A Bionic Localization Memristive Circuit Based on Spatial Cognitive Mechanisms of Hippocampus and Entorhinal Cortex
In this article, a bionic localization memristive circuit is proposed, which mainly consists of head direction cell module, grid cell module, place cell module and decoding module. This work modifies the two-dimensional Continuous Attractor Network (CAN) model of grid cells into two one-dimensional...
Saved in:
Published in | IEEE transactions on biomedical circuits and systems Vol. 18; no. 3; pp. 552 - 563 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1932-4545 1940-9990 1940-9990 |
DOI | 10.1109/TBCAS.2024.3350135 |
Cover
Abstract | In this article, a bionic localization memristive circuit is proposed, which mainly consists of head direction cell module, grid cell module, place cell module and decoding module. This work modifies the two-dimensional Continuous Attractor Network (CAN) model of grid cells into two one-dimensional models in X and Y directions. The head direction cell module utilizes memristors to integrate angular velocity and represents the real orientation of an agent. The grid cell module uses memristors to sense linear velocity and orientation signals, which are both self-motion cues, and encodes the position in space by firing in a periodic mode. The place cell module receives the grid cell module's output and fires in a specific position. The decoding module decodes the angle or place information and transfers the neuron state to a 'one-hot' code. This proposed circuit completes the localizing task in space and realizes in-memory computing due to the use of memristors, which can shorten the execution time. The functions mentioned above are implemented in LTSPICE. The simulation results show that the proposed circuit can realize path integration and localization. Moreover, it is shown that the proposed circuit has good robustness and low area overhead. This work provides a possible application idea in a prospective robot platform to help the robot localize and build maps. |
---|---|
AbstractList | In this article, a bionic localization memristive circuit is proposed, which mainly consists of head direction cell module, grid cell module, place cell module and decoding module. This work modifies the two-dimensional Continuous Attractor Network (CAN) model of grid cells into two one-dimensional models in X and Y directions. The head direction cell module utilizes memristors to integrate angular velocity and represents the real orientation of an agent. The grid cell module uses memristors to sense linear velocity and orientation signals, which are both self-motion cues, and encodes the position in space by firing in a periodic mode. The place cell module receives the grid cell module's output and fires in a specific position. The decoding module decodes the angle or place information and transfers the neuron state to a ‘one-hot’ code. This proposed circuit completes the localizing task in space and realizes in-memory computing due to the use of memristors, which can shorten the execution time. The functions mentioned above are implemented in LTSPICE. The simulation results show that the proposed circuit can realize path integration and localization. Moreover, it is shown that the proposed circuit has good robustness and low area overhead. This work provides a possible application idea in a prospective robot platform to help the robot localize and build maps. In this article, a bionic localization memristive circuit is proposed, which mainly consists of head direction cell module, grid cell module, place cell module and decoding module. This work modifies the two-dimensional Continuous Attractor Network (CAN) model of grid cells into two one-dimensional models in X and Y directions. The head direction cell module utilizes memristors to integrate angular velocity and represents the real orientation of an agent. The grid cell module uses memristors to sense linear velocity and orientation signals, which are both self-motion cues, and encodes the position in space by firing in a periodic mode. The place cell module receives the grid cell module's output and fires in a specific position. The decoding module decodes the angle or place information and transfers the neuron state to a 'one-hot' code. This proposed circuit completes the localizing task in space and realizes in-memory computing due to the use of memristors, which can shorten the execution time. The functions mentioned above are implemented in LTSPICE. The simulation results show that the proposed circuit can realize path integration and localization. Moreover, it is shown that the proposed circuit has good robustness and low area overhead. This work provides a possible application idea in a prospective robot platform to help the robot localize and build maps.In this article, a bionic localization memristive circuit is proposed, which mainly consists of head direction cell module, grid cell module, place cell module and decoding module. This work modifies the two-dimensional Continuous Attractor Network (CAN) model of grid cells into two one-dimensional models in X and Y directions. The head direction cell module utilizes memristors to integrate angular velocity and represents the real orientation of an agent. The grid cell module uses memristors to sense linear velocity and orientation signals, which are both self-motion cues, and encodes the position in space by firing in a periodic mode. The place cell module receives the grid cell module's output and fires in a specific position. The decoding module decodes the angle or place information and transfers the neuron state to a 'one-hot' code. This proposed circuit completes the localizing task in space and realizes in-memory computing due to the use of memristors, which can shorten the execution time. The functions mentioned above are implemented in LTSPICE. The simulation results show that the proposed circuit can realize path integration and localization. Moreover, it is shown that the proposed circuit has good robustness and low area overhead. This work provides a possible application idea in a prospective robot platform to help the robot localize and build maps. |
Author | Tang, Zihui Yang, Chao Chen, Zhanfei Zeng, Zhigang Wang, Xiaoping |
Author_xml | – sequence: 1 givenname: Zihui orcidid: 0009-0000-9673-3046 surname: Tang fullname: Tang, Zihui email: m202273202@hust.edu.cn organization: School of Artificial Intelligence and Automation and the Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China – sequence: 2 givenname: Xiaoping orcidid: 0000-0002-4909-8286 surname: Wang fullname: Wang, Xiaoping email: wangxiaoping@hust.edu.cn organization: School of Artificial Intelligence and Automation and the Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China – sequence: 3 givenname: Chao orcidid: 0000-0002-7358-1657 surname: Yang fullname: Yang, Chao email: yangchao2020@hust.edu.cn organization: Institute of Artificial Intelligence, the School of Artificial Intelligence and Automation, and the Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Huazhong University of Science and Technology, Wuhan, China – sequence: 4 givenname: Zhanfei orcidid: 0000-0002-8341-385X surname: Chen fullname: Chen, Zhanfei email: chenzhanfei@hust.edu.cn organization: School of Artificial Intelligence and Automation and the Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China – sequence: 5 givenname: Zhigang orcidid: 0000-0003-4587-3588 surname: Zeng fullname: Zeng, Zhigang email: zgzeng@hust.edu.cn organization: School of Artificial Intelligence and Automation and the Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38805341$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0U1PHCEcBnBiNPWtX8A0hqSXXmaF-cMsHHcntjZZ40E9T1hgKmYGRpgxbT992RdN44WX8HsI4TlFhz54i9AFJTNKibx6WNaL-1lJSjYD4IQCP0AnVDJSSCnJ4WYNZcE448foNKVnQnhVyvITOgYhCAdGT1Ba4KUL3mm8Clp17q8a8xbf2j66NLpXi2sX9eRGvFTJGpzP7odsVIfr8Mu7Lbm1-kl5l_qEQ4tv3DDku_phSlh5g6_9GOKT89tIHO3vc3TUqi7Zz_v5DD1-v36ob4rV3Y-f9WJVaCAwFqyket1yaUDyNZOKmGpuCEDLWzCVAGrWnDNlMgPZklIZTVslAAQRzGgJZ-jb7t4hhpfJprHpXdK265S3YUoNkIrOBeNzmunXD_Q5TDE_eaeyERVkdblX07q3phmi61X807x9ZwblDugYUoq2fSeUNJvOmm1nzaazZt9ZDn3ZhZy19r8ACCry-A9b0JHI |
CODEN | ITBCCW |
Cites_doi | 10.1093/cercor/bhs033 10.1016/j.neuron.2015.09.021 10.1523/JNEUROSCI.17-15-05900.1997 10.1109/TASE.2019.2909638 10.1109/TCSI.2010.2055310 10.1109/TCSI.2017.2780826 10.1142/S0129065707001093 10.1109/TNNLS.2019.2905137 10.1002/hipo.20327 10.1038/nature06932 10.1016/j.neunet.2021.01.028 10.1037/h0061626 10.1016/j.neunet.2016.01.011 10.1088/1748-3190/aa7eab 10.1038/nrn1932 10.1109/TCSI.2012.2215714 10.1109/JSSC.2020.3028298 10.1523/JNEUROSCI.4353-05.2006 10.3390/biomimetics8050399 10.1126/science.1099901 10.1038/nature11973 10.7551/mitpress/8166.003.0042 10.1038/nature05601 10.1038/srep04906 10.1002/(SICI)1098-1063(1999)9:4<481::AID-HIPO14>3.0.CO;2-S 10.1016/j.beproc.2016.12.012 10.1016/0006-8993(71)90358-1 10.1109/TCYB.2020.2977999 10.1038/nn.3304 10.1017/S0140525X00063949 10.1126/science.aal4835 10.1109/TCSI.2023.3276983 10.1371/journal.pcbi.1000291 10.1038/srep01619 10.1109/TBCAS.2022.3204742 10.1038/nature03721 10.1038/s42003-021-02806-7 10.1109/TCYB.2019.2951520 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SP 7TB 8FD FR3 L7M P64 7X8 |
DOI | 10.1109/TBCAS.2024.3350135 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Biotechnology Research Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1940-9990 |
EndPage | 563 |
ExternalDocumentID | 38805341 10_1109_TBCAS_2024_3350135 10381810 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62236005; 61936004; U1913602 funderid: 10.13039/501100001809 |
GroupedDBID | --- 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QO 7SP 7TB 8FD FR3 L7M P64 7X8 |
ID | FETCH-LOGICAL-c303t-421cbf59d395b49a0d67d033f5f3d6831db554ad21c39f02adc1fa8338084dc93 |
IEDL.DBID | RIE |
ISSN | 1932-4545 1940-9990 |
IngestDate | Fri Jul 11 01:08:47 EDT 2025 Mon Jun 30 08:21:14 EDT 2025 Thu Apr 03 07:03:45 EDT 2025 Tue Jul 01 03:26:39 EDT 2025 Wed Aug 27 02:06:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-421cbf59d395b49a0d67d033f5f3d6831db554ad21c39f02adc1fa8338084dc93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4909-8286 0000-0002-8341-385X 0000-0003-4587-3588 0009-0000-9673-3046 0000-0002-7358-1657 |
PMID | 38805341 |
PQID | 3061457863 |
PQPubID | 85510 |
PageCount | 12 |
ParticipantIDs | proquest_journals_3061457863 pubmed_primary_38805341 ieee_primary_10381810 crossref_primary_10_1109_TBCAS_2024_3350135 proquest_miscellaneous_3061784571 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical circuits and systems |
PublicationTitleAbbrev | TBCAS |
PublicationTitleAlternate | IEEE Trans Biomed Circuits Syst |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Biolek (ref36) 2009; 18 Steinbeck (ref23) 2022 ref24 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – volume: 18 start-page: 210 issue: 2 year: 2009 ident: ref36 article-title: SPICE model of memristor with nonlinear dopant drift publication-title: Radioengineering – ident: ref19 doi: 10.1093/cercor/bhs033 – ident: ref2 doi: 10.1016/j.neuron.2015.09.021 – ident: ref17 doi: 10.1523/JNEUROSCI.17-15-05900.1997 – ident: ref21 doi: 10.1109/TASE.2019.2909638 – ident: ref25 doi: 10.1109/TCSI.2010.2055310 – ident: ref31 doi: 10.1109/TCSI.2017.2780826 – ident: ref11 doi: 10.1142/S0129065707001093 – ident: ref29 doi: 10.1109/TNNLS.2019.2905137 – ident: ref20 doi: 10.1002/hipo.20327 – ident: ref35 doi: 10.1038/nature06932 – ident: ref27 doi: 10.1016/j.neunet.2021.01.028 – ident: ref8 doi: 10.1037/h0061626 – ident: ref26 doi: 10.1016/j.neunet.2016.01.011 – ident: ref34 doi: 10.1088/1748-3190/aa7eab – ident: ref15 doi: 10.1038/nrn1932 – ident: ref37 doi: 10.1109/TCSI.2012.2215714 – ident: ref40 doi: 10.1109/JSSC.2020.3028298 – ident: ref10 doi: 10.1523/JNEUROSCI.4353-05.2006 – ident: ref24 doi: 10.3390/biomimetics8050399 – ident: ref6 doi: 10.1126/science.1099901 – ident: ref12 doi: 10.1038/nature11973 – year: 2022 ident: ref23 article-title: Biomimetic models of visual navigation: Active sensing for embodied intelligence – ident: ref28 doi: 10.7551/mitpress/8166.003.0042 – ident: ref18 doi: 10.1038/nature05601 – ident: ref39 doi: 10.1038/srep04906 – ident: ref14 doi: 10.1002/(SICI)1098-1063(1999)9:4<481::AID-HIPO14>3.0.CO;2-S – ident: ref1 doi: 10.1016/j.beproc.2016.12.012 – ident: ref5 doi: 10.1016/0006-8993(71)90358-1 – ident: ref22 doi: 10.1109/TCYB.2020.2977999 – ident: ref4 doi: 10.1038/nn.3304 – ident: ref7 doi: 10.1017/S0140525X00063949 – ident: ref13 doi: 10.1126/science.aal4835 – ident: ref30 doi: 10.1109/TCSI.2023.3276983 – ident: ref16 doi: 10.1371/journal.pcbi.1000291 – ident: ref38 doi: 10.1038/srep01619 – ident: ref33 doi: 10.1109/TBCAS.2022.3204742 – ident: ref9 doi: 10.1038/nature03721 – ident: ref3 doi: 10.1038/s42003-021-02806-7 – ident: ref32 doi: 10.1109/TCYB.2019.2951520 |
SSID | ssj0056292 |
Score | 2.3844764 |
Snippet | In this article, a bionic localization memristive circuit is proposed, which mainly consists of head direction cell module, grid cell module, place cell module... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 552 |
SubjectTerms | Angular velocity Bio-inspired computing Bionics Bionics - instrumentation Cell culture circuit implementation Cognition - physiology Computer Simulation Cortex (entorhinal) Decoding Entorhinal Cortex - physiology Firing Hippocampus Hippocampus - physiology Humans Integrated circuit modeling Localization Location awareness Memristor Memristors Mental task performance Models, Neurological Modules Navigation Neural Networks, Computer Neurons One dimensional models Robots spatial cells spatial cognitive mechanism Velocity |
Title | A Bionic Localization Memristive Circuit Based on Spatial Cognitive Mechanisms of Hippocampus and Entorhinal Cortex |
URI | https://ieeexplore.ieee.org/document/10381810 https://www.ncbi.nlm.nih.gov/pubmed/38805341 https://www.proquest.com/docview/3061457863 https://www.proquest.com/docview/3061784571 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1dS9xAcGh9qg9VW63xiy30rdyZZHdj9vHuUA5RX6rgW9ivwFEud1wSKf31zmwSsQXBt8BONpudmZ2ZnS-AHyrLVeyRAZPcyJFwFlnKIF9p49JYeyuFpXvI27ts_iCuH-Vjn6wecmG89yH4zI_pMfjy3cq2dFV2ngS3FiVUfUQ665K1hmMX5XjogEwKCRXylkOGTKzO76ezyS-0BVMx5uRI49SvhqqgSC6SfwRS6LDytrIZhM7VDtwNy-1iTX6P28aM7d__Kjm--3924XOvfrJJRy978MFXX2D7VVHCr1BP2JQuaS27ITnX52myW78M58GTZ7PFxraLhk1RAjqGY9TXGOmYzYZYJISmjOJFvazZqmTzxXqNcy3Xbc105dhlhZY-Ne6mVzaN_7MPD1eX97P5qG_NMLIo85qRSBNrSqkcV9IIpWOXXbiY81KW3GU5T5xBPUU7BOOqjFPtbFLqHO3hOEeCUPwAtqpV5Q-BGa9VmkmbCWMEmntaG2VdqsvUl4gjG8HPAT_FuqvAUQTLJVZFQGxBiC16xEawT_v8CrLb4ghOBpwWPZfWBSdzGI-sjEfw_WUY-YucJrryq7aDucgRKongW0cLL5MPJHT0xkeP4ROtrYssO4GtZtP6U9RhGnMWaPcZuznrlA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db9Mw8ITGA_DA54DAACPxhtolsZ3Fj221qUDbFzppb5G_IlWoadUk08Sv585JpoE0ibdIvjiO78535_sC-KKyXMUeGTDJjRwJZ5GlDPKVNi6NtbdSWLqHXK6y-aX4fiWv-mT1kAvjvQ_BZ35Mj8GX73a2pauy0yS4tSih6iEKfiG7dK3h4EVJHnogk0pCpbzlkCMTq9P1dDb5idZgKsacXGmcOtZQHRTJRfKXSAo9Vu5XN4PYuXgGq2HBXbTJr3HbmLH9_U8tx__-o-fwtFdA2aSjmBfwwFcv4cmdsoSvoJ6wKV3TWrYgSddnarKl34YT4dqz2eZg203DpigDHcMx6myMlMxmQzQSQlNO8abe1mxXsvlmv8e5tvu2Zrpy7LxCW59ad9Mrh8bfHMPlxfl6Nh_1zRlGFqVeMxJpYk0pleNKGqF07LIzF3NeypK7LOeJM6ipaIdgXJVxqp1NSp2jRRznSBKKv4ajalf5t8CM1yrNpM2EMQINPq2Nsi7VZepLxJGN4OuAn2Lf1eAogu0SqyIgtiDEFj1iIzimfb4D2W1xBCcDToueT-uCk0GMh1bGI_h8O4wcRm4TXfld28Gc5QiVRPCmo4XbyQcSenfPRz_Bo_l6uSgW31Y_3sNjWmcXZ3YCR82h9R9Qo2nMx0DHfwA3n-7h |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bionic+Localization+Memristive+Circuit+Based+on+Spatial+Cognitive+Mechanisms+of+Hippocampus+and+Entorhinal+Cortex&rft.jtitle=IEEE+transactions+on+biomedical+circuits+and+systems&rft.au=Tang%2C+Zihui&rft.au=Wang%2C+Xiaoping&rft.au=Yang%2C+Chao&rft.au=Chen%2C+Zhanfei&rft.date=2024-06-01&rft.issn=1932-4545&rft.eissn=1940-9990&rft.volume=18&rft.issue=3&rft.spage=552&rft.epage=563&rft_id=info:doi/10.1109%2FTBCAS.2024.3350135&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBCAS_2024_3350135 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4545&client=summon |