C, N and P dynamics during litter decomposition in pure and mixed beech – conifer stands: Effects of litter species, site conditions and native vs non-native conifer species

The plantation of mixed forests including non-native tree species is increasing but its impacts on litter decomposition and nutrient cycling remains little studied across different site conditions. Using litterbags with European beech leaves, Norway spruce or Douglas-fir needles, we investigated lit...

Full description

Saved in:
Bibliographic Details
Published inForest ecology and management Vol. 594; p. 122929
Main Authors Stuckenberg, Thalea, Lu, Jing-Zhong, Scheu, Stefan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.10.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The plantation of mixed forests including non-native tree species is increasing but its impacts on litter decomposition and nutrient cycling remains little studied across different site conditions. Using litterbags with European beech leaves, Norway spruce or Douglas-fir needles, we investigated litter decomposition processes in monocultures and mixed forests of European beech, Norway spruce and Douglas-fir at nutrient-rich and nutrient-poor sites. Decomposition of each litter species declined in a close to linear way throughout 36 months of exposure, with decomposition of beech leaves being slowest. This was likely driven by low initial nitrogen concentration of beech leaves as reflected by strong and long-lasting accumulation of nitrogen which was more pronounced at nutrient-poor sites. Irrespective of litter species, decomposition was slowest in Norway spruce monocultures, with patterns in mixed forests being generally intermediate between those in respective monocultures. Although mechanisms responsible for slow litter decomposition in Norway spruce monocultures remain unclear, the results show that detrimental effects of Norway spruce monocultures can be mitigated by admixture of European beech. The relatively slow decomposition of beech leaves highlights the predominant role of initial litter nutrient concentrations in driving litter decomposition. The slow decomposition of litter in spruce forests highlights that specific environmental conditions in forest stands may strongly modify litter decomposition, with these modifications being similar across litter species. These findings emphasize the importance of understanding how, by shaping the environment, single tree species influence ecosystem functions such as litter decomposition and nutrient cycling. •Litter of European beech decomposes slower than that of Norway spruce and Douglas-fir.•Initial litter nutrient concentrations drive early and late decomposition processes.•Stand type affects litter decomposition irrespective of litter species.•Decomposition in mixed beech - conifer forests is intermediate between monocultures.•Stand type effects on litter decomposition are modulated by stand nutrient status.
AbstractList The plantation of mixed forests including non-native tree species is increasing but its impacts on litter decomposition and nutrient cycling remains little studied across different site conditions. Using litterbags with European beech leaves, Norway spruce or Douglas-fir needles, we investigated litter decomposition processes in monocultures and mixed forests of European beech, Norway spruce and Douglas-fir at nutrient-rich and nutrient-poor sites. Decomposition of each litter species declined in a close to linear way throughout 36 months of exposure, with decomposition of beech leaves being slowest. This was likely driven by low initial nitrogen concentration of beech leaves as reflected by strong and long-lasting accumulation of nitrogen which was more pronounced at nutrient-poor sites. Irrespective of litter species, decomposition was slowest in Norway spruce monocultures, with patterns in mixed forests being generally intermediate between those in respective monocultures. Although mechanisms responsible for slow litter decomposition in Norway spruce monocultures remain unclear, the results show that detrimental effects of Norway spruce monocultures can be mitigated by admixture of European beech. The relatively slow decomposition of beech leaves highlights the predominant role of initial litter nutrient concentrations in driving litter decomposition. The slow decomposition of litter in spruce forests highlights that specific environmental conditions in forest stands may strongly modify litter decomposition, with these modifications being similar across litter species. These findings emphasize the importance of understanding how, by shaping the environment, single tree species influence ecosystem functions such as litter decomposition and nutrient cycling. •Litter of European beech decomposes slower than that of Norway spruce and Douglas-fir.•Initial litter nutrient concentrations drive early and late decomposition processes.•Stand type affects litter decomposition irrespective of litter species.•Decomposition in mixed beech - conifer forests is intermediate between monocultures.•Stand type effects on litter decomposition are modulated by stand nutrient status.
ArticleNumber 122929
Author Stuckenberg, Thalea
Lu, Jing-Zhong
Scheu, Stefan
Author_xml – sequence: 1
  givenname: Thalea
  orcidid: 0009-0000-5969-0868
  surname: Stuckenberg
  fullname: Stuckenberg, Thalea
  email: tstucke@gwdg.de
  organization: J. F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
– sequence: 2
  givenname: Jing-Zhong
  orcidid: 0000-0002-4051-8993
  surname: Lu
  fullname: Lu, Jing-Zhong
  email: jlu@gwdg.de
  organization: J. F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
– sequence: 3
  givenname: Stefan
  surname: Scheu
  fullname: Scheu, Stefan
  email: sscheu@gwdg.de
  organization: J. F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
BookMark eNp9kM1OAjEQx3vAREDfwMM8AIv92GUXDyaG4EdC1IOem6Wdagm0pF2I3nwHH8R38kksLHr0NJnM_H6Z-fdIx3mHhJwxOmSUjc4XQ-MDKj_klBdDxvmYjzukS0VZZYzx8pj0YlxQSosir7rkazKAe6idhkfQ765eWRVBb4J1L7C0TYMBdLKt1j7axnoH1sF6E3CPrOwbapgjqlf4_vgE5Z01iYhNmsYLmBqDqongza8rrlFZjANINtzt67017nWubuwWYRsh_ZQduj9nS56QI1MvI54eap88X0-fJrfZ7OHmbnI1y5SgoslyXrGaloYzoY0eMWRlLXJRaYpzXfCRoWPMNReiFFxjPWeF4FWlClqMq3w-oqJP8targo8xoJHrYFd1eJeMyl3QciHboOUuaNkGnbDLFsN029ZikDFd7RRqm3Ybqb39X_ADm9GP4A
Cites_doi 10.1007/s10021-020-00573-w
10.1016/0038-0717(94)00167-Y
10.1093/treephys/22.15-16.1193
10.1134/S1067413620040050
10.1111/1365-2435.13351
10.1890/08-0439.1
10.1111/j.1600-0706.2011.20073.x
10.1111/nph.17553
10.1007/s11104-012-1165-z
10.1111/j.1461-0248.2008.01164.x
10.1002/wat2.1243
10.1016/S0378-1127(97)00270-3
10.1071/SR22218
10.18637/jss.v082.i13
10.1038/nature13247
10.1016/j.agrformet.2021.108482
10.1111/nph.15263
10.1016/j.apsoil.2014.05.004
10.1016/j.geoderma.2020.114620
10.1016/S0038-0717(03)00155-X
10.1016/j.geoderma.2024.116947
10.1016/S0038-0717(00)00127-9
10.1016/j.scitotenv.2022.160190
10.1007/BF02202587
10.1111/btp.13044
10.1016/S0169-5347(00)01861-9
10.1139/x01-117
10.1890/09-0179.1
10.1016/j.soilbio.2008.12.022
10.1890/0012-9658(2000)081[2359:MESELD]2.0.CO;2
10.1111/ele.12137
10.1016/j.geoderma.2022.116276
10.2307/1938416
10.1002/ece3.7771
10.1016/j.soilbio.2020.107791
10.1016/j.actao.2015.12.003
10.1111/1365-2745.13516
10.1016/j.soilbio.2012.09.015
10.1007/s11104-015-2737-5
10.1007/BF00029316
10.1007/s11368-020-02844-4
10.1016/j.soilbio.2016.12.027
10.1111/j.1365-2435.2008.01478.x
10.1007/s00248-006-9006-3
10.1111/1365-2745.13902
10.1023/B:JOEC.0000006682.50061.83
10.1111/j.0030-1299.2004.12738.x
10.1126/science.1134853
10.3389/fevo.2022.907492
10.1007/s13595-013-0279-7
10.1111/gcb.13923
10.1007/s10533-016-0201-0
10.1007/s00374-019-01360-z
10.1016/S0378-1127(00)00592-2
10.1016/j.soilbio.2003.09.002
10.1023/A:1014981715532
10.1007/s11104-010-0563-3
10.1111/j.1365-2435.2008.01515.x
10.1016/j.apsoil.2018.02.017
10.1016/j.tree.2010.01.010
10.1016/j.soilbio.2008.09.017
10.3389/fpls.2022.1010458
10.1016/j.soilbio.2023.109069
10.1016/j.soilbio.2006.12.037
10.1111/nph.14452
10.1016/j.geoderma.2015.03.024
10.1139/b96-084
10.1073/pnas.0404977102
10.1016/j.foreco.2013.01.017
10.1038/s43247-024-01453-0
10.1146/annurev.ecolsys.36.112904.151932
10.1111/ele.12590
10.1007/s40974-017-0064-9
10.1007/s10021-004-0026-x
10.1111/nph.16556
10.1016/j.soilbio.2021.108155
10.1111/j.1475-2743.1985.tb00648.x
10.1111/1365-2435.13822
10.1007/s00374-012-0741-y
10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2
10.1016/j.soilbio.2009.03.002
10.1016/j.soilbio.2024.109602
10.1111/oik.01374
10.1111/nph.17022
10.1139/X09-208
10.1007/s10533-010-9439-0
10.18637/jss.v067.i01
10.1046/j.1365-2486.2000.00349.x
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.foreco.2025.122929
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Forestry
ExternalDocumentID 10_1016_j_foreco_2025_122929
S0378112725004372
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AATTM
AAXKI
AAXUO
ABFNM
ABFRF
ABFYP
ABGRD
ABJNI
ABLST
ABMAC
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADQTV
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
N~3
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSJ
SSZ
T5K
WH7
Y6R
~02
~G-
~KM
29H
53G
AAEDT
AALCJ
AAQXK
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
ADVLN
AEGFY
AGHFR
AGQPQ
AI.
AIDBO
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLV
HMC
HVGLF
HZ~
R2-
SEN
VH1
WUQ
ZKB
ZY4
ID FETCH-LOGICAL-c303t-4281a07f213dfd61e17a3438d0ebd526f09e4d233732deab153288c505984b603
IEDL.DBID .~1
ISSN 0378-1127
IngestDate Wed Aug 27 16:26:52 EDT 2025
Sat Aug 30 17:14:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords European beech
Nutrient cycling
Norway spruce
Douglas-fir
Monocultures
Mixed forests
Language English
License This is an open access article under the CC BY-NC license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-4281a07f213dfd61e17a3438d0ebd526f09e4d233732deab153288c505984b603
ORCID 0000-0002-4051-8993
0009-0000-5969-0868
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0378112725004372
ParticipantIDs crossref_primary_10_1016_j_foreco_2025_122929
elsevier_sciencedirect_doi_10_1016_j_foreco_2025_122929
PublicationCentury 2000
PublicationDate 2025-10-15
PublicationDateYYYYMMDD 2025-10-15
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Forest ecology and management
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Stangler, Miller, Honer, Larysch, Puhlmann, Seifert, Kahle (bib82) 2022; 10
Berg, Ekbohm, Johansson, McClaugherty, Rutigliano, Virzo de Santo (bib17) 1996; 74
Rinkes, Bertrand, Amin, Grandy, Wickings, Weintraub (bib76) 2016; 128
Strickland, Osburn, Lauber, Fierer, Bradford (bib83) 2009; 23
Zhang, Hedenec, Yue, Ni, Wie, Chen, Yang, Wu (bib102) 2024; 5
García-Palacios, Maestre, Kattge, Wall (bib32) 2013; 16
R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Wang, Pìerstè, Liu, Kenta, Robson, Kurokawa (bib96) 2021; 229
de Deyn, Cornelissen, Bardgett (bib26) 2008; 11
Hättenschwiler, Vitousek (bib44) 2000; 15
Veen, Snoek, Bakx-Schotman, Wardle, van der Putten (bib93) 2019; 33
Dence, Lin (bib25) 1992
Lu, Bluhm, Foltran, Pérez, Ammer, Caruso, Glatthorn, Lamersdorf, Polle, Sandmann, Schaefer, Schuldt, Maraun, Scheu (bib57) 2024; 448
Albers, Migge, Schaefer, Scheu (bib2) 2004; 36
Handa, Aerts, Berendse, Berg, Bruder, Butenschoen, Chauvet, Gessner, Jabiol, Makkonen, McKie, Malmqvist, Peeters, Scheu, Schmid, van Ruijven, Vos, Hättenschwiler (bib42) 2014; 509
Berglund, Ågren, Ekblad (bib20) 2013; 57
Lu, Scheu (bib56) 2021; 155
Chi, Zeng, Wang, Chen (bib23) 2022; 13
Allen (bib3) 1974
Vance, Chapin (bib91) 2001; 33
Berg B., McClaugherty C. (2008) Plant litter – Decomposition, Humus Formation, Carbon sequestration. 2
.
Canessa, van den Brink, Saldaña, Rios, Hättenschwiler, Mueller, Prater, Tielbörger, Bader (bib21) 2021; 109
Hornung (bib48) 1985; 1
Aneja, Sharma, Fleischmann, Stich, Heller, Bahnweg, Munch, Schloter (bib6) 2006; 52
Yang, Zhu, Zhang, Zhang, Lu, Zhang, Zheng, Xu, Wang (bib99) 2022; 110
Yang, Dong, Li, Wang, Quan, Liu (bib100) 2021; 16
Gogo, Leroy, Zocatelli, Jacotot, Laggoun-Défarge (bib37) 2021; 11
Liu, Liu, Song, Compson, LeRoy, Luan, Wang, Hu, Yang (bib55) 2020; 227
Adamczyk, Karonen, Adamyzak, Engström, Laakso, Saranpää, Kitunen, Smolander, Simon (bib1) 2017; 107
Setiawan, Vanhellemont, de Schrijver, Schelfhout, Baeten, Verheyen (bib79) 2016; 70
Gong, Chen, Zhang, Yang, Cai (bib38) 2020; 10
Porre, van der Werf, de Deyn, Stomph, Hoffland (bib70) 2020; 145
Ershov, Lukina, Danilova, Isaeva, Sukhareva, Smirnov (bib27) 2020; 51
Xiaogai, Lixiong, Wenfa, Zhilin, Xiansheng, Benwang (bib97) 2013; 33
Güsewell, Gessner (bib41) 2009; 23
Kuznetsova, Brockhoff, Christensen (bib53) 2017; 82
Gholz, Wedin, Smitherman, Harmon, Parton (bib36) 2000; 6
Hättenschwiler, Tiunov, Scheu (bib45) 2005; 36
Krishna, Mohan (bib52) 2017; 2
Augusto, Bonnaud, Ranger (bib9) 1998; 105
Moore, Trofymow, Prescott, Titus (bib62) 2006; 9
Angst, Harantová, Baldrian, Angst, Cajthami, Straková, Blahut, Veselá, Frouz (bib7) 2019; 55
Gartner, Cardon (bib34) 2004; 104
Joly, Milcu, Scherer-Lorenzen, Jean, Bussotti, Dawud, Müller, Pollastrini, Raulund-Rasmussen, Vesterdal, Hättenschwiler (bib49) 2017; 214
Moore, Trofymow, Prescott, Titus (bib63) 2011; 339
Srivastava, Cardinale, Downing, Duffy, Jouseau, Sankaran, Wright (bib81) 2009; 90
Ostertag, Restrepo, Dalling, Martin, Abiem, Aiba, Alvarez-Dávila, Aragón, Ataroff, Chapman, Cueva-Agila, Fadrique, Fernández, González, Gotsch, Häger, Homeier, Iniguez-Armijos, Llambi, Moore, Naesborg, Poma López, Vieira Pompeu, Powell, Ramírez Correa, Scharnagl, Tobón, Williams (bib66) 2021; 54
Griffiths, Ashton, Parr, Eggleton (bib39) 2021; 231
Manzoni, Trofymow, Jackson, Porporato (bib60) 2010; 80
Pollierer, Langel, Scheu, Maraun (bib69) 2009; 41
Vesterdal, Clarke, Sigurdsson, Gundersen (bib94) 2013; 309
Edition. Springer, Heidelberg.
Pérez-Harguindeguy, Díaz, Cornelissen, Vendramini, Castellanos (bib68) 2000
Bani, Pioli, Ventura, Panzacchi, Borruso, Tognetti, Tonon, Brusetti (bib11) 2018; 126
Sanchez (bib77) 2001; 152
Berg, McClaugherty (bib16) 2021
Trogisch, He, Hector, Scherer-Lorenzen (bib90) 2016; 400
Kohl, Wanek, Keiblinger, Hämmerle, Fuchslueger, Schneider, Riedel, Eberl, Zechmeister-Boltenstern, Richter (bib51) 2023; 429
Melillo, Avber, Linkins, Ricca, Fry, Nadelhoffer (bib61) 1989; 115
Bardgett (bib12) 2005
Asigbaase, Dawoe, Sjogersten, Lomax (bib8) 2021; 21
Trofymow, Moore, Titur, Prescott, Morrison, Siltanen, Smith, Fyles, Wein, Camiré, Duschene, Kozak, Kranabetter, Visser (bib89) 2002; 32
Hättenschwiler, Gasser (bib43) 2005; 102
Berger, Duboc, Djukic, Tatzberm, Gerzabeck, Zehetner (bib19) 2015; 251–252
Laganière, Paré, Bradley (bib54) 2010; 40
Parton, Silver, Burke, Grassens, Harmon, Currie, King, Adair, Brandt, Hart, Fasth (bib67) 2007; 315
Obladen, Dechering, Skiadaresis, Tegel, Keßler, Höllerl, Kaps, Hertel, Dulamsuren, Seifert, Hirsch, Seim (bib65) 2021; 307
Foltran, Lammersdorf, Ammer (bib28) 2023; 61
Prescott (bib72) 2002; 22
Xu, Sun, Sun, Cao, Wang, Chen, Wang, Ruan (bib98) 2020; 378
Lummer, Scheu, Butenschoen (bib59) 2012; 121
Yuan, Zheng, Min, Deng, Lin, Xie, Chen, Liang (bib101) 2024
Ayres, Steltzer, Simmons, Simpson, Steinweg, Wallenstein, Mellor, Parton, Moore, Wall (bib10) 2009; 41
Zhou, Butenschoen, Handa, Berg, McKie, Huang, Hättenschwiler, Scheu (bib103) 2024; 199
Prescott (bib71) 1995; 168/169
Hlásny, Turcáni (bib46) 2013; 70
Wang, Zhog, He (bib95) 2013; 49
Berger, Berger (bib18) 2012; 358
Prescott (bib73) 2010; 101
Tiunov (bib88) 2009; 41
Schimel, Hättenschwiler (bib78) 2007; 39
Njoroge, Dossa, Ye, Lin, Schaefer, Tomlinson, Zo, Cornelissen (bib64) 2023; 860
Ammer (bib4) 2019; 221
Grossman, Cavender-Bares, Hobbie (bib40) 2020; 90
Hooper, Bignell, Brown, Burssaard, Dangerfield, Wall, Wardle, Coleman, Giller, Lavelle, van der Putten, de Ruiter, Rusek, Silver, Tiedje, Wolters (bib47) 2000; 50
Gallet, Pellissier (bib31) 1997; 23
Taylor, Parkinson, Parsons (bib87) 1989; 70
Sohrt, Lang, Weiler (bib80) 2017; 4
Tan, Yin, Zhang, Xu, Liu, He, Zhang, Li, Wang, Liu, You, Peng (bib86) 2021; 24
Bates, Maechler, Bolker, Walker (bib13) 2015; 67
Carreiro, Sinsabaugh, Repert, Parkhurst (bib22) 2000; 81
Suseela, Tharayil (bib84) 2018; 24
Veen, Freschet, Ordonez, Wardle (bib92) 2014; 124
Ammer C., Annighöfer P., Balkenhol N., Hertel D., Leuschner C., Polle A., Lammersdorf N., Scheu S., Glatthorn J. (2020) RTG 2300 – study design, site condition, topography, and climatic conditions of research plots in 2020. PANGAEA
Gessner, Swan, Dang, McKie, Bardgett, Wall, Hättenschwiler (bib35) 2010; 25
Cuchietti, Marcotti, Gurvich, Cingolani, Pérez Harguindeguy (bib24) 2014; 82
Frey, Six, Elliott (bib29) 2003; 35
Swift, Heal, Anderson (bib85) 1979
Joly, Scherer-Lorenzen, Hättenschwiler (bib50) 2023; 7
Benito-Carnero, Gartzia-Bengoetxea, Arias-González, Rousk (bib14) 2021; 35
García-Palacios, Shaw, Wall, Hättenschwiler (bib33) 2016; 19
Lukac, Godbold (bib58) 2011
Pugnaire, Aares, Alifriqui, Bråthen, Kindler, Schöb, Manrique (bib74) 2023; 184
Gallet, Lebreton (bib30) 1995; 27
Bardgett (10.1016/j.foreco.2025.122929_bib12) 2005
Strickland (10.1016/j.foreco.2025.122929_bib83) 2009; 23
Lu (10.1016/j.foreco.2025.122929_bib57) 2024; 448
Yang (10.1016/j.foreco.2025.122929_bib100) 2021; 16
Güsewell (10.1016/j.foreco.2025.122929_bib41) 2009; 23
Gogo (10.1016/j.foreco.2025.122929_bib37) 2021; 11
Suseela (10.1016/j.foreco.2025.122929_bib84) 2018; 24
Trofymow (10.1016/j.foreco.2025.122929_bib89) 2002; 32
Hooper (10.1016/j.foreco.2025.122929_bib47) 2000; 50
Hättenschwiler (10.1016/j.foreco.2025.122929_bib44) 2000; 15
Berg (10.1016/j.foreco.2025.122929_bib17) 1996; 74
Frey (10.1016/j.foreco.2025.122929_bib29) 2003; 35
Sohrt (10.1016/j.foreco.2025.122929_bib80) 2017; 4
Srivastava (10.1016/j.foreco.2025.122929_bib81) 2009; 90
Tan (10.1016/j.foreco.2025.122929_bib86) 2021; 24
Albers (10.1016/j.foreco.2025.122929_bib2) 2004; 36
Asigbaase (10.1016/j.foreco.2025.122929_bib8) 2021; 21
Kohl (10.1016/j.foreco.2025.122929_bib51) 2023; 429
Yuan (10.1016/j.foreco.2025.122929_bib101) 2024
Aneja (10.1016/j.foreco.2025.122929_bib6) 2006; 52
Lummer (10.1016/j.foreco.2025.122929_bib59) 2012; 121
Laganière (10.1016/j.foreco.2025.122929_bib54) 2010; 40
Handa (10.1016/j.foreco.2025.122929_bib42) 2014; 509
Hättenschwiler (10.1016/j.foreco.2025.122929_bib45) 2005; 36
Wang (10.1016/j.foreco.2025.122929_bib95) 2013; 49
Yang (10.1016/j.foreco.2025.122929_bib99) 2022; 110
Taylor (10.1016/j.foreco.2025.122929_bib87) 1989; 70
Pugnaire (10.1016/j.foreco.2025.122929_bib74) 2023; 184
Parton (10.1016/j.foreco.2025.122929_bib67) 2007; 315
García-Palacios (10.1016/j.foreco.2025.122929_bib33) 2016; 19
Grossman (10.1016/j.foreco.2025.122929_bib40) 2020; 90
Manzoni (10.1016/j.foreco.2025.122929_bib60) 2010; 80
Joly (10.1016/j.foreco.2025.122929_bib50) 2023; 7
Berglund (10.1016/j.foreco.2025.122929_bib20) 2013; 57
Kuznetsova (10.1016/j.foreco.2025.122929_bib53) 2017; 82
Prescott (10.1016/j.foreco.2025.122929_bib71) 1995; 168/169
Foltran (10.1016/j.foreco.2025.122929_bib28) 2023; 61
Gholz (10.1016/j.foreco.2025.122929_bib36) 2000; 6
Wang (10.1016/j.foreco.2025.122929_bib96) 2021; 229
Berg (10.1016/j.foreco.2025.122929_bib16) 2021
Pollierer (10.1016/j.foreco.2025.122929_bib69) 2009; 41
Griffiths (10.1016/j.foreco.2025.122929_bib39) 2021; 231
Bates (10.1016/j.foreco.2025.122929_bib13) 2015; 67
Njoroge (10.1016/j.foreco.2025.122929_bib64) 2023; 860
10.1016/j.foreco.2025.122929_bib15
Hättenschwiler (10.1016/j.foreco.2025.122929_bib43) 2005; 102
10.1016/j.foreco.2025.122929_bib5
Lukac (10.1016/j.foreco.2025.122929_bib58) 2011
Bani (10.1016/j.foreco.2025.122929_bib11) 2018; 126
Krishna (10.1016/j.foreco.2025.122929_bib52) 2017; 2
Moore (10.1016/j.foreco.2025.122929_bib63) 2011; 339
Prescott (10.1016/j.foreco.2025.122929_bib72) 2002; 22
Stangler (10.1016/j.foreco.2025.122929_bib82) 2022; 10
Gessner (10.1016/j.foreco.2025.122929_bib35) 2010; 25
Schimel (10.1016/j.foreco.2025.122929_bib78) 2007; 39
de Deyn (10.1016/j.foreco.2025.122929_bib26) 2008; 11
Hornung (10.1016/j.foreco.2025.122929_bib48) 1985; 1
Chi (10.1016/j.foreco.2025.122929_bib23) 2022; 13
Rinkes (10.1016/j.foreco.2025.122929_bib76) 2016; 128
Gallet (10.1016/j.foreco.2025.122929_bib30) 1995; 27
Ayres (10.1016/j.foreco.2025.122929_bib10) 2009; 41
Xiaogai (10.1016/j.foreco.2025.122929_bib97) 2013; 33
Ammer (10.1016/j.foreco.2025.122929_bib4) 2019; 221
Zhou (10.1016/j.foreco.2025.122929_bib103) 2024; 199
Allen (10.1016/j.foreco.2025.122929_bib3) 1974
García-Palacios (10.1016/j.foreco.2025.122929_bib32) 2013; 16
Joly (10.1016/j.foreco.2025.122929_bib49) 2017; 214
Liu (10.1016/j.foreco.2025.122929_bib55) 2020; 227
Trogisch (10.1016/j.foreco.2025.122929_bib90) 2016; 400
Berger (10.1016/j.foreco.2025.122929_bib18) 2012; 358
Gartner (10.1016/j.foreco.2025.122929_bib34) 2004; 104
Berger (10.1016/j.foreco.2025.122929_bib19) 2015; 251–252
Gong (10.1016/j.foreco.2025.122929_bib38) 2020; 10
Cuchietti (10.1016/j.foreco.2025.122929_bib24) 2014; 82
10.1016/j.foreco.2025.122929_bib75
Ershov (10.1016/j.foreco.2025.122929_bib27) 2020; 51
Ostertag (10.1016/j.foreco.2025.122929_bib66) 2021; 54
Hlásny (10.1016/j.foreco.2025.122929_bib46) 2013; 70
Augusto (10.1016/j.foreco.2025.122929_bib9) 1998; 105
Zhang (10.1016/j.foreco.2025.122929_bib102) 2024; 5
Pérez-Harguindeguy (10.1016/j.foreco.2025.122929_bib68) 2000
Melillo (10.1016/j.foreco.2025.122929_bib61) 1989; 115
Moore (10.1016/j.foreco.2025.122929_bib62) 2006; 9
Vance (10.1016/j.foreco.2025.122929_bib91) 2001; 33
Obladen (10.1016/j.foreco.2025.122929_bib65) 2021; 307
Veen (10.1016/j.foreco.2025.122929_bib92) 2014; 124
Gallet (10.1016/j.foreco.2025.122929_bib31) 1997; 23
Canessa (10.1016/j.foreco.2025.122929_bib21) 2021; 109
Carreiro (10.1016/j.foreco.2025.122929_bib22) 2000; 81
Swift (10.1016/j.foreco.2025.122929_bib85) 1979
Xu (10.1016/j.foreco.2025.122929_bib98) 2020; 378
Veen (10.1016/j.foreco.2025.122929_bib93) 2019; 33
Vesterdal (10.1016/j.foreco.2025.122929_bib94) 2013; 309
Porre (10.1016/j.foreco.2025.122929_bib70) 2020; 145
Benito-Carnero (10.1016/j.foreco.2025.122929_bib14) 2021; 35
Prescott (10.1016/j.foreco.2025.122929_bib73) 2010; 101
Dence (10.1016/j.foreco.2025.122929_bib25) 1992
Setiawan (10.1016/j.foreco.2025.122929_bib79) 2016; 70
Tiunov (10.1016/j.foreco.2025.122929_bib88) 2009; 41
Sanchez (10.1016/j.foreco.2025.122929_bib77) 2001; 152
Angst (10.1016/j.foreco.2025.122929_bib7) 2019; 55
Adamczyk (10.1016/j.foreco.2025.122929_bib1) 2017; 107
Lu (10.1016/j.foreco.2025.122929_bib56) 2021; 155
References_xml – volume: 81
  start-page: 2359
  year: 2000
  end-page: 2365
  ident: bib22
  article-title: Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition
  publication-title: Ecology
– volume: 11
  start-page: 9530
  year: 2021
  end-page: 9542
  ident: bib37
  article-title: Determinism of nonadditive litter mixture effect on decomposition: Role of the moisture content of litters
  publication-title: Ecol. Evol.
– volume: 102
  start-page: 1519
  year: 2005
  end-page: 1524
  ident: bib43
  article-title: Soil animals alter plant litter diversity effects on decomposition
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 41
  start-page: 1221
  year: 2009
  end-page: 1226
  ident: bib69
  article-title: Compartmentalization of the soil animal food web as indicated by dual analysis of stable isotope ratios (
  publication-title: Soil Biol. Biochem
– volume: 70
  start-page: 97
  year: 1989
  end-page: 104
  ident: bib87
  article-title: Nitrogen and lignin content as predictors of litter decay rates: a microcosm test
  publication-title: Ecology
– volume: 400
  start-page: 337
  year: 2016
  end-page: 350
  ident: bib90
  article-title: Impact of species diversity, stand age and environmental factors on leaf litter decomposition in subtropical forests in China
  publication-title: Plant Soil
– volume: 33
  start-page: 102
  year: 2013
  end-page: 108
  ident: bib97
  article-title: Effect of litter substrate quality and soil nutrients on forest litter decomposition: A review
  publication-title: Acta Oecol
– volume: 51
  start-page: 319
  year: 2020
  end-page: 328
  ident: bib27
  article-title: Assessment of the composition of rain deposition in coniferous forests at the Northern tree line subject to air pollution
  publication-title: Russ. J. Ecol.
– volume: 10
  year: 2022
  ident: bib82
  article-title: Multivariate drought stress response of Norway spruce, silver fir and Douglas-fir along elevational gradients in Southwestern Germany
  publication-title: Front Ecol. Evol.
– year: 1974
  ident: bib3
  article-title: Chemical analysis of ecological materials
– volume: 23
  start-page: 2401
  year: 1997
  end-page: 2412
  ident: bib31
  article-title: Phenolic compounds in natural solutions of a coniferous forest
  publication-title: J. Chem. Ecol.
– reference: Edition. Springer, Heidelberg.
– volume: 24
  start-page: 1428
  year: 2018
  end-page: 1451
  ident: bib84
  article-title: Decoupling the direct and indirect effects of climate on plant litter decomposition: Accounting for stress-indued modifications in plant chemistry
  publication-title: Glob. Chang Biol.
– volume: 25
  start-page: 372
  year: 2010
  end-page: 380
  ident: bib35
  article-title: Diversity meets decomposition
  publication-title: Trends in Ecol Evo
– volume: 9
  start-page: 46
  year: 2006
  end-page: 62
  ident: bib62
  article-title: Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests
  publication-title: Ecosyst
– volume: 105
  start-page: 67
  year: 1998
  end-page: 78
  ident: bib9
  article-title: Impact of tree species on forest soil acidification
  publication-title: Ecol. Manag.
– volume: 23
  start-page: 211
  year: 2009
  end-page: 219
  ident: bib41
  article-title: N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms
  publication-title: Funct. Ecol.
– volume: 1
  start-page: 24
  year: 1985
  end-page: 27
  ident: bib48
  article-title: Acidification of soils by trees and forests
  publication-title: Soil Use Manag.
– volume: 82
  start-page: 44
  year: 2014
  end-page: 51
  ident: bib24
  article-title: Leaf litter mixtures and neighbour effects: Low-nitrogen and high-lignin species increase decomposition rate of high-nitrogen and low-lignin neighbours
  publication-title: Appl. Soil Ecol.
– volume: 4
  year: 2017
  ident: bib80
  article-title: Quantifying components of the phosphorus cycle in temperate forests
  publication-title: WIREs Water
– volume: 39
  start-page: 1428
  year: 2007
  end-page: 1436
  ident: bib78
  article-title: Nitrogen transfer between decomposing leaves of different N status
  publication-title: Soil Biol. Biochem
– volume: 54
  start-page: 309
  year: 2021
  end-page: 326
  ident: bib66
  article-title: Litter decomposition rate across tropical montane and lowland forests are controlled foremost by climate
  publication-title: Biotropica
– volume: 145
  year: 2020
  ident: bib70
  article-title: Is litter decomposition enhanced in species mixtures? A meta-analysis
  publication-title: Soil Biol. Biochem
– volume: 70
  start-page: 481
  year: 2013
  end-page: 491
  ident: bib46
  article-title: Persisting bark beetle outbreak indicates the unsustainability of secondary Norway spruce forests: case study from Central Europe
  publication-title: Ann. Sci.
– reference: Berg B., McClaugherty C. (2008) Plant litter – Decomposition, Humus Formation, Carbon sequestration. 2
– volume: 19
  start-page: 554
  year: 2016
  end-page: 563
  ident: bib33
  article-title: Temporal dynamics of biotic and abiotic drivers of litter decomposition
  publication-title: Ecol. Lett.
– volume: 339
  start-page: 163
  year: 2011
  end-page: 175
  ident: bib63
  article-title: Nature and nuture in the dynamics of C, N and P during litter decomposition in Canadian forests
  publication-title: Plant Soil
– volume: 10
  year: 2020
  ident: bib38
  article-title: Schrenk spruce leaf litter decomposition varies with snow depth in the Tianshan Mountains
  publication-title: Sci. repo
– volume: 155
  year: 2021
  ident: bib56
  article-title: Response of soil microbial communities to mixed beech-conifer forests varies with site conditions
  publication-title: Soil Biol. Biochem
– volume: 358
  start-page: 349
  year: 2012
  end-page: 369
  ident: bib18
  article-title: Greater accumulation of litter in spruce (
  publication-title: Plant Soil
– volume: 6
  start-page: 751
  year: 2000
  end-page: 765
  ident: bib36
  article-title: Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition
  publication-title: Glob. Chan Biol.
– volume: 35
  start-page: 1783
  year: 2021
  end-page: 1796
  ident: bib14
  article-title: Low-quality carob and lack of nutrients result in a stronger fungal than bacterial home-field advantage during the decomposition of leaf litter
  publication-title: Funct. Ecol.
– volume: 124
  start-page: 187
  year: 2014
  end-page: 195
  ident: bib92
  article-title: Litter quality and environmental controls of home-field advantage effects on litter decomposition
  publication-title: Oikos
– volume: 231
  start-page: 2142
  year: 2021
  end-page: 2149
  ident: bib39
  article-title: The impact of invertebrate decomposers on plants and soil
  publication-title: N. Phyto
– year: 2005
  ident: bib12
  article-title: The biology of soil: A community and ecosystem approach
– volume: 70
  start-page: 79
  year: 2016
  end-page: 86
  ident: bib79
  article-title: Mixing effects on litter decomposition rates in a young tree diversity experiment
  publication-title: Act. Oecol
– volume: 315
  start-page: 361
  year: 2007
  end-page: 364
  ident: bib67
  article-title: Global-scale similarities in nitrogen release patterns during long-term decomposition
  publication-title: Science
– volume: 11
  start-page: 516
  year: 2008
  end-page: 531
  ident: bib26
  article-title: Plant functional traits and soil carbon sequestration in contrasting biomes
  publication-title: Ecol. Lett.
– volume: 33
  start-page: 1524
  year: 2019
  end-page: 1535
  ident: bib93
  article-title: Relationships between fungal community composition in decomposing leaf litter and home-field advantage effects
  publication-title: Funct. Ecol.
– volume: 90
  year: 2020
  ident: bib40
  article-title: Functional diversity of leaf-litter mixtures slows decomposition of labile but not recalcitrant carbon over two years
  publication-title: Ecol. monos
– volume: 378
  year: 2020
  ident: bib98
  article-title: Cellulose dominantly affects soil fauna in the decomposition of forest litter: A meta-analysis
  publication-title: Geoderma
– reference: Ammer C., Annighöfer P., Balkenhol N., Hertel D., Leuschner C., Polle A., Lammersdorf N., Scheu S., Glatthorn J. (2020) RTG 2300 – study design, site condition, topography, and climatic conditions of research plots in 2020. PANGAEA
– volume: 109
  start-page: 447
  year: 2021
  end-page: 458
  ident: bib21
  article-title: Relative effects of climate and litter traits on decomposition change with time, climate and trait variability
  publication-title: J. Ecol.
– volume: 50
  start-page: 1049
  year: 2000
  end-page: 1061
  ident: bib47
  article-title: Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks
  publication-title: BioSci
– volume: 23
  start-page: 627
  year: 2009
  end-page: 636
  ident: bib83
  article-title: Litter quality is in the eye of the beholder: initial decomposition rates as a function of inoculum characteristics
  publication-title: Funct. Ecol.
– volume: 57
  start-page: 341
  year: 2013
  end-page: 348
  ident: bib20
  article-title: Carbon and nitrogen transfer in leaf litter mixtures
  publication-title: Soil Biol. Biochem
– volume: 168/169
  start-page: 83
  year: 1995
  end-page: 88
  ident: bib71
  article-title: Does nitrogen availability control rates of litter decomposition in forests?
  publication-title: Plant Soil
– year: 1979
  ident: bib85
  article-title: Decomposition in terrestrial ecosystems
– volume: 227
  start-page: 757
  year: 2020
  end-page: 765
  ident: bib55
  article-title: Synergistic effects: a common theme in mixed-species litter decomposition
  publication-title: N. Phyto
– volume: 80
  start-page: 89
  year: 2010
  end-page: 106
  ident: bib60
  article-title: Stoichiometric controls on carbon, nitrogen and phosphorus dynamics in decomposing litter
  publication-title: Ecol. Monogr.
– volume: 152
  start-page: 85
  year: 2001
  end-page: 96
  ident: bib77
  article-title: Loblolly pine needle decomposition and nutrient dynamics as affected by irrigation, fertilization, and substrate quality
  publication-title: Ecol. Manag.
– volume: 110
  start-page: 1673
  year: 2022
  end-page: 1686
  ident: bib99
  article-title: Litter decomposition and nutrient release from monospecific and mixed litters: Comparisons of litter quality, fauna and decomposition site effects
  publication-title: J. Ecol.
– volume: 61
  start-page: 647
  year: 2023
  end-page: 662
  ident: bib28
  article-title: Douglas-fir and Norway spruce admixtures to beech forests along a site gradient in Northern Germany – Are soil nutrient conditions affected?
  publication-title: Soil Res
– volume: 52
  start-page: 127
  year: 2006
  end-page: 135
  ident: bib6
  article-title: Microbial colonization of beech and spruce litter – influence of decomposition site and plat litter species on the diversity of microbial community
  publication-title: Micro Ecol.
– start-page: 21
  year: 2000
  end-page: 30
  ident: bib68
  article-title: Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina
  publication-title: Plant Soil 218
– volume: 184
  year: 2023
  ident: bib74
  article-title: Home-field advantage effect in litter decompostiion is largely linked to litter quality
  publication-title: Soil Biol. Biochem
– volume: 36
  start-page: 191
  year: 2005
  end-page: 218
  ident: bib45
  article-title: Biodiversity and litter decomposition in terrestrial ecosystems
  publication-title: Ann. Rev. Ecol. Evol. Syst.
– volume: 32
  start-page: 789
  year: 2002
  end-page: 804
  ident: bib89
  article-title: Rates of litter decomposition over 6 years in Canadian forests: Influence of litter quality and climate
  publication-title: Can. J. Res
– volume: 860
  year: 2023
  ident: bib64
  article-title: Fauna access outweighs litter mixture effect during leaf litter decomposition
  publication-title: Sci. Tot Environ.
– volume: 41
  start-page: 176
  year: 2009
  end-page: 178
  ident: bib88
  article-title: Particle size alters litter diversity effects on decomposition
  publication-title: Soil Biol. Biochem
– year: 1992
  ident: bib25
  article-title: Methods in lignin chemistry
– volume: 115
  start-page: 189
  year: 1989
  end-page: 198
  ident: bib61
  article-title: Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter
  publication-title: Plant Soil
– volume: 448
  year: 2024
  ident: bib57
  article-title: Functional traits in soil-living oribatid mites unveil trophic reorganization in belowground communities by introduced tree species
  publication-title: Geoderma
– volume: 90
  start-page: 1073
  year: 2009
  end-page: 1083
  ident: bib81
  article-title: Diversity has stronger top-down than bottom-up effects on decomposition
  publication-title: Ecology
– volume: 221
  start-page: 50
  year: 2019
  end-page: 66
  ident: bib4
  article-title: Diversity and forest productivity in a changing climate
  publication-title: N. Phytol.
– volume: 49
  start-page: 427
  year: 2013
  end-page: 434
  ident: bib95
  article-title: Home-field advantage of litter decomposition and nitrogen release in forest ecosystems
  publication-title: Biol. Fertil. Soils
– volume: 309
  start-page: 4
  year: 2013
  end-page: 18
  ident: bib94
  article-title: Do tree species influence soil carbon stocks in temperate and boreal forests?
  publication-title: Ecol. Manag.
– volume: 107
  start-page: 60
  year: 2017
  end-page: 67
  ident: bib1
  article-title: Tannins can slow-down but also speed-up soil enzymatic activity in boreal forest
  publication-title: S. Soil Biol. Biochem
– volume: 199
  start-page: 19602
  year: 2024
  ident: bib103
  article-title: Litter mixture effects on nitrogen dynamics during decomposition predominantly vary among biomes but litter with litter identity, diversity, and fauna
  publication-title: Soil Biol. Biochem
– volume: 24
  start-page: 1142
  year: 2021
  end-page: 1156
  ident: bib86
  article-title: Temperature and moisture modulate the contribution of soil fauna to litter decomposition via different pathways
  publication-title: Ecosystems
– volume: 214
  start-page: 1281
  year: 2017
  end-page: 1293
  ident: bib49
  article-title: Tree species diversity affects decomposition through modified micro-environmental conditions across European forests
  publication-title: N. Phyto
– volume: 229
  start-page: 2625
  year: 2021
  end-page: 2636
  ident: bib96
  article-title: The contribution of photodegradation to litter decomposition in a temperate forest gap and understory
  publication-title: N. Phyto
– volume: 307
  year: 2021
  ident: bib65
  article-title: Tree mortality of European beech and Norway spruce induced by 2018-2019 hot droughts in central Germany
  publication-title: Agric. Meteor.
– volume: 15
  start-page: 238
  year: 2000
  end-page: 243
  ident: bib44
  article-title: The role of polyphenols in terrestrial ecosystem nutrient cycling
  publication-title: Trends Ecol. Evol.
– volume: 35
  start-page: 1001
  year: 2003
  end-page: 1004
  ident: bib29
  article-title: Reciprocal transfer of carbon and nitrogen by decomposer fungi at the soil-litter interface
  publication-title: Soil Biol. Biochem
– year: 2021
  ident: bib16
  publication-title: Plant litter – Decomposition, Humus Formation, Carbon Sequestration
– volume: 41
  start-page: 606
  year: 2009
  end-page: 610
  ident: bib10
  article-title: Home-field advantage accelerates leaf litter decomposition in forests
  publication-title: Soil Biol. Biochem
– volume: 82
  start-page: 1
  year: 2017
  end-page: 2
  ident: bib53
  article-title: lmerTest package: Tests in linear mixed effect models
  publication-title: J. Stat. Softw.
– volume: 13
  year: 2022
  ident: bib23
  article-title: Phosphorus dynamics in litter-soil systems during litter decomposition in larch plantations across the chronosequence
  publication-title: Front Plant Sci.
– volume: 2
  start-page: 236
  year: 2017
  end-page: 249
  ident: bib52
  article-title: Litter decomposition in forest ecosystems: a review
  publication-title: Energ. Ecol. Environ.
– volume: 74
  start-page: 659
  year: 1996
  end-page: 672
  ident: bib17
  article-title: Maximum decomposition limits of forest litter types: a synthesis
  publication-title: Can. J. Bot.
– volume: 33
  start-page: 173
  year: 2001
  end-page: 188
  ident: bib91
  article-title: Substrate limitations to microbial activity in taiga forest floors
  publication-title: Soil Biol. Biochem
– volume: 7
  start-page: 2214
  year: 2023
  end-page: 2223
  ident: bib50
  article-title: Resolving the intricate role of climate in litter decomposition
  publication-title: Nat. Ecol. Evo
– volume: 21
  start-page: 1010
  year: 2021
  end-page: 1023
  ident: bib8
  article-title: Decomposition and nutrient mineralisation of leaf litter in smallholder cocoa agroforests: a comparison of organic and conventional farms in Ghana
  publication-title: J. Soil Sed.
– volume: 101
  start-page: 133
  year: 2010
  end-page: 149
  ident: bib73
  article-title: Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils?
  publication-title: Biogeochemistry
– volume: 22
  start-page: 1193
  year: 2002
  end-page: 1200
  ident: bib72
  article-title: The influence of the forest canopy on nutrient cycling
  publication-title: Tree Physiol.
– volume: 55
  start-page: 525
  year: 2019
  end-page: 538
  ident: bib7
  article-title: Tree species identity alters decomposition of understory litter and associated microbial communities: a case study
  publication-title: Biol. Fertil. Soils
– volume: 128
  start-page: 171
  year: 2016
  end-page: 186
  ident: bib76
  article-title: Nitrogen alters microbial enzyme dynamics but not lignin chemistry during maize decomposition
  publication-title: Biogeochemistry
– volume: 36
  start-page: 155
  year: 2004
  end-page: 164
  ident: bib2
  article-title: Decomposition of beech leaves (
  publication-title: Soil Bio Biochem
– volume: 16
  year: 2021
  ident: bib100
  article-title: The decomposition process and nutrient release of invasive enrichment and water level change
  publication-title: PLoS ONE
– reference: R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
– volume: 5
  start-page: 288
  year: 2024
  ident: bib102
  article-title: Global forest gaps reduce litterfall but increase litter carbon and phosphorus release
  publication-title: Commun. Earth Environ.
– volume: 429
  year: 2023
  ident: bib51
  article-title: Nutrient controls on carbohydrate and lignin decomposition in beech litter
  publication-title: Geoderma
– volume: 126
  start-page: 75
  year: 2018
  end-page: 84
  ident: bib11
  article-title: The role of microbial community in the decomposition of leaf litter and deadwood
  publication-title: Appl. Soil Ecol.
– volume: 27
  start-page: 157
  year: 1995
  end-page: 165
  ident: bib30
  article-title: Evolution of phenolic patterns in plants and associated litters and humus of a mountain forest ecosystem
  publication-title: Soil Bio Biochem
– volume: 121
  start-page: 1649
  year: 2012
  end-page: 1655
  ident: bib59
  article-title: Connecting litter quality, microbial community and nitrogen transfer mechanisms in decomposing litter mixtures
  publication-title: Oikos
– reference: .
– volume: 104
  start-page: 230
  year: 2004
  end-page: 246
  ident: bib34
  article-title: Decomposition dynamics in mixed-species leaf litter
  publication-title: Oikos
– volume: 67
  start-page: 1
  year: 2015
  end-page: 48
  ident: bib13
  article-title: Fitting linear mixed-effect models using lme4
  publication-title: J. Stat. Softw.
– volume: 251–252
  start-page: 92
  year: 2015
  end-page: 104
  ident: bib19
  article-title: Decomposition of beech (
  publication-title: Geoderma
– volume: 16
  start-page: 1045
  year: 2013
  end-page: 1053
  ident: bib32
  article-title: Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes
  publication-title: Ecol. Lett.
– year: 2011
  ident: bib58
  article-title: Soil ecology in Northern forests: A belowground view of a changing world
– year: 2024
  ident: bib101
  article-title: Stage dependence of home-field advantage as affected by plant residue chemistry and bacterial community
  publication-title: Plant Soil
– volume: 40
  start-page: 465
  year: 2010
  end-page: 475
  ident: bib54
  article-title: How does a tree species influence litter decomposition? Separating the relative contribution of litter quality, litter mixing, and forest floor conditions
  publication-title: Can. J. Res
– volume: 509
  start-page: 218
  year: 2014
  end-page: 221
  ident: bib42
  article-title: Consequences of biodiversity loss for litter decomposition across biomes
  publication-title: Nature
– volume: 24
  start-page: 1142
  year: 2021
  ident: 10.1016/j.foreco.2025.122929_bib86
  article-title: Temperature and moisture modulate the contribution of soil fauna to litter decomposition via different pathways
  publication-title: Ecosystems
  doi: 10.1007/s10021-020-00573-w
– volume: 27
  start-page: 157
  year: 1995
  ident: 10.1016/j.foreco.2025.122929_bib30
  article-title: Evolution of phenolic patterns in plants and associated litters and humus of a mountain forest ecosystem
  publication-title: Soil Bio Biochem
  doi: 10.1016/0038-0717(94)00167-Y
– volume: 22
  start-page: 1193
  year: 2002
  ident: 10.1016/j.foreco.2025.122929_bib72
  article-title: The influence of the forest canopy on nutrient cycling
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/22.15-16.1193
– volume: 51
  start-page: 319
  year: 2020
  ident: 10.1016/j.foreco.2025.122929_bib27
  article-title: Assessment of the composition of rain deposition in coniferous forests at the Northern tree line subject to air pollution
  publication-title: Russ. J. Ecol.
  doi: 10.1134/S1067413620040050
– volume: 33
  start-page: 1524
  year: 2019
  ident: 10.1016/j.foreco.2025.122929_bib93
  article-title: Relationships between fungal community composition in decomposing leaf litter and home-field advantage effects
  publication-title: Funct. Ecol.
  doi: 10.1111/1365-2435.13351
– volume: 90
  start-page: 1073
  year: 2009
  ident: 10.1016/j.foreco.2025.122929_bib81
  article-title: Diversity has stronger top-down than bottom-up effects on decomposition
  publication-title: Ecology
  doi: 10.1890/08-0439.1
– year: 2024
  ident: 10.1016/j.foreco.2025.122929_bib101
  article-title: Stage dependence of home-field advantage as affected by plant residue chemistry and bacterial community
  publication-title: Plant Soil
– volume: 121
  start-page: 1649
  year: 2012
  ident: 10.1016/j.foreco.2025.122929_bib59
  article-title: Connecting litter quality, microbial community and nitrogen transfer mechanisms in decomposing litter mixtures
  publication-title: Oikos
  doi: 10.1111/j.1600-0706.2011.20073.x
– volume: 231
  start-page: 2142
  year: 2021
  ident: 10.1016/j.foreco.2025.122929_bib39
  article-title: The impact of invertebrate decomposers on plants and soil
  publication-title: N. Phyto
  doi: 10.1111/nph.17553
– volume: 358
  start-page: 349
  year: 2012
  ident: 10.1016/j.foreco.2025.122929_bib18
  article-title: Greater accumulation of litter in spruce (Picea abies) compared to beech (Fagus sylvatica) stands is not a consequence of the inherent recalcitrance of needles
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1165-z
– volume: 11
  start-page: 516
  year: 2008
  ident: 10.1016/j.foreco.2025.122929_bib26
  article-title: Plant functional traits and soil carbon sequestration in contrasting biomes
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2008.01164.x
– volume: 33
  start-page: 102
  year: 2013
  ident: 10.1016/j.foreco.2025.122929_bib97
  article-title: Effect of litter substrate quality and soil nutrients on forest litter decomposition: A review
  publication-title: Acta Oecol
– volume: 4
  year: 2017
  ident: 10.1016/j.foreco.2025.122929_bib80
  article-title: Quantifying components of the phosphorus cycle in temperate forests
  publication-title: WIREs Water
  doi: 10.1002/wat2.1243
– volume: 105
  start-page: 67
  year: 1998
  ident: 10.1016/j.foreco.2025.122929_bib9
  article-title: Impact of tree species on forest soil acidification
  publication-title: Ecol. Manag.
  doi: 10.1016/S0378-1127(97)00270-3
– volume: 61
  start-page: 647
  year: 2023
  ident: 10.1016/j.foreco.2025.122929_bib28
  article-title: Douglas-fir and Norway spruce admixtures to beech forests along a site gradient in Northern Germany – Are soil nutrient conditions affected?
  publication-title: Soil Res
  doi: 10.1071/SR22218
– volume: 82
  start-page: 1
  year: 2017
  ident: 10.1016/j.foreco.2025.122929_bib53
  article-title: lmerTest package: Tests in linear mixed effect models
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v082.i13
– volume: 7
  start-page: 2214
  year: 2023
  ident: 10.1016/j.foreco.2025.122929_bib50
  article-title: Resolving the intricate role of climate in litter decomposition
  publication-title: Nat. Ecol. Evo
– volume: 509
  start-page: 218
  year: 2014
  ident: 10.1016/j.foreco.2025.122929_bib42
  article-title: Consequences of biodiversity loss for litter decomposition across biomes
  publication-title: Nature
  doi: 10.1038/nature13247
– volume: 307
  year: 2021
  ident: 10.1016/j.foreco.2025.122929_bib65
  article-title: Tree mortality of European beech and Norway spruce induced by 2018-2019 hot droughts in central Germany
  publication-title: Agric. Meteor.
  doi: 10.1016/j.agrformet.2021.108482
– volume: 221
  start-page: 50
  year: 2019
  ident: 10.1016/j.foreco.2025.122929_bib4
  article-title: Diversity and forest productivity in a changing climate
  publication-title: N. Phytol.
  doi: 10.1111/nph.15263
– volume: 82
  start-page: 44
  year: 2014
  ident: 10.1016/j.foreco.2025.122929_bib24
  article-title: Leaf litter mixtures and neighbour effects: Low-nitrogen and high-lignin species increase decomposition rate of high-nitrogen and low-lignin neighbours
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2014.05.004
– volume: 378
  year: 2020
  ident: 10.1016/j.foreco.2025.122929_bib98
  article-title: Cellulose dominantly affects soil fauna in the decomposition of forest litter: A meta-analysis
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114620
– volume: 35
  start-page: 1001
  year: 2003
  ident: 10.1016/j.foreco.2025.122929_bib29
  article-title: Reciprocal transfer of carbon and nitrogen by decomposer fungi at the soil-litter interface
  publication-title: Soil Biol. Biochem
  doi: 10.1016/S0038-0717(03)00155-X
– volume: 448
  year: 2024
  ident: 10.1016/j.foreco.2025.122929_bib57
  article-title: Functional traits in soil-living oribatid mites unveil trophic reorganization in belowground communities by introduced tree species
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2024.116947
– volume: 33
  start-page: 173
  year: 2001
  ident: 10.1016/j.foreco.2025.122929_bib91
  article-title: Substrate limitations to microbial activity in taiga forest floors
  publication-title: Soil Biol. Biochem
  doi: 10.1016/S0038-0717(00)00127-9
– volume: 860
  year: 2023
  ident: 10.1016/j.foreco.2025.122929_bib64
  article-title: Fauna access outweighs litter mixture effect during leaf litter decomposition
  publication-title: Sci. Tot Environ.
  doi: 10.1016/j.scitotenv.2022.160190
– volume: 115
  start-page: 189
  year: 1989
  ident: 10.1016/j.foreco.2025.122929_bib61
  article-title: Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter
  publication-title: Plant Soil
  doi: 10.1007/BF02202587
– volume: 54
  start-page: 309
  year: 2021
  ident: 10.1016/j.foreco.2025.122929_bib66
  article-title: Litter decomposition rate across tropical montane and lowland forests are controlled foremost by climate
  publication-title: Biotropica
  doi: 10.1111/btp.13044
– volume: 15
  start-page: 238
  year: 2000
  ident: 10.1016/j.foreco.2025.122929_bib44
  article-title: The role of polyphenols in terrestrial ecosystem nutrient cycling
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/S0169-5347(00)01861-9
– volume: 32
  start-page: 789
  year: 2002
  ident: 10.1016/j.foreco.2025.122929_bib89
  article-title: Rates of litter decomposition over 6 years in Canadian forests: Influence of litter quality and climate
  publication-title: Can. J. Res
  doi: 10.1139/x01-117
– ident: 10.1016/j.foreco.2025.122929_bib75
– volume: 80
  start-page: 89
  year: 2010
  ident: 10.1016/j.foreco.2025.122929_bib60
  article-title: Stoichiometric controls on carbon, nitrogen and phosphorus dynamics in decomposing litter
  publication-title: Ecol. Monogr.
  doi: 10.1890/09-0179.1
– volume: 41
  start-page: 606
  year: 2009
  ident: 10.1016/j.foreco.2025.122929_bib10
  article-title: Home-field advantage accelerates leaf litter decomposition in forests
  publication-title: Soil Biol. Biochem
  doi: 10.1016/j.soilbio.2008.12.022
– volume: 81
  start-page: 2359
  year: 2000
  ident: 10.1016/j.foreco.2025.122929_bib22
  article-title: Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition
  publication-title: Ecology
  doi: 10.1890/0012-9658(2000)081[2359:MESELD]2.0.CO;2
– volume: 16
  start-page: 1045
  year: 2013
  ident: 10.1016/j.foreco.2025.122929_bib32
  article-title: Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.12137
– volume: 429
  year: 2023
  ident: 10.1016/j.foreco.2025.122929_bib51
  article-title: Nutrient controls on carbohydrate and lignin decomposition in beech litter
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2022.116276
– volume: 70
  start-page: 97
  year: 1989
  ident: 10.1016/j.foreco.2025.122929_bib87
  article-title: Nitrogen and lignin content as predictors of litter decay rates: a microcosm test
  publication-title: Ecology
  doi: 10.2307/1938416
– volume: 11
  start-page: 9530
  year: 2021
  ident: 10.1016/j.foreco.2025.122929_bib37
  article-title: Determinism of nonadditive litter mixture effect on decomposition: Role of the moisture content of litters
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.7771
– volume: 145
  year: 2020
  ident: 10.1016/j.foreco.2025.122929_bib70
  article-title: Is litter decomposition enhanced in species mixtures? A meta-analysis
  publication-title: Soil Biol. Biochem
  doi: 10.1016/j.soilbio.2020.107791
– volume: 70
  start-page: 79
  year: 2016
  ident: 10.1016/j.foreco.2025.122929_bib79
  article-title: Mixing effects on litter decomposition rates in a young tree diversity experiment
  publication-title: Act. Oecol
  doi: 10.1016/j.actao.2015.12.003
– volume: 109
  start-page: 447
  year: 2021
  ident: 10.1016/j.foreco.2025.122929_bib21
  article-title: Relative effects of climate and litter traits on decomposition change with time, climate and trait variability
  publication-title: J. Ecol.
  doi: 10.1111/1365-2745.13516
– volume: 57
  start-page: 341
  year: 2013
  ident: 10.1016/j.foreco.2025.122929_bib20
  article-title: Carbon and nitrogen transfer in leaf litter mixtures
  publication-title: Soil Biol. Biochem
  doi: 10.1016/j.soilbio.2012.09.015
– volume: 400
  start-page: 337
  year: 2016
  ident: 10.1016/j.foreco.2025.122929_bib90
  article-title: Impact of species diversity, stand age and environmental factors on leaf litter decomposition in subtropical forests in China
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2737-5
– volume: 168/169
  start-page: 83
  year: 1995
  ident: 10.1016/j.foreco.2025.122929_bib71
  article-title: Does nitrogen availability control rates of litter decomposition in forests?
  publication-title: Plant Soil
  doi: 10.1007/BF00029316
– volume: 21
  start-page: 1010
  year: 2021
  ident: 10.1016/j.foreco.2025.122929_bib8
  article-title: Decomposition and nutrient mineralisation of leaf litter in smallholder cocoa agroforests: a comparison of organic and conventional farms in Ghana
  publication-title: J. Soil Sed.
  doi: 10.1007/s11368-020-02844-4
– volume: 107
  start-page: 60
  year: 2017
  ident: 10.1016/j.foreco.2025.122929_bib1
  article-title: Tannins can slow-down but also speed-up soil enzymatic activity in boreal forest
  publication-title: S. Soil Biol. Biochem
  doi: 10.1016/j.soilbio.2016.12.027
– volume: 23
  start-page: 211
  year: 2009
  ident: 10.1016/j.foreco.2025.122929_bib41
  article-title: N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms
  publication-title: Funct. Ecol.
  doi: 10.1111/j.1365-2435.2008.01478.x
– volume: 52
  start-page: 127
  year: 2006
  ident: 10.1016/j.foreco.2025.122929_bib6
  article-title: Microbial colonization of beech and spruce litter – influence of decomposition site and plat litter species on the diversity of microbial community
  publication-title: Micro Ecol.
  doi: 10.1007/s00248-006-9006-3
– volume: 110
  start-page: 1673
  year: 2022
  ident: 10.1016/j.foreco.2025.122929_bib99
  article-title: Litter decomposition and nutrient release from monospecific and mixed litters: Comparisons of litter quality, fauna and decomposition site effects
  publication-title: J. Ecol.
  doi: 10.1111/1365-2745.13902
– volume: 23
  start-page: 2401
  year: 1997
  ident: 10.1016/j.foreco.2025.122929_bib31
  article-title: Phenolic compounds in natural solutions of a coniferous forest
  publication-title: J. Chem. Ecol.
  doi: 10.1023/B:JOEC.0000006682.50061.83
– volume: 104
  start-page: 230
  year: 2004
  ident: 10.1016/j.foreco.2025.122929_bib34
  article-title: Decomposition dynamics in mixed-species leaf litter
  publication-title: Oikos
  doi: 10.1111/j.0030-1299.2004.12738.x
– volume: 315
  start-page: 361
  year: 2007
  ident: 10.1016/j.foreco.2025.122929_bib67
  article-title: Global-scale similarities in nitrogen release patterns during long-term decomposition
  publication-title: Science
  doi: 10.1126/science.1134853
– volume: 10
  year: 2022
  ident: 10.1016/j.foreco.2025.122929_bib82
  article-title: Multivariate drought stress response of Norway spruce, silver fir and Douglas-fir along elevational gradients in Southwestern Germany
  publication-title: Front Ecol. Evol.
  doi: 10.3389/fevo.2022.907492
– volume: 70
  start-page: 481
  year: 2013
  ident: 10.1016/j.foreco.2025.122929_bib46
  article-title: Persisting bark beetle outbreak indicates the unsustainability of secondary Norway spruce forests: case study from Central Europe
  publication-title: Ann. Sci.
  doi: 10.1007/s13595-013-0279-7
– year: 2021
  ident: 10.1016/j.foreco.2025.122929_bib16
– volume: 24
  start-page: 1428
  year: 2018
  ident: 10.1016/j.foreco.2025.122929_bib84
  article-title: Decoupling the direct and indirect effects of climate on plant litter decomposition: Accounting for stress-indued modifications in plant chemistry
  publication-title: Glob. Chang Biol.
  doi: 10.1111/gcb.13923
– volume: 128
  start-page: 171
  year: 2016
  ident: 10.1016/j.foreco.2025.122929_bib76
  article-title: Nitrogen alters microbial enzyme dynamics but not lignin chemistry during maize decomposition
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-016-0201-0
– volume: 55
  start-page: 525
  year: 2019
  ident: 10.1016/j.foreco.2025.122929_bib7
  article-title: Tree species identity alters decomposition of understory litter and associated microbial communities: a case study
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-019-01360-z
– volume: 10
  year: 2020
  ident: 10.1016/j.foreco.2025.122929_bib38
  article-title: Schrenk spruce leaf litter decomposition varies with snow depth in the Tianshan Mountains
  publication-title: Sci. repo
– volume: 152
  start-page: 85
  year: 2001
  ident: 10.1016/j.foreco.2025.122929_bib77
  article-title: Loblolly pine needle decomposition and nutrient dynamics as affected by irrigation, fertilization, and substrate quality
  publication-title: Ecol. Manag.
  doi: 10.1016/S0378-1127(00)00592-2
– ident: 10.1016/j.foreco.2025.122929_bib15
– volume: 36
  start-page: 155
  year: 2004
  ident: 10.1016/j.foreco.2025.122929_bib2
  article-title: Decomposition of beech leaves (Fagus sylvatica) and spruce needles (Picea abies) in pure and mixed stands of beech and spruce
  publication-title: Soil Bio Biochem
  doi: 10.1016/j.soilbio.2003.09.002
– start-page: 21
  year: 2000
  ident: 10.1016/j.foreco.2025.122929_bib68
  article-title: Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina
  publication-title: Plant Soil 218
  doi: 10.1023/A:1014981715532
– volume: 339
  start-page: 163
  year: 2011
  ident: 10.1016/j.foreco.2025.122929_bib63
  article-title: Nature and nuture in the dynamics of C, N and P during litter decomposition in Canadian forests
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0563-3
– volume: 23
  start-page: 627
  year: 2009
  ident: 10.1016/j.foreco.2025.122929_bib83
  article-title: Litter quality is in the eye of the beholder: initial decomposition rates as a function of inoculum characteristics
  publication-title: Funct. Ecol.
  doi: 10.1111/j.1365-2435.2008.01515.x
– volume: 126
  start-page: 75
  year: 2018
  ident: 10.1016/j.foreco.2025.122929_bib11
  article-title: The role of microbial community in the decomposition of leaf litter and deadwood
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2018.02.017
– volume: 16
  year: 2021
  ident: 10.1016/j.foreco.2025.122929_bib100
  article-title: The decomposition process and nutrient release of invasive enrichment and water level change
  publication-title: PLoS ONE
– volume: 90
  year: 2020
  ident: 10.1016/j.foreco.2025.122929_bib40
  article-title: Functional diversity of leaf-litter mixtures slows decomposition of labile but not recalcitrant carbon over two years
  publication-title: Ecol. monos
– year: 1979
  ident: 10.1016/j.foreco.2025.122929_bib85
– volume: 25
  start-page: 372
  issue: 6
  year: 2010
  ident: 10.1016/j.foreco.2025.122929_bib35
  article-title: Diversity meets decomposition
  publication-title: Trends in Ecol Evo
  doi: 10.1016/j.tree.2010.01.010
– ident: 10.1016/j.foreco.2025.122929_bib5
– volume: 41
  start-page: 176
  year: 2009
  ident: 10.1016/j.foreco.2025.122929_bib88
  article-title: Particle size alters litter diversity effects on decomposition
  publication-title: Soil Biol. Biochem
  doi: 10.1016/j.soilbio.2008.09.017
– volume: 13
  year: 2022
  ident: 10.1016/j.foreco.2025.122929_bib23
  article-title: Phosphorus dynamics in litter-soil systems during litter decomposition in larch plantations across the chronosequence
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2022.1010458
– year: 2005
  ident: 10.1016/j.foreco.2025.122929_bib12
– volume: 184
  year: 2023
  ident: 10.1016/j.foreco.2025.122929_bib74
  article-title: Home-field advantage effect in litter decompostiion is largely linked to litter quality
  publication-title: Soil Biol. Biochem
  doi: 10.1016/j.soilbio.2023.109069
– volume: 39
  start-page: 1428
  year: 2007
  ident: 10.1016/j.foreco.2025.122929_bib78
  article-title: Nitrogen transfer between decomposing leaves of different N status
  publication-title: Soil Biol. Biochem
  doi: 10.1016/j.soilbio.2006.12.037
– year: 1974
  ident: 10.1016/j.foreco.2025.122929_bib3
– volume: 214
  start-page: 1281
  year: 2017
  ident: 10.1016/j.foreco.2025.122929_bib49
  article-title: Tree species diversity affects decomposition through modified micro-environmental conditions across European forests
  publication-title: N. Phyto
  doi: 10.1111/nph.14452
– volume: 251–252
  start-page: 92
  year: 2015
  ident: 10.1016/j.foreco.2025.122929_bib19
  article-title: Decomposition of beech (Fagus sylvatica) and pine (Pinus nigra) litter along an alpine elevation gradient: Decay and nutrient release
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.03.024
– volume: 74
  start-page: 659
  year: 1996
  ident: 10.1016/j.foreco.2025.122929_bib17
  article-title: Maximum decomposition limits of forest litter types: a synthesis
  publication-title: Can. J. Bot.
  doi: 10.1139/b96-084
– volume: 102
  start-page: 1519
  year: 2005
  ident: 10.1016/j.foreco.2025.122929_bib43
  article-title: Soil animals alter plant litter diversity effects on decomposition
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0404977102
– volume: 309
  start-page: 4
  year: 2013
  ident: 10.1016/j.foreco.2025.122929_bib94
  article-title: Do tree species influence soil carbon stocks in temperate and boreal forests?
  publication-title: Ecol. Manag.
  doi: 10.1016/j.foreco.2013.01.017
– volume: 5
  start-page: 288
  year: 2024
  ident: 10.1016/j.foreco.2025.122929_bib102
  article-title: Global forest gaps reduce litterfall but increase litter carbon and phosphorus release
  publication-title: Commun. Earth Environ.
  doi: 10.1038/s43247-024-01453-0
– volume: 36
  start-page: 191
  year: 2005
  ident: 10.1016/j.foreco.2025.122929_bib45
  article-title: Biodiversity and litter decomposition in terrestrial ecosystems
  publication-title: Ann. Rev. Ecol. Evol. Syst.
  doi: 10.1146/annurev.ecolsys.36.112904.151932
– volume: 19
  start-page: 554
  year: 2016
  ident: 10.1016/j.foreco.2025.122929_bib33
  article-title: Temporal dynamics of biotic and abiotic drivers of litter decomposition
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.12590
– volume: 2
  start-page: 236
  year: 2017
  ident: 10.1016/j.foreco.2025.122929_bib52
  article-title: Litter decomposition in forest ecosystems: a review
  publication-title: Energ. Ecol. Environ.
  doi: 10.1007/s40974-017-0064-9
– volume: 9
  start-page: 46
  year: 2006
  ident: 10.1016/j.foreco.2025.122929_bib62
  article-title: Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests
  publication-title: Ecosyst
  doi: 10.1007/s10021-004-0026-x
– volume: 227
  start-page: 757
  year: 2020
  ident: 10.1016/j.foreco.2025.122929_bib55
  article-title: Synergistic effects: a common theme in mixed-species litter decomposition
  publication-title: N. Phyto
  doi: 10.1111/nph.16556
– volume: 155
  year: 2021
  ident: 10.1016/j.foreco.2025.122929_bib56
  article-title: Response of soil microbial communities to mixed beech-conifer forests varies with site conditions
  publication-title: Soil Biol. Biochem
  doi: 10.1016/j.soilbio.2021.108155
– year: 1992
  ident: 10.1016/j.foreco.2025.122929_bib25
– volume: 1
  start-page: 24
  year: 1985
  ident: 10.1016/j.foreco.2025.122929_bib48
  article-title: Acidification of soils by trees and forests
  publication-title: Soil Use Manag.
  doi: 10.1111/j.1475-2743.1985.tb00648.x
– volume: 35
  start-page: 1783
  year: 2021
  ident: 10.1016/j.foreco.2025.122929_bib14
  article-title: Low-quality carob and lack of nutrients result in a stronger fungal than bacterial home-field advantage during the decomposition of leaf litter
  publication-title: Funct. Ecol.
  doi: 10.1111/1365-2435.13822
– volume: 49
  start-page: 427
  year: 2013
  ident: 10.1016/j.foreco.2025.122929_bib95
  article-title: Home-field advantage of litter decomposition and nitrogen release in forest ecosystems
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-012-0741-y
– volume: 50
  start-page: 1049
  year: 2000
  ident: 10.1016/j.foreco.2025.122929_bib47
  article-title: Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks
  publication-title: BioSci
  doi: 10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2
– volume: 41
  start-page: 1221
  year: 2009
  ident: 10.1016/j.foreco.2025.122929_bib69
  article-title: Compartmentalization of the soil animal food web as indicated by dual analysis of stable isotope ratios (15N/14N and 13C/12C)
  publication-title: Soil Biol. Biochem
  doi: 10.1016/j.soilbio.2009.03.002
– volume: 199
  start-page: 19602
  year: 2024
  ident: 10.1016/j.foreco.2025.122929_bib103
  article-title: Litter mixture effects on nitrogen dynamics during decomposition predominantly vary among biomes but litter with litter identity, diversity, and fauna
  publication-title: Soil Biol. Biochem
  doi: 10.1016/j.soilbio.2024.109602
– volume: 124
  start-page: 187
  year: 2014
  ident: 10.1016/j.foreco.2025.122929_bib92
  article-title: Litter quality and environmental controls of home-field advantage effects on litter decomposition
  publication-title: Oikos
  doi: 10.1111/oik.01374
– volume: 229
  start-page: 2625
  year: 2021
  ident: 10.1016/j.foreco.2025.122929_bib96
  article-title: The contribution of photodegradation to litter decomposition in a temperate forest gap and understory
  publication-title: N. Phyto
  doi: 10.1111/nph.17022
– year: 2011
  ident: 10.1016/j.foreco.2025.122929_bib58
– volume: 40
  start-page: 465
  year: 2010
  ident: 10.1016/j.foreco.2025.122929_bib54
  article-title: How does a tree species influence litter decomposition? Separating the relative contribution of litter quality, litter mixing, and forest floor conditions
  publication-title: Can. J. Res
  doi: 10.1139/X09-208
– volume: 101
  start-page: 133
  year: 2010
  ident: 10.1016/j.foreco.2025.122929_bib73
  article-title: Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils?
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-010-9439-0
– volume: 67
  start-page: 1
  year: 2015
  ident: 10.1016/j.foreco.2025.122929_bib13
  article-title: Fitting linear mixed-effect models using lme4
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v067.i01
– volume: 6
  start-page: 751
  year: 2000
  ident: 10.1016/j.foreco.2025.122929_bib36
  article-title: Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition
  publication-title: Glob. Chan Biol.
  doi: 10.1046/j.1365-2486.2000.00349.x
SSID ssj0005548
Score 2.4807553
Snippet The plantation of mixed forests including non-native tree species is increasing but its impacts on litter decomposition and nutrient cycling remains little...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 122929
SubjectTerms Douglas-fir
European beech
Mixed forests
Monocultures
Norway spruce
Nutrient cycling
Title C, N and P dynamics during litter decomposition in pure and mixed beech – conifer stands: Effects of litter species, site conditions and native vs non-native conifer species
URI https://dx.doi.org/10.1016/j.foreco.2025.122929
Volume 594
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSuRAEG5EcfEi_uL4M9TBo-0knc6fNxkcRsVBUMFbSNIVdhaMgzPK7kX2HfZBfCefxKruRFwQDx4Tujqhq6j6KvmqSoj9KCfYiUwKC_1c6lAZSXZjZIUpGtRxWiVc73wxioY3-uw2vJ0T_bYWhmmVje93Pt166-ZOrznN3mQ87l15AVdJqpiCODfoYT-sdcxWfvj8geYR2glavFjy6rZ8znK8CBdSkkdZogoPfaVSCzQ_CU8fQs5gRSw3WBGO3eusijms18Simx75Z0384LGaPKttXbz0D2AEeW3gEoybMT8FV4EIhLPp7MAgs8cbihaMa5g8PqAVuRv_RgMFYvkTXv_-A8qQme8C9ivD9Ahcg-Mp3FftXlyeSRn2AfCvZ15vHPHLblfbVuLwNIX6vpbN1fueTnJD3AxOrvtD2YxikCXFuJmkJMXPvbhSfmAqE_nox3mgg8R4WJhQRZWXojYqCGJSNOYF-VGVJCXBqzTRReQFm2KeHopbAkKtvYoWGQJyuixVESQFRmWR69xHSgA7QrYayCau40bWUtF-ZU5jGWsscxrriLhVU_af5WQUFL6U3P625I5Y4iuOYX64K-ZnD4-4R-BkVnSt9XXFwvHp-XD0BvoK5pc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtRADLZKKygXVAqI8usD3DrdZDL5Q-KACtWWtiskWqm3kGQcsUhNV822pRfEO_AgHHgjngR7JkFFQhyQekwynkzikf05-WwDPEtKhp0kpLA4LJWJtVW8b6xqKCdLJs2bTPKd9ybJ-MC8PYwPF-DHkAsjtMre9nub7qx1f2bUv83RbDodvQ8iyZLUKTtxKdCje2blDl2cc9zWvdx-zUp-rvXWm_3NsepbC6iabfZcMegOyyBtdBjZxiYhhWkZmSizAVU21kkT5GSsjqKUF05lxXZBZ1nNcCHPTJUEEc97DZYMmwtpm7Dx5RKvJHYtu2R1SpY35Os5UhkDUY4qOSzV8Uaode6Q7V_84SUft7UCt3pwiq_889-GBWpX4bpvV3mxCjekj6c0h7sD3zfXcYJla_EdWt_UvkOf8ogM7FlZaEno6j0nDKctzk5PyIkcTT-TxYqo_og_v35DDsmFYIPus0b3An1F5Q6Pm2EuyQflkH4d5V-3jLeeaeama13tcjzrsD1uVX_0e04veRcOrkRB92CRb0r3AWNjgoYHWUaOpq51FWUVJXVVmjIkjjjXQA0aKGa-xEcxcN8-FV5jhWis8Bpbg3RQU_HHVi3YC_1T8sF_Sz6F5fH-3m6xuz3ZeQg35Yo40DB-BIvzk1N6zMhoXj1xOxHhw1Vv_V_m8CBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=C%2C+N+and+P+dynamics+during+litter+decomposition+in+pure+and+mixed+beech+%E2%80%93+conifer+stands%3A+Effects+of+litter+species%2C+site+conditions+and+native+vs+non-native+conifer+species&rft.jtitle=Forest+ecology+and+management&rft.au=Stuckenberg%2C+Thalea&rft.au=Lu%2C+Jing-Zhong&rft.au=Scheu%2C+Stefan&rft.date=2025-10-15&rft.pub=Elsevier+B.V&rft.issn=0378-1127&rft.volume=594&rft_id=info:doi/10.1016%2Fj.foreco.2025.122929&rft.externalDocID=S0378112725004372
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-1127&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-1127&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-1127&client=summon