C, N and P dynamics during litter decomposition in pure and mixed beech – conifer stands: Effects of litter species, site conditions and native vs non-native conifer species
The plantation of mixed forests including non-native tree species is increasing but its impacts on litter decomposition and nutrient cycling remains little studied across different site conditions. Using litterbags with European beech leaves, Norway spruce or Douglas-fir needles, we investigated lit...
Saved in:
Published in | Forest ecology and management Vol. 594; p. 122929 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.10.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The plantation of mixed forests including non-native tree species is increasing but its impacts on litter decomposition and nutrient cycling remains little studied across different site conditions. Using litterbags with European beech leaves, Norway spruce or Douglas-fir needles, we investigated litter decomposition processes in monocultures and mixed forests of European beech, Norway spruce and Douglas-fir at nutrient-rich and nutrient-poor sites. Decomposition of each litter species declined in a close to linear way throughout 36 months of exposure, with decomposition of beech leaves being slowest. This was likely driven by low initial nitrogen concentration of beech leaves as reflected by strong and long-lasting accumulation of nitrogen which was more pronounced at nutrient-poor sites. Irrespective of litter species, decomposition was slowest in Norway spruce monocultures, with patterns in mixed forests being generally intermediate between those in respective monocultures. Although mechanisms responsible for slow litter decomposition in Norway spruce monocultures remain unclear, the results show that detrimental effects of Norway spruce monocultures can be mitigated by admixture of European beech. The relatively slow decomposition of beech leaves highlights the predominant role of initial litter nutrient concentrations in driving litter decomposition. The slow decomposition of litter in spruce forests highlights that specific environmental conditions in forest stands may strongly modify litter decomposition, with these modifications being similar across litter species. These findings emphasize the importance of understanding how, by shaping the environment, single tree species influence ecosystem functions such as litter decomposition and nutrient cycling.
•Litter of European beech decomposes slower than that of Norway spruce and Douglas-fir.•Initial litter nutrient concentrations drive early and late decomposition processes.•Stand type affects litter decomposition irrespective of litter species.•Decomposition in mixed beech - conifer forests is intermediate between monocultures.•Stand type effects on litter decomposition are modulated by stand nutrient status. |
---|---|
AbstractList | The plantation of mixed forests including non-native tree species is increasing but its impacts on litter decomposition and nutrient cycling remains little studied across different site conditions. Using litterbags with European beech leaves, Norway spruce or Douglas-fir needles, we investigated litter decomposition processes in monocultures and mixed forests of European beech, Norway spruce and Douglas-fir at nutrient-rich and nutrient-poor sites. Decomposition of each litter species declined in a close to linear way throughout 36 months of exposure, with decomposition of beech leaves being slowest. This was likely driven by low initial nitrogen concentration of beech leaves as reflected by strong and long-lasting accumulation of nitrogen which was more pronounced at nutrient-poor sites. Irrespective of litter species, decomposition was slowest in Norway spruce monocultures, with patterns in mixed forests being generally intermediate between those in respective monocultures. Although mechanisms responsible for slow litter decomposition in Norway spruce monocultures remain unclear, the results show that detrimental effects of Norway spruce monocultures can be mitigated by admixture of European beech. The relatively slow decomposition of beech leaves highlights the predominant role of initial litter nutrient concentrations in driving litter decomposition. The slow decomposition of litter in spruce forests highlights that specific environmental conditions in forest stands may strongly modify litter decomposition, with these modifications being similar across litter species. These findings emphasize the importance of understanding how, by shaping the environment, single tree species influence ecosystem functions such as litter decomposition and nutrient cycling.
•Litter of European beech decomposes slower than that of Norway spruce and Douglas-fir.•Initial litter nutrient concentrations drive early and late decomposition processes.•Stand type affects litter decomposition irrespective of litter species.•Decomposition in mixed beech - conifer forests is intermediate between monocultures.•Stand type effects on litter decomposition are modulated by stand nutrient status. |
ArticleNumber | 122929 |
Author | Stuckenberg, Thalea Lu, Jing-Zhong Scheu, Stefan |
Author_xml | – sequence: 1 givenname: Thalea orcidid: 0009-0000-5969-0868 surname: Stuckenberg fullname: Stuckenberg, Thalea email: tstucke@gwdg.de organization: J. F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany – sequence: 2 givenname: Jing-Zhong orcidid: 0000-0002-4051-8993 surname: Lu fullname: Lu, Jing-Zhong email: jlu@gwdg.de organization: J. F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany – sequence: 3 givenname: Stefan surname: Scheu fullname: Scheu, Stefan email: sscheu@gwdg.de organization: J. F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany |
BookMark | eNp9kM1OAjEQx3vAREDfwMM8AIv92GUXDyaG4EdC1IOem6Wdagm0pF2I3nwHH8R38kksLHr0NJnM_H6Z-fdIx3mHhJwxOmSUjc4XQ-MDKj_klBdDxvmYjzukS0VZZYzx8pj0YlxQSosir7rkazKAe6idhkfQ765eWRVBb4J1L7C0TYMBdLKt1j7axnoH1sF6E3CPrOwbapgjqlf4_vgE5Z01iYhNmsYLmBqDqongza8rrlFZjANINtzt67017nWubuwWYRsh_ZQduj9nS56QI1MvI54eap88X0-fJrfZ7OHmbnI1y5SgoslyXrGaloYzoY0eMWRlLXJRaYpzXfCRoWPMNReiFFxjPWeF4FWlClqMq3w-oqJP8targo8xoJHrYFd1eJeMyl3QciHboOUuaNkGnbDLFsN029ZikDFd7RRqm3Ybqb39X_ADm9GP4A |
Cites_doi | 10.1007/s10021-020-00573-w 10.1016/0038-0717(94)00167-Y 10.1093/treephys/22.15-16.1193 10.1134/S1067413620040050 10.1111/1365-2435.13351 10.1890/08-0439.1 10.1111/j.1600-0706.2011.20073.x 10.1111/nph.17553 10.1007/s11104-012-1165-z 10.1111/j.1461-0248.2008.01164.x 10.1002/wat2.1243 10.1016/S0378-1127(97)00270-3 10.1071/SR22218 10.18637/jss.v082.i13 10.1038/nature13247 10.1016/j.agrformet.2021.108482 10.1111/nph.15263 10.1016/j.apsoil.2014.05.004 10.1016/j.geoderma.2020.114620 10.1016/S0038-0717(03)00155-X 10.1016/j.geoderma.2024.116947 10.1016/S0038-0717(00)00127-9 10.1016/j.scitotenv.2022.160190 10.1007/BF02202587 10.1111/btp.13044 10.1016/S0169-5347(00)01861-9 10.1139/x01-117 10.1890/09-0179.1 10.1016/j.soilbio.2008.12.022 10.1890/0012-9658(2000)081[2359:MESELD]2.0.CO;2 10.1111/ele.12137 10.1016/j.geoderma.2022.116276 10.2307/1938416 10.1002/ece3.7771 10.1016/j.soilbio.2020.107791 10.1016/j.actao.2015.12.003 10.1111/1365-2745.13516 10.1016/j.soilbio.2012.09.015 10.1007/s11104-015-2737-5 10.1007/BF00029316 10.1007/s11368-020-02844-4 10.1016/j.soilbio.2016.12.027 10.1111/j.1365-2435.2008.01478.x 10.1007/s00248-006-9006-3 10.1111/1365-2745.13902 10.1023/B:JOEC.0000006682.50061.83 10.1111/j.0030-1299.2004.12738.x 10.1126/science.1134853 10.3389/fevo.2022.907492 10.1007/s13595-013-0279-7 10.1111/gcb.13923 10.1007/s10533-016-0201-0 10.1007/s00374-019-01360-z 10.1016/S0378-1127(00)00592-2 10.1016/j.soilbio.2003.09.002 10.1023/A:1014981715532 10.1007/s11104-010-0563-3 10.1111/j.1365-2435.2008.01515.x 10.1016/j.apsoil.2018.02.017 10.1016/j.tree.2010.01.010 10.1016/j.soilbio.2008.09.017 10.3389/fpls.2022.1010458 10.1016/j.soilbio.2023.109069 10.1016/j.soilbio.2006.12.037 10.1111/nph.14452 10.1016/j.geoderma.2015.03.024 10.1139/b96-084 10.1073/pnas.0404977102 10.1016/j.foreco.2013.01.017 10.1038/s43247-024-01453-0 10.1146/annurev.ecolsys.36.112904.151932 10.1111/ele.12590 10.1007/s40974-017-0064-9 10.1007/s10021-004-0026-x 10.1111/nph.16556 10.1016/j.soilbio.2021.108155 10.1111/j.1475-2743.1985.tb00648.x 10.1111/1365-2435.13822 10.1007/s00374-012-0741-y 10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2 10.1016/j.soilbio.2009.03.002 10.1016/j.soilbio.2024.109602 10.1111/oik.01374 10.1111/nph.17022 10.1139/X09-208 10.1007/s10533-010-9439-0 10.18637/jss.v067.i01 10.1046/j.1365-2486.2000.00349.x |
ContentType | Journal Article |
Copyright | 2025 The Authors |
Copyright_xml | – notice: 2025 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.foreco.2025.122929 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Forestry |
ExternalDocumentID | 10_1016_j_foreco_2025_122929 S0378112725004372 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AAEDW AAFTH AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AATTM AAXKI AAXUO ABFNM ABFRF ABFYP ABGRD ABJNI ABLST ABMAC ACDAQ ACGFO ACGFS ACIUM ACRLP ACVFH ADBBV ADCNI ADEZE ADQTV AEBSH AEFWE AEIPS AEKER AENEX AEQOU AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGUBO AGYEJ AHEUO AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A N~3 O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SCC SDF SDG SDP SES SEW SPCBC SSA SSJ SSZ T5K WH7 Y6R ~02 ~G- ~KM 29H 53G AAEDT AALCJ AAQXK AAYWO AAYXX ABWVN ABXDB ACRPL ADMUD ADNMO ADVLN AEGFY AGHFR AGQPQ AI. AIDBO ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLV HMC HVGLF HZ~ R2- SEN VH1 WUQ ZKB ZY4 |
ID | FETCH-LOGICAL-c303t-4281a07f213dfd61e17a3438d0ebd526f09e4d233732deab153288c505984b603 |
IEDL.DBID | .~1 |
ISSN | 0378-1127 |
IngestDate | Wed Aug 27 16:26:52 EDT 2025 Sat Aug 30 17:14:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | European beech Nutrient cycling Norway spruce Douglas-fir Monocultures Mixed forests |
Language | English |
License | This is an open access article under the CC BY-NC license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-4281a07f213dfd61e17a3438d0ebd526f09e4d233732deab153288c505984b603 |
ORCID | 0000-0002-4051-8993 0009-0000-5969-0868 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0378112725004372 |
ParticipantIDs | crossref_primary_10_1016_j_foreco_2025_122929 elsevier_sciencedirect_doi_10_1016_j_foreco_2025_122929 |
PublicationCentury | 2000 |
PublicationDate | 2025-10-15 |
PublicationDateYYYYMMDD | 2025-10-15 |
PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Forest ecology and management |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Stangler, Miller, Honer, Larysch, Puhlmann, Seifert, Kahle (bib82) 2022; 10 Berg, Ekbohm, Johansson, McClaugherty, Rutigliano, Virzo de Santo (bib17) 1996; 74 Rinkes, Bertrand, Amin, Grandy, Wickings, Weintraub (bib76) 2016; 128 Strickland, Osburn, Lauber, Fierer, Bradford (bib83) 2009; 23 Zhang, Hedenec, Yue, Ni, Wie, Chen, Yang, Wu (bib102) 2024; 5 García-Palacios, Maestre, Kattge, Wall (bib32) 2013; 16 R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Wang, Pìerstè, Liu, Kenta, Robson, Kurokawa (bib96) 2021; 229 de Deyn, Cornelissen, Bardgett (bib26) 2008; 11 Hättenschwiler, Vitousek (bib44) 2000; 15 Veen, Snoek, Bakx-Schotman, Wardle, van der Putten (bib93) 2019; 33 Dence, Lin (bib25) 1992 Lu, Bluhm, Foltran, Pérez, Ammer, Caruso, Glatthorn, Lamersdorf, Polle, Sandmann, Schaefer, Schuldt, Maraun, Scheu (bib57) 2024; 448 Albers, Migge, Schaefer, Scheu (bib2) 2004; 36 Handa, Aerts, Berendse, Berg, Bruder, Butenschoen, Chauvet, Gessner, Jabiol, Makkonen, McKie, Malmqvist, Peeters, Scheu, Schmid, van Ruijven, Vos, Hättenschwiler (bib42) 2014; 509 Berglund, Ågren, Ekblad (bib20) 2013; 57 Lu, Scheu (bib56) 2021; 155 Chi, Zeng, Wang, Chen (bib23) 2022; 13 Allen (bib3) 1974 Vance, Chapin (bib91) 2001; 33 Berg B., McClaugherty C. (2008) Plant litter – Decomposition, Humus Formation, Carbon sequestration. 2 . Canessa, van den Brink, Saldaña, Rios, Hättenschwiler, Mueller, Prater, Tielbörger, Bader (bib21) 2021; 109 Hornung (bib48) 1985; 1 Aneja, Sharma, Fleischmann, Stich, Heller, Bahnweg, Munch, Schloter (bib6) 2006; 52 Yang, Zhu, Zhang, Zhang, Lu, Zhang, Zheng, Xu, Wang (bib99) 2022; 110 Yang, Dong, Li, Wang, Quan, Liu (bib100) 2021; 16 Gogo, Leroy, Zocatelli, Jacotot, Laggoun-Défarge (bib37) 2021; 11 Liu, Liu, Song, Compson, LeRoy, Luan, Wang, Hu, Yang (bib55) 2020; 227 Adamczyk, Karonen, Adamyzak, Engström, Laakso, Saranpää, Kitunen, Smolander, Simon (bib1) 2017; 107 Setiawan, Vanhellemont, de Schrijver, Schelfhout, Baeten, Verheyen (bib79) 2016; 70 Gong, Chen, Zhang, Yang, Cai (bib38) 2020; 10 Porre, van der Werf, de Deyn, Stomph, Hoffland (bib70) 2020; 145 Ershov, Lukina, Danilova, Isaeva, Sukhareva, Smirnov (bib27) 2020; 51 Xiaogai, Lixiong, Wenfa, Zhilin, Xiansheng, Benwang (bib97) 2013; 33 Güsewell, Gessner (bib41) 2009; 23 Kuznetsova, Brockhoff, Christensen (bib53) 2017; 82 Gholz, Wedin, Smitherman, Harmon, Parton (bib36) 2000; 6 Hättenschwiler, Tiunov, Scheu (bib45) 2005; 36 Krishna, Mohan (bib52) 2017; 2 Augusto, Bonnaud, Ranger (bib9) 1998; 105 Moore, Trofymow, Prescott, Titus (bib62) 2006; 9 Angst, Harantová, Baldrian, Angst, Cajthami, Straková, Blahut, Veselá, Frouz (bib7) 2019; 55 Gartner, Cardon (bib34) 2004; 104 Joly, Milcu, Scherer-Lorenzen, Jean, Bussotti, Dawud, Müller, Pollastrini, Raulund-Rasmussen, Vesterdal, Hättenschwiler (bib49) 2017; 214 Moore, Trofymow, Prescott, Titus (bib63) 2011; 339 Srivastava, Cardinale, Downing, Duffy, Jouseau, Sankaran, Wright (bib81) 2009; 90 Ostertag, Restrepo, Dalling, Martin, Abiem, Aiba, Alvarez-Dávila, Aragón, Ataroff, Chapman, Cueva-Agila, Fadrique, Fernández, González, Gotsch, Häger, Homeier, Iniguez-Armijos, Llambi, Moore, Naesborg, Poma López, Vieira Pompeu, Powell, Ramírez Correa, Scharnagl, Tobón, Williams (bib66) 2021; 54 Griffiths, Ashton, Parr, Eggleton (bib39) 2021; 231 Manzoni, Trofymow, Jackson, Porporato (bib60) 2010; 80 Pollierer, Langel, Scheu, Maraun (bib69) 2009; 41 Vesterdal, Clarke, Sigurdsson, Gundersen (bib94) 2013; 309 Edition. Springer, Heidelberg. Pérez-Harguindeguy, Díaz, Cornelissen, Vendramini, Castellanos (bib68) 2000 Bani, Pioli, Ventura, Panzacchi, Borruso, Tognetti, Tonon, Brusetti (bib11) 2018; 126 Sanchez (bib77) 2001; 152 Berg, McClaugherty (bib16) 2021 Trogisch, He, Hector, Scherer-Lorenzen (bib90) 2016; 400 Kohl, Wanek, Keiblinger, Hämmerle, Fuchslueger, Schneider, Riedel, Eberl, Zechmeister-Boltenstern, Richter (bib51) 2023; 429 Melillo, Avber, Linkins, Ricca, Fry, Nadelhoffer (bib61) 1989; 115 Bardgett (bib12) 2005 Asigbaase, Dawoe, Sjogersten, Lomax (bib8) 2021; 21 Trofymow, Moore, Titur, Prescott, Morrison, Siltanen, Smith, Fyles, Wein, Camiré, Duschene, Kozak, Kranabetter, Visser (bib89) 2002; 32 Hättenschwiler, Gasser (bib43) 2005; 102 Berger, Duboc, Djukic, Tatzberm, Gerzabeck, Zehetner (bib19) 2015; 251–252 Laganière, Paré, Bradley (bib54) 2010; 40 Parton, Silver, Burke, Grassens, Harmon, Currie, King, Adair, Brandt, Hart, Fasth (bib67) 2007; 315 Obladen, Dechering, Skiadaresis, Tegel, Keßler, Höllerl, Kaps, Hertel, Dulamsuren, Seifert, Hirsch, Seim (bib65) 2021; 307 Foltran, Lammersdorf, Ammer (bib28) 2023; 61 Prescott (bib72) 2002; 22 Xu, Sun, Sun, Cao, Wang, Chen, Wang, Ruan (bib98) 2020; 378 Lummer, Scheu, Butenschoen (bib59) 2012; 121 Yuan, Zheng, Min, Deng, Lin, Xie, Chen, Liang (bib101) 2024 Ayres, Steltzer, Simmons, Simpson, Steinweg, Wallenstein, Mellor, Parton, Moore, Wall (bib10) 2009; 41 Zhou, Butenschoen, Handa, Berg, McKie, Huang, Hättenschwiler, Scheu (bib103) 2024; 199 Prescott (bib71) 1995; 168/169 Hlásny, Turcáni (bib46) 2013; 70 Wang, Zhog, He (bib95) 2013; 49 Berger, Berger (bib18) 2012; 358 Prescott (bib73) 2010; 101 Tiunov (bib88) 2009; 41 Schimel, Hättenschwiler (bib78) 2007; 39 Njoroge, Dossa, Ye, Lin, Schaefer, Tomlinson, Zo, Cornelissen (bib64) 2023; 860 Ammer (bib4) 2019; 221 Grossman, Cavender-Bares, Hobbie (bib40) 2020; 90 Hooper, Bignell, Brown, Burssaard, Dangerfield, Wall, Wardle, Coleman, Giller, Lavelle, van der Putten, de Ruiter, Rusek, Silver, Tiedje, Wolters (bib47) 2000; 50 Gallet, Pellissier (bib31) 1997; 23 Taylor, Parkinson, Parsons (bib87) 1989; 70 Sohrt, Lang, Weiler (bib80) 2017; 4 Tan, Yin, Zhang, Xu, Liu, He, Zhang, Li, Wang, Liu, You, Peng (bib86) 2021; 24 Bates, Maechler, Bolker, Walker (bib13) 2015; 67 Carreiro, Sinsabaugh, Repert, Parkhurst (bib22) 2000; 81 Suseela, Tharayil (bib84) 2018; 24 Veen, Freschet, Ordonez, Wardle (bib92) 2014; 124 Ammer C., Annighöfer P., Balkenhol N., Hertel D., Leuschner C., Polle A., Lammersdorf N., Scheu S., Glatthorn J. (2020) RTG 2300 – study design, site condition, topography, and climatic conditions of research plots in 2020. PANGAEA Gessner, Swan, Dang, McKie, Bardgett, Wall, Hättenschwiler (bib35) 2010; 25 Cuchietti, Marcotti, Gurvich, Cingolani, Pérez Harguindeguy (bib24) 2014; 82 Frey, Six, Elliott (bib29) 2003; 35 Swift, Heal, Anderson (bib85) 1979 Joly, Scherer-Lorenzen, Hättenschwiler (bib50) 2023; 7 Benito-Carnero, Gartzia-Bengoetxea, Arias-González, Rousk (bib14) 2021; 35 García-Palacios, Shaw, Wall, Hättenschwiler (bib33) 2016; 19 Lukac, Godbold (bib58) 2011 Pugnaire, Aares, Alifriqui, Bråthen, Kindler, Schöb, Manrique (bib74) 2023; 184 Gallet, Lebreton (bib30) 1995; 27 Bardgett (10.1016/j.foreco.2025.122929_bib12) 2005 Strickland (10.1016/j.foreco.2025.122929_bib83) 2009; 23 Lu (10.1016/j.foreco.2025.122929_bib57) 2024; 448 Yang (10.1016/j.foreco.2025.122929_bib100) 2021; 16 Güsewell (10.1016/j.foreco.2025.122929_bib41) 2009; 23 Gogo (10.1016/j.foreco.2025.122929_bib37) 2021; 11 Suseela (10.1016/j.foreco.2025.122929_bib84) 2018; 24 Trofymow (10.1016/j.foreco.2025.122929_bib89) 2002; 32 Hooper (10.1016/j.foreco.2025.122929_bib47) 2000; 50 Hättenschwiler (10.1016/j.foreco.2025.122929_bib44) 2000; 15 Berg (10.1016/j.foreco.2025.122929_bib17) 1996; 74 Frey (10.1016/j.foreco.2025.122929_bib29) 2003; 35 Sohrt (10.1016/j.foreco.2025.122929_bib80) 2017; 4 Srivastava (10.1016/j.foreco.2025.122929_bib81) 2009; 90 Tan (10.1016/j.foreco.2025.122929_bib86) 2021; 24 Albers (10.1016/j.foreco.2025.122929_bib2) 2004; 36 Asigbaase (10.1016/j.foreco.2025.122929_bib8) 2021; 21 Kohl (10.1016/j.foreco.2025.122929_bib51) 2023; 429 Yuan (10.1016/j.foreco.2025.122929_bib101) 2024 Aneja (10.1016/j.foreco.2025.122929_bib6) 2006; 52 Lummer (10.1016/j.foreco.2025.122929_bib59) 2012; 121 Laganière (10.1016/j.foreco.2025.122929_bib54) 2010; 40 Handa (10.1016/j.foreco.2025.122929_bib42) 2014; 509 Hättenschwiler (10.1016/j.foreco.2025.122929_bib45) 2005; 36 Wang (10.1016/j.foreco.2025.122929_bib95) 2013; 49 Yang (10.1016/j.foreco.2025.122929_bib99) 2022; 110 Taylor (10.1016/j.foreco.2025.122929_bib87) 1989; 70 Pugnaire (10.1016/j.foreco.2025.122929_bib74) 2023; 184 Parton (10.1016/j.foreco.2025.122929_bib67) 2007; 315 García-Palacios (10.1016/j.foreco.2025.122929_bib33) 2016; 19 Grossman (10.1016/j.foreco.2025.122929_bib40) 2020; 90 Manzoni (10.1016/j.foreco.2025.122929_bib60) 2010; 80 Joly (10.1016/j.foreco.2025.122929_bib50) 2023; 7 Berglund (10.1016/j.foreco.2025.122929_bib20) 2013; 57 Kuznetsova (10.1016/j.foreco.2025.122929_bib53) 2017; 82 Prescott (10.1016/j.foreco.2025.122929_bib71) 1995; 168/169 Foltran (10.1016/j.foreco.2025.122929_bib28) 2023; 61 Gholz (10.1016/j.foreco.2025.122929_bib36) 2000; 6 Wang (10.1016/j.foreco.2025.122929_bib96) 2021; 229 Berg (10.1016/j.foreco.2025.122929_bib16) 2021 Pollierer (10.1016/j.foreco.2025.122929_bib69) 2009; 41 Griffiths (10.1016/j.foreco.2025.122929_bib39) 2021; 231 Bates (10.1016/j.foreco.2025.122929_bib13) 2015; 67 Njoroge (10.1016/j.foreco.2025.122929_bib64) 2023; 860 10.1016/j.foreco.2025.122929_bib15 Hättenschwiler (10.1016/j.foreco.2025.122929_bib43) 2005; 102 10.1016/j.foreco.2025.122929_bib5 Lukac (10.1016/j.foreco.2025.122929_bib58) 2011 Bani (10.1016/j.foreco.2025.122929_bib11) 2018; 126 Krishna (10.1016/j.foreco.2025.122929_bib52) 2017; 2 Moore (10.1016/j.foreco.2025.122929_bib63) 2011; 339 Prescott (10.1016/j.foreco.2025.122929_bib72) 2002; 22 Stangler (10.1016/j.foreco.2025.122929_bib82) 2022; 10 Gessner (10.1016/j.foreco.2025.122929_bib35) 2010; 25 Schimel (10.1016/j.foreco.2025.122929_bib78) 2007; 39 de Deyn (10.1016/j.foreco.2025.122929_bib26) 2008; 11 Hornung (10.1016/j.foreco.2025.122929_bib48) 1985; 1 Chi (10.1016/j.foreco.2025.122929_bib23) 2022; 13 Rinkes (10.1016/j.foreco.2025.122929_bib76) 2016; 128 Gallet (10.1016/j.foreco.2025.122929_bib30) 1995; 27 Ayres (10.1016/j.foreco.2025.122929_bib10) 2009; 41 Xiaogai (10.1016/j.foreco.2025.122929_bib97) 2013; 33 Ammer (10.1016/j.foreco.2025.122929_bib4) 2019; 221 Zhou (10.1016/j.foreco.2025.122929_bib103) 2024; 199 Allen (10.1016/j.foreco.2025.122929_bib3) 1974 García-Palacios (10.1016/j.foreco.2025.122929_bib32) 2013; 16 Joly (10.1016/j.foreco.2025.122929_bib49) 2017; 214 Liu (10.1016/j.foreco.2025.122929_bib55) 2020; 227 Trogisch (10.1016/j.foreco.2025.122929_bib90) 2016; 400 Berger (10.1016/j.foreco.2025.122929_bib18) 2012; 358 Gartner (10.1016/j.foreco.2025.122929_bib34) 2004; 104 Berger (10.1016/j.foreco.2025.122929_bib19) 2015; 251–252 Gong (10.1016/j.foreco.2025.122929_bib38) 2020; 10 Cuchietti (10.1016/j.foreco.2025.122929_bib24) 2014; 82 10.1016/j.foreco.2025.122929_bib75 Ershov (10.1016/j.foreco.2025.122929_bib27) 2020; 51 Ostertag (10.1016/j.foreco.2025.122929_bib66) 2021; 54 Hlásny (10.1016/j.foreco.2025.122929_bib46) 2013; 70 Augusto (10.1016/j.foreco.2025.122929_bib9) 1998; 105 Zhang (10.1016/j.foreco.2025.122929_bib102) 2024; 5 Pérez-Harguindeguy (10.1016/j.foreco.2025.122929_bib68) 2000 Melillo (10.1016/j.foreco.2025.122929_bib61) 1989; 115 Moore (10.1016/j.foreco.2025.122929_bib62) 2006; 9 Vance (10.1016/j.foreco.2025.122929_bib91) 2001; 33 Obladen (10.1016/j.foreco.2025.122929_bib65) 2021; 307 Veen (10.1016/j.foreco.2025.122929_bib92) 2014; 124 Gallet (10.1016/j.foreco.2025.122929_bib31) 1997; 23 Canessa (10.1016/j.foreco.2025.122929_bib21) 2021; 109 Carreiro (10.1016/j.foreco.2025.122929_bib22) 2000; 81 Swift (10.1016/j.foreco.2025.122929_bib85) 1979 Xu (10.1016/j.foreco.2025.122929_bib98) 2020; 378 Veen (10.1016/j.foreco.2025.122929_bib93) 2019; 33 Vesterdal (10.1016/j.foreco.2025.122929_bib94) 2013; 309 Porre (10.1016/j.foreco.2025.122929_bib70) 2020; 145 Benito-Carnero (10.1016/j.foreco.2025.122929_bib14) 2021; 35 Prescott (10.1016/j.foreco.2025.122929_bib73) 2010; 101 Dence (10.1016/j.foreco.2025.122929_bib25) 1992 Setiawan (10.1016/j.foreco.2025.122929_bib79) 2016; 70 Tiunov (10.1016/j.foreco.2025.122929_bib88) 2009; 41 Sanchez (10.1016/j.foreco.2025.122929_bib77) 2001; 152 Angst (10.1016/j.foreco.2025.122929_bib7) 2019; 55 Adamczyk (10.1016/j.foreco.2025.122929_bib1) 2017; 107 Lu (10.1016/j.foreco.2025.122929_bib56) 2021; 155 |
References_xml | – volume: 81 start-page: 2359 year: 2000 end-page: 2365 ident: bib22 article-title: Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition publication-title: Ecology – volume: 11 start-page: 9530 year: 2021 end-page: 9542 ident: bib37 article-title: Determinism of nonadditive litter mixture effect on decomposition: Role of the moisture content of litters publication-title: Ecol. Evol. – volume: 102 start-page: 1519 year: 2005 end-page: 1524 ident: bib43 article-title: Soil animals alter plant litter diversity effects on decomposition publication-title: Proc. Natl. Acad. Sci. USA – volume: 41 start-page: 1221 year: 2009 end-page: 1226 ident: bib69 article-title: Compartmentalization of the soil animal food web as indicated by dual analysis of stable isotope ratios ( publication-title: Soil Biol. Biochem – volume: 70 start-page: 97 year: 1989 end-page: 104 ident: bib87 article-title: Nitrogen and lignin content as predictors of litter decay rates: a microcosm test publication-title: Ecology – volume: 400 start-page: 337 year: 2016 end-page: 350 ident: bib90 article-title: Impact of species diversity, stand age and environmental factors on leaf litter decomposition in subtropical forests in China publication-title: Plant Soil – volume: 33 start-page: 102 year: 2013 end-page: 108 ident: bib97 article-title: Effect of litter substrate quality and soil nutrients on forest litter decomposition: A review publication-title: Acta Oecol – volume: 51 start-page: 319 year: 2020 end-page: 328 ident: bib27 article-title: Assessment of the composition of rain deposition in coniferous forests at the Northern tree line subject to air pollution publication-title: Russ. J. Ecol. – volume: 10 year: 2022 ident: bib82 article-title: Multivariate drought stress response of Norway spruce, silver fir and Douglas-fir along elevational gradients in Southwestern Germany publication-title: Front Ecol. Evol. – year: 1974 ident: bib3 article-title: Chemical analysis of ecological materials – volume: 23 start-page: 2401 year: 1997 end-page: 2412 ident: bib31 article-title: Phenolic compounds in natural solutions of a coniferous forest publication-title: J. Chem. Ecol. – reference: Edition. Springer, Heidelberg. – volume: 24 start-page: 1428 year: 2018 end-page: 1451 ident: bib84 article-title: Decoupling the direct and indirect effects of climate on plant litter decomposition: Accounting for stress-indued modifications in plant chemistry publication-title: Glob. Chang Biol. – volume: 25 start-page: 372 year: 2010 end-page: 380 ident: bib35 article-title: Diversity meets decomposition publication-title: Trends in Ecol Evo – volume: 9 start-page: 46 year: 2006 end-page: 62 ident: bib62 article-title: Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests publication-title: Ecosyst – volume: 105 start-page: 67 year: 1998 end-page: 78 ident: bib9 article-title: Impact of tree species on forest soil acidification publication-title: Ecol. Manag. – volume: 23 start-page: 211 year: 2009 end-page: 219 ident: bib41 article-title: N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms publication-title: Funct. Ecol. – volume: 1 start-page: 24 year: 1985 end-page: 27 ident: bib48 article-title: Acidification of soils by trees and forests publication-title: Soil Use Manag. – volume: 82 start-page: 44 year: 2014 end-page: 51 ident: bib24 article-title: Leaf litter mixtures and neighbour effects: Low-nitrogen and high-lignin species increase decomposition rate of high-nitrogen and low-lignin neighbours publication-title: Appl. Soil Ecol. – volume: 4 year: 2017 ident: bib80 article-title: Quantifying components of the phosphorus cycle in temperate forests publication-title: WIREs Water – volume: 39 start-page: 1428 year: 2007 end-page: 1436 ident: bib78 article-title: Nitrogen transfer between decomposing leaves of different N status publication-title: Soil Biol. Biochem – volume: 54 start-page: 309 year: 2021 end-page: 326 ident: bib66 article-title: Litter decomposition rate across tropical montane and lowland forests are controlled foremost by climate publication-title: Biotropica – volume: 145 year: 2020 ident: bib70 article-title: Is litter decomposition enhanced in species mixtures? A meta-analysis publication-title: Soil Biol. Biochem – volume: 70 start-page: 481 year: 2013 end-page: 491 ident: bib46 article-title: Persisting bark beetle outbreak indicates the unsustainability of secondary Norway spruce forests: case study from Central Europe publication-title: Ann. Sci. – reference: Berg B., McClaugherty C. (2008) Plant litter – Decomposition, Humus Formation, Carbon sequestration. 2 – volume: 19 start-page: 554 year: 2016 end-page: 563 ident: bib33 article-title: Temporal dynamics of biotic and abiotic drivers of litter decomposition publication-title: Ecol. Lett. – volume: 339 start-page: 163 year: 2011 end-page: 175 ident: bib63 article-title: Nature and nuture in the dynamics of C, N and P during litter decomposition in Canadian forests publication-title: Plant Soil – volume: 10 year: 2020 ident: bib38 article-title: Schrenk spruce leaf litter decomposition varies with snow depth in the Tianshan Mountains publication-title: Sci. repo – volume: 155 year: 2021 ident: bib56 article-title: Response of soil microbial communities to mixed beech-conifer forests varies with site conditions publication-title: Soil Biol. Biochem – volume: 358 start-page: 349 year: 2012 end-page: 369 ident: bib18 article-title: Greater accumulation of litter in spruce ( publication-title: Plant Soil – volume: 6 start-page: 751 year: 2000 end-page: 765 ident: bib36 article-title: Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition publication-title: Glob. Chan Biol. – volume: 35 start-page: 1783 year: 2021 end-page: 1796 ident: bib14 article-title: Low-quality carob and lack of nutrients result in a stronger fungal than bacterial home-field advantage during the decomposition of leaf litter publication-title: Funct. Ecol. – volume: 124 start-page: 187 year: 2014 end-page: 195 ident: bib92 article-title: Litter quality and environmental controls of home-field advantage effects on litter decomposition publication-title: Oikos – volume: 231 start-page: 2142 year: 2021 end-page: 2149 ident: bib39 article-title: The impact of invertebrate decomposers on plants and soil publication-title: N. Phyto – year: 2005 ident: bib12 article-title: The biology of soil: A community and ecosystem approach – volume: 70 start-page: 79 year: 2016 end-page: 86 ident: bib79 article-title: Mixing effects on litter decomposition rates in a young tree diversity experiment publication-title: Act. Oecol – volume: 315 start-page: 361 year: 2007 end-page: 364 ident: bib67 article-title: Global-scale similarities in nitrogen release patterns during long-term decomposition publication-title: Science – volume: 11 start-page: 516 year: 2008 end-page: 531 ident: bib26 article-title: Plant functional traits and soil carbon sequestration in contrasting biomes publication-title: Ecol. Lett. – volume: 33 start-page: 1524 year: 2019 end-page: 1535 ident: bib93 article-title: Relationships between fungal community composition in decomposing leaf litter and home-field advantage effects publication-title: Funct. Ecol. – volume: 90 year: 2020 ident: bib40 article-title: Functional diversity of leaf-litter mixtures slows decomposition of labile but not recalcitrant carbon over two years publication-title: Ecol. monos – volume: 378 year: 2020 ident: bib98 article-title: Cellulose dominantly affects soil fauna in the decomposition of forest litter: A meta-analysis publication-title: Geoderma – reference: Ammer C., Annighöfer P., Balkenhol N., Hertel D., Leuschner C., Polle A., Lammersdorf N., Scheu S., Glatthorn J. (2020) RTG 2300 – study design, site condition, topography, and climatic conditions of research plots in 2020. PANGAEA – volume: 109 start-page: 447 year: 2021 end-page: 458 ident: bib21 article-title: Relative effects of climate and litter traits on decomposition change with time, climate and trait variability publication-title: J. Ecol. – volume: 50 start-page: 1049 year: 2000 end-page: 1061 ident: bib47 article-title: Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks publication-title: BioSci – volume: 23 start-page: 627 year: 2009 end-page: 636 ident: bib83 article-title: Litter quality is in the eye of the beholder: initial decomposition rates as a function of inoculum characteristics publication-title: Funct. Ecol. – volume: 57 start-page: 341 year: 2013 end-page: 348 ident: bib20 article-title: Carbon and nitrogen transfer in leaf litter mixtures publication-title: Soil Biol. Biochem – volume: 168/169 start-page: 83 year: 1995 end-page: 88 ident: bib71 article-title: Does nitrogen availability control rates of litter decomposition in forests? publication-title: Plant Soil – year: 1979 ident: bib85 article-title: Decomposition in terrestrial ecosystems – volume: 227 start-page: 757 year: 2020 end-page: 765 ident: bib55 article-title: Synergistic effects: a common theme in mixed-species litter decomposition publication-title: N. Phyto – volume: 80 start-page: 89 year: 2010 end-page: 106 ident: bib60 article-title: Stoichiometric controls on carbon, nitrogen and phosphorus dynamics in decomposing litter publication-title: Ecol. Monogr. – volume: 152 start-page: 85 year: 2001 end-page: 96 ident: bib77 article-title: Loblolly pine needle decomposition and nutrient dynamics as affected by irrigation, fertilization, and substrate quality publication-title: Ecol. Manag. – volume: 110 start-page: 1673 year: 2022 end-page: 1686 ident: bib99 article-title: Litter decomposition and nutrient release from monospecific and mixed litters: Comparisons of litter quality, fauna and decomposition site effects publication-title: J. Ecol. – volume: 61 start-page: 647 year: 2023 end-page: 662 ident: bib28 article-title: Douglas-fir and Norway spruce admixtures to beech forests along a site gradient in Northern Germany – Are soil nutrient conditions affected? publication-title: Soil Res – volume: 52 start-page: 127 year: 2006 end-page: 135 ident: bib6 article-title: Microbial colonization of beech and spruce litter – influence of decomposition site and plat litter species on the diversity of microbial community publication-title: Micro Ecol. – start-page: 21 year: 2000 end-page: 30 ident: bib68 article-title: Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina publication-title: Plant Soil 218 – volume: 184 year: 2023 ident: bib74 article-title: Home-field advantage effect in litter decompostiion is largely linked to litter quality publication-title: Soil Biol. Biochem – volume: 36 start-page: 191 year: 2005 end-page: 218 ident: bib45 article-title: Biodiversity and litter decomposition in terrestrial ecosystems publication-title: Ann. Rev. Ecol. Evol. Syst. – volume: 32 start-page: 789 year: 2002 end-page: 804 ident: bib89 article-title: Rates of litter decomposition over 6 years in Canadian forests: Influence of litter quality and climate publication-title: Can. J. Res – volume: 860 year: 2023 ident: bib64 article-title: Fauna access outweighs litter mixture effect during leaf litter decomposition publication-title: Sci. Tot Environ. – volume: 41 start-page: 176 year: 2009 end-page: 178 ident: bib88 article-title: Particle size alters litter diversity effects on decomposition publication-title: Soil Biol. Biochem – year: 1992 ident: bib25 article-title: Methods in lignin chemistry – volume: 115 start-page: 189 year: 1989 end-page: 198 ident: bib61 article-title: Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter publication-title: Plant Soil – volume: 448 year: 2024 ident: bib57 article-title: Functional traits in soil-living oribatid mites unveil trophic reorganization in belowground communities by introduced tree species publication-title: Geoderma – volume: 90 start-page: 1073 year: 2009 end-page: 1083 ident: bib81 article-title: Diversity has stronger top-down than bottom-up effects on decomposition publication-title: Ecology – volume: 221 start-page: 50 year: 2019 end-page: 66 ident: bib4 article-title: Diversity and forest productivity in a changing climate publication-title: N. Phytol. – volume: 49 start-page: 427 year: 2013 end-page: 434 ident: bib95 article-title: Home-field advantage of litter decomposition and nitrogen release in forest ecosystems publication-title: Biol. Fertil. Soils – volume: 309 start-page: 4 year: 2013 end-page: 18 ident: bib94 article-title: Do tree species influence soil carbon stocks in temperate and boreal forests? publication-title: Ecol. Manag. – volume: 107 start-page: 60 year: 2017 end-page: 67 ident: bib1 article-title: Tannins can slow-down but also speed-up soil enzymatic activity in boreal forest publication-title: S. Soil Biol. Biochem – volume: 199 start-page: 19602 year: 2024 ident: bib103 article-title: Litter mixture effects on nitrogen dynamics during decomposition predominantly vary among biomes but litter with litter identity, diversity, and fauna publication-title: Soil Biol. Biochem – volume: 24 start-page: 1142 year: 2021 end-page: 1156 ident: bib86 article-title: Temperature and moisture modulate the contribution of soil fauna to litter decomposition via different pathways publication-title: Ecosystems – volume: 214 start-page: 1281 year: 2017 end-page: 1293 ident: bib49 article-title: Tree species diversity affects decomposition through modified micro-environmental conditions across European forests publication-title: N. Phyto – volume: 229 start-page: 2625 year: 2021 end-page: 2636 ident: bib96 article-title: The contribution of photodegradation to litter decomposition in a temperate forest gap and understory publication-title: N. Phyto – volume: 307 year: 2021 ident: bib65 article-title: Tree mortality of European beech and Norway spruce induced by 2018-2019 hot droughts in central Germany publication-title: Agric. Meteor. – volume: 15 start-page: 238 year: 2000 end-page: 243 ident: bib44 article-title: The role of polyphenols in terrestrial ecosystem nutrient cycling publication-title: Trends Ecol. Evol. – volume: 35 start-page: 1001 year: 2003 end-page: 1004 ident: bib29 article-title: Reciprocal transfer of carbon and nitrogen by decomposer fungi at the soil-litter interface publication-title: Soil Biol. Biochem – year: 2021 ident: bib16 publication-title: Plant litter – Decomposition, Humus Formation, Carbon Sequestration – volume: 41 start-page: 606 year: 2009 end-page: 610 ident: bib10 article-title: Home-field advantage accelerates leaf litter decomposition in forests publication-title: Soil Biol. Biochem – volume: 82 start-page: 1 year: 2017 end-page: 2 ident: bib53 article-title: lmerTest package: Tests in linear mixed effect models publication-title: J. Stat. Softw. – volume: 13 year: 2022 ident: bib23 article-title: Phosphorus dynamics in litter-soil systems during litter decomposition in larch plantations across the chronosequence publication-title: Front Plant Sci. – volume: 2 start-page: 236 year: 2017 end-page: 249 ident: bib52 article-title: Litter decomposition in forest ecosystems: a review publication-title: Energ. Ecol. Environ. – volume: 74 start-page: 659 year: 1996 end-page: 672 ident: bib17 article-title: Maximum decomposition limits of forest litter types: a synthesis publication-title: Can. J. Bot. – volume: 33 start-page: 173 year: 2001 end-page: 188 ident: bib91 article-title: Substrate limitations to microbial activity in taiga forest floors publication-title: Soil Biol. Biochem – volume: 7 start-page: 2214 year: 2023 end-page: 2223 ident: bib50 article-title: Resolving the intricate role of climate in litter decomposition publication-title: Nat. Ecol. Evo – volume: 21 start-page: 1010 year: 2021 end-page: 1023 ident: bib8 article-title: Decomposition and nutrient mineralisation of leaf litter in smallholder cocoa agroforests: a comparison of organic and conventional farms in Ghana publication-title: J. Soil Sed. – volume: 101 start-page: 133 year: 2010 end-page: 149 ident: bib73 article-title: Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? publication-title: Biogeochemistry – volume: 22 start-page: 1193 year: 2002 end-page: 1200 ident: bib72 article-title: The influence of the forest canopy on nutrient cycling publication-title: Tree Physiol. – volume: 55 start-page: 525 year: 2019 end-page: 538 ident: bib7 article-title: Tree species identity alters decomposition of understory litter and associated microbial communities: a case study publication-title: Biol. Fertil. Soils – volume: 128 start-page: 171 year: 2016 end-page: 186 ident: bib76 article-title: Nitrogen alters microbial enzyme dynamics but not lignin chemistry during maize decomposition publication-title: Biogeochemistry – volume: 36 start-page: 155 year: 2004 end-page: 164 ident: bib2 article-title: Decomposition of beech leaves ( publication-title: Soil Bio Biochem – volume: 16 year: 2021 ident: bib100 article-title: The decomposition process and nutrient release of invasive enrichment and water level change publication-title: PLoS ONE – reference: R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. – volume: 5 start-page: 288 year: 2024 ident: bib102 article-title: Global forest gaps reduce litterfall but increase litter carbon and phosphorus release publication-title: Commun. Earth Environ. – volume: 429 year: 2023 ident: bib51 article-title: Nutrient controls on carbohydrate and lignin decomposition in beech litter publication-title: Geoderma – volume: 126 start-page: 75 year: 2018 end-page: 84 ident: bib11 article-title: The role of microbial community in the decomposition of leaf litter and deadwood publication-title: Appl. Soil Ecol. – volume: 27 start-page: 157 year: 1995 end-page: 165 ident: bib30 article-title: Evolution of phenolic patterns in plants and associated litters and humus of a mountain forest ecosystem publication-title: Soil Bio Biochem – volume: 121 start-page: 1649 year: 2012 end-page: 1655 ident: bib59 article-title: Connecting litter quality, microbial community and nitrogen transfer mechanisms in decomposing litter mixtures publication-title: Oikos – reference: . – volume: 104 start-page: 230 year: 2004 end-page: 246 ident: bib34 article-title: Decomposition dynamics in mixed-species leaf litter publication-title: Oikos – volume: 67 start-page: 1 year: 2015 end-page: 48 ident: bib13 article-title: Fitting linear mixed-effect models using lme4 publication-title: J. Stat. Softw. – volume: 251–252 start-page: 92 year: 2015 end-page: 104 ident: bib19 article-title: Decomposition of beech ( publication-title: Geoderma – volume: 16 start-page: 1045 year: 2013 end-page: 1053 ident: bib32 article-title: Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes publication-title: Ecol. Lett. – year: 2011 ident: bib58 article-title: Soil ecology in Northern forests: A belowground view of a changing world – year: 2024 ident: bib101 article-title: Stage dependence of home-field advantage as affected by plant residue chemistry and bacterial community publication-title: Plant Soil – volume: 40 start-page: 465 year: 2010 end-page: 475 ident: bib54 article-title: How does a tree species influence litter decomposition? Separating the relative contribution of litter quality, litter mixing, and forest floor conditions publication-title: Can. J. Res – volume: 509 start-page: 218 year: 2014 end-page: 221 ident: bib42 article-title: Consequences of biodiversity loss for litter decomposition across biomes publication-title: Nature – volume: 24 start-page: 1142 year: 2021 ident: 10.1016/j.foreco.2025.122929_bib86 article-title: Temperature and moisture modulate the contribution of soil fauna to litter decomposition via different pathways publication-title: Ecosystems doi: 10.1007/s10021-020-00573-w – volume: 27 start-page: 157 year: 1995 ident: 10.1016/j.foreco.2025.122929_bib30 article-title: Evolution of phenolic patterns in plants and associated litters and humus of a mountain forest ecosystem publication-title: Soil Bio Biochem doi: 10.1016/0038-0717(94)00167-Y – volume: 22 start-page: 1193 year: 2002 ident: 10.1016/j.foreco.2025.122929_bib72 article-title: The influence of the forest canopy on nutrient cycling publication-title: Tree Physiol. doi: 10.1093/treephys/22.15-16.1193 – volume: 51 start-page: 319 year: 2020 ident: 10.1016/j.foreco.2025.122929_bib27 article-title: Assessment of the composition of rain deposition in coniferous forests at the Northern tree line subject to air pollution publication-title: Russ. J. Ecol. doi: 10.1134/S1067413620040050 – volume: 33 start-page: 1524 year: 2019 ident: 10.1016/j.foreco.2025.122929_bib93 article-title: Relationships between fungal community composition in decomposing leaf litter and home-field advantage effects publication-title: Funct. Ecol. doi: 10.1111/1365-2435.13351 – volume: 90 start-page: 1073 year: 2009 ident: 10.1016/j.foreco.2025.122929_bib81 article-title: Diversity has stronger top-down than bottom-up effects on decomposition publication-title: Ecology doi: 10.1890/08-0439.1 – year: 2024 ident: 10.1016/j.foreco.2025.122929_bib101 article-title: Stage dependence of home-field advantage as affected by plant residue chemistry and bacterial community publication-title: Plant Soil – volume: 121 start-page: 1649 year: 2012 ident: 10.1016/j.foreco.2025.122929_bib59 article-title: Connecting litter quality, microbial community and nitrogen transfer mechanisms in decomposing litter mixtures publication-title: Oikos doi: 10.1111/j.1600-0706.2011.20073.x – volume: 231 start-page: 2142 year: 2021 ident: 10.1016/j.foreco.2025.122929_bib39 article-title: The impact of invertebrate decomposers on plants and soil publication-title: N. Phyto doi: 10.1111/nph.17553 – volume: 358 start-page: 349 year: 2012 ident: 10.1016/j.foreco.2025.122929_bib18 article-title: Greater accumulation of litter in spruce (Picea abies) compared to beech (Fagus sylvatica) stands is not a consequence of the inherent recalcitrance of needles publication-title: Plant Soil doi: 10.1007/s11104-012-1165-z – volume: 11 start-page: 516 year: 2008 ident: 10.1016/j.foreco.2025.122929_bib26 article-title: Plant functional traits and soil carbon sequestration in contrasting biomes publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2008.01164.x – volume: 33 start-page: 102 year: 2013 ident: 10.1016/j.foreco.2025.122929_bib97 article-title: Effect of litter substrate quality and soil nutrients on forest litter decomposition: A review publication-title: Acta Oecol – volume: 4 year: 2017 ident: 10.1016/j.foreco.2025.122929_bib80 article-title: Quantifying components of the phosphorus cycle in temperate forests publication-title: WIREs Water doi: 10.1002/wat2.1243 – volume: 105 start-page: 67 year: 1998 ident: 10.1016/j.foreco.2025.122929_bib9 article-title: Impact of tree species on forest soil acidification publication-title: Ecol. Manag. doi: 10.1016/S0378-1127(97)00270-3 – volume: 61 start-page: 647 year: 2023 ident: 10.1016/j.foreco.2025.122929_bib28 article-title: Douglas-fir and Norway spruce admixtures to beech forests along a site gradient in Northern Germany – Are soil nutrient conditions affected? publication-title: Soil Res doi: 10.1071/SR22218 – volume: 82 start-page: 1 year: 2017 ident: 10.1016/j.foreco.2025.122929_bib53 article-title: lmerTest package: Tests in linear mixed effect models publication-title: J. Stat. Softw. doi: 10.18637/jss.v082.i13 – volume: 7 start-page: 2214 year: 2023 ident: 10.1016/j.foreco.2025.122929_bib50 article-title: Resolving the intricate role of climate in litter decomposition publication-title: Nat. Ecol. Evo – volume: 509 start-page: 218 year: 2014 ident: 10.1016/j.foreco.2025.122929_bib42 article-title: Consequences of biodiversity loss for litter decomposition across biomes publication-title: Nature doi: 10.1038/nature13247 – volume: 307 year: 2021 ident: 10.1016/j.foreco.2025.122929_bib65 article-title: Tree mortality of European beech and Norway spruce induced by 2018-2019 hot droughts in central Germany publication-title: Agric. Meteor. doi: 10.1016/j.agrformet.2021.108482 – volume: 221 start-page: 50 year: 2019 ident: 10.1016/j.foreco.2025.122929_bib4 article-title: Diversity and forest productivity in a changing climate publication-title: N. Phytol. doi: 10.1111/nph.15263 – volume: 82 start-page: 44 year: 2014 ident: 10.1016/j.foreco.2025.122929_bib24 article-title: Leaf litter mixtures and neighbour effects: Low-nitrogen and high-lignin species increase decomposition rate of high-nitrogen and low-lignin neighbours publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2014.05.004 – volume: 378 year: 2020 ident: 10.1016/j.foreco.2025.122929_bib98 article-title: Cellulose dominantly affects soil fauna in the decomposition of forest litter: A meta-analysis publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114620 – volume: 35 start-page: 1001 year: 2003 ident: 10.1016/j.foreco.2025.122929_bib29 article-title: Reciprocal transfer of carbon and nitrogen by decomposer fungi at the soil-litter interface publication-title: Soil Biol. Biochem doi: 10.1016/S0038-0717(03)00155-X – volume: 448 year: 2024 ident: 10.1016/j.foreco.2025.122929_bib57 article-title: Functional traits in soil-living oribatid mites unveil trophic reorganization in belowground communities by introduced tree species publication-title: Geoderma doi: 10.1016/j.geoderma.2024.116947 – volume: 33 start-page: 173 year: 2001 ident: 10.1016/j.foreco.2025.122929_bib91 article-title: Substrate limitations to microbial activity in taiga forest floors publication-title: Soil Biol. Biochem doi: 10.1016/S0038-0717(00)00127-9 – volume: 860 year: 2023 ident: 10.1016/j.foreco.2025.122929_bib64 article-title: Fauna access outweighs litter mixture effect during leaf litter decomposition publication-title: Sci. Tot Environ. doi: 10.1016/j.scitotenv.2022.160190 – volume: 115 start-page: 189 year: 1989 ident: 10.1016/j.foreco.2025.122929_bib61 article-title: Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter publication-title: Plant Soil doi: 10.1007/BF02202587 – volume: 54 start-page: 309 year: 2021 ident: 10.1016/j.foreco.2025.122929_bib66 article-title: Litter decomposition rate across tropical montane and lowland forests are controlled foremost by climate publication-title: Biotropica doi: 10.1111/btp.13044 – volume: 15 start-page: 238 year: 2000 ident: 10.1016/j.foreco.2025.122929_bib44 article-title: The role of polyphenols in terrestrial ecosystem nutrient cycling publication-title: Trends Ecol. Evol. doi: 10.1016/S0169-5347(00)01861-9 – volume: 32 start-page: 789 year: 2002 ident: 10.1016/j.foreco.2025.122929_bib89 article-title: Rates of litter decomposition over 6 years in Canadian forests: Influence of litter quality and climate publication-title: Can. J. Res doi: 10.1139/x01-117 – ident: 10.1016/j.foreco.2025.122929_bib75 – volume: 80 start-page: 89 year: 2010 ident: 10.1016/j.foreco.2025.122929_bib60 article-title: Stoichiometric controls on carbon, nitrogen and phosphorus dynamics in decomposing litter publication-title: Ecol. Monogr. doi: 10.1890/09-0179.1 – volume: 41 start-page: 606 year: 2009 ident: 10.1016/j.foreco.2025.122929_bib10 article-title: Home-field advantage accelerates leaf litter decomposition in forests publication-title: Soil Biol. Biochem doi: 10.1016/j.soilbio.2008.12.022 – volume: 81 start-page: 2359 year: 2000 ident: 10.1016/j.foreco.2025.122929_bib22 article-title: Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition publication-title: Ecology doi: 10.1890/0012-9658(2000)081[2359:MESELD]2.0.CO;2 – volume: 16 start-page: 1045 year: 2013 ident: 10.1016/j.foreco.2025.122929_bib32 article-title: Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes publication-title: Ecol. Lett. doi: 10.1111/ele.12137 – volume: 429 year: 2023 ident: 10.1016/j.foreco.2025.122929_bib51 article-title: Nutrient controls on carbohydrate and lignin decomposition in beech litter publication-title: Geoderma doi: 10.1016/j.geoderma.2022.116276 – volume: 70 start-page: 97 year: 1989 ident: 10.1016/j.foreco.2025.122929_bib87 article-title: Nitrogen and lignin content as predictors of litter decay rates: a microcosm test publication-title: Ecology doi: 10.2307/1938416 – volume: 11 start-page: 9530 year: 2021 ident: 10.1016/j.foreco.2025.122929_bib37 article-title: Determinism of nonadditive litter mixture effect on decomposition: Role of the moisture content of litters publication-title: Ecol. Evol. doi: 10.1002/ece3.7771 – volume: 145 year: 2020 ident: 10.1016/j.foreco.2025.122929_bib70 article-title: Is litter decomposition enhanced in species mixtures? A meta-analysis publication-title: Soil Biol. Biochem doi: 10.1016/j.soilbio.2020.107791 – volume: 70 start-page: 79 year: 2016 ident: 10.1016/j.foreco.2025.122929_bib79 article-title: Mixing effects on litter decomposition rates in a young tree diversity experiment publication-title: Act. Oecol doi: 10.1016/j.actao.2015.12.003 – volume: 109 start-page: 447 year: 2021 ident: 10.1016/j.foreco.2025.122929_bib21 article-title: Relative effects of climate and litter traits on decomposition change with time, climate and trait variability publication-title: J. Ecol. doi: 10.1111/1365-2745.13516 – volume: 57 start-page: 341 year: 2013 ident: 10.1016/j.foreco.2025.122929_bib20 article-title: Carbon and nitrogen transfer in leaf litter mixtures publication-title: Soil Biol. Biochem doi: 10.1016/j.soilbio.2012.09.015 – volume: 400 start-page: 337 year: 2016 ident: 10.1016/j.foreco.2025.122929_bib90 article-title: Impact of species diversity, stand age and environmental factors on leaf litter decomposition in subtropical forests in China publication-title: Plant Soil doi: 10.1007/s11104-015-2737-5 – volume: 168/169 start-page: 83 year: 1995 ident: 10.1016/j.foreco.2025.122929_bib71 article-title: Does nitrogen availability control rates of litter decomposition in forests? publication-title: Plant Soil doi: 10.1007/BF00029316 – volume: 21 start-page: 1010 year: 2021 ident: 10.1016/j.foreco.2025.122929_bib8 article-title: Decomposition and nutrient mineralisation of leaf litter in smallholder cocoa agroforests: a comparison of organic and conventional farms in Ghana publication-title: J. Soil Sed. doi: 10.1007/s11368-020-02844-4 – volume: 107 start-page: 60 year: 2017 ident: 10.1016/j.foreco.2025.122929_bib1 article-title: Tannins can slow-down but also speed-up soil enzymatic activity in boreal forest publication-title: S. Soil Biol. Biochem doi: 10.1016/j.soilbio.2016.12.027 – volume: 23 start-page: 211 year: 2009 ident: 10.1016/j.foreco.2025.122929_bib41 article-title: N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms publication-title: Funct. Ecol. doi: 10.1111/j.1365-2435.2008.01478.x – volume: 52 start-page: 127 year: 2006 ident: 10.1016/j.foreco.2025.122929_bib6 article-title: Microbial colonization of beech and spruce litter – influence of decomposition site and plat litter species on the diversity of microbial community publication-title: Micro Ecol. doi: 10.1007/s00248-006-9006-3 – volume: 110 start-page: 1673 year: 2022 ident: 10.1016/j.foreco.2025.122929_bib99 article-title: Litter decomposition and nutrient release from monospecific and mixed litters: Comparisons of litter quality, fauna and decomposition site effects publication-title: J. Ecol. doi: 10.1111/1365-2745.13902 – volume: 23 start-page: 2401 year: 1997 ident: 10.1016/j.foreco.2025.122929_bib31 article-title: Phenolic compounds in natural solutions of a coniferous forest publication-title: J. Chem. Ecol. doi: 10.1023/B:JOEC.0000006682.50061.83 – volume: 104 start-page: 230 year: 2004 ident: 10.1016/j.foreco.2025.122929_bib34 article-title: Decomposition dynamics in mixed-species leaf litter publication-title: Oikos doi: 10.1111/j.0030-1299.2004.12738.x – volume: 315 start-page: 361 year: 2007 ident: 10.1016/j.foreco.2025.122929_bib67 article-title: Global-scale similarities in nitrogen release patterns during long-term decomposition publication-title: Science doi: 10.1126/science.1134853 – volume: 10 year: 2022 ident: 10.1016/j.foreco.2025.122929_bib82 article-title: Multivariate drought stress response of Norway spruce, silver fir and Douglas-fir along elevational gradients in Southwestern Germany publication-title: Front Ecol. Evol. doi: 10.3389/fevo.2022.907492 – volume: 70 start-page: 481 year: 2013 ident: 10.1016/j.foreco.2025.122929_bib46 article-title: Persisting bark beetle outbreak indicates the unsustainability of secondary Norway spruce forests: case study from Central Europe publication-title: Ann. Sci. doi: 10.1007/s13595-013-0279-7 – year: 2021 ident: 10.1016/j.foreco.2025.122929_bib16 – volume: 24 start-page: 1428 year: 2018 ident: 10.1016/j.foreco.2025.122929_bib84 article-title: Decoupling the direct and indirect effects of climate on plant litter decomposition: Accounting for stress-indued modifications in plant chemistry publication-title: Glob. Chang Biol. doi: 10.1111/gcb.13923 – volume: 128 start-page: 171 year: 2016 ident: 10.1016/j.foreco.2025.122929_bib76 article-title: Nitrogen alters microbial enzyme dynamics but not lignin chemistry during maize decomposition publication-title: Biogeochemistry doi: 10.1007/s10533-016-0201-0 – volume: 55 start-page: 525 year: 2019 ident: 10.1016/j.foreco.2025.122929_bib7 article-title: Tree species identity alters decomposition of understory litter and associated microbial communities: a case study publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-019-01360-z – volume: 10 year: 2020 ident: 10.1016/j.foreco.2025.122929_bib38 article-title: Schrenk spruce leaf litter decomposition varies with snow depth in the Tianshan Mountains publication-title: Sci. repo – volume: 152 start-page: 85 year: 2001 ident: 10.1016/j.foreco.2025.122929_bib77 article-title: Loblolly pine needle decomposition and nutrient dynamics as affected by irrigation, fertilization, and substrate quality publication-title: Ecol. Manag. doi: 10.1016/S0378-1127(00)00592-2 – ident: 10.1016/j.foreco.2025.122929_bib15 – volume: 36 start-page: 155 year: 2004 ident: 10.1016/j.foreco.2025.122929_bib2 article-title: Decomposition of beech leaves (Fagus sylvatica) and spruce needles (Picea abies) in pure and mixed stands of beech and spruce publication-title: Soil Bio Biochem doi: 10.1016/j.soilbio.2003.09.002 – start-page: 21 year: 2000 ident: 10.1016/j.foreco.2025.122929_bib68 article-title: Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina publication-title: Plant Soil 218 doi: 10.1023/A:1014981715532 – volume: 339 start-page: 163 year: 2011 ident: 10.1016/j.foreco.2025.122929_bib63 article-title: Nature and nuture in the dynamics of C, N and P during litter decomposition in Canadian forests publication-title: Plant Soil doi: 10.1007/s11104-010-0563-3 – volume: 23 start-page: 627 year: 2009 ident: 10.1016/j.foreco.2025.122929_bib83 article-title: Litter quality is in the eye of the beholder: initial decomposition rates as a function of inoculum characteristics publication-title: Funct. Ecol. doi: 10.1111/j.1365-2435.2008.01515.x – volume: 126 start-page: 75 year: 2018 ident: 10.1016/j.foreco.2025.122929_bib11 article-title: The role of microbial community in the decomposition of leaf litter and deadwood publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2018.02.017 – volume: 16 year: 2021 ident: 10.1016/j.foreco.2025.122929_bib100 article-title: The decomposition process and nutrient release of invasive enrichment and water level change publication-title: PLoS ONE – volume: 90 year: 2020 ident: 10.1016/j.foreco.2025.122929_bib40 article-title: Functional diversity of leaf-litter mixtures slows decomposition of labile but not recalcitrant carbon over two years publication-title: Ecol. monos – year: 1979 ident: 10.1016/j.foreco.2025.122929_bib85 – volume: 25 start-page: 372 issue: 6 year: 2010 ident: 10.1016/j.foreco.2025.122929_bib35 article-title: Diversity meets decomposition publication-title: Trends in Ecol Evo doi: 10.1016/j.tree.2010.01.010 – ident: 10.1016/j.foreco.2025.122929_bib5 – volume: 41 start-page: 176 year: 2009 ident: 10.1016/j.foreco.2025.122929_bib88 article-title: Particle size alters litter diversity effects on decomposition publication-title: Soil Biol. Biochem doi: 10.1016/j.soilbio.2008.09.017 – volume: 13 year: 2022 ident: 10.1016/j.foreco.2025.122929_bib23 article-title: Phosphorus dynamics in litter-soil systems during litter decomposition in larch plantations across the chronosequence publication-title: Front Plant Sci. doi: 10.3389/fpls.2022.1010458 – year: 2005 ident: 10.1016/j.foreco.2025.122929_bib12 – volume: 184 year: 2023 ident: 10.1016/j.foreco.2025.122929_bib74 article-title: Home-field advantage effect in litter decompostiion is largely linked to litter quality publication-title: Soil Biol. Biochem doi: 10.1016/j.soilbio.2023.109069 – volume: 39 start-page: 1428 year: 2007 ident: 10.1016/j.foreco.2025.122929_bib78 article-title: Nitrogen transfer between decomposing leaves of different N status publication-title: Soil Biol. Biochem doi: 10.1016/j.soilbio.2006.12.037 – year: 1974 ident: 10.1016/j.foreco.2025.122929_bib3 – volume: 214 start-page: 1281 year: 2017 ident: 10.1016/j.foreco.2025.122929_bib49 article-title: Tree species diversity affects decomposition through modified micro-environmental conditions across European forests publication-title: N. Phyto doi: 10.1111/nph.14452 – volume: 251–252 start-page: 92 year: 2015 ident: 10.1016/j.foreco.2025.122929_bib19 article-title: Decomposition of beech (Fagus sylvatica) and pine (Pinus nigra) litter along an alpine elevation gradient: Decay and nutrient release publication-title: Geoderma doi: 10.1016/j.geoderma.2015.03.024 – volume: 74 start-page: 659 year: 1996 ident: 10.1016/j.foreco.2025.122929_bib17 article-title: Maximum decomposition limits of forest litter types: a synthesis publication-title: Can. J. Bot. doi: 10.1139/b96-084 – volume: 102 start-page: 1519 year: 2005 ident: 10.1016/j.foreco.2025.122929_bib43 article-title: Soil animals alter plant litter diversity effects on decomposition publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0404977102 – volume: 309 start-page: 4 year: 2013 ident: 10.1016/j.foreco.2025.122929_bib94 article-title: Do tree species influence soil carbon stocks in temperate and boreal forests? publication-title: Ecol. Manag. doi: 10.1016/j.foreco.2013.01.017 – volume: 5 start-page: 288 year: 2024 ident: 10.1016/j.foreco.2025.122929_bib102 article-title: Global forest gaps reduce litterfall but increase litter carbon and phosphorus release publication-title: Commun. Earth Environ. doi: 10.1038/s43247-024-01453-0 – volume: 36 start-page: 191 year: 2005 ident: 10.1016/j.foreco.2025.122929_bib45 article-title: Biodiversity and litter decomposition in terrestrial ecosystems publication-title: Ann. Rev. Ecol. Evol. Syst. doi: 10.1146/annurev.ecolsys.36.112904.151932 – volume: 19 start-page: 554 year: 2016 ident: 10.1016/j.foreco.2025.122929_bib33 article-title: Temporal dynamics of biotic and abiotic drivers of litter decomposition publication-title: Ecol. Lett. doi: 10.1111/ele.12590 – volume: 2 start-page: 236 year: 2017 ident: 10.1016/j.foreco.2025.122929_bib52 article-title: Litter decomposition in forest ecosystems: a review publication-title: Energ. Ecol. Environ. doi: 10.1007/s40974-017-0064-9 – volume: 9 start-page: 46 year: 2006 ident: 10.1016/j.foreco.2025.122929_bib62 article-title: Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests publication-title: Ecosyst doi: 10.1007/s10021-004-0026-x – volume: 227 start-page: 757 year: 2020 ident: 10.1016/j.foreco.2025.122929_bib55 article-title: Synergistic effects: a common theme in mixed-species litter decomposition publication-title: N. Phyto doi: 10.1111/nph.16556 – volume: 155 year: 2021 ident: 10.1016/j.foreco.2025.122929_bib56 article-title: Response of soil microbial communities to mixed beech-conifer forests varies with site conditions publication-title: Soil Biol. Biochem doi: 10.1016/j.soilbio.2021.108155 – year: 1992 ident: 10.1016/j.foreco.2025.122929_bib25 – volume: 1 start-page: 24 year: 1985 ident: 10.1016/j.foreco.2025.122929_bib48 article-title: Acidification of soils by trees and forests publication-title: Soil Use Manag. doi: 10.1111/j.1475-2743.1985.tb00648.x – volume: 35 start-page: 1783 year: 2021 ident: 10.1016/j.foreco.2025.122929_bib14 article-title: Low-quality carob and lack of nutrients result in a stronger fungal than bacterial home-field advantage during the decomposition of leaf litter publication-title: Funct. Ecol. doi: 10.1111/1365-2435.13822 – volume: 49 start-page: 427 year: 2013 ident: 10.1016/j.foreco.2025.122929_bib95 article-title: Home-field advantage of litter decomposition and nitrogen release in forest ecosystems publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-012-0741-y – volume: 50 start-page: 1049 year: 2000 ident: 10.1016/j.foreco.2025.122929_bib47 article-title: Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks publication-title: BioSci doi: 10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2 – volume: 41 start-page: 1221 year: 2009 ident: 10.1016/j.foreco.2025.122929_bib69 article-title: Compartmentalization of the soil animal food web as indicated by dual analysis of stable isotope ratios (15N/14N and 13C/12C) publication-title: Soil Biol. Biochem doi: 10.1016/j.soilbio.2009.03.002 – volume: 199 start-page: 19602 year: 2024 ident: 10.1016/j.foreco.2025.122929_bib103 article-title: Litter mixture effects on nitrogen dynamics during decomposition predominantly vary among biomes but litter with litter identity, diversity, and fauna publication-title: Soil Biol. Biochem doi: 10.1016/j.soilbio.2024.109602 – volume: 124 start-page: 187 year: 2014 ident: 10.1016/j.foreco.2025.122929_bib92 article-title: Litter quality and environmental controls of home-field advantage effects on litter decomposition publication-title: Oikos doi: 10.1111/oik.01374 – volume: 229 start-page: 2625 year: 2021 ident: 10.1016/j.foreco.2025.122929_bib96 article-title: The contribution of photodegradation to litter decomposition in a temperate forest gap and understory publication-title: N. Phyto doi: 10.1111/nph.17022 – year: 2011 ident: 10.1016/j.foreco.2025.122929_bib58 – volume: 40 start-page: 465 year: 2010 ident: 10.1016/j.foreco.2025.122929_bib54 article-title: How does a tree species influence litter decomposition? Separating the relative contribution of litter quality, litter mixing, and forest floor conditions publication-title: Can. J. Res doi: 10.1139/X09-208 – volume: 101 start-page: 133 year: 2010 ident: 10.1016/j.foreco.2025.122929_bib73 article-title: Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? publication-title: Biogeochemistry doi: 10.1007/s10533-010-9439-0 – volume: 67 start-page: 1 year: 2015 ident: 10.1016/j.foreco.2025.122929_bib13 article-title: Fitting linear mixed-effect models using lme4 publication-title: J. Stat. Softw. doi: 10.18637/jss.v067.i01 – volume: 6 start-page: 751 year: 2000 ident: 10.1016/j.foreco.2025.122929_bib36 article-title: Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition publication-title: Glob. Chan Biol. doi: 10.1046/j.1365-2486.2000.00349.x |
SSID | ssj0005548 |
Score | 2.4807553 |
Snippet | The plantation of mixed forests including non-native tree species is increasing but its impacts on litter decomposition and nutrient cycling remains little... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 122929 |
SubjectTerms | Douglas-fir European beech Mixed forests Monocultures Norway spruce Nutrient cycling |
Title | C, N and P dynamics during litter decomposition in pure and mixed beech – conifer stands: Effects of litter species, site conditions and native vs non-native conifer species |
URI | https://dx.doi.org/10.1016/j.foreco.2025.122929 |
Volume | 594 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSuRAEG5EcfEi_uL4M9TBo-0knc6fNxkcRsVBUMFbSNIVdhaMgzPK7kX2HfZBfCefxKruRFwQDx4Tujqhq6j6KvmqSoj9KCfYiUwKC_1c6lAZSXZjZIUpGtRxWiVc73wxioY3-uw2vJ0T_bYWhmmVje93Pt166-ZOrznN3mQ87l15AVdJqpiCODfoYT-sdcxWfvj8geYR2glavFjy6rZ8znK8CBdSkkdZogoPfaVSCzQ_CU8fQs5gRSw3WBGO3eusijms18Simx75Z0384LGaPKttXbz0D2AEeW3gEoybMT8FV4EIhLPp7MAgs8cbihaMa5g8PqAVuRv_RgMFYvkTXv_-A8qQme8C9ivD9Ahcg-Mp3FftXlyeSRn2AfCvZ15vHPHLblfbVuLwNIX6vpbN1fueTnJD3AxOrvtD2YxikCXFuJmkJMXPvbhSfmAqE_nox3mgg8R4WJhQRZWXojYqCGJSNOYF-VGVJCXBqzTRReQFm2KeHopbAkKtvYoWGQJyuixVESQFRmWR69xHSgA7QrYayCau40bWUtF-ZU5jGWsscxrriLhVU_af5WQUFL6U3P625I5Y4iuOYX64K-ZnD4-4R-BkVnSt9XXFwvHp-XD0BvoK5pc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtRADLZKKygXVAqI8usD3DrdZDL5Q-KACtWWtiskWqm3kGQcsUhNV822pRfEO_AgHHgjngR7JkFFQhyQekwynkzikf05-WwDPEtKhp0kpLA4LJWJtVW8b6xqKCdLJs2bTPKd9ybJ-MC8PYwPF-DHkAsjtMre9nub7qx1f2bUv83RbDodvQ8iyZLUKTtxKdCje2blDl2cc9zWvdx-zUp-rvXWm_3NsepbC6iabfZcMegOyyBtdBjZxiYhhWkZmSizAVU21kkT5GSsjqKUF05lxXZBZ1nNcCHPTJUEEc97DZYMmwtpm7Dx5RKvJHYtu2R1SpY35Os5UhkDUY4qOSzV8Uaode6Q7V_84SUft7UCt3pwiq_889-GBWpX4bpvV3mxCjekj6c0h7sD3zfXcYJla_EdWt_UvkOf8ogM7FlZaEno6j0nDKctzk5PyIkcTT-TxYqo_og_v35DDsmFYIPus0b3An1F5Q6Pm2EuyQflkH4d5V-3jLeeaeama13tcjzrsD1uVX_0e04veRcOrkRB92CRb0r3AWNjgoYHWUaOpq51FWUVJXVVmjIkjjjXQA0aKGa-xEcxcN8-FV5jhWis8Bpbg3RQU_HHVi3YC_1T8sF_Sz6F5fH-3m6xuz3ZeQg35Yo40DB-BIvzk1N6zMhoXj1xOxHhw1Vv_V_m8CBg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=C%2C+N+and+P+dynamics+during+litter+decomposition+in+pure+and+mixed+beech+%E2%80%93+conifer+stands%3A+Effects+of+litter+species%2C+site+conditions+and+native+vs+non-native+conifer+species&rft.jtitle=Forest+ecology+and+management&rft.au=Stuckenberg%2C+Thalea&rft.au=Lu%2C+Jing-Zhong&rft.au=Scheu%2C+Stefan&rft.date=2025-10-15&rft.pub=Elsevier+B.V&rft.issn=0378-1127&rft.volume=594&rft_id=info:doi/10.1016%2Fj.foreco.2025.122929&rft.externalDocID=S0378112725004372 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-1127&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-1127&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-1127&client=summon |