Flexible strain sensor with high performance based on PANI/PDMS films

A high strain sensor composed of elastomer polydimethylsiloxane (PDMS) and polyaniline (PANI) was fabricated by electrodeposition method for PANI preparation and daubing method for PDMS preparation. This kind of sensor could subject to a large tensile strain (∼50%) and revealed a high gauge factor (...

Full description

Saved in:
Bibliographic Details
Published inOrganic electronics Vol. 47; pp. 51 - 56
Main Authors Gong, Xin Xin, Fei, Guang Tao, Fu, Wen Biao, Fang, Ming, Gao, Xu Dong, Zhong, Bin Nian, Zhang, Li De
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2017
Subjects
Online AccessGet full text
ISSN1566-1199
1878-5530
DOI10.1016/j.orgel.2017.05.001

Cover

Abstract A high strain sensor composed of elastomer polydimethylsiloxane (PDMS) and polyaniline (PANI) was fabricated by electrodeposition method for PANI preparation and daubing method for PDMS preparation. This kind of sensor could subject to a large tensile strain (∼50%) and revealed a high gauge factor (54 at 50% strain), which was higher than other sensors reported previously. Also, the sensor displayed a current with a magnitude of mA when applied to 1 V, indicating it didn't need expensive and huge test equipment. Moreover, cyclic strain on the sensor obtained repeatable resistive responses. Its work mechanisms were discussed. The flexible sensor was proved to be useful in sensing strains and other various applications. A flexible sensor based on PDMS/PANI film exhibits a current with a magnitude of mA under the bias of 1 V, and a high gauge factor (54 at 50% strain). Such high gauge factor was attributed to the deformation of PANI film and the further narrowed parts between two microscale cracks in the film. [Display omitted] •A high strain sensor based on PDMS/PANI film was fabricated.•The sensor could subject to a large strain and revealed a high gauge factor.•The sensor displayed a current with a magnitude of mA when applied to 1 V.
AbstractList A high strain sensor composed of elastomer polydimethylsiloxane (PDMS) and polyaniline (PANI) was fabricated by electrodeposition method for PANI preparation and daubing method for PDMS preparation. This kind of sensor could subject to a large tensile strain (∼50%) and revealed a high gauge factor (54 at 50% strain), which was higher than other sensors reported previously. Also, the sensor displayed a current with a magnitude of mA when applied to 1 V, indicating it didn't need expensive and huge test equipment. Moreover, cyclic strain on the sensor obtained repeatable resistive responses. Its work mechanisms were discussed. The flexible sensor was proved to be useful in sensing strains and other various applications. A flexible sensor based on PDMS/PANI film exhibits a current with a magnitude of mA under the bias of 1 V, and a high gauge factor (54 at 50% strain). Such high gauge factor was attributed to the deformation of PANI film and the further narrowed parts between two microscale cracks in the film. [Display omitted] •A high strain sensor based on PDMS/PANI film was fabricated.•The sensor could subject to a large strain and revealed a high gauge factor.•The sensor displayed a current with a magnitude of mA when applied to 1 V.
Author Fei, Guang Tao
Fu, Wen Biao
Gao, Xu Dong
Gong, Xin Xin
Zhong, Bin Nian
Zhang, Li De
Fang, Ming
Author_xml – sequence: 1
  givenname: Xin Xin
  surname: Gong
  fullname: Gong, Xin Xin
  organization: Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1129, Hefei, 230031, PR China
– sequence: 2
  givenname: Guang Tao
  orcidid: 0000-0002-4657-1285
  surname: Fei
  fullname: Fei, Guang Tao
  email: gtfei@issp.ac.cn
  organization: Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1129, Hefei, 230031, PR China
– sequence: 3
  givenname: Wen Biao
  surname: Fu
  fullname: Fu, Wen Biao
  organization: Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1129, Hefei, 230031, PR China
– sequence: 4
  givenname: Ming
  surname: Fang
  fullname: Fang, Ming
  organization: Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1129, Hefei, 230031, PR China
– sequence: 5
  givenname: Xu Dong
  surname: Gao
  fullname: Gao, Xu Dong
  organization: Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1129, Hefei, 230031, PR China
– sequence: 6
  givenname: Bin Nian
  surname: Zhong
  fullname: Zhong, Bin Nian
  organization: Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1129, Hefei, 230031, PR China
– sequence: 7
  givenname: Li De
  surname: Zhang
  fullname: Zhang, Li De
  organization: Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1129, Hefei, 230031, PR China
BookMark eNqFkMtOwzAQRS1UJNrCF7DxDyT1JHFiL1hUpYVKBSoBa8txJq2rNK7siMffk1JWLGA1s5hzNfeMyKB1LRJyDSwGBvlkFzu_wSZOGBQx4zFjcEaGIAoRcZ6yQb_zPI8ApLwgoxB2_UGeQTIk80WDH7ZskIbOa9vSgG1wnr7bbku3drOlB_S183vdGqSlDlhR19L19HE5Wd8-PNPaNvtwSc5r3QS8-plj8rqYv8zuo9XT3XI2XUUmZWkXZYlkBdO6QOSlyXNuCq0r2b-VZCAgS4XOgFUF1FzWRkBayZKLUsjM5EWCVTom6SnXeBeCx1odvN1r_6mAqaMJtVPfJtTRhGJc9UV7Sv6ijO10Z117rNz8w96cWOxrvVn0KhiLvYvKejSdqpz9k_8CaAd8HQ
CitedBy_id crossref_primary_10_1016_j_cej_2020_126940
crossref_primary_10_1515_ntrev_2023_0119
crossref_primary_10_1002_advs_202104347
crossref_primary_10_1088_1757_899X_912_2_022009
crossref_primary_10_3390_s22072741
crossref_primary_10_1016_j_compositesb_2021_108621
crossref_primary_10_1039_C8TC02327A
crossref_primary_10_1002_adma_202413929
crossref_primary_10_1039_D0TC04659K
crossref_primary_10_1021_acsanm_3c01153
crossref_primary_10_1111_jfpe_13946
crossref_primary_10_1021_acsami_0c00176
crossref_primary_10_1088_1361_6463_abb1e5
crossref_primary_10_1016_j_promfg_2021_06_048
crossref_primary_10_1007_s10854_018_0111_0
crossref_primary_10_3390_app10114012
crossref_primary_10_1007_s40820_023_01013_9
crossref_primary_10_1039_C9TA06810D
crossref_primary_10_1016_j_orgel_2017_12_016
crossref_primary_10_1177_0021998319855758
crossref_primary_10_1038_s41598_018_26263_1
crossref_primary_10_3390_s21175760
crossref_primary_10_1016_j_matdes_2021_110164
crossref_primary_10_3390_nano11051220
crossref_primary_10_1002_app_55591
crossref_primary_10_1007_s10118_023_2924_4
crossref_primary_10_1007_s10443_022_10029_0
crossref_primary_10_1039_C8SM00608C
crossref_primary_10_3390_coatings12101401
crossref_primary_10_1063_5_0089849
crossref_primary_10_3390_chemosensors9110317
crossref_primary_10_1021_acsami_4c08196
crossref_primary_10_1515_ntrev_2022_0121
crossref_primary_10_1016_j_ijbiomac_2021_03_145
crossref_primary_10_1016_j_cej_2022_138820
crossref_primary_10_3390_polym15071714
crossref_primary_10_1007_s13391_024_00514_y
crossref_primary_10_3390_polym12051164
crossref_primary_10_1109_JSEN_2021_3059864
crossref_primary_10_1002_adsr_202400031
crossref_primary_10_1016_j_compscitech_2019_05_017
crossref_primary_10_1088_1361_665X_ab1df3
crossref_primary_10_1088_2053_1591_ada876
crossref_primary_10_1016_j_compositesa_2019_04_014
crossref_primary_10_1039_D3RA03258B
crossref_primary_10_1002_adma_202102488
crossref_primary_10_3389_fmats_2024_1387699
crossref_primary_10_1016_j_compscitech_2019_107701
crossref_primary_10_20964_2020_05_22
crossref_primary_10_1016_j_colsurfa_2021_127477
crossref_primary_10_1109_JSEN_2024_3457991
crossref_primary_10_1016_j_compositesb_2018_12_089
crossref_primary_10_1109_TIM_2020_3031157
crossref_primary_10_1007_s10853_022_07479_z
crossref_primary_10_1109_JSEN_2023_3237824
crossref_primary_10_1016_j_mssp_2020_105581
crossref_primary_10_3390_polym13244281
crossref_primary_10_1109_JSEN_2022_3156286
crossref_primary_10_1088_1674_4926_39_1_011012
crossref_primary_10_1016_j_orgel_2020_105977
crossref_primary_10_1002_adem_202301952
crossref_primary_10_3390_polym14112219
crossref_primary_10_1155_2020_9231571
crossref_primary_10_1016_j_synthmet_2019_116177
crossref_primary_10_3390_technologies7020035
crossref_primary_10_1002_app_56859
crossref_primary_10_1016_j_sna_2024_115139
crossref_primary_10_1109_ACCESS_2018_2881463
crossref_primary_10_1109_ACCESS_2020_3017218
crossref_primary_10_1016_j_jallcom_2017_12_094
crossref_primary_10_1007_s42452_020_2641_3
crossref_primary_10_1016_j_sna_2019_02_001
crossref_primary_10_1088_1361_665X_aadc89
crossref_primary_10_1002_adfm_202214265
crossref_primary_10_1007_s12598_018_1193_9
crossref_primary_10_1002_aelm_202200717
crossref_primary_10_1039_D4CP02261K
crossref_primary_10_3390_s22020630
crossref_primary_10_1109_JSEN_2024_3397821
crossref_primary_10_1016_j_cej_2022_140763
crossref_primary_10_1007_s00289_019_02796_x
crossref_primary_10_1007_s12221_023_00389_0
crossref_primary_10_1016_j_compscitech_2022_109720
crossref_primary_10_2139_ssrn_4174868
crossref_primary_10_1016_j_sna_2023_114319
crossref_primary_10_1007_s10570_022_04846_6
crossref_primary_10_1007_s11706_023_0665_5
crossref_primary_10_1142_S0217984921504662
crossref_primary_10_3390_s20154266
crossref_primary_10_1007_s10118_022_2854_6
Cites_doi 10.1016/j.orgel.2016.02.032
10.1002/adma.201103406
10.1002/adma.200801788
10.1021/am502208g
10.1002/smll.201401812
10.1089/soro.2013.0005
10.1021/acsami.6b08587
10.1021/nn501204t
10.1002/adfm.201200498
10.1039/C4NR03295K
10.1016/j.orgel.2010.07.028
10.1109/TBME.2014.2309951
10.1016/j.sna.2014.01.037
10.1016/j.orgel.2016.05.034
10.3390/s140610042
10.1038/nature12314
10.3390/s140305296
10.1126/science.1121401
10.1073/pnas.0502392102
10.1039/C6TC00300A
10.1016/j.mee.2009.04.012
10.1002/adfm.201400139
10.1016/j.orgel.2014.08.063
10.1021/nn103523t
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.orgel.2017.05.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1878-5530
EndPage 56
ExternalDocumentID 10_1016_j_orgel_2017_05_001
S1566119917301921
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
KZ1
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCB
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSK
SSM
SSQ
SSZ
T5K
UNMZH
XFK
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c303t-429070aa7ee5bc665c7aad911924181438a410d71f59fc813d9b58b894c672ed3
IEDL.DBID AIKHN
ISSN 1566-1199
IngestDate Tue Jul 01 01:56:27 EDT 2025
Thu Apr 24 22:52:24 EDT 2025
Fri Feb 23 02:30:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cracks
PANI
Flexible
Strain sensor
Gauge factor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-429070aa7ee5bc665c7aad911924181438a410d71f59fc813d9b58b894c672ed3
ORCID 0000-0002-4657-1285
PageCount 6
ParticipantIDs crossref_primary_10_1016_j_orgel_2017_05_001
crossref_citationtrail_10_1016_j_orgel_2017_05_001
elsevier_sciencedirect_doi_10_1016_j_orgel_2017_05_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2017
2017-08-00
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: August 2017
PublicationDecade 2010
PublicationTitle Organic electronics
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lin, Dong, Liu, Chen, Wei, Liu (bib12) 2016; 8
Lee, Kim, Lee, Yang, Park, Ryu, Park (bib21) 2014; 6
Machado, Athayde, Mamo, van Otterlo, Coville, Hümmelgen (bib2) 2010; 11
Xiao, Yuan, Zhong, Ding, Liu, Cai, Rong, Han, Zhou, Wang (bib18) 2011; 23
Kim, Rogers (bib15) 2008; 20
Nam, Jeon, Min, Lee, Park, Im (bib8) 2014; 24
Kaltenbrunner, Sekitani, Reeder, Yokota, Kuribara, Tokuhara, Drack, Schwodiauer, Graz, Bauer-Gogonea, Bauer, Someya (bib1) 2013; 499
Amjadi, Pichitpajongkit, Lee, Ryu, Park (bib22) 2014; 8
Zheng, Ding, Poon, Lo, Zhang, Zhou, Yang, Zhao, Zhang (bib5) 2014; 61
Wang, Yang, Shi, Zhang, Shi, Wang, Zhang (bib24) 2011; 5
Spanu, Pinna, Viola, Seminara, Valle, Bonfiglio, Cosseddu (bib11) 2016; 36
Seo, Lee, Lim, Lee, Rui, Ann, Lee, Lee (bib19) 2015; 11
Kanoun, Muller, Benchirouf, Sanli, Dinh, Al-Hamry, Bu, Gerlach, Bouhamed (bib9) 2014; 14
Lu, Lu, Yang, Rogers (bib23) 2012; 22
Song, Liu, Gan, Lv, Cao, Yan (bib17) 2009; 86
Gottstein (bib25) 2004
Stassi, Cauda, Canavese, Pirri (bib16) 2014; 14
Khang, Jiang, Huang, Rogers (bib13) 2006; 311
Someya, Kato, Sekitani, Iba, Noguchi, Murase, Kawaguchi, Sakurai (bib14) 2005; 102
Chen, Wei, Yuan, Lin, Liu (bib10) 2016; 4
Lu, Kim (bib6) 2014; 1
Thuau, Abbas, Chambon, Tardy, Wantz, Poulin, Hirsch, Dufour, Ayela (bib4) 2014; 15
Thuau, Ayela, Poulin, Dufour (bib3) 2014; 209
Jeon, Lee, Park, Im, Bae (bib7) 2016; 32
Xu, Lu, Jiang, Chen, Mao, Gao, Zhang, Wu (bib20) 2014; 6
Kaltenbrunner (10.1016/j.orgel.2017.05.001_bib1) 2013; 499
Jeon (10.1016/j.orgel.2017.05.001_bib7) 2016; 32
Kanoun (10.1016/j.orgel.2017.05.001_bib9) 2014; 14
Khang (10.1016/j.orgel.2017.05.001_bib13) 2006; 311
Nam (10.1016/j.orgel.2017.05.001_bib8) 2014; 24
Chen (10.1016/j.orgel.2017.05.001_bib10) 2016; 4
Spanu (10.1016/j.orgel.2017.05.001_bib11) 2016; 36
Thuau (10.1016/j.orgel.2017.05.001_bib4) 2014; 15
Zheng (10.1016/j.orgel.2017.05.001_bib5) 2014; 61
Someya (10.1016/j.orgel.2017.05.001_bib14) 2005; 102
Lee (10.1016/j.orgel.2017.05.001_bib21) 2014; 6
Lu (10.1016/j.orgel.2017.05.001_bib23) 2012; 22
Machado (10.1016/j.orgel.2017.05.001_bib2) 2010; 11
Lin (10.1016/j.orgel.2017.05.001_bib12) 2016; 8
Thuau (10.1016/j.orgel.2017.05.001_bib3) 2014; 209
Gottstein (10.1016/j.orgel.2017.05.001_bib25) 2004
Seo (10.1016/j.orgel.2017.05.001_bib19) 2015; 11
Kim (10.1016/j.orgel.2017.05.001_bib15) 2008; 20
Xu (10.1016/j.orgel.2017.05.001_bib20) 2014; 6
Song (10.1016/j.orgel.2017.05.001_bib17) 2009; 86
Lu (10.1016/j.orgel.2017.05.001_bib6) 2014; 1
Wang (10.1016/j.orgel.2017.05.001_bib24) 2011; 5
Amjadi (10.1016/j.orgel.2017.05.001_bib22) 2014; 8
Xiao (10.1016/j.orgel.2017.05.001_bib18) 2011; 23
Stassi (10.1016/j.orgel.2017.05.001_bib16) 2014; 14
References_xml – volume: 209
  start-page: 161
  year: 2014
  end-page: 168
  ident: bib3
  article-title: Highly piezoresistive hybrid MEMS sensors
  publication-title: Sens. Actuators A
– volume: 23
  start-page: 5440
  year: 2011
  end-page: 5444
  ident: bib18
  article-title: High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films
  publication-title: Adv. Mater
– volume: 1
  start-page: 53
  year: 2014
  end-page: 62
  ident: bib6
  article-title: Flexible and stretchable electronics paving the way for soft robotics
  publication-title: Soft Robot.
– volume: 24
  start-page: 4413
  year: 2014
  end-page: 4419
  ident: bib8
  article-title: Highly sensitive non-classical strain gauge using organic heptazole thin-film transistor circuit on a flexible substrate
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 5154
  year: 2014
  end-page: 5163
  ident: bib22
  article-title: Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite
  publication-title: ACS Nano
– year: 2004
  ident: bib25
  article-title: Physical Foundations of Materials Science
– volume: 11
  start-page: 1736
  year: 2010
  end-page: 1739
  ident: bib2
  article-title: Hydrostatic pressure sensor based on carbon sphere – polyvinyl alcohol composites
  publication-title: Org. Electron
– volume: 6
  start-page: 11932
  year: 2014
  end-page: 11939
  ident: bib21
  article-title: A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection
  publication-title: Nanoscale
– volume: 15
  start-page: 3096
  year: 2014
  end-page: 3100
  ident: bib4
  article-title: Sensitivity enhancement of a flexible MEMS strain sensor by a field effect transistor in an all organic approach
  publication-title: Org. Electron
– volume: 311
  start-page: 208
  year: 2006
  end-page: 212
  ident: bib13
  article-title: A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates
  publication-title: Science
– volume: 499
  start-page: 458
  year: 2013
  end-page: 463
  ident: bib1
  article-title: An ultra-lightweight design for imperceptible plastic electronics
  publication-title: Nature
– volume: 14
  year: 2014
  ident: bib16
  article-title: Flexible tactile sensing based on piezoresistive composites: a review
  publication-title: Sensors
– volume: 22
  start-page: 4044
  year: 2012
  end-page: 4050
  ident: bib23
  article-title: Highly sensitive skin-mountable strain gauges based entirely on elastomers
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 2990
  year: 2015
  end-page: 2994
  ident: bib19
  article-title: A highly sensitive and reliable strain sensor using a hierarchical 3D and ordered network of carbon nanotubes
  publication-title: Small
– volume: 61
  start-page: 1538
  year: 2014
  end-page: 1554
  ident: bib5
  article-title: Unobtrusive sensing and wearable devices for health informatics
  publication-title: Ieee T. Bio.-Med. Eng.
– volume: 8
  start-page: 24143
  year: 2016
  end-page: 24151
  ident: bib12
  article-title: Graphene−elastomer composites with segregated nanostructured network for liquid and strain sensing application
  publication-title: ACS Appl. Mater. Inter.
– volume: 32
  start-page: 208
  year: 2016
  end-page: 212
  ident: bib7
  article-title: Ultrasensitive low power-consuming strain sensor based on complementary inverter composed of organic p- and n-channels
  publication-title: Org. Electron
– volume: 86
  start-page: 2330
  year: 2009
  end-page: 2333
  ident: bib17
  article-title: Controllable fabrication of carbon nanotube-polymer hybrid thin film for strain sensing
  publication-title: Microelectron. Eng.
– volume: 20
  start-page: 4887
  year: 2008
  end-page: 4892
  ident: bib15
  article-title: Stretchable electronics: materials strategies and devices
  publication-title: Adv. Mater.
– volume: 5
  start-page: 3645
  year: 2011
  end-page: 3650
  ident: bib24
  article-title: Super-elastic graphene ripples for flexible strain sensors
  publication-title: ACS Nano
– volume: 36
  start-page: 57
  year: 2016
  end-page: 60
  ident: bib11
  article-title: A high-sensitivity tactile sensor based on piezoelectric polymer PVDF coupled to an ultra-low voltage organic transistor
  publication-title: Org. Electron
– volume: 6
  start-page: 13455
  year: 2014
  end-page: 13460
  ident: bib20
  article-title: Facile fabrication of three-dimensional graphene foam/poly(dimethylsiloxane) composites and their potential application as strain sensor
  publication-title: ACS Appl. Mater. Inter.
– volume: 102
  start-page: 12321
  year: 2005
  end-page: 12325
  ident: bib14
  article-title: Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes
  publication-title: P. Natl. Acad. Sci. USA
– volume: 4
  start-page: 4304
  year: 2016
  end-page: 4311
  ident: bib10
  article-title: A highly stretchable strain sensor based on a graphene/silver nanoparticle synergic conductive network and a sandwich structure
  publication-title: J. Mater. Chem. C
– volume: 14
  start-page: 10042
  year: 2014
  end-page: 10071
  ident: bib9
  article-title: Flexible carbon nanotube films for high performance strain sensors
  publication-title: Sensors
– volume: 32
  start-page: 208
  year: 2016
  ident: 10.1016/j.orgel.2017.05.001_bib7
  article-title: Ultrasensitive low power-consuming strain sensor based on complementary inverter composed of organic p- and n-channels
  publication-title: Org. Electron
  doi: 10.1016/j.orgel.2016.02.032
– volume: 23
  start-page: 5440
  year: 2011
  ident: 10.1016/j.orgel.2017.05.001_bib18
  article-title: High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films
  publication-title: Adv. Mater
  doi: 10.1002/adma.201103406
– volume: 20
  start-page: 4887
  year: 2008
  ident: 10.1016/j.orgel.2017.05.001_bib15
  article-title: Stretchable electronics: materials strategies and devices
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200801788
– volume: 6
  start-page: 13455
  year: 2014
  ident: 10.1016/j.orgel.2017.05.001_bib20
  article-title: Facile fabrication of three-dimensional graphene foam/poly(dimethylsiloxane) composites and their potential application as strain sensor
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/am502208g
– volume: 11
  start-page: 2990
  year: 2015
  ident: 10.1016/j.orgel.2017.05.001_bib19
  article-title: A highly sensitive and reliable strain sensor using a hierarchical 3D and ordered network of carbon nanotubes
  publication-title: Small
  doi: 10.1002/smll.201401812
– volume: 1
  start-page: 53
  year: 2014
  ident: 10.1016/j.orgel.2017.05.001_bib6
  article-title: Flexible and stretchable electronics paving the way for soft robotics
  publication-title: Soft Robot.
  doi: 10.1089/soro.2013.0005
– volume: 8
  start-page: 24143
  year: 2016
  ident: 10.1016/j.orgel.2017.05.001_bib12
  article-title: Graphene−elastomer composites with segregated nanostructured network for liquid and strain sensing application
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.6b08587
– volume: 8
  start-page: 5154
  year: 2014
  ident: 10.1016/j.orgel.2017.05.001_bib22
  article-title: Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite
  publication-title: ACS Nano
  doi: 10.1021/nn501204t
– volume: 22
  start-page: 4044
  year: 2012
  ident: 10.1016/j.orgel.2017.05.001_bib23
  article-title: Highly sensitive skin-mountable strain gauges based entirely on elastomers
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200498
– volume: 6
  start-page: 11932
  year: 2014
  ident: 10.1016/j.orgel.2017.05.001_bib21
  article-title: A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection
  publication-title: Nanoscale
  doi: 10.1039/C4NR03295K
– volume: 11
  start-page: 1736
  year: 2010
  ident: 10.1016/j.orgel.2017.05.001_bib2
  article-title: Hydrostatic pressure sensor based on carbon sphere – polyvinyl alcohol composites
  publication-title: Org. Electron
  doi: 10.1016/j.orgel.2010.07.028
– volume: 61
  start-page: 1538
  year: 2014
  ident: 10.1016/j.orgel.2017.05.001_bib5
  article-title: Unobtrusive sensing and wearable devices for health informatics
  publication-title: Ieee T. Bio.-Med. Eng.
  doi: 10.1109/TBME.2014.2309951
– volume: 209
  start-page: 161
  year: 2014
  ident: 10.1016/j.orgel.2017.05.001_bib3
  article-title: Highly piezoresistive hybrid MEMS sensors
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2014.01.037
– volume: 36
  start-page: 57
  year: 2016
  ident: 10.1016/j.orgel.2017.05.001_bib11
  article-title: A high-sensitivity tactile sensor based on piezoelectric polymer PVDF coupled to an ultra-low voltage organic transistor
  publication-title: Org. Electron
  doi: 10.1016/j.orgel.2016.05.034
– volume: 14
  start-page: 10042
  year: 2014
  ident: 10.1016/j.orgel.2017.05.001_bib9
  article-title: Flexible carbon nanotube films for high performance strain sensors
  publication-title: Sensors
  doi: 10.3390/s140610042
– volume: 499
  start-page: 458
  year: 2013
  ident: 10.1016/j.orgel.2017.05.001_bib1
  article-title: An ultra-lightweight design for imperceptible plastic electronics
  publication-title: Nature
  doi: 10.1038/nature12314
– volume: 14
  year: 2014
  ident: 10.1016/j.orgel.2017.05.001_bib16
  article-title: Flexible tactile sensing based on piezoresistive composites: a review
  publication-title: Sensors
  doi: 10.3390/s140305296
– volume: 311
  start-page: 208
  year: 2006
  ident: 10.1016/j.orgel.2017.05.001_bib13
  article-title: A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates
  publication-title: Science
  doi: 10.1126/science.1121401
– volume: 102
  start-page: 12321
  year: 2005
  ident: 10.1016/j.orgel.2017.05.001_bib14
  article-title: Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes
  publication-title: P. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0502392102
– volume: 4
  start-page: 4304
  year: 2016
  ident: 10.1016/j.orgel.2017.05.001_bib10
  article-title: A highly stretchable strain sensor based on a graphene/silver nanoparticle synergic conductive network and a sandwich structure
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC00300A
– year: 2004
  ident: 10.1016/j.orgel.2017.05.001_bib25
– volume: 86
  start-page: 2330
  year: 2009
  ident: 10.1016/j.orgel.2017.05.001_bib17
  article-title: Controllable fabrication of carbon nanotube-polymer hybrid thin film for strain sensing
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2009.04.012
– volume: 24
  start-page: 4413
  year: 2014
  ident: 10.1016/j.orgel.2017.05.001_bib8
  article-title: Highly sensitive non-classical strain gauge using organic heptazole thin-film transistor circuit on a flexible substrate
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201400139
– volume: 15
  start-page: 3096
  year: 2014
  ident: 10.1016/j.orgel.2017.05.001_bib4
  article-title: Sensitivity enhancement of a flexible MEMS strain sensor by a field effect transistor in an all organic approach
  publication-title: Org. Electron
  doi: 10.1016/j.orgel.2014.08.063
– volume: 5
  start-page: 3645
  year: 2011
  ident: 10.1016/j.orgel.2017.05.001_bib24
  article-title: Super-elastic graphene ripples for flexible strain sensors
  publication-title: ACS Nano
  doi: 10.1021/nn103523t
SSID ssj0016412
Score 2.4908547
Snippet A high strain sensor composed of elastomer polydimethylsiloxane (PDMS) and polyaniline (PANI) was fabricated by electrodeposition method for PANI preparation...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 51
SubjectTerms Cracks
Flexible
Gauge factor
PANI
Strain sensor
Title Flexible strain sensor with high performance based on PANI/PDMS films
URI https://dx.doi.org/10.1016/j.orgel.2017.05.001
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEJ0gHNSDUdSIH2QPHq1tabvdHglCQAIhIpFb0263CQYLAbz6253pB2JMOHhqttlJ2pfNvJnd2TcA95atkCS4qSGbS81GitFCzG3RGQYBhvcGxhS0oT8Y8u7Efp460xK0irswVFaZ-_7Mp6feOn-j52jqy9lMH1PmYVLlDi1Sjy6TVxqWx50yVJq9fne4PUzgdnboifM1MijEh9IyL9p4piMIM1PwzJvD_CGoHdLpnMJJHi2yZvZBZ1BSSRUOW0WTtioc7-gJnkO7Q_KW4Vyxddr6ga0xSV2sGG22MhImZsufewKMCCxii4SNmsOePnoajFk8m3-sL2DSab-2ulreJ0GTSEAbRBgzXMTWVcoJJeeOdIMgQi-GuRUSuG2JwDaNyDVjx4ulMK3ICx0RCs-W3G2oyLqEcrJI1BUwN1LCIzHxWGCcJKRQLuehYUkHI0MZxDVoFOD4MhcRpx-a-0W12LufIuoTor7hUM1cDR62RstMQ2P_dF6g7v9aCj56-X2G1_81vIEjGmV1fbdQ3qw-1R3GGpuwDgePX2Y9X1H07L-89b8BccjRWw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na8JAEB1ED7aH0tqW2s899NiQpEk2m6NYRasGQQVvIdlswGKjqP3_ncmHtRQ89JrsQPJY5s3szrwBeLZshSTBTQ3ZXGo2UowWYW6LzjAMMbw3MKagA_2Rz3sz-33uzCvQLnthqKyy8P25T8-8dfFEL9DU14uFPqHMw6TKHdqkHjWT12wHs70q1Fr9Qc_fXyZwO7_0xPUaGZTiQ1mZFx080xWEmSt4FsNh_hDUAel0z-GsiBZZK_-gC6iotAH1djmkrQGnB3qCl9DpkrxltFRsm41-YFtMUlcbRoetjISJ2fqnT4ARgcVslbJxy-_r47fRhCWL5ef2CmbdzrTd04o5CZpEAtohwpjhIrauUk4kOXekG4YxejHMrZDAbUuEtmnErpk4XiKFacVe5IhIeLbk7quKrWuopqtU3QBzYyU8EhNPBMZJQgrlch4ZlnQwMpRh0oTXEpxAFiLi9EPLoKwW-wgyRANCNDAcqplrwsveaJ1raBxfzkvUg19bIUAvf8zw9r-GT1DvTUfDYNj3B3dwQm_yGr97qO42X-oB445d9Fjsq2_sotGn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+strain+sensor+with+high+performance+based+on+PANI%2FPDMS+films&rft.jtitle=Organic+electronics&rft.au=Gong%2C+Xin+Xin&rft.au=Fei%2C+Guang+Tao&rft.au=Fu%2C+Wen+Biao&rft.au=Fang%2C+Ming&rft.date=2017-08-01&rft.issn=1566-1199&rft.volume=47&rft.spage=51&rft.epage=56&rft_id=info:doi/10.1016%2Fj.orgel.2017.05.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_orgel_2017_05_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1566-1199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1566-1199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1566-1199&client=summon