Creation of two-dimensional composite solitons in spin-orbit-coupled self-attractive Bose-Einstein condensates in free space
It is commonly known that two-dimensional mean-field models of optical and matter waves with cubic self-attraction cannot produce stable solitons in free space because of the occurrence of collapse in the same setting. By means of numerical analysis and variational approximation, we demonstrate that...
Saved in:
Published in | Physical review. E, Statistical, nonlinear, and soft matter physics Vol. 89; no. 3; p. 032920 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
01.03.2014
|
Online Access | Get more information |
ISSN | 1550-2376 |
DOI | 10.1103/PhysRevE.89.032920 |
Cover
Loading…
Abstract | It is commonly known that two-dimensional mean-field models of optical and matter waves with cubic self-attraction cannot produce stable solitons in free space because of the occurrence of collapse in the same setting. By means of numerical analysis and variational approximation, we demonstrate that the two-component model of the Bose-Einstein condensate with the spin-orbit Rashba coupling and cubic attractive interactions gives rise to solitary-vortex complexes of two types: semivortices (SVs, with a vortex in one component and a fundamental soliton in the other), and mixed modes (MMs, with topological charges 0 and ±1 mixed in both components). These two-dimensional composite modes can be created using the trapping harmonic-oscillator (HO) potential, but remain stable in free space, if the trap is gradually removed. The SVs and MMs realize the ground state of the system, provided that the self-attraction in the two components is, respectively, stronger or weaker than the cross attraction between them. The SVs and MMs which are not the ground states are subject to a drift instability. In free space (in the absence of the HO trap), modes of both types degenerate into unstable Townes solitons when their norms attain the respective critical values, while there is no lower existence threshold for the stable modes. Moving free-space stable solitons are also found in the present non-Galilean-invariant system, up to a critical velocity. Collisions between two moving solitons lead to their merger into a single one. |
---|---|
AbstractList | It is commonly known that two-dimensional mean-field models of optical and matter waves with cubic self-attraction cannot produce stable solitons in free space because of the occurrence of collapse in the same setting. By means of numerical analysis and variational approximation, we demonstrate that the two-component model of the Bose-Einstein condensate with the spin-orbit Rashba coupling and cubic attractive interactions gives rise to solitary-vortex complexes of two types: semivortices (SVs, with a vortex in one component and a fundamental soliton in the other), and mixed modes (MMs, with topological charges 0 and ±1 mixed in both components). These two-dimensional composite modes can be created using the trapping harmonic-oscillator (HO) potential, but remain stable in free space, if the trap is gradually removed. The SVs and MMs realize the ground state of the system, provided that the self-attraction in the two components is, respectively, stronger or weaker than the cross attraction between them. The SVs and MMs which are not the ground states are subject to a drift instability. In free space (in the absence of the HO trap), modes of both types degenerate into unstable Townes solitons when their norms attain the respective critical values, while there is no lower existence threshold for the stable modes. Moving free-space stable solitons are also found in the present non-Galilean-invariant system, up to a critical velocity. Collisions between two moving solitons lead to their merger into a single one. |
Author | Malomed, Boris A Li, Ben Sakaguchi, Hidetsugu |
Author_xml | – sequence: 1 givenname: Hidetsugu surname: Sakaguchi fullname: Sakaguchi, Hidetsugu organization: Department of Applied Science for Electronics and Materials, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan – sequence: 2 givenname: Ben surname: Li fullname: Li, Ben organization: Department of Applied Science for Electronics and Materials, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan – sequence: 3 givenname: Boris A surname: Malomed fullname: Malomed, Boris A organization: Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24730926$$D View this record in MEDLINE/PubMed |
BookMark | eNo1kMtKAzEYhYMo9qIv4ELyAqm5TDPJUkurQkERXZdM8gcjM8kwSSsFH97By-rAOXzf4szQaUwRELpidMEYFTfP78f8Aof1QukFFVxzeoKmbLmkhItaTtAs5w86DkJV52jCq1pQzeUUfa0GMCWkiJPH5TMRFzqIeSxMi23q-pRDAZxTG0qKGYeIcx8iSUMTCrFp37fgcIbWE1PKYGwJB8B3KQNZh5gLjIBN0Y1OU-CH9wOMwt5YuEBn3rQZLv9yjt4269fVA9k-3T-ubrfECioKqVituGe0pkY2WlDLFdfSVco5alWjmKx5pT1VzIBwUnsPUi8bb5hiQlDJ5-j619vvmw7crh9CZ4bj7v8G_g0jk2Ld |
CitedBy_id | crossref_primary_10_1088_0256_307X_34_9_090301 crossref_primary_10_1103_PhysRevE_90_062922 crossref_primary_10_1038_s41598_017_15900_w crossref_primary_10_1364_OL_40_004126 crossref_primary_10_1007_s13538_020_00796_1 crossref_primary_10_1103_PhysRevA_101_013607 crossref_primary_10_1007_s11467_022_1180_3 crossref_primary_10_1088_1751_8113_48_5_055204 crossref_primary_10_1016_j_rinp_2024_107809 crossref_primary_10_1103_PhysRevA_108_043311 crossref_primary_10_1088_1367_2630_aaec4a crossref_primary_10_1103_PhysRevLett_122_123201 crossref_primary_10_1016_j_physleta_2022_128597 crossref_primary_10_1103_PhysRevA_105_023303 crossref_primary_10_1088_1674_1056_abab72 crossref_primary_10_1016_j_aml_2018_12_023 crossref_primary_10_1103_PhysRevA_104_043315 crossref_primary_10_1002_adpr_202000082 crossref_primary_10_1016_j_chaos_2020_110332 crossref_primary_10_1016_j_chaos_2022_112079 crossref_primary_10_1016_j_physleta_2023_128987 crossref_primary_10_1088_1367_2630_ad49c4 crossref_primary_10_1080_23746149_2023_2301592 crossref_primary_10_1016_j_physleta_2018_04_032 crossref_primary_10_1007_s11071_024_10407_2 crossref_primary_10_1103_PhysRevA_91_043629 crossref_primary_10_1016_j_rinp_2024_107935 crossref_primary_10_7498_aps_69_20191424 crossref_primary_10_1038_s41598_019_44218_y crossref_primary_10_1088_1367_2630_aa983b crossref_primary_10_1016_j_physleta_2022_128334 crossref_primary_10_1103_PhysRevE_94_022207 crossref_primary_10_3390_photonics11040330 crossref_primary_10_1088_1674_1056_ad6424 crossref_primary_10_3389_fphy_2021_768799 crossref_primary_10_1088_1361_648X_acd0f9 crossref_primary_10_1103_PhysRevA_110_063302 crossref_primary_10_1103_PhysRevResearch_2_033214 crossref_primary_10_1016_j_rinp_2020_103304 crossref_primary_10_1016_j_physleta_2020_127042 crossref_primary_10_1103_PhysRevA_90_023623 crossref_primary_10_1007_s11467_017_0732_4 crossref_primary_10_1088_1361_6455_ad41c0 crossref_primary_10_1103_PhysRevA_94_053810 crossref_primary_10_1016_j_ijleo_2022_169688 crossref_primary_10_1016_j_cnsns_2022_106930 crossref_primary_10_1016_j_cpc_2020_107671 crossref_primary_10_1103_PhysRevA_95_033607 crossref_primary_10_1103_PhysRevA_96_053617 crossref_primary_10_1016_j_chaos_2024_115325 crossref_primary_10_1016_j_chaos_2024_115329 crossref_primary_10_1140_epjst_e2016_60025_y crossref_primary_10_1016_j_physleta_2024_129592 crossref_primary_10_1016_j_cnsns_2020_105217 crossref_primary_10_1016_j_chaos_2019_109418 crossref_primary_10_1142_S0217984923500756 crossref_primary_10_1088_1367_2630_16_6_063035 crossref_primary_10_1103_PhysRevA_95_043605 crossref_primary_10_1088_1367_2630_18_10_105005 crossref_primary_10_1088_1402_4896_ad9229 crossref_primary_10_1209_0295_5075_122_36001 crossref_primary_10_1007_s11467_018_0857_0 crossref_primary_10_1016_j_physleta_2023_129005 crossref_primary_10_1016_j_physleta_2017_05_024 crossref_primary_10_1088_1361_6455_ab46f9 crossref_primary_10_1016_j_chaos_2018_10_001 crossref_primary_10_1016_j_physleta_2024_129777 crossref_primary_10_1364_OL_40_001045 crossref_primary_10_1063_1_4903359 crossref_primary_10_1016_j_cnsns_2022_106792 crossref_primary_10_1088_1361_648X_aab55e crossref_primary_10_1103_PhysRevA_103_L011301 crossref_primary_10_1016_j_chaos_2024_114979 crossref_primary_10_1016_j_physe_2019_113892 crossref_primary_10_1103_PhysRevA_104_043526 crossref_primary_10_1016_j_chaos_2018_10_033 crossref_primary_10_1103_PhysRevE_94_012207 crossref_primary_10_1016_j_chaos_2017_06_008 crossref_primary_10_1007_s11467_020_1020_2 crossref_primary_10_1038_srep09420 crossref_primary_10_1016_j_cnsns_2015_06_026 crossref_primary_10_7566_JPSJ_88_024005 crossref_primary_10_3390_condmat4010022 crossref_primary_10_1088_0953_4075_49_17_170502 crossref_primary_10_1007_s11071_023_08335_8 crossref_primary_10_1088_0953_4075_48_6_065301 crossref_primary_10_1103_PhysRevResearch_2_013036 crossref_primary_10_1088_1367_2630_ab725b crossref_primary_10_1103_PhysRevA_99_023610 crossref_primary_10_1103_PhysRevE_109_064206 crossref_primary_10_1103_PhysRevA_94_033629 crossref_primary_10_1103_PhysRevE_109_064201 crossref_primary_10_3390_photonics9050283 crossref_primary_10_7498_aps_68_20182013 crossref_primary_10_1016_j_cnsns_2018_07_040 crossref_primary_10_3390_e26020137 crossref_primary_10_1103_PhysRevE_104_024207 crossref_primary_10_2139_ssrn_4174069 crossref_primary_10_1063_5_0190039 crossref_primary_10_3390_app8101771 crossref_primary_10_1209_0295_5075_115_14006 crossref_primary_10_1103_PhysRevLett_125_054101 crossref_primary_10_1103_PhysRevA_106_063311 crossref_primary_10_1103_PhysRevA_93_023633 crossref_primary_10_1016_j_chaos_2021_111313 crossref_primary_10_1016_j_chaos_2022_112481 crossref_primary_10_1103_PhysRevE_103_052206 crossref_primary_10_1103_PhysRevE_108_014208 crossref_primary_10_1142_S0217984922500506 crossref_primary_10_1016_j_cnsns_2020_105412 crossref_primary_10_1016_j_aop_2018_01_018 crossref_primary_10_1088_1361_6455_ace1bc crossref_primary_10_1088_1572_9494_ab95fb crossref_primary_10_1016_j_physd_2024_134157 crossref_primary_10_1103_PhysRevE_106_014201 crossref_primary_10_7566_JPSJ_90_054003 crossref_primary_10_2139_ssrn_3945463 crossref_primary_10_7566_JPSJ_87_094005 crossref_primary_10_1007_s11467_018_0778_y crossref_primary_10_1103_PhysRevA_111_023325 crossref_primary_10_1103_PhysRevE_108_055305 crossref_primary_10_1016_j_cnsns_2018_10_024 crossref_primary_10_1103_PhysRevResearch_2_033522 crossref_primary_10_1088_1751_8113_48_47_475001 crossref_primary_10_1016_j_aop_2019_03_030 crossref_primary_10_1016_j_physb_2023_415528 crossref_primary_10_1038_s41598_018_22008_2 crossref_primary_10_1016_j_cnsns_2022_106769 crossref_primary_10_1103_PhysRevA_90_043619 crossref_primary_10_3390_sym14081565 crossref_primary_10_1103_PhysRevA_91_013607 crossref_primary_10_1103_PhysRevA_94_061602 crossref_primary_10_1103_PhysRevA_95_013608 crossref_primary_10_2139_ssrn_3961973 crossref_primary_10_1103_PhysRevE_102_032220 crossref_primary_10_1088_0256_307X_41_9_090302 crossref_primary_10_1103_PhysRevA_98_063602 crossref_primary_10_1016_j_physd_2019_04_009 crossref_primary_10_1103_PhysRevE_99_062220 crossref_primary_10_1103_PhysRevA_99_053602 crossref_primary_10_7498_aps_72_20222319 crossref_primary_10_1103_PhysRevA_109_013326 crossref_primary_10_1103_PhysRevA_92_013633 crossref_primary_10_1016_j_cnsns_2019_105045 crossref_primary_10_1063_10_0014579 crossref_primary_10_1088_1612_202X_aacb0a crossref_primary_10_1088_1751_8121_aa59c1 crossref_primary_10_1103_PhysRevA_98_033827 crossref_primary_10_3390_sym11030388 crossref_primary_10_7498_aps_67_20171708 crossref_primary_10_1016_j_chaos_2023_113137 crossref_primary_10_1103_PhysRevA_97_013636 crossref_primary_10_1016_j_optcom_2017_02_008 crossref_primary_10_1088_1674_1056_27_1_016702 crossref_primary_10_1103_PhysRevA_107_033308 crossref_primary_10_1103_PhysRevA_91_013624 crossref_primary_10_1103_PhysRevA_92_063606 crossref_primary_10_1103_PhysRevA_98_023604 crossref_primary_10_1103_PhysRevA_97_013629 crossref_primary_10_1007_s11071_019_04846_5 crossref_primary_10_1016_j_physleta_2021_127696 crossref_primary_10_1103_PhysRevB_102_195428 crossref_primary_10_1088_1361_6455_ab7528 crossref_primary_10_1103_PhysRevLett_113_264101 crossref_primary_10_1016_j_cnsns_2019_01_031 crossref_primary_10_1016_j_chaos_2021_111406 crossref_primary_10_1016_j_chaos_2024_114456 crossref_primary_10_1038_s42254_019_0025_7 crossref_primary_10_1103_PhysRevA_95_063613 crossref_primary_10_1016_j_cnsns_2016_12_028 crossref_primary_10_1142_S0217979218501072 crossref_primary_10_1103_PhysRevA_97_013614 crossref_primary_10_1007_s10773_021_04801_4 crossref_primary_10_1016_j_scib_2023_07_048 crossref_primary_10_1111_sapm_12102 crossref_primary_10_1016_j_cnsns_2022_107013 crossref_primary_10_7566_JPSJ_85_064402 crossref_primary_10_1016_j_cnsns_2022_106282 crossref_primary_10_1088_1367_2630_aa7fb0 crossref_primary_10_1103_PhysRevA_102_033523 crossref_primary_10_1088_1674_1056_abf34a crossref_primary_10_1007_s11071_020_05692_6 crossref_primary_10_1103_PhysRevA_104_033325 crossref_primary_10_1088_2040_8978_17_4_045503 crossref_primary_10_1103_PhysRevA_97_013607 crossref_primary_10_1103_PhysRevLett_115_253902 crossref_primary_10_1103_PhysRevA_96_043613 crossref_primary_10_7566_JPSJ_83_114005 crossref_primary_10_1103_PhysRevA_90_033629 crossref_primary_10_1016_j_ijleo_2023_171073 crossref_primary_10_1103_PhysRevE_94_032202 crossref_primary_10_1088_2040_8986_ab806e crossref_primary_10_1016_j_physleta_2018_12_036 crossref_primary_10_1103_PhysRevA_106_063321 crossref_primary_10_1038_s41598_023_44745_9 crossref_primary_10_1103_PhysRevA_94_053611 crossref_primary_10_1007_s11082_017_1247_5 crossref_primary_10_1209_0295_5075_ac724f crossref_primary_10_1103_PhysRevA_96_043620 crossref_primary_10_1016_j_chaos_2023_113848 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1103/PhysRevE.89.032920 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1550-2376 |
ExternalDocumentID | 24730926 |
Genre | Journal Article |
GroupedDBID | --- -~X 123 2-P 29O 3MX 6TJ 8NH ACGFO AENEX AEQTI AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS AUAIK CS3 DU5 EBS EJD F5P MVM NPBMV NPM OHT P2P PKN RNS S7W TN5 WH7 XJT YNT ZPR |
ID | FETCH-LOGICAL-c303t-41782f1070a6b930c28296d48dd0c8b8167249f081ae3d69ffe695bfa18133062 |
IngestDate | Wed Feb 19 01:55:28 EST 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c303t-41782f1070a6b930c28296d48dd0c8b8167249f081ae3d69ffe695bfa18133062 |
PMID | 24730926 |
ParticipantIDs | pubmed_primary_24730926 |
PublicationCentury | 2000 |
PublicationDate | 2014-Mar |
PublicationDateYYYYMMDD | 2014-03-01 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-Mar |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Physical review. E, Statistical, nonlinear, and soft matter physics |
PublicationTitleAlternate | Phys Rev E Stat Nonlin Soft Matter Phys |
PublicationYear | 2014 |
SSID | ssj0032384 |
Score | 2.2304933 |
Snippet | It is commonly known that two-dimensional mean-field models of optical and matter waves with cubic self-attraction cannot produce stable solitons in free space... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 032920 |
Title | Creation of two-dimensional composite solitons in spin-orbit-coupled self-attractive Bose-Einstein condensates in free space |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24730926 |
Volume | 89 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa6ISRe0Pg5YCA_8Fa5pLXjJI9s6jQhDSHYpL1NtmNPEV1TLemQEH8cfxp3dpJm2UDAS9TajdXmPp2_c7-7I-St48amwiQssUDfRMwV07HMWCKF1BBPxEmGycnHH-XRqfhwFp-NRj97qqV1rSfm-515Jf9jVRgDu2KW7D9YtlsUBuA12BeuYGG4_pWND3qMr_5WshxL9YcyG14rjoIsO65Q4tYIxqtVsWTllS5qZsr1agF0s7ILx1Rd-3SpazveLyvL5gXQRus16tgit0JGive7KwsLQpx9Q0H0qTV2SISZjOdBQIaZE_6sHN8uQ1EO1QlGK9gBxpe-vmdzwNLx-y_qq7rANi1-ZyxyW1fri3UnHvLD-5sktmO1wCICfrQEr9Uc0DaHGVOxUXNNbOOA44ihUqfvoUOToQaJvOduI47Ntu7eCSKsSIG__7O9nk9SrGU7_DBYc3XpsTET4OmykLv_59lBde52aotsQZyCjVfxtCgwAQ50SLSJWhF_d_vLYCnqZoFBWOPpzckOedjEJfR9ANkjMrLLx-R-MGz1hPxooUZLRwdQox3UaAs1WizpbajRAdToDajRHtTwfoQa9VB7Sk4P5ycHR6xp3MEMMKKaiSnwTjeF3URJnfHI4N_1Mhdpnkcm1elUJhD1O2CjyvJcZs5ZmcXaKaCbHGLY2TOyDaC0u4RCQG9kYt0sE0bkOZBTYU0Up4mOnHaJeEGeh8d2vgrVWc7bB_rytzOvyIMN9vbIPQfuwL4GblnrN96AvwBluH8M |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Creation+of+two-dimensional+composite+solitons+in+spin-orbit-coupled+self-attractive+Bose-Einstein+condensates+in+free+space&rft.jtitle=Physical+review.+E%2C+Statistical%2C+nonlinear%2C+and+soft+matter+physics&rft.au=Sakaguchi%2C+Hidetsugu&rft.au=Li%2C+Ben&rft.au=Malomed%2C+Boris+A&rft.date=2014-03-01&rft.eissn=1550-2376&rft.volume=89&rft.issue=3&rft.spage=032920&rft_id=info:doi/10.1103%2FPhysRevE.89.032920&rft_id=info%3Apmid%2F24730926&rft_id=info%3Apmid%2F24730926&rft.externalDocID=24730926 |