Performance monitoring of heat exchanger networks using excess thermal and hydraulic loads

Fouling in heat exchanger networks (HENs) affects thermal and hydraulic efficiencies resulting in economic penalties to the process industries. Conventionally, overall heat transfer rates of the heat exchangers in HENs are monitored to identify fouling. However, apart from fouling, these rates also...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering research & design Vol. 200; pp. 225 - 243
Main Authors Patil, Parag, Srinivasan, Babji, Srinivasan, Rajagopalan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fouling in heat exchanger networks (HENs) affects thermal and hydraulic efficiencies resulting in economic penalties to the process industries. Conventionally, overall heat transfer rates of the heat exchangers in HENs are monitored to identify fouling. However, apart from fouling, these rates also vary with inlet conditions. Hence, estimating the degree of fouling accurately based only on heat transfer rates can fail. Previously, we had proposed the use of excess thermal and hydraulic loads as the basis for monitoring fouling in standalone exchangers (Patil et al., 2022). These are quantified as thermal and hydraulic performance indicators that can be easily tracked through suitably constructed charts. In this paper, we extend the approach to HENs wherein deviations in temperature drop across a heat exchanger vis-à-vis the clean condition also depends upon upstream heat exchanger(s). The network performance monitoring charts rely on normalized performance indicators and temperatures across heat exchangers and also have explicitly denoted normal, alert, and alarm regions. The proposed charts are applicable to HENs with or without temperature controllers. Two case studies comprising multiple scenarios of flow rate and setpoint changes are studied. The results show that the method can effectively identify the degree of fouling. •Fouling is a widespread problem in heat exchanger networks and results in various inefficiencies.•We previously proposed a strategy to estimate fouling in standalone exchangers without lab tests or sophisticated models.•Here, we extend it to networks and account for interactions between exchangers.•Changes in pressure drop and mass flowrate vis-à-vis the clean state are calculated while accounting for input changes.•It is suitable for industrial settings and can accommodate even control loops.
AbstractList Fouling in heat exchanger networks (HENs) affects thermal and hydraulic efficiencies resulting in economic penalties to the process industries. Conventionally, overall heat transfer rates of the heat exchangers in HENs are monitored to identify fouling. However, apart from fouling, these rates also vary with inlet conditions. Hence, estimating the degree of fouling accurately based only on heat transfer rates can fail. Previously, we had proposed the use of excess thermal and hydraulic loads as the basis for monitoring fouling in standalone exchangers (Patil et al., 2022). These are quantified as thermal and hydraulic performance indicators that can be easily tracked through suitably constructed charts. In this paper, we extend the approach to HENs wherein deviations in temperature drop across a heat exchanger vis-à-vis the clean condition also depends upon upstream heat exchanger(s). The network performance monitoring charts rely on normalized performance indicators and temperatures across heat exchangers and also have explicitly denoted normal, alert, and alarm regions. The proposed charts are applicable to HENs with or without temperature controllers. Two case studies comprising multiple scenarios of flow rate and setpoint changes are studied. The results show that the method can effectively identify the degree of fouling. •Fouling is a widespread problem in heat exchanger networks and results in various inefficiencies.•We previously proposed a strategy to estimate fouling in standalone exchangers without lab tests or sophisticated models.•Here, we extend it to networks and account for interactions between exchangers.•Changes in pressure drop and mass flowrate vis-à-vis the clean state are calculated while accounting for input changes.•It is suitable for industrial settings and can accommodate even control loops.
Author Patil, Parag
Srinivasan, Rajagopalan
Srinivasan, Babji
Author_xml – sequence: 1
  givenname: Parag
  orcidid: 0000-0002-1328-831X
  surname: Patil
  fullname: Patil, Parag
  organization: Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382355, India
– sequence: 2
  givenname: Babji
  surname: Srinivasan
  fullname: Srinivasan, Babji
  organization: Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
– sequence: 3
  givenname: Rajagopalan
  orcidid: 0000-0002-8790-4349
  surname: Srinivasan
  fullname: Srinivasan, Rajagopalan
  email: raj@iitm.ac.in
  organization: Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
BookMark eNqFkD1PwzAQhj0UiRb4BSz-Awl2nK8ODKjiS6oEAyws0cU-Ny6JjWwX6L8noUwMMJ303j13umdBZtZZJOScs5QzXl5sU9mhV2nGMjEmKRN8RuYsK0VSV2V2TBYhbBljvMrrOXl5RK-dH8BKpIOzJjpv7IY6TTuESPFTdmA36KnF-OH8a6C7MA2MDQyBxvHWAD0Fq2i3Vx52vZG0d6DCKTnS0Ac8-6kn5Pnm-ml1l6wfbu9XV-tECiZiklcFaNVKVaBuNde5aIsaMNdcFnUmSqZZBdVSF6C0ZlxDXld5xbBEKcWSteKELA97pXcheNSNNBGicTZ6MH3DWTOJabbNt5hmEjOFo5iRFb_YN28G8Pt_qMsDheNb7wZ9E6TB0aAyHmVslDN_8l_i3YUo
CitedBy_id crossref_primary_10_3390_en18010071
Cites_doi 10.1016/j.applthermaleng.2014.12.002
10.1016/j.compchemeng.2011.05.009
10.1016/S0894-1777(96)00146-X
10.1080/01457632.2021.1963542
10.1016/j.ijthermalsci.2014.11.030
10.1016/j.apenergy.2012.08.038
10.1016/j.applthermaleng.2010.04.027
10.1205/cherd06046
10.1021/ie901991g
10.1205/026387604772803070
10.1007/s41660-019-00104-8
10.1016/j.ces.2003.10.011
10.1080/00986440214999
10.1021/ie303020m
10.1080/01457639008939720
10.1016/j.cherd.2022.07.011
10.1021/acs.iecr.8b04343
10.1080/014576302753249589
10.1080/01457630902744119
10.1002/aic.15036
10.1021/ie034178g
10.1016/j.compchemeng.2011.01.027
10.1002/aic.12514
10.1080/01457632.2016.1206408
10.1080/01457638108939594
10.1016/j.apenergy.2017.10.018
10.1016/j.foodcont.2019.05.013
10.1080/01457632.2021.1963537
10.1016/j.fuel.2018.09.081
10.1021/ie900367j
10.1016/j.cherd.2022.02.032
10.1080/01457632.2019.1640487
10.2166/wst.2021.253
10.1002/aic.15457
10.1016/j.ijheatmasstransfer.2020.120112
10.1021/acs.iecr.9b05490
10.1021/ie4000097
10.1016/j.ces.2008.04.008
ContentType Journal Article
Copyright 2023 Institution of Chemical Engineers
Copyright_xml – notice: 2023 Institution of Chemical Engineers
DBID AAYXX
CITATION
DOI 10.1016/j.cherd.2023.10.031
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 243
ExternalDocumentID 10_1016_j_cherd_2023_10_031
S0263876223006676
GroupedDBID --K
--M
-QF
-~X
.~1
0R~
1B1
1~.
1~5
29B
3EH
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDBF
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABXDB
ACDAQ
ACGFO
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHPOS
AI.
AIAGR
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CAG
COF
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO9
EP2
EP3
ESX
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
I-F
IHE
J1W
JARJE
KOM
M41
ML-
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SJN
SPC
SPCBC
SSG
SSR
SSZ
T5K
T9H
TUS
UNMZH
VH1
~02
~8M
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACUHS
ACVFH
ADCNI
ADMLS
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c303t-475afdbcd5efbf1f43b58ae4f1c582360f07a79f5adff01fa487470e6ecc390b3
IEDL.DBID .~1
ISSN 0263-8762
IngestDate Tue Jul 01 00:53:15 EDT 2025
Thu Apr 24 23:00:51 EDT 2025
Sat Aug 17 15:41:47 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Excess hydraulic load
Fouling
Heat exchanger network
Excess thermal load
Monitoring
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-475afdbcd5efbf1f43b58ae4f1c582360f07a79f5adff01fa487470e6ecc390b3
ORCID 0000-0002-1328-831X
0000-0002-8790-4349
PageCount 19
ParticipantIDs crossref_citationtrail_10_1016_j_cherd_2023_10_031
crossref_primary_10_1016_j_cherd_2023_10_031
elsevier_sciencedirect_doi_10_1016_j_cherd_2023_10_031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationTitle Chemical engineering research & design
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wilson, Polley, Pugh, D (bib49) 2002; 23
Yeap, Wilson, Polley, Pugh (bib50) 2004; 82
Zettler (bib52) 2021
Diaz-Bejarano, Coletti, Macchietto (bib11) 2020; 59
Zabiri, Radhakrishnan, Ramasamy, Ramli, Do Thanh, Wah (bib51) 2007; 2
Ishiyama, Heins, Paterson, Spinelli, Wilson (bib22) 2010; 30
Diaz‐Bejarano, Coletti, Macchietto (bib12) 2016; 62
Epstein (bib16) 1983; 4
Chunangad, Chang, Curcio, Casebolt (bib4) 2016
Patil, Srinivasan, Srinivasan (bib36) 2022; 181
Sundar, Rajagopal, Zhao, Kuntumalla, Meng, Chang, Salapaka (bib44) 2020; 159
Wang, Tang, He, Kulacki, Yu (bib46) 2019; 236
Bouvier, Delaplace, Lalot (bib3) 2019
Escrig, Woolley, Rangappa, Simeone, Watson (bib17) 2019; 104
Diaz-Bejarano, Behranvand, Coletti, Mozdianfard, Macchietto (bib9) 2017; 206
Halim, Srinivasan (bib19) 2009; 48
Ishiyama, Juhel, Aquino, Hagi, Pugh, Gomez Suarez, Zettler (bib25) 2022; 43
Ebert, Panchal (bib15) 1995
.
Ishiyama, Paterson, Wilson (bib21) 2008; 63
Diaz-Bejarano, Behranvand, Coletti, Mozdianfard, Macchietto (bib10) 2018; 58
Rafeen, M.S., Mohamed, M.F., Mamot, M.Z., Manan, N.A., Shafawi, D.A., & Ramasamy, D.M. (2007). Crude oil fouling: petronas refineries experience.
Lavaja, Bagajewicz (bib29) 2004; 43
Müller-Steinhagen, Malayeri, Watkinson (bib33) 2009; 30
Coletti, Macchietto (bib5) 2011; 50
Bories, Patureaux (bib2) 2003
Benyekhlef, Mohammedi, Hassani, Hanini (bib1) 2021; 84
Markowski, Trafczynski, Urbaniec (bib31) 2013; 102
Smaïli, Vassiliadis, Wilson (bib42) 2002; 189
Waters, Akinradewo, Lamb (bib48) 2009
Ishiyama, Paterson, Ian Wilson (bib23) 2011; 57
Patil, Srinivasan, Srinivasan (bib35) 2022; 185
Coletti, Macchietto, Polley (bib6) 2011; 35
Rodriguez, Smith (bib38) 2007; 85
Halim, Srinivasan (bib20) 2011; 35
Wang, Smith (bib47) 2013; 52
Diaz‐Bejarano, Coletti, Macchietto (bib13) 2017; 63
Ishiyama, Pugh, Wilson (bib24) 2020; 4
Lozano-Santamaria, Macchietto (bib30) 2022; 43
Mohanraj, Jayaraj, Muraleedharan (bib32) 2015; 90
Romagnoli, Sánchez (bib39) 1999
Kakac, Liu, Pramuanjaroenkij (bib28) 2002
Grosfils, Kinnaert, Bogaerts, Hanus (bib18) 2004; 59
Somerscales (bib43) 1990; 11
Ishiyama, Simon (bib26) 2019
Shah, Sekulic (bib40) 2007
Diaz-Bejarano, Coletti, Macchietto (bib8) 2017; 38
Díaz-Bejarano, Santos, Dopico, Coletti (bib14) 2020; 41
TEMA) (9th ed.). (2007). TEMA.
Jerónimo, Melo, Braga, Ferreira, Martins (bib27) 1997; 14
Pan, Bulatov, Smith (bib34) 2013; 52
Shi, Wang, Liu (bib41) 2015; 78
Crittenden, Kolaczkowski, Downey (bib7) 1992; 70
Mohanraj (10.1016/j.cherd.2023.10.031_bib32) 2015; 90
Somerscales (10.1016/j.cherd.2023.10.031_bib43) 1990; 11
Epstein (10.1016/j.cherd.2023.10.031_bib16) 1983; 4
Diaz-Bejarano (10.1016/j.cherd.2023.10.031_bib9) 2017; 206
Díaz-Bejarano (10.1016/j.cherd.2023.10.031_bib14) 2020; 41
Lavaja (10.1016/j.cherd.2023.10.031_bib29) 2004; 43
Ebert (10.1016/j.cherd.2023.10.031_bib15) 1995
Bouvier (10.1016/j.cherd.2023.10.031_bib3) 2019
Patil (10.1016/j.cherd.2023.10.031_bib35) 2022; 185
Halim (10.1016/j.cherd.2023.10.031_bib20) 2011; 35
10.1016/j.cherd.2023.10.031_bib37
Wang (10.1016/j.cherd.2023.10.031_bib46) 2019; 236
Wang (10.1016/j.cherd.2023.10.031_bib47) 2013; 52
Diaz‐Bejarano (10.1016/j.cherd.2023.10.031_bib13) 2017; 63
Romagnoli (10.1016/j.cherd.2023.10.031_bib39) 1999
Zabiri (10.1016/j.cherd.2023.10.031_bib51) 2007; 2
Coletti (10.1016/j.cherd.2023.10.031_bib6) 2011; 35
Ishiyama (10.1016/j.cherd.2023.10.031_bib24) 2020; 4
Diaz-Bejarano (10.1016/j.cherd.2023.10.031_bib8) 2017; 38
Ishiyama (10.1016/j.cherd.2023.10.031_bib21) 2008; 63
Kakac (10.1016/j.cherd.2023.10.031_bib28) 2002
Sundar (10.1016/j.cherd.2023.10.031_bib44) 2020; 159
Rodriguez (10.1016/j.cherd.2023.10.031_bib38) 2007; 85
Crittenden (10.1016/j.cherd.2023.10.031_bib7) 1992; 70
Shi (10.1016/j.cherd.2023.10.031_bib41) 2015; 78
Wilson (10.1016/j.cherd.2023.10.031_bib49) 2002; 23
Smaïli (10.1016/j.cherd.2023.10.031_bib42) 2002; 189
Ishiyama (10.1016/j.cherd.2023.10.031_bib25) 2022; 43
Ishiyama (10.1016/j.cherd.2023.10.031_bib22) 2010; 30
Patil (10.1016/j.cherd.2023.10.031_bib36) 2022; 181
Ishiyama (10.1016/j.cherd.2023.10.031_bib23) 2011; 57
Ishiyama (10.1016/j.cherd.2023.10.031_bib26) 2019
Shah (10.1016/j.cherd.2023.10.031_bib40) 2007
Pan (10.1016/j.cherd.2023.10.031_bib34) 2013; 52
Halim (10.1016/j.cherd.2023.10.031_bib19) 2009; 48
Escrig (10.1016/j.cherd.2023.10.031_bib17) 2019; 104
Benyekhlef (10.1016/j.cherd.2023.10.031_bib1) 2021; 84
10.1016/j.cherd.2023.10.031_bib45
Coletti (10.1016/j.cherd.2023.10.031_bib5) 2011; 50
Grosfils (10.1016/j.cherd.2023.10.031_bib18) 2004; 59
Diaz-Bejarano (10.1016/j.cherd.2023.10.031_bib10) 2018; 58
Lozano-Santamaria (10.1016/j.cherd.2023.10.031_bib30) 2022; 43
Diaz-Bejarano (10.1016/j.cherd.2023.10.031_bib11) 2020; 59
Waters (10.1016/j.cherd.2023.10.031_bib48) 2009
Zettler (10.1016/j.cherd.2023.10.031_bib52) 2021
Müller-Steinhagen (10.1016/j.cherd.2023.10.031_bib33) 2009; 30
Jerónimo (10.1016/j.cherd.2023.10.031_bib27) 1997; 14
Bories (10.1016/j.cherd.2023.10.031_bib2) 2003
Yeap (10.1016/j.cherd.2023.10.031_bib50) 2004; 82
Diaz‐Bejarano (10.1016/j.cherd.2023.10.031_bib12) 2016; 62
Markowski (10.1016/j.cherd.2023.10.031_bib31) 2013; 102
Chunangad (10.1016/j.cherd.2023.10.031_bib4) 2016
References_xml – start-page: 451
  year: 1995
  end-page: 460
  ident: bib15
  article-title: Analysis of Exxon crude-oil-slip stream coking data
  publication-title: Fouling Mitig. Ind. Heat. Exch.
– volume: 90
  start-page: 150
  year: 2015
  end-page: 172
  ident: bib32
  article-title: Applications of artificial neural networks for thermal analysis of heat exchangers–a review
  publication-title: Int. J. Therm. Sci.
– volume: 206
  start-page: 1250
  year: 2017
  end-page: 1266
  ident: bib9
  article-title: Organic and inorganic fouling in heat exchangers–Industrial case study: Analysis of fouling state
  publication-title: Appl. Energy
– start-page: 186b
  year: 2016
  ident: bib4
  article-title: Consider thermal and hydraulic impacts of fouling in crude preheat exchanger design
– volume: 4
  start-page: 187
  year: 2020
  end-page: 200
  ident: bib24
  article-title: Incorporating deposit ageing into visualisation of crude oil preheat train fouling.
  publication-title: Process Integr. Sustain.
– volume: 50
  start-page: 4515
  year: 2011
  end-page: 4533
  ident: bib5
  article-title: A dynamic, distributed model of shell-and-tube heat exchangers undergoing crude oil fouling
  publication-title: Ind. Eng. Chem. Res.
– volume: 38
  start-page: 681
  year: 2017
  end-page: 693
  ident: bib8
  article-title: Crude oil fouling deposition, suppression, removal, and consolidation—and how to tell the difference
  publication-title: Heat. Transf. Eng.
– volume: 159
  year: 2020
  ident: bib44
  article-title: Fouling modeling and prediction approach for heat exchangers using deep learning
  publication-title: Int. J. Heat. Mass Transf.
– volume: 35
  start-page: 907
  year: 2011
  end-page: 917
  ident: bib6
  article-title: Effects of fouling on performance of retrofitted heat exchanger networks: a thermo-hydraulic based analysis
  publication-title: Comput. Chem. Eng.
– year: 2019
  ident: bib3
  article-title: Continuous monitoring of whey protein fouling using a nonintrusive sensor
  publication-title: Heat. Transf. Eng.
– volume: 59
  start-page: 489
  year: 2004
  end-page: 499
  ident: bib18
  article-title: Fouling resistance modelling, identification and monitoring of a thermosiphon reboiler
  publication-title: Chem. Eng. Sci.
– year: 2002
  ident: bib28
  article-title: Heat exchangers: selection, rating, and thermal design
– volume: 57
  start-page: 3199
  year: 2011
  end-page: 3209
  ident: bib23
  article-title: Exploration of alternative models for the aging of fouling deposits
  publication-title: AIChE J.
– volume: 30
  start-page: 773
  year: 2009
  end-page: 776
  ident: bib33
  article-title: Heat exchanger fouling: environmental impacts
  publication-title: Heat. Transf. Eng.
– start-page: 97
  year: 2007
  end-page: 231
  ident: bib40
  article-title: Basic thermal design theory for recuperators
  publication-title: Fundam. Heat. Exch. Des.
– volume: 41
  start-page: 1750
  year: 2020
  end-page: 1761
  ident: bib14
  article-title: Evaluation of heat exchanger network retrofit design using plant data
  publication-title: Heat. Transf. Eng.
– volume: 236
  start-page: 949
  year: 2019
  end-page: 959
  ident: bib46
  article-title: Heat transfer and fouling performance of finned tube heat exchangers: Experimentation via on line monitoring
  publication-title: Fuel
– volume: 52
  start-page: 2925
  year: 2013
  end-page: 2943
  ident: bib34
  article-title: Exploiting tube inserts to intensify heat transfer for the retrofit of heat exchanger networks considering fouling mitigation
  publication-title: Ind. Eng. Chem. Res.
– start-page: 200
  year: 2003
  end-page: 210
  ident: bib2
  article-title: Preheat train crude distillation fouling propensity evaluation by the ebert and panchal model
  publication-title: ECI Conference on Heat Exchanger Fouling and Cleaning: Fundamentals and Applications, Santa Fe, New Mexico (USA)
– volume: 58
  start-page: 228
  year: 2018
  end-page: 246
  ident: bib10
  article-title: Organic and inorganic fouling in heat exchangers: industrial case study analysis of fouling rate
  publication-title: Ind. Eng. Chem. Res.
– volume: 63
  start-page: 984
  year: 2017
  end-page: 1001
  ident: bib13
  article-title: Thermo‐hydraulic analysis of refinery heat exchangers undergoing fouling
  publication-title: AIChE J.
– volume: 43
  start-page: 1349
  year: 2022
  end-page: 1364
  ident: bib30
  article-title: Assessment of a dynamic model for the optimization of refinery preheat trains under fouling
  publication-title: Heat. Transf. Eng.
– volume: 59
  start-page: 4602
  year: 2020
  end-page: 4619
  ident: bib11
  article-title: A model-based method for visualization, monitoring, and diagnosis of fouling in heat exchangers
  publication-title: Ind. Eng. Chem. Res.
– volume: 85
  start-page: 839
  year: 2007
  end-page: 851
  ident: bib38
  article-title: Optimization of operating conditions for mitigating fouling in heat exchanger networks
  publication-title: Chem. Eng. Res. Des.
– reference: Rafeen, M.S., Mohamed, M.F., Mamot, M.Z., Manan, N.A., Shafawi, D.A., & Ramasamy, D.M. (2007). Crude oil fouling: petronas refineries experience.
– volume: 78
  start-page: 39
  year: 2015
  end-page: 50
  ident: bib41
  article-title: On-line monitoring of ash fouling and soot-blowing optimization for convective heat exchanger in coal-fired power plant boiler
  publication-title: Appl. Therm. Eng.
– volume: 43
  start-page: 3924
  year: 2004
  end-page: 3938
  ident: bib29
  article-title: On a new MILP model for the planning of heat-exchanger network cleaning
  publication-title: Ind. Eng. Chem. Res.
– volume: 30
  start-page: 1852
  year: 2010
  end-page: 1862
  ident: bib22
  article-title: Scheduling cleaning in a crude oil preheat train subject to fouling: incorporating desalter control
  publication-title: Appl. Therm. Eng.
– reference: TEMA) (9th ed.). (2007). TEMA.
– volume: 2
  start-page: 2
  year: 2007
  ident: bib51
  article-title: Development of heat exchanger fouling model and preventive maintenance diagnostic tool
  publication-title: Chem. Prod. Process Model.
– year: 1999
  ident: bib39
  article-title: Data processing and reconciliation for chemical process operations
– volume: 84
  start-page: 538
  year: 2021
  end-page: 551
  ident: bib1
  article-title: Application of artificial neural network (ANN-MLP) for the prediction of fouling resistance in heat exchanger to MgO-water and CuO-water nanofluids
  publication-title: Water Sci. Technol.
– start-page: 1
  year: 2021
  end-page: 2
  ident: bib52
  article-title: 13th heat exchanger fouling and cleaning conference-2019, Warsaw, Poland
  publication-title: Heat. Transf. Eng.
– volume: 43
  start-page: 1365
  year: 2022
  end-page: 1377
  ident: bib25
  article-title: Advanced fouling management through use of HTRI SmartPM: case studies from total refinery CDU preheat trains
  publication-title: Heat. Transf. Eng.
– start-page: 33
  year: 2009
  end-page: 38
  ident: bib48
  article-title: Fouling: implementation of a crude preheat train performance monitoring application at the irving oil refinery
  publication-title: Int. Conf. Heat. Exch. Fouling Clean. VIII
– volume: 35
  start-page: 1575
  year: 2011
  end-page: 1597
  ident: bib20
  article-title: Sequential methodology for integrated optimization of energy and water use during batch process scheduling
  publication-title: Comput. Chem. Eng.
– volume: 104
  start-page: 358
  year: 2019
  end-page: 366
  ident: bib17
  article-title: Clean-in-place monitoring of different food fouling materials using ultrasonic measurements
  publication-title: Food Control
– volume: 14
  start-page: 455
  year: 1997
  end-page: 463
  ident: bib27
  article-title: Monitoring the thermal efficiency of fouled heat exchangers: a simplified method
  publication-title: Exp. Therm. Fluid Sci.
– volume: 63
  start-page: 3400
  year: 2008
  end-page: 3410
  ident: bib21
  article-title: Thermo-hydraulic channelling in parallel heat exchangers subject to fouling
  publication-title: Chem. Eng. Sci.
– volume: 4
  start-page: 43
  year: 1983
  end-page: 56
  ident: bib16
  article-title: Thinking about heat transfer fouling: A 5 × 5 matrix
  publication-title: Heat. Transf. Eng.
– volume: 181
  start-page: 41
  year: 2022
  end-page: 54
  ident: bib36
  article-title: Monitoring fouling in heat exchangers under temperature control based on excess thermal and hydraulic loads
  publication-title: Chem. Eng. Res. Des.
– volume: 82
  start-page: 53
  year: 2004
  end-page: 71
  ident: bib50
  article-title: Mitigation of crude oil refinery heat exchanger fouling through retrofits based on thermo-hydraulic fouling models
  publication-title: Chem. Eng. Res. Des.
– volume: 11
  start-page: 19
  year: 1990
  end-page: 36
  ident: bib43
  article-title: Fouling of heat transfer surfaces: an historical review
  publication-title: Heat. Transf. Eng.
– volume: 23
  start-page: 24
  year: 2002
  end-page: 37
  ident: bib49
  article-title: Mitigation of crude oil preheat train fouling by design
  publication-title: Heat. Transf. Eng.
– volume: 189
  start-page: 1517
  year: 2002
  end-page: 1549
  ident: bib42
  article-title: Optimization of cleaning schedule sin heat exchanger networks subject to fouling
  publication-title: Chem. Eng. Commun.
– reference: .
– volume: 70
  year: 1992
  ident: bib7
  article-title: Fouling of crude oil preheat exchangers
  publication-title: Chem. Eng. Res. Des.
– year: 2019
  ident: bib26
  article-title: Effect of flow distribution in parallel heat exchanger networks: Use of thermo-hydraulic channeling model in refinery operation
  publication-title: Heat. Transf. Eng.
– volume: 185
  start-page: 326
  year: 2022
  end-page: 343
  ident: bib35
  article-title: A simple model-based methodology to characterize foulants in heat exchangers using excess thermal and hydraulic loads
  publication-title: Chem. Eng. Res. Des.
– volume: 62
  start-page: 90
  year: 2016
  end-page: 107
  ident: bib12
  article-title: A new dynamic model of crude oil fouling deposits and its application to the simulation of fouling‐cleaning cycles
  publication-title: AIChE J.
– volume: 48
  start-page: 8551
  year: 2009
  end-page: 8565
  ident: bib19
  article-title: Sequential methodology for scheduling of heat-integrated batch plants
  publication-title: Ind. Eng. Chem. Res.
– volume: 102
  start-page: 755
  year: 2013
  end-page: 764
  ident: bib31
  article-title: Identification of the influence of fouling on the heat recovery in a network of shell and tube heat exchangers
  publication-title: Appl. Energy
– volume: 52
  start-page: 8527
  year: 2013
  end-page: 8537
  ident: bib47
  article-title: Retrofit of a heat-exchanger network by considering heat-transfer enhancement and fouling
  publication-title: Ind. Eng. Chem. Res.
– year: 1999
  ident: 10.1016/j.cherd.2023.10.031_bib39
– volume: 78
  start-page: 39
  year: 2015
  ident: 10.1016/j.cherd.2023.10.031_bib41
  article-title: On-line monitoring of ash fouling and soot-blowing optimization for convective heat exchanger in coal-fired power plant boiler
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.12.002
– volume: 35
  start-page: 1575
  issue: 8
  year: 2011
  ident: 10.1016/j.cherd.2023.10.031_bib20
  article-title: Sequential methodology for integrated optimization of energy and water use during batch process scheduling
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2011.05.009
– volume: 14
  start-page: 455
  issue: 4
  year: 1997
  ident: 10.1016/j.cherd.2023.10.031_bib27
  article-title: Monitoring the thermal efficiency of fouled heat exchangers: a simplified method
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/S0894-1777(96)00146-X
– volume: 43
  start-page: 1365
  issue: 15–16
  year: 2022
  ident: 10.1016/j.cherd.2023.10.031_bib25
  article-title: Advanced fouling management through use of HTRI SmartPM: case studies from total refinery CDU preheat trains
  publication-title: Heat. Transf. Eng.
  doi: 10.1080/01457632.2021.1963542
– volume: 2
  start-page: 2
  year: 2007
  ident: 10.1016/j.cherd.2023.10.031_bib51
  article-title: Development of heat exchanger fouling model and preventive maintenance diagnostic tool
  publication-title: Chem. Prod. Process Model.
– volume: 90
  start-page: 150
  year: 2015
  ident: 10.1016/j.cherd.2023.10.031_bib32
  article-title: Applications of artificial neural networks for thermal analysis of heat exchangers–a review
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2014.11.030
– volume: 102
  start-page: 755
  year: 2013
  ident: 10.1016/j.cherd.2023.10.031_bib31
  article-title: Identification of the influence of fouling on the heat recovery in a network of shell and tube heat exchangers
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.08.038
– volume: 30
  start-page: 1852
  issue: 13
  year: 2010
  ident: 10.1016/j.cherd.2023.10.031_bib22
  article-title: Scheduling cleaning in a crude oil preheat train subject to fouling: incorporating desalter control
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2010.04.027
– volume: 85
  start-page: 839
  issue: 6
  year: 2007
  ident: 10.1016/j.cherd.2023.10.031_bib38
  article-title: Optimization of operating conditions for mitigating fouling in heat exchanger networks
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1205/cherd06046
– volume: 50
  start-page: 4515
  issue: 8
  year: 2011
  ident: 10.1016/j.cherd.2023.10.031_bib5
  article-title: A dynamic, distributed model of shell-and-tube heat exchangers undergoing crude oil fouling
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie901991g
– year: 2019
  ident: 10.1016/j.cherd.2023.10.031_bib3
  article-title: Continuous monitoring of whey protein fouling using a nonintrusive sensor
  publication-title: Heat. Transf. Eng.
– year: 2002
  ident: 10.1016/j.cherd.2023.10.031_bib28
– volume: 82
  start-page: 53
  issue: 1
  year: 2004
  ident: 10.1016/j.cherd.2023.10.031_bib50
  article-title: Mitigation of crude oil refinery heat exchanger fouling through retrofits based on thermo-hydraulic fouling models
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1205/026387604772803070
– volume: 4
  start-page: 187
  issue: 3
  year: 2020
  ident: 10.1016/j.cherd.2023.10.031_bib24
  article-title: Incorporating deposit ageing into visualisation of crude oil preheat train fouling. Process Integration and Optimization for
  publication-title: Process Integr. Sustain.
  doi: 10.1007/s41660-019-00104-8
– volume: 59
  start-page: 489
  issue: 3
  year: 2004
  ident: 10.1016/j.cherd.2023.10.031_bib18
  article-title: Fouling resistance modelling, identification and monitoring of a thermosiphon reboiler
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2003.10.011
– volume: 189
  start-page: 1517
  issue: 11
  year: 2002
  ident: 10.1016/j.cherd.2023.10.031_bib42
  article-title: Optimization of cleaning schedule sin heat exchanger networks subject to fouling
  publication-title: Chem. Eng. Commun.
  doi: 10.1080/00986440214999
– volume: 52
  start-page: 2925
  issue: 8
  year: 2013
  ident: 10.1016/j.cherd.2023.10.031_bib34
  article-title: Exploiting tube inserts to intensify heat transfer for the retrofit of heat exchanger networks considering fouling mitigation
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie303020m
– ident: 10.1016/j.cherd.2023.10.031_bib45
– start-page: 186b
  year: 2016
  ident: 10.1016/j.cherd.2023.10.031_bib4
  article-title: Consider thermal and hydraulic impacts of fouling in crude preheat exchanger design
  publication-title: AIChE Spring Meet. 12th Glob. Congr. Process Saf.
– volume: 11
  start-page: 19
  issue: 1
  year: 1990
  ident: 10.1016/j.cherd.2023.10.031_bib43
  article-title: Fouling of heat transfer surfaces: an historical review
  publication-title: Heat. Transf. Eng.
  doi: 10.1080/01457639008939720
– volume: 185
  start-page: 326
  year: 2022
  ident: 10.1016/j.cherd.2023.10.031_bib35
  article-title: A simple model-based methodology to characterize foulants in heat exchangers using excess thermal and hydraulic loads
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2022.07.011
– volume: 58
  start-page: 228
  issue: 1
  year: 2018
  ident: 10.1016/j.cherd.2023.10.031_bib10
  article-title: Organic and inorganic fouling in heat exchangers: industrial case study analysis of fouling rate
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b04343
– volume: 23
  start-page: 24
  issue: 1
  year: 2002
  ident: 10.1016/j.cherd.2023.10.031_bib49
  article-title: Mitigation of crude oil preheat train fouling by design
  publication-title: Heat. Transf. Eng.
  doi: 10.1080/014576302753249589
– start-page: 451
  year: 1995
  ident: 10.1016/j.cherd.2023.10.031_bib15
  article-title: Analysis of Exxon crude-oil-slip stream coking data
  publication-title: Fouling Mitig. Ind. Heat. Exch.
– volume: 30
  start-page: 773
  issue: 10–11
  year: 2009
  ident: 10.1016/j.cherd.2023.10.031_bib33
  article-title: Heat exchanger fouling: environmental impacts
  publication-title: Heat. Transf. Eng.
  doi: 10.1080/01457630902744119
– volume: 62
  start-page: 90
  issue: 1
  year: 2016
  ident: 10.1016/j.cherd.2023.10.031_bib12
  article-title: A new dynamic model of crude oil fouling deposits and its application to the simulation of fouling‐cleaning cycles
  publication-title: AIChE J.
  doi: 10.1002/aic.15036
– volume: 43
  start-page: 3924
  issue: 14
  year: 2004
  ident: 10.1016/j.cherd.2023.10.031_bib29
  article-title: On a new MILP model for the planning of heat-exchanger network cleaning
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie034178g
– volume: 35
  start-page: 907
  issue: 5
  year: 2011
  ident: 10.1016/j.cherd.2023.10.031_bib6
  article-title: Effects of fouling on performance of retrofitted heat exchanger networks: a thermo-hydraulic based analysis
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2011.01.027
– volume: 57
  start-page: 3199
  issue: 11
  year: 2011
  ident: 10.1016/j.cherd.2023.10.031_bib23
  article-title: Exploration of alternative models for the aging of fouling deposits
  publication-title: AIChE J.
  doi: 10.1002/aic.12514
– start-page: 1
  year: 2021
  ident: 10.1016/j.cherd.2023.10.031_bib52
  article-title: 13th heat exchanger fouling and cleaning conference-2019, Warsaw, Poland
  publication-title: Heat. Transf. Eng.
– volume: 38
  start-page: 681
  issue: 7–8
  year: 2017
  ident: 10.1016/j.cherd.2023.10.031_bib8
  article-title: Crude oil fouling deposition, suppression, removal, and consolidation—and how to tell the difference
  publication-title: Heat. Transf. Eng.
  doi: 10.1080/01457632.2016.1206408
– volume: 4
  start-page: 43
  issue: 1
  year: 1983
  ident: 10.1016/j.cherd.2023.10.031_bib16
  article-title: Thinking about heat transfer fouling: A 5 × 5 matrix
  publication-title: Heat. Transf. Eng.
  doi: 10.1080/01457638108939594
– volume: 206
  start-page: 1250
  year: 2017
  ident: 10.1016/j.cherd.2023.10.031_bib9
  article-title: Organic and inorganic fouling in heat exchangers–Industrial case study: Analysis of fouling state
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.10.018
– volume: 104
  start-page: 358
  year: 2019
  ident: 10.1016/j.cherd.2023.10.031_bib17
  article-title: Clean-in-place monitoring of different food fouling materials using ultrasonic measurements
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2019.05.013
– volume: 43
  start-page: 1349
  issue: 15–16
  year: 2022
  ident: 10.1016/j.cherd.2023.10.031_bib30
  article-title: Assessment of a dynamic model for the optimization of refinery preheat trains under fouling
  publication-title: Heat. Transf. Eng.
  doi: 10.1080/01457632.2021.1963537
– volume: 236
  start-page: 949
  year: 2019
  ident: 10.1016/j.cherd.2023.10.031_bib46
  article-title: Heat transfer and fouling performance of finned tube heat exchangers: Experimentation via on line monitoring
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.09.081
– volume: 48
  start-page: 8551
  issue: 18
  year: 2009
  ident: 10.1016/j.cherd.2023.10.031_bib19
  article-title: Sequential methodology for scheduling of heat-integrated batch plants
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie900367j
– year: 2019
  ident: 10.1016/j.cherd.2023.10.031_bib26
  article-title: Effect of flow distribution in parallel heat exchanger networks: Use of thermo-hydraulic channeling model in refinery operation
  publication-title: Heat. Transf. Eng.
– start-page: 97
  year: 2007
  ident: 10.1016/j.cherd.2023.10.031_bib40
  article-title: Basic thermal design theory for recuperators
  publication-title: Fundam. Heat. Exch. Des.
– volume: 181
  start-page: 41
  year: 2022
  ident: 10.1016/j.cherd.2023.10.031_bib36
  article-title: Monitoring fouling in heat exchangers under temperature control based on excess thermal and hydraulic loads
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2022.02.032
– ident: 10.1016/j.cherd.2023.10.031_bib37
– start-page: 33
  year: 2009
  ident: 10.1016/j.cherd.2023.10.031_bib48
  article-title: Fouling: implementation of a crude preheat train performance monitoring application at the irving oil refinery
  publication-title: Int. Conf. Heat. Exch. Fouling Clean. VIII
– volume: 41
  start-page: 1750
  issue: 19–20
  year: 2020
  ident: 10.1016/j.cherd.2023.10.031_bib14
  article-title: Evaluation of heat exchanger network retrofit design using plant data
  publication-title: Heat. Transf. Eng.
  doi: 10.1080/01457632.2019.1640487
– volume: 84
  start-page: 538
  issue: 3
  year: 2021
  ident: 10.1016/j.cherd.2023.10.031_bib1
  article-title: Application of artificial neural network (ANN-MLP) for the prediction of fouling resistance in heat exchanger to MgO-water and CuO-water nanofluids
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2021.253
– volume: 63
  start-page: 984
  issue: 3
  year: 2017
  ident: 10.1016/j.cherd.2023.10.031_bib13
  article-title: Thermo‐hydraulic analysis of refinery heat exchangers undergoing fouling
  publication-title: AIChE J.
  doi: 10.1002/aic.15457
– volume: 159
  year: 2020
  ident: 10.1016/j.cherd.2023.10.031_bib44
  article-title: Fouling modeling and prediction approach for heat exchangers using deep learning
  publication-title: Int. J. Heat. Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2020.120112
– volume: 59
  start-page: 4602
  issue: 10
  year: 2020
  ident: 10.1016/j.cherd.2023.10.031_bib11
  article-title: A model-based method for visualization, monitoring, and diagnosis of fouling in heat exchangers
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b05490
– volume: 52
  start-page: 8527
  issue: 25
  year: 2013
  ident: 10.1016/j.cherd.2023.10.031_bib47
  article-title: Retrofit of a heat-exchanger network by considering heat-transfer enhancement and fouling
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie4000097
– start-page: 200
  year: 2003
  ident: 10.1016/j.cherd.2023.10.031_bib2
  article-title: Preheat train crude distillation fouling propensity evaluation by the ebert and panchal model
– volume: 70
  issue: A6
  year: 1992
  ident: 10.1016/j.cherd.2023.10.031_bib7
  article-title: Fouling of crude oil preheat exchangers
  publication-title: Chem. Eng. Res. Des.
– volume: 63
  start-page: 3400
  issue: 13
  year: 2008
  ident: 10.1016/j.cherd.2023.10.031_bib21
  article-title: Thermo-hydraulic channelling in parallel heat exchangers subject to fouling
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2008.04.008
SSID ssj0001748
Score 2.3823102
Snippet Fouling in heat exchanger networks (HENs) affects thermal and hydraulic efficiencies resulting in economic penalties to the process industries. Conventionally,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 225
SubjectTerms Excess hydraulic load
Excess thermal load
Fouling
Heat exchanger network
Monitoring
Title Performance monitoring of heat exchanger networks using excess thermal and hydraulic loads
URI https://dx.doi.org/10.1016/j.cherd.2023.10.031
Volume 200
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5KvehBXLEuZQ4eTZttkuZYiqVupaiF4iXMqpU2LV1AL_5238tiK0gPnkJmyYRv5i0zfO8NIZcKrLoESbAYVw3L14pbAs-ttAoaKuS2KxUGJz90g07fvx2wQYm0ilgYpFXmuj_T6am2zkvqOZr16XBYf4Ldg4eyDE50ytTECHY_xFVe-1rRPMDjbmTnLF4q-UXmoZTjhbhgulDXqyHFy3P-tk5rFqe9R3ZzV5E2s7_ZJyWdHJCdtQSCh-Slt-L903EqnlhBJ4aikqX6Iw_spUlG955TJLq_YgWoOIre3xjG4Imib59qxpejoaSjCVfzI9JvXz-3OlZ-W4IlwQwtLD9k3CghFdNGGMf4nmANrn3jSIa3mtvGDnkYGZgUY2zHcNiq-KGtA5hEL7KFd0zKySTRJ4Q6TEhoANIpOHw2EK4RYRRx5pooMEZXiFugFMs8lTjeaDGKC87Ye5xCGyO0WAjQVsjVT6dplkljc_OggD_-tSBi0PWbOp7-t-MZ2ca3jKtyTsqL2VJfgMexENV0SVXJVrP1eN_D581dp_sN5ZnaGw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSgNBEC00HtSDuGJc--DRMbNP5iiiRLMgmIB4GXrVSDIJGkH_3qqZnqggHrz2MsvrrlfVzetqgBOFXl2iJTgRV00n1Io7gvattIqbKuGuLxUdTu724tYgvLmP7hfgojoLQ7JKy_0lpxdsbUsaFs3GdDhs3OHqISBbxiC6UGouwhJlp4pqsHR-3W715oSMQXez3GoJCuOvkg8VMi-ChjKG-sEZqbwC73cH9c3pXK3Dmo0W2Xn5QRuwoPNNWP2WQ3ALHm6_pP9sXFgoVbCJYcSzTL_bs70sLxXfr4y07o9UgSzHKAAc4zt4rtjTh3rhb6OhZKMJV6_bMLi67F-0HHthgiPRE80c_HlulJAq0kYYz4SBiJpch8aTEV1s7ho34UlqcFyMcT3DcbUSJq6OcRyD1BXBDtTySa53gXmRkNgADVRwfGwsfCOSNOWRb9LYGF0Hv0IpkzabOF1qMcoq2dhzVkCbEbRUiNDW4XTeaVom0_i7eVzBn_2YExnS_V8d9_7b8RiWW_1uJ-tc99r7sEI1pXTlAGqzlzd9iAHITBzZCfYJjwjbNw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+monitoring+of+heat+exchanger+networks+using+excess+thermal+and+hydraulic+loads&rft.jtitle=Chemical+engineering+research+%26+design&rft.au=Patil%2C+Parag&rft.au=Srinivasan%2C+Babji&rft.au=Srinivasan%2C+Rajagopalan&rft.date=2023-12-01&rft.issn=0263-8762&rft.volume=200&rft.spage=225&rft.epage=243&rft_id=info:doi/10.1016%2Fj.cherd.2023.10.031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cherd_2023_10_031
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8762&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8762&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8762&client=summon