Flexible strain sensor with high performance based on PANI/PDMS films
A high strain sensor composed of elastomer polydimethylsiloxane (PDMS) and polyaniline (PANI) was fabricated by electrodeposition method for PANI preparation and daubing method for PDMS preparation. This kind of sensor could subject to a large tensile strain (∼50%) and revealed a high gauge factor (...
Saved in:
Published in | Organic electronics Vol. 47; pp. 51 - 56 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1566-1199 1878-5530 |
DOI | 10.1016/j.orgel.2017.05.001 |
Cover
Abstract | A high strain sensor composed of elastomer polydimethylsiloxane (PDMS) and polyaniline (PANI) was fabricated by electrodeposition method for PANI preparation and daubing method for PDMS preparation. This kind of sensor could subject to a large tensile strain (∼50%) and revealed a high gauge factor (54 at 50% strain), which was higher than other sensors reported previously. Also, the sensor displayed a current with a magnitude of mA when applied to 1 V, indicating it didn't need expensive and huge test equipment. Moreover, cyclic strain on the sensor obtained repeatable resistive responses. Its work mechanisms were discussed. The flexible sensor was proved to be useful in sensing strains and other various applications.
A flexible sensor based on PDMS/PANI film exhibits a current with a magnitude of mA under the bias of 1 V, and a high gauge factor (54 at 50% strain). Such high gauge factor was attributed to the deformation of PANI film and the further narrowed parts between two microscale cracks in the film. [Display omitted]
•A high strain sensor based on PDMS/PANI film was fabricated.•The sensor could subject to a large strain and revealed a high gauge factor.•The sensor displayed a current with a magnitude of mA when applied to 1 V. |
---|---|
AbstractList | A high strain sensor composed of elastomer polydimethylsiloxane (PDMS) and polyaniline (PANI) was fabricated by electrodeposition method for PANI preparation and daubing method for PDMS preparation. This kind of sensor could subject to a large tensile strain (∼50%) and revealed a high gauge factor (54 at 50% strain), which was higher than other sensors reported previously. Also, the sensor displayed a current with a magnitude of mA when applied to 1 V, indicating it didn't need expensive and huge test equipment. Moreover, cyclic strain on the sensor obtained repeatable resistive responses. Its work mechanisms were discussed. The flexible sensor was proved to be useful in sensing strains and other various applications.
A flexible sensor based on PDMS/PANI film exhibits a current with a magnitude of mA under the bias of 1 V, and a high gauge factor (54 at 50% strain). Such high gauge factor was attributed to the deformation of PANI film and the further narrowed parts between two microscale cracks in the film. [Display omitted]
•A high strain sensor based on PDMS/PANI film was fabricated.•The sensor could subject to a large strain and revealed a high gauge factor.•The sensor displayed a current with a magnitude of mA when applied to 1 V. |
Author | Fei, Guang Tao Fu, Wen Biao Gao, Xu Dong Gong, Xin Xin Zhong, Bin Nian Zhang, Li De Fang, Ming |
Author_xml | – sequence: 1 givenname: Xin Xin surname: Gong fullname: Gong, Xin Xin organization: Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1129, Hefei, 230031, PR China – sequence: 2 givenname: Guang Tao orcidid: 0000-0002-4657-1285 surname: Fei fullname: Fei, Guang Tao email: gtfei@issp.ac.cn organization: Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1129, Hefei, 230031, PR China – sequence: 3 givenname: Wen Biao surname: Fu fullname: Fu, Wen Biao organization: Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1129, Hefei, 230031, PR China – sequence: 4 givenname: Ming surname: Fang fullname: Fang, Ming organization: Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1129, Hefei, 230031, PR China – sequence: 5 givenname: Xu Dong surname: Gao fullname: Gao, Xu Dong organization: Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1129, Hefei, 230031, PR China – sequence: 6 givenname: Bin Nian surname: Zhong fullname: Zhong, Bin Nian organization: Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1129, Hefei, 230031, PR China – sequence: 7 givenname: Li De surname: Zhang fullname: Zhang, Li De organization: Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1129, Hefei, 230031, PR China |
BookMark | eNqFkMtOwzAQRS1UJNrCF7DxDyT1JHFiL1hUpYVKBSoBa8txJq2rNK7siMffk1JWLGA1s5hzNfeMyKB1LRJyDSwGBvlkFzu_wSZOGBQx4zFjcEaGIAoRcZ6yQb_zPI8ApLwgoxB2_UGeQTIk80WDH7ZskIbOa9vSgG1wnr7bbku3drOlB_S183vdGqSlDlhR19L19HE5Wd8-PNPaNvtwSc5r3QS8-plj8rqYv8zuo9XT3XI2XUUmZWkXZYlkBdO6QOSlyXNuCq0r2b-VZCAgS4XOgFUF1FzWRkBayZKLUsjM5EWCVTom6SnXeBeCx1odvN1r_6mAqaMJtVPfJtTRhGJc9UV7Sv6ijO10Z117rNz8w96cWOxrvVn0KhiLvYvKejSdqpz9k_8CaAd8HQ |
CitedBy_id | crossref_primary_10_1016_j_cej_2020_126940 crossref_primary_10_1515_ntrev_2023_0119 crossref_primary_10_1002_advs_202104347 crossref_primary_10_1088_1757_899X_912_2_022009 crossref_primary_10_3390_s22072741 crossref_primary_10_1016_j_compositesb_2021_108621 crossref_primary_10_1039_C8TC02327A crossref_primary_10_1002_adma_202413929 crossref_primary_10_1039_D0TC04659K crossref_primary_10_1021_acsanm_3c01153 crossref_primary_10_1111_jfpe_13946 crossref_primary_10_1021_acsami_0c00176 crossref_primary_10_1088_1361_6463_abb1e5 crossref_primary_10_1016_j_promfg_2021_06_048 crossref_primary_10_1007_s10854_018_0111_0 crossref_primary_10_3390_app10114012 crossref_primary_10_1007_s40820_023_01013_9 crossref_primary_10_1039_C9TA06810D crossref_primary_10_1016_j_orgel_2017_12_016 crossref_primary_10_1177_0021998319855758 crossref_primary_10_1038_s41598_018_26263_1 crossref_primary_10_3390_s21175760 crossref_primary_10_1016_j_matdes_2021_110164 crossref_primary_10_3390_nano11051220 crossref_primary_10_1002_app_55591 crossref_primary_10_1007_s10118_023_2924_4 crossref_primary_10_1007_s10443_022_10029_0 crossref_primary_10_1039_C8SM00608C crossref_primary_10_3390_coatings12101401 crossref_primary_10_1063_5_0089849 crossref_primary_10_3390_chemosensors9110317 crossref_primary_10_1021_acsami_4c08196 crossref_primary_10_1515_ntrev_2022_0121 crossref_primary_10_1016_j_ijbiomac_2021_03_145 crossref_primary_10_1016_j_cej_2022_138820 crossref_primary_10_3390_polym15071714 crossref_primary_10_1007_s13391_024_00514_y crossref_primary_10_3390_polym12051164 crossref_primary_10_1109_JSEN_2021_3059864 crossref_primary_10_1002_adsr_202400031 crossref_primary_10_1016_j_compscitech_2019_05_017 crossref_primary_10_1088_1361_665X_ab1df3 crossref_primary_10_1088_2053_1591_ada876 crossref_primary_10_1016_j_compositesa_2019_04_014 crossref_primary_10_1039_D3RA03258B crossref_primary_10_1002_adma_202102488 crossref_primary_10_3389_fmats_2024_1387699 crossref_primary_10_1016_j_compscitech_2019_107701 crossref_primary_10_20964_2020_05_22 crossref_primary_10_1016_j_colsurfa_2021_127477 crossref_primary_10_1109_JSEN_2024_3457991 crossref_primary_10_1016_j_compositesb_2018_12_089 crossref_primary_10_1109_TIM_2020_3031157 crossref_primary_10_1007_s10853_022_07479_z crossref_primary_10_1109_JSEN_2023_3237824 crossref_primary_10_1016_j_mssp_2020_105581 crossref_primary_10_3390_polym13244281 crossref_primary_10_1109_JSEN_2022_3156286 crossref_primary_10_1088_1674_4926_39_1_011012 crossref_primary_10_1016_j_orgel_2020_105977 crossref_primary_10_1002_adem_202301952 crossref_primary_10_3390_polym14112219 crossref_primary_10_1155_2020_9231571 crossref_primary_10_1016_j_synthmet_2019_116177 crossref_primary_10_3390_technologies7020035 crossref_primary_10_1002_app_56859 crossref_primary_10_1016_j_sna_2024_115139 crossref_primary_10_1109_ACCESS_2018_2881463 crossref_primary_10_1109_ACCESS_2020_3017218 crossref_primary_10_1016_j_jallcom_2017_12_094 crossref_primary_10_1007_s42452_020_2641_3 crossref_primary_10_1016_j_sna_2019_02_001 crossref_primary_10_1088_1361_665X_aadc89 crossref_primary_10_1002_adfm_202214265 crossref_primary_10_1007_s12598_018_1193_9 crossref_primary_10_1002_aelm_202200717 crossref_primary_10_1039_D4CP02261K crossref_primary_10_3390_s22020630 crossref_primary_10_1109_JSEN_2024_3397821 crossref_primary_10_1016_j_cej_2022_140763 crossref_primary_10_1007_s00289_019_02796_x crossref_primary_10_1007_s12221_023_00389_0 crossref_primary_10_1016_j_compscitech_2022_109720 crossref_primary_10_2139_ssrn_4174868 crossref_primary_10_1016_j_sna_2023_114319 crossref_primary_10_1007_s10570_022_04846_6 crossref_primary_10_1007_s11706_023_0665_5 crossref_primary_10_1142_S0217984921504662 crossref_primary_10_3390_s20154266 crossref_primary_10_1007_s10118_022_2854_6 |
Cites_doi | 10.1016/j.orgel.2016.02.032 10.1002/adma.201103406 10.1002/adma.200801788 10.1021/am502208g 10.1002/smll.201401812 10.1089/soro.2013.0005 10.1021/acsami.6b08587 10.1021/nn501204t 10.1002/adfm.201200498 10.1039/C4NR03295K 10.1016/j.orgel.2010.07.028 10.1109/TBME.2014.2309951 10.1016/j.sna.2014.01.037 10.1016/j.orgel.2016.05.034 10.3390/s140610042 10.1038/nature12314 10.3390/s140305296 10.1126/science.1121401 10.1073/pnas.0502392102 10.1039/C6TC00300A 10.1016/j.mee.2009.04.012 10.1002/adfm.201400139 10.1016/j.orgel.2014.08.063 10.1021/nn103523t |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. |
Copyright_xml | – notice: 2017 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.orgel.2017.05.001 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1878-5530 |
EndPage | 56 |
ExternalDocumentID | 10_1016_j_orgel_2017_05_001 S1566119917301921 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM KZ1 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCB SCC SDF SDG SES SEW SPC SPCBC SPD SSK SSM SSQ SSZ T5K UNMZH XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c303t-429070aa7ee5bc665c7aad911924181438a410d71f59fc813d9b58b894c672ed3 |
IEDL.DBID | AIKHN |
ISSN | 1566-1199 |
IngestDate | Tue Jul 01 01:56:27 EDT 2025 Thu Apr 24 22:52:24 EDT 2025 Fri Feb 23 02:30:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cracks PANI Flexible Strain sensor Gauge factor |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-429070aa7ee5bc665c7aad911924181438a410d71f59fc813d9b58b894c672ed3 |
ORCID | 0000-0002-4657-1285 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1016_j_orgel_2017_05_001 crossref_citationtrail_10_1016_j_orgel_2017_05_001 elsevier_sciencedirect_doi_10_1016_j_orgel_2017_05_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2017 2017-08-00 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: August 2017 |
PublicationDecade | 2010 |
PublicationTitle | Organic electronics |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lin, Dong, Liu, Chen, Wei, Liu (bib12) 2016; 8 Lee, Kim, Lee, Yang, Park, Ryu, Park (bib21) 2014; 6 Machado, Athayde, Mamo, van Otterlo, Coville, Hümmelgen (bib2) 2010; 11 Xiao, Yuan, Zhong, Ding, Liu, Cai, Rong, Han, Zhou, Wang (bib18) 2011; 23 Kim, Rogers (bib15) 2008; 20 Nam, Jeon, Min, Lee, Park, Im (bib8) 2014; 24 Kaltenbrunner, Sekitani, Reeder, Yokota, Kuribara, Tokuhara, Drack, Schwodiauer, Graz, Bauer-Gogonea, Bauer, Someya (bib1) 2013; 499 Amjadi, Pichitpajongkit, Lee, Ryu, Park (bib22) 2014; 8 Zheng, Ding, Poon, Lo, Zhang, Zhou, Yang, Zhao, Zhang (bib5) 2014; 61 Wang, Yang, Shi, Zhang, Shi, Wang, Zhang (bib24) 2011; 5 Spanu, Pinna, Viola, Seminara, Valle, Bonfiglio, Cosseddu (bib11) 2016; 36 Seo, Lee, Lim, Lee, Rui, Ann, Lee, Lee (bib19) 2015; 11 Kanoun, Muller, Benchirouf, Sanli, Dinh, Al-Hamry, Bu, Gerlach, Bouhamed (bib9) 2014; 14 Lu, Lu, Yang, Rogers (bib23) 2012; 22 Song, Liu, Gan, Lv, Cao, Yan (bib17) 2009; 86 Gottstein (bib25) 2004 Stassi, Cauda, Canavese, Pirri (bib16) 2014; 14 Khang, Jiang, Huang, Rogers (bib13) 2006; 311 Someya, Kato, Sekitani, Iba, Noguchi, Murase, Kawaguchi, Sakurai (bib14) 2005; 102 Chen, Wei, Yuan, Lin, Liu (bib10) 2016; 4 Lu, Kim (bib6) 2014; 1 Thuau, Abbas, Chambon, Tardy, Wantz, Poulin, Hirsch, Dufour, Ayela (bib4) 2014; 15 Thuau, Ayela, Poulin, Dufour (bib3) 2014; 209 Jeon, Lee, Park, Im, Bae (bib7) 2016; 32 Xu, Lu, Jiang, Chen, Mao, Gao, Zhang, Wu (bib20) 2014; 6 Kaltenbrunner (10.1016/j.orgel.2017.05.001_bib1) 2013; 499 Jeon (10.1016/j.orgel.2017.05.001_bib7) 2016; 32 Kanoun (10.1016/j.orgel.2017.05.001_bib9) 2014; 14 Khang (10.1016/j.orgel.2017.05.001_bib13) 2006; 311 Nam (10.1016/j.orgel.2017.05.001_bib8) 2014; 24 Chen (10.1016/j.orgel.2017.05.001_bib10) 2016; 4 Spanu (10.1016/j.orgel.2017.05.001_bib11) 2016; 36 Thuau (10.1016/j.orgel.2017.05.001_bib4) 2014; 15 Zheng (10.1016/j.orgel.2017.05.001_bib5) 2014; 61 Someya (10.1016/j.orgel.2017.05.001_bib14) 2005; 102 Lee (10.1016/j.orgel.2017.05.001_bib21) 2014; 6 Lu (10.1016/j.orgel.2017.05.001_bib23) 2012; 22 Machado (10.1016/j.orgel.2017.05.001_bib2) 2010; 11 Lin (10.1016/j.orgel.2017.05.001_bib12) 2016; 8 Thuau (10.1016/j.orgel.2017.05.001_bib3) 2014; 209 Gottstein (10.1016/j.orgel.2017.05.001_bib25) 2004 Seo (10.1016/j.orgel.2017.05.001_bib19) 2015; 11 Kim (10.1016/j.orgel.2017.05.001_bib15) 2008; 20 Xu (10.1016/j.orgel.2017.05.001_bib20) 2014; 6 Song (10.1016/j.orgel.2017.05.001_bib17) 2009; 86 Lu (10.1016/j.orgel.2017.05.001_bib6) 2014; 1 Wang (10.1016/j.orgel.2017.05.001_bib24) 2011; 5 Amjadi (10.1016/j.orgel.2017.05.001_bib22) 2014; 8 Xiao (10.1016/j.orgel.2017.05.001_bib18) 2011; 23 Stassi (10.1016/j.orgel.2017.05.001_bib16) 2014; 14 |
References_xml | – volume: 209 start-page: 161 year: 2014 end-page: 168 ident: bib3 article-title: Highly piezoresistive hybrid MEMS sensors publication-title: Sens. Actuators A – volume: 23 start-page: 5440 year: 2011 end-page: 5444 ident: bib18 article-title: High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films publication-title: Adv. Mater – volume: 1 start-page: 53 year: 2014 end-page: 62 ident: bib6 article-title: Flexible and stretchable electronics paving the way for soft robotics publication-title: Soft Robot. – volume: 24 start-page: 4413 year: 2014 end-page: 4419 ident: bib8 article-title: Highly sensitive non-classical strain gauge using organic heptazole thin-film transistor circuit on a flexible substrate publication-title: Adv. Funct. Mater. – volume: 8 start-page: 5154 year: 2014 end-page: 5163 ident: bib22 article-title: Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite publication-title: ACS Nano – year: 2004 ident: bib25 article-title: Physical Foundations of Materials Science – volume: 11 start-page: 1736 year: 2010 end-page: 1739 ident: bib2 article-title: Hydrostatic pressure sensor based on carbon sphere – polyvinyl alcohol composites publication-title: Org. Electron – volume: 6 start-page: 11932 year: 2014 end-page: 11939 ident: bib21 article-title: A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection publication-title: Nanoscale – volume: 15 start-page: 3096 year: 2014 end-page: 3100 ident: bib4 article-title: Sensitivity enhancement of a flexible MEMS strain sensor by a field effect transistor in an all organic approach publication-title: Org. Electron – volume: 311 start-page: 208 year: 2006 end-page: 212 ident: bib13 article-title: A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates publication-title: Science – volume: 499 start-page: 458 year: 2013 end-page: 463 ident: bib1 article-title: An ultra-lightweight design for imperceptible plastic electronics publication-title: Nature – volume: 14 year: 2014 ident: bib16 article-title: Flexible tactile sensing based on piezoresistive composites: a review publication-title: Sensors – volume: 22 start-page: 4044 year: 2012 end-page: 4050 ident: bib23 article-title: Highly sensitive skin-mountable strain gauges based entirely on elastomers publication-title: Adv. Funct. Mater. – volume: 11 start-page: 2990 year: 2015 end-page: 2994 ident: bib19 article-title: A highly sensitive and reliable strain sensor using a hierarchical 3D and ordered network of carbon nanotubes publication-title: Small – volume: 61 start-page: 1538 year: 2014 end-page: 1554 ident: bib5 article-title: Unobtrusive sensing and wearable devices for health informatics publication-title: Ieee T. Bio.-Med. Eng. – volume: 8 start-page: 24143 year: 2016 end-page: 24151 ident: bib12 article-title: Graphene−elastomer composites with segregated nanostructured network for liquid and strain sensing application publication-title: ACS Appl. Mater. Inter. – volume: 32 start-page: 208 year: 2016 end-page: 212 ident: bib7 article-title: Ultrasensitive low power-consuming strain sensor based on complementary inverter composed of organic p- and n-channels publication-title: Org. Electron – volume: 86 start-page: 2330 year: 2009 end-page: 2333 ident: bib17 article-title: Controllable fabrication of carbon nanotube-polymer hybrid thin film for strain sensing publication-title: Microelectron. Eng. – volume: 20 start-page: 4887 year: 2008 end-page: 4892 ident: bib15 article-title: Stretchable electronics: materials strategies and devices publication-title: Adv. Mater. – volume: 5 start-page: 3645 year: 2011 end-page: 3650 ident: bib24 article-title: Super-elastic graphene ripples for flexible strain sensors publication-title: ACS Nano – volume: 36 start-page: 57 year: 2016 end-page: 60 ident: bib11 article-title: A high-sensitivity tactile sensor based on piezoelectric polymer PVDF coupled to an ultra-low voltage organic transistor publication-title: Org. Electron – volume: 6 start-page: 13455 year: 2014 end-page: 13460 ident: bib20 article-title: Facile fabrication of three-dimensional graphene foam/poly(dimethylsiloxane) composites and their potential application as strain sensor publication-title: ACS Appl. Mater. Inter. – volume: 102 start-page: 12321 year: 2005 end-page: 12325 ident: bib14 article-title: Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes publication-title: P. Natl. Acad. Sci. USA – volume: 4 start-page: 4304 year: 2016 end-page: 4311 ident: bib10 article-title: A highly stretchable strain sensor based on a graphene/silver nanoparticle synergic conductive network and a sandwich structure publication-title: J. Mater. Chem. C – volume: 14 start-page: 10042 year: 2014 end-page: 10071 ident: bib9 article-title: Flexible carbon nanotube films for high performance strain sensors publication-title: Sensors – volume: 32 start-page: 208 year: 2016 ident: 10.1016/j.orgel.2017.05.001_bib7 article-title: Ultrasensitive low power-consuming strain sensor based on complementary inverter composed of organic p- and n-channels publication-title: Org. Electron doi: 10.1016/j.orgel.2016.02.032 – volume: 23 start-page: 5440 year: 2011 ident: 10.1016/j.orgel.2017.05.001_bib18 article-title: High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films publication-title: Adv. Mater doi: 10.1002/adma.201103406 – volume: 20 start-page: 4887 year: 2008 ident: 10.1016/j.orgel.2017.05.001_bib15 article-title: Stretchable electronics: materials strategies and devices publication-title: Adv. Mater. doi: 10.1002/adma.200801788 – volume: 6 start-page: 13455 year: 2014 ident: 10.1016/j.orgel.2017.05.001_bib20 article-title: Facile fabrication of three-dimensional graphene foam/poly(dimethylsiloxane) composites and their potential application as strain sensor publication-title: ACS Appl. Mater. Inter. doi: 10.1021/am502208g – volume: 11 start-page: 2990 year: 2015 ident: 10.1016/j.orgel.2017.05.001_bib19 article-title: A highly sensitive and reliable strain sensor using a hierarchical 3D and ordered network of carbon nanotubes publication-title: Small doi: 10.1002/smll.201401812 – volume: 1 start-page: 53 year: 2014 ident: 10.1016/j.orgel.2017.05.001_bib6 article-title: Flexible and stretchable electronics paving the way for soft robotics publication-title: Soft Robot. doi: 10.1089/soro.2013.0005 – volume: 8 start-page: 24143 year: 2016 ident: 10.1016/j.orgel.2017.05.001_bib12 article-title: Graphene−elastomer composites with segregated nanostructured network for liquid and strain sensing application publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.6b08587 – volume: 8 start-page: 5154 year: 2014 ident: 10.1016/j.orgel.2017.05.001_bib22 article-title: Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite publication-title: ACS Nano doi: 10.1021/nn501204t – volume: 22 start-page: 4044 year: 2012 ident: 10.1016/j.orgel.2017.05.001_bib23 article-title: Highly sensitive skin-mountable strain gauges based entirely on elastomers publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200498 – volume: 6 start-page: 11932 year: 2014 ident: 10.1016/j.orgel.2017.05.001_bib21 article-title: A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection publication-title: Nanoscale doi: 10.1039/C4NR03295K – volume: 11 start-page: 1736 year: 2010 ident: 10.1016/j.orgel.2017.05.001_bib2 article-title: Hydrostatic pressure sensor based on carbon sphere – polyvinyl alcohol composites publication-title: Org. Electron doi: 10.1016/j.orgel.2010.07.028 – volume: 61 start-page: 1538 year: 2014 ident: 10.1016/j.orgel.2017.05.001_bib5 article-title: Unobtrusive sensing and wearable devices for health informatics publication-title: Ieee T. Bio.-Med. Eng. doi: 10.1109/TBME.2014.2309951 – volume: 209 start-page: 161 year: 2014 ident: 10.1016/j.orgel.2017.05.001_bib3 article-title: Highly piezoresistive hybrid MEMS sensors publication-title: Sens. Actuators A doi: 10.1016/j.sna.2014.01.037 – volume: 36 start-page: 57 year: 2016 ident: 10.1016/j.orgel.2017.05.001_bib11 article-title: A high-sensitivity tactile sensor based on piezoelectric polymer PVDF coupled to an ultra-low voltage organic transistor publication-title: Org. Electron doi: 10.1016/j.orgel.2016.05.034 – volume: 14 start-page: 10042 year: 2014 ident: 10.1016/j.orgel.2017.05.001_bib9 article-title: Flexible carbon nanotube films for high performance strain sensors publication-title: Sensors doi: 10.3390/s140610042 – volume: 499 start-page: 458 year: 2013 ident: 10.1016/j.orgel.2017.05.001_bib1 article-title: An ultra-lightweight design for imperceptible plastic electronics publication-title: Nature doi: 10.1038/nature12314 – volume: 14 year: 2014 ident: 10.1016/j.orgel.2017.05.001_bib16 article-title: Flexible tactile sensing based on piezoresistive composites: a review publication-title: Sensors doi: 10.3390/s140305296 – volume: 311 start-page: 208 year: 2006 ident: 10.1016/j.orgel.2017.05.001_bib13 article-title: A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates publication-title: Science doi: 10.1126/science.1121401 – volume: 102 start-page: 12321 year: 2005 ident: 10.1016/j.orgel.2017.05.001_bib14 article-title: Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes publication-title: P. Natl. Acad. Sci. USA doi: 10.1073/pnas.0502392102 – volume: 4 start-page: 4304 year: 2016 ident: 10.1016/j.orgel.2017.05.001_bib10 article-title: A highly stretchable strain sensor based on a graphene/silver nanoparticle synergic conductive network and a sandwich structure publication-title: J. Mater. Chem. C doi: 10.1039/C6TC00300A – year: 2004 ident: 10.1016/j.orgel.2017.05.001_bib25 – volume: 86 start-page: 2330 year: 2009 ident: 10.1016/j.orgel.2017.05.001_bib17 article-title: Controllable fabrication of carbon nanotube-polymer hybrid thin film for strain sensing publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2009.04.012 – volume: 24 start-page: 4413 year: 2014 ident: 10.1016/j.orgel.2017.05.001_bib8 article-title: Highly sensitive non-classical strain gauge using organic heptazole thin-film transistor circuit on a flexible substrate publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201400139 – volume: 15 start-page: 3096 year: 2014 ident: 10.1016/j.orgel.2017.05.001_bib4 article-title: Sensitivity enhancement of a flexible MEMS strain sensor by a field effect transistor in an all organic approach publication-title: Org. Electron doi: 10.1016/j.orgel.2014.08.063 – volume: 5 start-page: 3645 year: 2011 ident: 10.1016/j.orgel.2017.05.001_bib24 article-title: Super-elastic graphene ripples for flexible strain sensors publication-title: ACS Nano doi: 10.1021/nn103523t |
SSID | ssj0016412 |
Score | 2.4908547 |
Snippet | A high strain sensor composed of elastomer polydimethylsiloxane (PDMS) and polyaniline (PANI) was fabricated by electrodeposition method for PANI preparation... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 51 |
SubjectTerms | Cracks Flexible Gauge factor PANI Strain sensor |
Title | Flexible strain sensor with high performance based on PANI/PDMS films |
URI | https://dx.doi.org/10.1016/j.orgel.2017.05.001 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEJ0gHNSDUdSIH2QPHq1tabvdHglCQAIhIpFb0263CQYLAbz6253pB2JMOHhqttlJ2pfNvJnd2TcA95atkCS4qSGbS81GitFCzG3RGQYBhvcGxhS0oT8Y8u7Efp460xK0irswVFaZ-_7Mp6feOn-j52jqy9lMH1PmYVLlDi1Sjy6TVxqWx50yVJq9fne4PUzgdnboifM1MijEh9IyL9p4piMIM1PwzJvD_CGoHdLpnMJJHi2yZvZBZ1BSSRUOW0WTtioc7-gJnkO7Q_KW4Vyxddr6ga0xSV2sGG22MhImZsufewKMCCxii4SNmsOePnoajFk8m3-sL2DSab-2ulreJ0GTSEAbRBgzXMTWVcoJJeeOdIMgQi-GuRUSuG2JwDaNyDVjx4ulMK3ICx0RCs-W3G2oyLqEcrJI1BUwN1LCIzHxWGCcJKRQLuehYUkHI0MZxDVoFOD4MhcRpx-a-0W12LufIuoTor7hUM1cDR62RstMQ2P_dF6g7v9aCj56-X2G1_81vIEjGmV1fbdQ3qw-1R3GGpuwDgePX2Y9X1H07L-89b8BccjRWw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na8JAEB1ED7aH0tqW2s899NiQpEk2m6NYRasGQQVvIdlswGKjqP3_ncmHtRQ89JrsQPJY5s3szrwBeLZshSTBTQ3ZXGo2UowWYW6LzjAMMbw3MKagA_2Rz3sz-33uzCvQLnthqKyy8P25T8-8dfFEL9DU14uFPqHMw6TKHdqkHjWT12wHs70q1Fr9Qc_fXyZwO7_0xPUaGZTiQ1mZFx080xWEmSt4FsNh_hDUAel0z-GsiBZZK_-gC6iotAH1djmkrQGnB3qCl9DpkrxltFRsm41-YFtMUlcbRoetjISJ2fqnT4ARgcVslbJxy-_r47fRhCWL5ef2CmbdzrTd04o5CZpEAtohwpjhIrauUk4kOXekG4YxejHMrZDAbUuEtmnErpk4XiKFacVe5IhIeLbk7quKrWuopqtU3QBzYyU8EhNPBMZJQgrlch4ZlnQwMpRh0oTXEpxAFiLi9EPLoKwW-wgyRANCNDAcqplrwsveaJ1raBxfzkvUg19bIUAvf8zw9r-GT1DvTUfDYNj3B3dwQm_yGr97qO42X-oB445d9Fjsq2_sotGn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+strain+sensor+with+high+performance+based+on+PANI%2FPDMS+films&rft.jtitle=Organic+electronics&rft.au=Gong%2C+Xin+Xin&rft.au=Fei%2C+Guang+Tao&rft.au=Fu%2C+Wen+Biao&rft.au=Fang%2C+Ming&rft.date=2017-08-01&rft.issn=1566-1199&rft.volume=47&rft.spage=51&rft.epage=56&rft_id=info:doi/10.1016%2Fj.orgel.2017.05.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_orgel_2017_05_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1566-1199&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1566-1199&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1566-1199&client=summon |