Creation of two-dimensional composite solitons in spin-orbit-coupled self-attractive Bose-Einstein condensates in free space

It is commonly known that two-dimensional mean-field models of optical and matter waves with cubic self-attraction cannot produce stable solitons in free space because of the occurrence of collapse in the same setting. By means of numerical analysis and variational approximation, we demonstrate that...

Full description

Saved in:
Bibliographic Details
Published inPhysical review. E, Statistical, nonlinear, and soft matter physics Vol. 89; no. 3; p. 032920
Main Authors Sakaguchi, Hidetsugu, Li, Ben, Malomed, Boris A
Format Journal Article
LanguageEnglish
Published United States 01.03.2014
Online AccessGet more information
ISSN1550-2376
DOI10.1103/PhysRevE.89.032920

Cover

Loading…
Abstract It is commonly known that two-dimensional mean-field models of optical and matter waves with cubic self-attraction cannot produce stable solitons in free space because of the occurrence of collapse in the same setting. By means of numerical analysis and variational approximation, we demonstrate that the two-component model of the Bose-Einstein condensate with the spin-orbit Rashba coupling and cubic attractive interactions gives rise to solitary-vortex complexes of two types: semivortices (SVs, with a vortex in one component and a fundamental soliton in the other), and mixed modes (MMs, with topological charges 0 and ±1 mixed in both components). These two-dimensional composite modes can be created using the trapping harmonic-oscillator (HO) potential, but remain stable in free space, if the trap is gradually removed. The SVs and MMs realize the ground state of the system, provided that the self-attraction in the two components is, respectively, stronger or weaker than the cross attraction between them. The SVs and MMs which are not the ground states are subject to a drift instability. In free space (in the absence of the HO trap), modes of both types degenerate into unstable Townes solitons when their norms attain the respective critical values, while there is no lower existence threshold for the stable modes. Moving free-space stable solitons are also found in the present non-Galilean-invariant system, up to a critical velocity. Collisions between two moving solitons lead to their merger into a single one.
AbstractList It is commonly known that two-dimensional mean-field models of optical and matter waves with cubic self-attraction cannot produce stable solitons in free space because of the occurrence of collapse in the same setting. By means of numerical analysis and variational approximation, we demonstrate that the two-component model of the Bose-Einstein condensate with the spin-orbit Rashba coupling and cubic attractive interactions gives rise to solitary-vortex complexes of two types: semivortices (SVs, with a vortex in one component and a fundamental soliton in the other), and mixed modes (MMs, with topological charges 0 and ±1 mixed in both components). These two-dimensional composite modes can be created using the trapping harmonic-oscillator (HO) potential, but remain stable in free space, if the trap is gradually removed. The SVs and MMs realize the ground state of the system, provided that the self-attraction in the two components is, respectively, stronger or weaker than the cross attraction between them. The SVs and MMs which are not the ground states are subject to a drift instability. In free space (in the absence of the HO trap), modes of both types degenerate into unstable Townes solitons when their norms attain the respective critical values, while there is no lower existence threshold for the stable modes. Moving free-space stable solitons are also found in the present non-Galilean-invariant system, up to a critical velocity. Collisions between two moving solitons lead to their merger into a single one.
Author Malomed, Boris A
Li, Ben
Sakaguchi, Hidetsugu
Author_xml – sequence: 1
  givenname: Hidetsugu
  surname: Sakaguchi
  fullname: Sakaguchi, Hidetsugu
  organization: Department of Applied Science for Electronics and Materials, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
– sequence: 2
  givenname: Ben
  surname: Li
  fullname: Li, Ben
  organization: Department of Applied Science for Electronics and Materials, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
– sequence: 3
  givenname: Boris A
  surname: Malomed
  fullname: Malomed, Boris A
  organization: Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24730926$$D View this record in MEDLINE/PubMed
BookMark eNo1kMtKAzEYhYMo9qIv4ELyAqm5TDPJUkurQkERXZdM8gcjM8kwSSsFH97By-rAOXzf4szQaUwRELpidMEYFTfP78f8Aof1QukFFVxzeoKmbLmkhItaTtAs5w86DkJV52jCq1pQzeUUfa0GMCWkiJPH5TMRFzqIeSxMi23q-pRDAZxTG0qKGYeIcx8iSUMTCrFp37fgcIbWE1PKYGwJB8B3KQNZh5gLjIBN0Y1OU-CH9wOMwt5YuEBn3rQZLv9yjt4269fVA9k-3T-ubrfECioKqVituGe0pkY2WlDLFdfSVco5alWjmKx5pT1VzIBwUnsPUi8bb5hiQlDJ5-j619vvmw7crh9CZ4bj7v8G_g0jk2Ld
CitedBy_id crossref_primary_10_1088_0256_307X_34_9_090301
crossref_primary_10_1103_PhysRevE_90_062922
crossref_primary_10_1038_s41598_017_15900_w
crossref_primary_10_1364_OL_40_004126
crossref_primary_10_1007_s13538_020_00796_1
crossref_primary_10_1103_PhysRevA_101_013607
crossref_primary_10_1007_s11467_022_1180_3
crossref_primary_10_1088_1751_8113_48_5_055204
crossref_primary_10_1016_j_rinp_2024_107809
crossref_primary_10_1103_PhysRevA_108_043311
crossref_primary_10_1088_1367_2630_aaec4a
crossref_primary_10_1103_PhysRevLett_122_123201
crossref_primary_10_1016_j_physleta_2022_128597
crossref_primary_10_1103_PhysRevA_105_023303
crossref_primary_10_1088_1674_1056_abab72
crossref_primary_10_1016_j_aml_2018_12_023
crossref_primary_10_1103_PhysRevA_104_043315
crossref_primary_10_1002_adpr_202000082
crossref_primary_10_1016_j_chaos_2020_110332
crossref_primary_10_1016_j_chaos_2022_112079
crossref_primary_10_1016_j_physleta_2023_128987
crossref_primary_10_1088_1367_2630_ad49c4
crossref_primary_10_1080_23746149_2023_2301592
crossref_primary_10_1016_j_physleta_2018_04_032
crossref_primary_10_1007_s11071_024_10407_2
crossref_primary_10_1103_PhysRevA_91_043629
crossref_primary_10_1016_j_rinp_2024_107935
crossref_primary_10_7498_aps_69_20191424
crossref_primary_10_1038_s41598_019_44218_y
crossref_primary_10_1088_1367_2630_aa983b
crossref_primary_10_1016_j_physleta_2022_128334
crossref_primary_10_1103_PhysRevE_94_022207
crossref_primary_10_3390_photonics11040330
crossref_primary_10_1088_1674_1056_ad6424
crossref_primary_10_3389_fphy_2021_768799
crossref_primary_10_1088_1361_648X_acd0f9
crossref_primary_10_1103_PhysRevA_110_063302
crossref_primary_10_1103_PhysRevResearch_2_033214
crossref_primary_10_1016_j_rinp_2020_103304
crossref_primary_10_1016_j_physleta_2020_127042
crossref_primary_10_1103_PhysRevA_90_023623
crossref_primary_10_1007_s11467_017_0732_4
crossref_primary_10_1088_1361_6455_ad41c0
crossref_primary_10_1103_PhysRevA_94_053810
crossref_primary_10_1016_j_ijleo_2022_169688
crossref_primary_10_1016_j_cnsns_2022_106930
crossref_primary_10_1016_j_cpc_2020_107671
crossref_primary_10_1103_PhysRevA_95_033607
crossref_primary_10_1103_PhysRevA_96_053617
crossref_primary_10_1016_j_chaos_2024_115325
crossref_primary_10_1016_j_chaos_2024_115329
crossref_primary_10_1140_epjst_e2016_60025_y
crossref_primary_10_1016_j_physleta_2024_129592
crossref_primary_10_1016_j_cnsns_2020_105217
crossref_primary_10_1016_j_chaos_2019_109418
crossref_primary_10_1142_S0217984923500756
crossref_primary_10_1088_1367_2630_16_6_063035
crossref_primary_10_1103_PhysRevA_95_043605
crossref_primary_10_1088_1367_2630_18_10_105005
crossref_primary_10_1088_1402_4896_ad9229
crossref_primary_10_1209_0295_5075_122_36001
crossref_primary_10_1007_s11467_018_0857_0
crossref_primary_10_1016_j_physleta_2023_129005
crossref_primary_10_1016_j_physleta_2017_05_024
crossref_primary_10_1088_1361_6455_ab46f9
crossref_primary_10_1016_j_chaos_2018_10_001
crossref_primary_10_1016_j_physleta_2024_129777
crossref_primary_10_1364_OL_40_001045
crossref_primary_10_1063_1_4903359
crossref_primary_10_1016_j_cnsns_2022_106792
crossref_primary_10_1088_1361_648X_aab55e
crossref_primary_10_1103_PhysRevA_103_L011301
crossref_primary_10_1016_j_chaos_2024_114979
crossref_primary_10_1016_j_physe_2019_113892
crossref_primary_10_1103_PhysRevA_104_043526
crossref_primary_10_1016_j_chaos_2018_10_033
crossref_primary_10_1103_PhysRevE_94_012207
crossref_primary_10_1016_j_chaos_2017_06_008
crossref_primary_10_1007_s11467_020_1020_2
crossref_primary_10_1038_srep09420
crossref_primary_10_1016_j_cnsns_2015_06_026
crossref_primary_10_7566_JPSJ_88_024005
crossref_primary_10_3390_condmat4010022
crossref_primary_10_1088_0953_4075_49_17_170502
crossref_primary_10_1007_s11071_023_08335_8
crossref_primary_10_1088_0953_4075_48_6_065301
crossref_primary_10_1103_PhysRevResearch_2_013036
crossref_primary_10_1088_1367_2630_ab725b
crossref_primary_10_1103_PhysRevA_99_023610
crossref_primary_10_1103_PhysRevE_109_064206
crossref_primary_10_1103_PhysRevA_94_033629
crossref_primary_10_1103_PhysRevE_109_064201
crossref_primary_10_3390_photonics9050283
crossref_primary_10_7498_aps_68_20182013
crossref_primary_10_1016_j_cnsns_2018_07_040
crossref_primary_10_3390_e26020137
crossref_primary_10_1103_PhysRevE_104_024207
crossref_primary_10_2139_ssrn_4174069
crossref_primary_10_1063_5_0190039
crossref_primary_10_3390_app8101771
crossref_primary_10_1209_0295_5075_115_14006
crossref_primary_10_1103_PhysRevLett_125_054101
crossref_primary_10_1103_PhysRevA_106_063311
crossref_primary_10_1103_PhysRevA_93_023633
crossref_primary_10_1016_j_chaos_2021_111313
crossref_primary_10_1016_j_chaos_2022_112481
crossref_primary_10_1103_PhysRevE_103_052206
crossref_primary_10_1103_PhysRevE_108_014208
crossref_primary_10_1142_S0217984922500506
crossref_primary_10_1016_j_cnsns_2020_105412
crossref_primary_10_1016_j_aop_2018_01_018
crossref_primary_10_1088_1361_6455_ace1bc
crossref_primary_10_1088_1572_9494_ab95fb
crossref_primary_10_1016_j_physd_2024_134157
crossref_primary_10_1103_PhysRevE_106_014201
crossref_primary_10_7566_JPSJ_90_054003
crossref_primary_10_2139_ssrn_3945463
crossref_primary_10_7566_JPSJ_87_094005
crossref_primary_10_1007_s11467_018_0778_y
crossref_primary_10_1103_PhysRevA_111_023325
crossref_primary_10_1103_PhysRevE_108_055305
crossref_primary_10_1016_j_cnsns_2018_10_024
crossref_primary_10_1103_PhysRevResearch_2_033522
crossref_primary_10_1088_1751_8113_48_47_475001
crossref_primary_10_1016_j_aop_2019_03_030
crossref_primary_10_1016_j_physb_2023_415528
crossref_primary_10_1038_s41598_018_22008_2
crossref_primary_10_1016_j_cnsns_2022_106769
crossref_primary_10_1103_PhysRevA_90_043619
crossref_primary_10_3390_sym14081565
crossref_primary_10_1103_PhysRevA_91_013607
crossref_primary_10_1103_PhysRevA_94_061602
crossref_primary_10_1103_PhysRevA_95_013608
crossref_primary_10_2139_ssrn_3961973
crossref_primary_10_1103_PhysRevE_102_032220
crossref_primary_10_1088_0256_307X_41_9_090302
crossref_primary_10_1103_PhysRevA_98_063602
crossref_primary_10_1016_j_physd_2019_04_009
crossref_primary_10_1103_PhysRevE_99_062220
crossref_primary_10_1103_PhysRevA_99_053602
crossref_primary_10_7498_aps_72_20222319
crossref_primary_10_1103_PhysRevA_109_013326
crossref_primary_10_1103_PhysRevA_92_013633
crossref_primary_10_1016_j_cnsns_2019_105045
crossref_primary_10_1063_10_0014579
crossref_primary_10_1088_1612_202X_aacb0a
crossref_primary_10_1088_1751_8121_aa59c1
crossref_primary_10_1103_PhysRevA_98_033827
crossref_primary_10_3390_sym11030388
crossref_primary_10_7498_aps_67_20171708
crossref_primary_10_1016_j_chaos_2023_113137
crossref_primary_10_1103_PhysRevA_97_013636
crossref_primary_10_1016_j_optcom_2017_02_008
crossref_primary_10_1088_1674_1056_27_1_016702
crossref_primary_10_1103_PhysRevA_107_033308
crossref_primary_10_1103_PhysRevA_91_013624
crossref_primary_10_1103_PhysRevA_92_063606
crossref_primary_10_1103_PhysRevA_98_023604
crossref_primary_10_1103_PhysRevA_97_013629
crossref_primary_10_1007_s11071_019_04846_5
crossref_primary_10_1016_j_physleta_2021_127696
crossref_primary_10_1103_PhysRevB_102_195428
crossref_primary_10_1088_1361_6455_ab7528
crossref_primary_10_1103_PhysRevLett_113_264101
crossref_primary_10_1016_j_cnsns_2019_01_031
crossref_primary_10_1016_j_chaos_2021_111406
crossref_primary_10_1016_j_chaos_2024_114456
crossref_primary_10_1038_s42254_019_0025_7
crossref_primary_10_1103_PhysRevA_95_063613
crossref_primary_10_1016_j_cnsns_2016_12_028
crossref_primary_10_1142_S0217979218501072
crossref_primary_10_1103_PhysRevA_97_013614
crossref_primary_10_1007_s10773_021_04801_4
crossref_primary_10_1016_j_scib_2023_07_048
crossref_primary_10_1111_sapm_12102
crossref_primary_10_1016_j_cnsns_2022_107013
crossref_primary_10_7566_JPSJ_85_064402
crossref_primary_10_1016_j_cnsns_2022_106282
crossref_primary_10_1088_1367_2630_aa7fb0
crossref_primary_10_1103_PhysRevA_102_033523
crossref_primary_10_1088_1674_1056_abf34a
crossref_primary_10_1007_s11071_020_05692_6
crossref_primary_10_1103_PhysRevA_104_033325
crossref_primary_10_1088_2040_8978_17_4_045503
crossref_primary_10_1103_PhysRevA_97_013607
crossref_primary_10_1103_PhysRevLett_115_253902
crossref_primary_10_1103_PhysRevA_96_043613
crossref_primary_10_7566_JPSJ_83_114005
crossref_primary_10_1103_PhysRevA_90_033629
crossref_primary_10_1016_j_ijleo_2023_171073
crossref_primary_10_1103_PhysRevE_94_032202
crossref_primary_10_1088_2040_8986_ab806e
crossref_primary_10_1016_j_physleta_2018_12_036
crossref_primary_10_1103_PhysRevA_106_063321
crossref_primary_10_1038_s41598_023_44745_9
crossref_primary_10_1103_PhysRevA_94_053611
crossref_primary_10_1007_s11082_017_1247_5
crossref_primary_10_1209_0295_5075_ac724f
crossref_primary_10_1103_PhysRevA_96_043620
crossref_primary_10_1016_j_chaos_2023_113848
ContentType Journal Article
DBID NPM
DOI 10.1103/PhysRevE.89.032920
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 1550-2376
ExternalDocumentID 24730926
Genre Journal Article
GroupedDBID ---
-~X
123
2-P
29O
3MX
6TJ
8NH
ACGFO
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
AUAIK
CS3
DU5
EBS
EJD
F5P
MVM
NPBMV
NPM
OHT
P2P
PKN
RNS
S7W
TN5
WH7
XJT
YNT
ZPR
ID FETCH-LOGICAL-c303t-41782f1070a6b930c28296d48dd0c8b8167249f081ae3d69ffe695bfa18133062
IngestDate Wed Feb 19 01:55:28 EST 2025
IsPeerReviewed false
IsScholarly false
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-41782f1070a6b930c28296d48dd0c8b8167249f081ae3d69ffe695bfa18133062
PMID 24730926
ParticipantIDs pubmed_primary_24730926
PublicationCentury 2000
PublicationDate 2014-Mar
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-Mar
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review. E, Statistical, nonlinear, and soft matter physics
PublicationTitleAlternate Phys Rev E Stat Nonlin Soft Matter Phys
PublicationYear 2014
SSID ssj0032384
Score 2.2304933
Snippet It is commonly known that two-dimensional mean-field models of optical and matter waves with cubic self-attraction cannot produce stable solitons in free space...
SourceID pubmed
SourceType Index Database
StartPage 032920
Title Creation of two-dimensional composite solitons in spin-orbit-coupled self-attractive Bose-Einstein condensates in free space
URI https://www.ncbi.nlm.nih.gov/pubmed/24730926
Volume 89
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa6ISRe0Pg5YCA_8Fa5pLXjJI9s6jQhDSHYpL1NtmNPEV1TLemQEH8cfxp3dpJm2UDAS9TajdXmPp2_c7-7I-St48amwiQssUDfRMwV07HMWCKF1BBPxEmGycnHH-XRqfhwFp-NRj97qqV1rSfm-515Jf9jVRgDu2KW7D9YtlsUBuA12BeuYGG4_pWND3qMr_5WshxL9YcyG14rjoIsO65Q4tYIxqtVsWTllS5qZsr1agF0s7ILx1Rd-3SpazveLyvL5gXQRus16tgit0JGive7KwsLQpx9Q0H0qTV2SISZjOdBQIaZE_6sHN8uQ1EO1QlGK9gBxpe-vmdzwNLx-y_qq7rANi1-ZyxyW1fri3UnHvLD-5sktmO1wCICfrQEr9Uc0DaHGVOxUXNNbOOA44ihUqfvoUOToQaJvOduI47Ntu7eCSKsSIG__7O9nk9SrGU7_DBYc3XpsTET4OmykLv_59lBde52aotsQZyCjVfxtCgwAQ50SLSJWhF_d_vLYCnqZoFBWOPpzckOedjEJfR9ANkjMrLLx-R-MGz1hPxooUZLRwdQox3UaAs1WizpbajRAdToDajRHtTwfoQa9VB7Sk4P5ycHR6xp3MEMMKKaiSnwTjeF3URJnfHI4N_1Mhdpnkcm1elUJhD1O2CjyvJcZs5ZmcXaKaCbHGLY2TOyDaC0u4RCQG9kYt0sE0bkOZBTYU0Up4mOnHaJeEGeh8d2vgrVWc7bB_rytzOvyIMN9vbIPQfuwL4GblnrN96AvwBluH8M
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Creation+of+two-dimensional+composite+solitons+in+spin-orbit-coupled+self-attractive+Bose-Einstein+condensates+in+free+space&rft.jtitle=Physical+review.+E%2C+Statistical%2C+nonlinear%2C+and+soft+matter+physics&rft.au=Sakaguchi%2C+Hidetsugu&rft.au=Li%2C+Ben&rft.au=Malomed%2C+Boris+A&rft.date=2014-03-01&rft.eissn=1550-2376&rft.volume=89&rft.issue=3&rft.spage=032920&rft_id=info:doi/10.1103%2FPhysRevE.89.032920&rft_id=info%3Apmid%2F24730926&rft_id=info%3Apmid%2F24730926&rft.externalDocID=24730926