003 ident: 10.1016/j.cherd.2023.10.031_bib2 article-title: Preheat train crude distillation fouling propensity evaluation by the ebert and panchal model – volume: 70 issue: A6 year: 1992 ident: 10.1016/j.cherd.2023.10.031_bib7 article-title: Fouling of crude oil preheat exchangers publication-title: Chem. Eng. Res. Des. – volume: 63 start-page: 3400 issue: 13 year: 2008 ident: 10.1016/j.cherd.2023.10.031_bib21 article-title: Thermo-hydraulic channelling in parallel heat exchangers subject to fouling publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2008.04.008 |
SSID | ssj0001748 |
Score | 2.3823102 |
Snippet | Fouling in heat exchanger networks (HENs) affects thermal and hydraulic efficiencies resulting in economic penalties to the process industries. Conventionally,... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 225 |
SubjectTerms | Excess hydraulic load Excess thermal load Fouling Heat exchanger network Monitoring |
Title | Performance monitoring of heat exchanger networks using excess thermal and hydraulic loads |
URI | https://dx.doi.org/10.1016/j.cherd.2023.10.031 |
Volume | 200 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5KvehBXLEuZQ4eTZttkuZYiqVupaiF4iXMqpU2LV1AL_5238tiK0gPnkJmyYRv5i0zfO8NIZcKrLoESbAYVw3L14pbAs-ttAoaKuS2KxUGJz90g07fvx2wQYm0ilgYpFXmuj_T6am2zkvqOZr16XBYf4Ldg4eyDE50ytTECHY_xFVe-1rRPMDjbmTnLF4q-UXmoZTjhbhgulDXqyHFy3P-tk5rFqe9R3ZzV5E2s7_ZJyWdHJCdtQSCh-Slt-L903EqnlhBJ4aikqX6Iw_spUlG955TJLq_YgWoOIre3xjG4Imib59qxpejoaSjCVfzI9JvXz-3OlZ-W4IlwQwtLD9k3CghFdNGGMf4nmANrn3jSIa3mtvGDnkYGZgUY2zHcNiq-KGtA5hEL7KFd0zKySTRJ4Q6TEhoANIpOHw2EK4RYRRx5pooMEZXiFugFMs8lTjeaDGKC87Ye5xCGyO0WAjQVsjVT6dplkljc_OggD_-tSBi0PWbOp7-t-MZ2ca3jKtyTsqL2VJfgMexENV0SVXJVrP1eN_D581dp_sN5ZnaGw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSgNBEC00HtSDuGJc--DRMbNP5iiiRLMgmIB4GXrVSDIJGkH_3qqZnqggHrz2MsvrrlfVzetqgBOFXl2iJTgRV00n1Io7gvattIqbKuGuLxUdTu724tYgvLmP7hfgojoLQ7JKy_0lpxdsbUsaFs3GdDhs3OHqISBbxiC6UGouwhJlp4pqsHR-3W715oSMQXez3GoJCuOvkg8VMi-ChjKG-sEZqbwC73cH9c3pXK3Dmo0W2Xn5QRuwoPNNWP2WQ3ALHm6_pP9sXFgoVbCJYcSzTL_bs70sLxXfr4y07o9UgSzHKAAc4zt4rtjTh3rhb6OhZKMJV6_bMLi67F-0HHthgiPRE80c_HlulJAq0kYYz4SBiJpch8aTEV1s7ho34UlqcFyMcT3DcbUSJq6OcRyD1BXBDtTySa53gXmRkNgADVRwfGwsfCOSNOWRb9LYGF0Hv0IpkzabOF1qMcoq2dhzVkCbEbRUiNDW4XTeaVom0_i7eVzBn_2YExnS_V8d9_7b8RiWW_1uJ-tc99r7sEI1pXTlAGqzlzd9iAHITBzZCfYJjwjbNw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+monitoring+of+heat+exchanger+networks+using+excess+thermal+and+hydraulic+loads&rft.jtitle=Chemical+engineering+research+%26+design&rft.au=Patil%2C+Parag&rft.au=Srinivasan%2C+Babji&rft.au=Srinivasan%2C+Rajagopalan&rft.date=2023-12-01&rft.issn=0263-8762&rft.volume=200&rft.spage=225&rft.epage=243&rft_id=info:doi/10.1016%2Fj.cherd.2023.10.031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cherd_2023_10_031 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8762&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8762&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8762&client=summon |