An efficient GA–PSO approach for solving mixed-integer nonlinear programming problem in reliability optimization
This paper deals with the development of an efficient hybrid approach based on genetic algorithm and particle swarm optimization for solving mixed integer nonlinear reliability optimization problems in series, series–parallel and bridge systems. This approach maximizes the overall system reliability...
Saved in:
Published in | Swarm and evolutionary computation Vol. 19; pp. 43 - 51 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 2210-6502 |
DOI | 10.1016/j.swevo.2014.07.002 |
Cover
Loading…
Abstract | This paper deals with the development of an efficient hybrid approach based on genetic algorithm and particle swarm optimization for solving mixed integer nonlinear reliability optimization problems in series, series–parallel and bridge systems. This approach maximizes the overall system reliability subject to the nonlinear resource constraints arising on system cost, volume and weight. To meet these purposes, a novel hybrid algorithm with the features of advanced genetic algorithm and particle swarm optimization has been developed for determining the best found solutions. To test the capability and effectiveness of the proposed algorithm, three numerical examples have been solved and the computational results have been compared with the existing ones. From comparison, it is observed that the values of the system reliability are better than the existing results in all three examples. Moreover, the values of average computational time and standard deviation are better than the same of similar studies available in the existing literature. The proposed approach would be very helpful for reliability engineers/practitioners for better understanding about the system reliability and also to reach a better configuration. |
---|---|
AbstractList | This paper deals with the development of an efficient hybrid approach based on genetic algorithm and particle swarm optimization for solving mixed integer nonlinear reliability optimization problems in series, series–parallel and bridge systems. This approach maximizes the overall system reliability subject to the nonlinear resource constraints arising on system cost, volume and weight. To meet these purposes, a novel hybrid algorithm with the features of advanced genetic algorithm and particle swarm optimization has been developed for determining the best found solutions. To test the capability and effectiveness of the proposed algorithm, three numerical examples have been solved and the computational results have been compared with the existing ones. From comparison, it is observed that the values of the system reliability are better than the existing results in all three examples. Moreover, the values of average computational time and standard deviation are better than the same of similar studies available in the existing literature. The proposed approach would be very helpful for reliability engineers/practitioners for better understanding about the system reliability and also to reach a better configuration. |
Author | Chattopadhyay, Samiran Sahoo, Laxminarayan Bhunia, Asoke Kumar Banerjee, Avishek |
Author_xml | – sequence: 1 givenname: Laxminarayan surname: Sahoo fullname: Sahoo, Laxminarayan email: lxsahoo@gmail.com organization: Department of Mathematics, Raniganj Girls׳ College, Raniganj 713358, India – sequence: 2 givenname: Avishek surname: Banerjee fullname: Banerjee, Avishek email: avishekbanerji@gmail.com organization: Department of Information Technology, Asansol Engineering College, Asansol 713305, India – sequence: 3 givenname: Asoke Kumar surname: Bhunia fullname: Bhunia, Asoke Kumar email: bhuniaak@rediffmail.com organization: Department of Mathematics, The University of Burdwan, Burdwan 713104, India – sequence: 4 givenname: Samiran surname: Chattopadhyay fullname: Chattopadhyay, Samiran email: samirancju@gmail.com organization: Department of Information Technology, Jadavpur University, Salt Lake City, Kolkata 700098, India |
BookMark | eNqFkL1OwzAQgD0UiVL6BCx-gQTbiVMyMFQVFKRKRQJmy3HO5arErhyrUCbegTfkSUhbJgbwctbpvvv5zsjAeQeEXHCWcsaLy3XavcLWp4LxPGWTlDExIEMhOEsKycQpGXfdmvWvYELKckjC1FGwFg2Ci3Q-_fr4fHhcUr3ZBK_NC7U-0M43W3Qr2uIb1Am6CCsItJ_coAMdaF-6Crpt9zX9v2qgpehogAZ1hQ3GHfWbiC2-64jenZMTq5sOxj9xRJ5vb55md8liOb-fTReJyVgWk5zlpii5MYXQV0JrKaq8tGWfk1ZXEkQxkUICTHjNKpHzygipWV1k1opMlHk2Itmxrwm-6wJYtQnY6rBTnKm9LbVWB1tqb0uxiept9VT5izIYD3vHoLH5h70-stCftUUIqtt7NVBjABNV7fFP_hurpo7O |
CitedBy_id | crossref_primary_10_1080_0305215X_2020_1741568 crossref_primary_10_1016_j_eswa_2024_124841 crossref_primary_10_1016_j_ress_2016_03_019 crossref_primary_10_1007_s00500_023_08578_y crossref_primary_10_1002_qre_3318 crossref_primary_10_1007_s00500_017_2846_6 crossref_primary_10_1016_j_eswa_2021_116301 crossref_primary_10_32604_cmc_2022_020098 crossref_primary_10_1007_s11227_021_04265_7 crossref_primary_10_1155_2021_6385713 crossref_primary_10_1016_j_neucom_2018_12_021 crossref_primary_10_3233_JIFS_181846 crossref_primary_10_1016_j_asoc_2021_107078 crossref_primary_10_3390_sym13101904 crossref_primary_10_1109_TSMC_2020_3043642 crossref_primary_10_1016_j_swevo_2016_01_006 crossref_primary_10_4018_IJACI_2019010105 crossref_primary_10_1016_j_ejor_2016_12_023 crossref_primary_10_1007_s00521_022_07574_x crossref_primary_10_1049_cim2_12097 crossref_primary_10_1016_j_swevo_2018_01_011 crossref_primary_10_1109_TEVC_2019_2932624 crossref_primary_10_3390_en12122283 crossref_primary_10_1080_15732479_2016_1227854 crossref_primary_10_1155_2022_1572036 crossref_primary_10_1016_j_oceaneng_2023_116542 crossref_primary_10_1016_j_asoc_2018_04_008 crossref_primary_10_1155_2022_7727561 crossref_primary_10_4018_IJAMC_298313 crossref_primary_10_1016_j_ijepes_2019_105411 crossref_primary_10_1016_j_ress_2022_108564 crossref_primary_10_1016_j_ins_2024_121068 crossref_primary_10_1088_1742_6596_1828_1_012156 crossref_primary_10_1016_j_energy_2017_12_057 crossref_primary_10_3934_math_2023380 crossref_primary_10_32604_cmc_2022_029315 crossref_primary_10_1002_cjce_23886 crossref_primary_10_1007_s00158_023_03639_0 crossref_primary_10_1007_s11277_024_11563_9 crossref_primary_10_1016_j_cie_2020_106371 crossref_primary_10_1016_j_swevo_2024_101642 crossref_primary_10_1177_0954406217719475 |
Cites_doi | 10.1016/j.ress.2009.09.001 10.1109/TR.1978.5220401 10.1016/0360-8352(96)00041-1 10.1016/j.amc.2010.01.106 10.1016/j.cie.2011.09.003 10.1109/CEC.1999.785513 10.1016/S0026-2714(98)00028-6 10.1109/TR.1987.5222487 10.1109/4235.985692 10.1016/j.ress.2008.09.001 10.1109/MHS.1995.494215 10.1109/TEVC.2004.826074 10.1109/TEVC.2005.857610 10.1109/TR.2005.859227 10.1109/TR.1979.5220617 10.1109/TR.1977.5220102 10.1016/j.cam.2009.06.008 10.1016/0167-6377(92)90008-Q 10.1109/ICNN.1995.488968 10.1023/A:1016541912439 10.1108/13552510610705928 10.1016/j.amc.2006.05.044 10.1109/TR.1977.5220101 10.1108/IJQRM-06-2011-0090 10.1007/s00170-013-4730-6 10.1109/24.784268 10.1109/CEC.2005.1554727 10.1109/24.75341 10.1109/TR.1981.5221024 10.1109/24.159825 10.1109/4235.661548 10.1007/978-3-642-20958-1_2 10.1016/j.ress.2007.02.009 10.1007/s13198-013-0199-9 10.1109/TR.2005.853285 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. |
Copyright_xml | – notice: 2014 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.swevo.2014.07.002 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EndPage | 51 |
ExternalDocumentID | 10_1016_j_swevo_2014_07_002 S2210650214000534 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AAAKF AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATLK AAXUO AAYFN ABAOU ABBOA ABGRD ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADQTV ADTZH AEBSH AECPX AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CBWCG EBS EFJIC EFLBG EJD FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HAMUX HVGLF HZ~ J1W JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SES SPC SPCBC SSA SSB SSD SST SSV SSW SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c303t-404c691cc62a82aa52b49f9c695fab5e267525ee71d0b241bc25a0d63ff232943 |
IEDL.DBID | .~1 |
ISSN | 2210-6502 |
IngestDate | Tue Jul 01 05:03:42 EDT 2025 Thu Apr 24 23:03:04 EDT 2025 Fri Feb 23 02:26:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Penalty function Reliability optimization Genetic algorithm Particle swarm optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-404c691cc62a82aa52b49f9c695fab5e267525ee71d0b241bc25a0d63ff232943 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_j_swevo_2014_07_002 crossref_citationtrail_10_1016_j_swevo_2014_07_002 elsevier_sciencedirect_doi_10_1016_j_swevo_2014_07_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2014 2014-12-00 |
PublicationDateYYYYMMDD | 2014-12-01 |
PublicationDate_xml | – month: 12 year: 2014 text: December 2014 |
PublicationDecade | 2010 |
PublicationTitle | Swarm and evolutionary computation |
PublicationYear | 2014 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | A.K. Bhunia, L. Sahoo, Genetic algorithm based reliability optimization in interval environment, Innovative Computing Methods and Their Applications to Engineering Problems, N. Nedjah (Eds.).SCI 357, 2011, pp. 13–36 Mahato, Sahoo, Bhunia (bib23) 2012; 7 Coelho (bib30) 2009; 94 Misra, Sharma (bib12) 1991; 40 Goldberg (bib32) 1989 Sahoo, Bhunia, Roy (bib24) 2014; 31 J.J. Liang, P.N. Suganthan, Dynamic multi-swarm particle swarm optimizer, In: IEEE Proceedings of Swarm Intelligence Symposium, 2005, pp. 1–6. Kuo, Lin, Xu, Zang (bib8) 1987; R-36 Nakagawa, Nakashima (bib2) 1977; R-26 Sahoo, Bhunia, Roy (bib22) 2012; 1 Sheikhalishahi, Ebrahimipour, Shiri, Zamam, Jeihoonian (bib38) 2013; 68 Sung, Cho (bib11) 1999; 48 Yokota, Gen, Li (bib29) 1996; 30 Tavakkoli-Moghaddama, Safar, Sassani (bib16) 2008; 93 Kim, Yum (bib3) 1993; R-42 Nakagawa, Miyazaki (bib13) 1981; R-30 Sahoo, Bhunia, Roy (bib25) 2013 Gupta, Bhunia, Roy (bib18) 2009; 232 Gen, Cheng (bib33) 1997 Kuo, Hwang, Tillman (bib4) 1978; 27 Bhunia, Sahoo, Roy (bib19) 2010; 216 Chen (bib31) 2006; 182 Hikita, Nakagawa, Narihisa (bib14) 1992; 41 Mendes, Kennedy, Neves (bib41) 2004; 8 Ye, Li, Min (bib17) 2010; 95 Clerc, Kennedy (bib37) 2002; 6 Sun, Feng, Xu (bib42) 2004 Chern (bib1) 1992; 11 Ha, Kuo (bib6) 2006; 55 Aggarwal, Gupta (bib5) 2005; 54 Liang, Qin, Suganthan, Baskar (bib39) 2006; 10 Hwang, Tillman, Kuo (bib7) 1979; R-28 Kim, Bae, Park (bib28) 2006; 12 M. Clerc, The swarm and queen: towards a deterministic and adaptive particle swarm optimization. In: Procedings of IEEE Congress n Evolutionary Computation, Washington, DC, USA, vol. 3, 1999, pp. 1951–1957. J. Kennedy, R.C. Eberhart, Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, vol. 4 1995, pp. 1942–1948. Sun, Li (bib10) 2002; 3 R.C. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, In: Proceedings of the 6th International Symposium on Micro Machine and Human Science, 1995, pp. 39–43. Sahoo, Bhunia, Kapur (bib21) 2012; 62 Hsieh, Chen, Bricker (bib26) 1998; 38 Dengiz, Altiparmak, Smith (bib15) 1997; 1 Tillman, Hwang, Kuo (bib9) 1977; R-26 Kuo, Prasad, Tillman, Hwang (bib27) 2001 Aggarwal (10.1016/j.swevo.2014.07.002_bib5) 2005; 54 Kim (10.1016/j.swevo.2014.07.002_bib28) 2006; 12 Chern (10.1016/j.swevo.2014.07.002_bib1) 1992; 11 Gupta (10.1016/j.swevo.2014.07.002_bib18) 2009; 232 Sahoo (10.1016/j.swevo.2014.07.002_bib21) 2012; 62 Nakagawa (10.1016/j.swevo.2014.07.002_bib13) 1981; R-30 Tavakkoli-Moghaddama (10.1016/j.swevo.2014.07.002_bib16) 2008; 93 Sahoo (10.1016/j.swevo.2014.07.002_bib25) 2013 Sung (10.1016/j.swevo.2014.07.002_bib11) 1999; 48 Misra (10.1016/j.swevo.2014.07.002_bib12) 1991; 40 Gen (10.1016/j.swevo.2014.07.002_bib33) 1997 Sheikhalishahi (10.1016/j.swevo.2014.07.002_bib38) 2013; 68 Ha (10.1016/j.swevo.2014.07.002_bib6) 2006; 55 Sun (10.1016/j.swevo.2014.07.002_bib42) 2004 Kuo (10.1016/j.swevo.2014.07.002_bib4) 1978; 27 Dengiz (10.1016/j.swevo.2014.07.002_bib15) 1997; 1 Chen (10.1016/j.swevo.2014.07.002_bib31) 2006; 182 Clerc (10.1016/j.swevo.2014.07.002_bib37) 2002; 6 Sahoo (10.1016/j.swevo.2014.07.002_bib22) 2012; 1 Bhunia (10.1016/j.swevo.2014.07.002_bib19) 2010; 216 Mendes (10.1016/j.swevo.2014.07.002_bib41) 2004; 8 Coelho (10.1016/j.swevo.2014.07.002_bib30) 2009; 94 Sahoo (10.1016/j.swevo.2014.07.002_bib24) 2014; 31 Mahato (10.1016/j.swevo.2014.07.002_bib23) 2012; 7 Kuo (10.1016/j.swevo.2014.07.002_bib8) 1987; R-36 Yokota (10.1016/j.swevo.2014.07.002_bib29) 1996; 30 Tillman (10.1016/j.swevo.2014.07.002_bib9) 1977; R-26 Sun (10.1016/j.swevo.2014.07.002_bib10) 2002; 3 Goldberg (10.1016/j.swevo.2014.07.002_bib32) 1989 10.1016/j.swevo.2014.07.002_bib40 Hikita (10.1016/j.swevo.2014.07.002_bib14) 1992; 41 10.1016/j.swevo.2014.07.002_bib20 Kim (10.1016/j.swevo.2014.07.002_bib3) 1993; R-42 10.1016/j.swevo.2014.07.002_bib34 10.1016/j.swevo.2014.07.002_bib35 10.1016/j.swevo.2014.07.002_bib36 Liang (10.1016/j.swevo.2014.07.002_bib39) 2006; 10 Nakagawa (10.1016/j.swevo.2014.07.002_bib2) 1977; R-26 Hwang (10.1016/j.swevo.2014.07.002_bib7) 1979; R-28 Ye (10.1016/j.swevo.2014.07.002_bib17) 2010; 95 Hsieh (10.1016/j.swevo.2014.07.002_bib26) 1998; 38 Kuo (10.1016/j.swevo.2014.07.002_bib27) 2001 |
References_xml | – year: 2001 ident: bib27 article-title: Optimal reliability design: fundamentals and applications – reference: J. Kennedy, R.C. Eberhart, Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, vol. 4 1995, pp. 1942–1948. – volume: 54 start-page: 549 year: 2005 end-page: 558 ident: bib5 article-title: Penalty function approach in heuristic algorithms for constrained publication-title: IEEE Trans. Reliab. – volume: 6 start-page: 58 year: 2002 end-page: 73 ident: bib37 article-title: The particle swarm- explosion, stability and convergence in a multidimensional complex space publication-title: IEEE Trans. Evol. Comput. – start-page: 325 year: 2004 end-page: 331 ident: bib42 article-title: Particle swarm optimization with particles having quantum behavior publication-title: IEEE Proc. Congr. Evol. Comput. – volume: 1 start-page: 2 year: 2012 end-page: 19 ident: bib22 article-title: An application of genetic algorithm in solving reliability optimization problem under interval component Weibull parameters publication-title: Mex. J. Oper. Res. – volume: 182 start-page: 1556 year: 2006 end-page: 1567 ident: bib31 article-title: IAs based approach for reliability redundancy allocation problems publication-title: Appl. Math. Comput. – volume: 40 start-page: 81 year: 1991 end-page: 91 ident: bib12 article-title: An efficient algorithm to solve integer programming problems arising in system reliability design publication-title: IEEE Trans. Reliab. – volume: 8 start-page: 204 year: 2004 end-page: 210 ident: bib41 article-title: The fully informed particle swarm: Simpler, maybe better publication-title: IEEE Trans. Evol. Comput. – volume: 31 start-page: 698 year: 2014 end-page: 717 ident: bib24 article-title: Reliability optimization in stochastic domain via genetic algorithm publication-title: Int. J. Qual. Reliab. Manag. – volume: 95 start-page: 120 year: 2010 end-page: 126 ident: bib17 article-title: Some improvements on adaptive genetic algorithms for reliability-related applications publication-title: Reliab. Eng. Syst. Saf. – volume: 3 start-page: 53 year: 2002 end-page: 65 ident: bib10 article-title: Optimality condition and branch and bound algorithm for constrained redundancy optimization in series system publication-title: Optim. Eng. – volume: 1 start-page: 179 year: 1997 end-page: 188 ident: bib15 article-title: Local search genetic algorithm for optimal design of reliable networks publication-title: IEEE Trans. Evol. Comput. – volume: 62 start-page: 152 year: 2012 end-page: 160 ident: bib21 article-title: Genetic algorithm based multi-objective reliability optimization in interval environment publication-title: Comput. Ind. Eng. – volume: R-36 start-page: 624 year: 1987 end-page: 630 ident: bib8 article-title: Reliability optimization with the lagrange multiplier and branch-and-bound technique publication-title: IEEE Trans. Reliab. – volume: 48 start-page: 108 year: 1999 end-page: 117 ident: bib11 article-title: Branch-and-bound redundancy optimization for a series system with multiple-choice constraints publication-title: IEEE Trans. Reliab. – volume: 68 start-page: 317 year: 2013 end-page: 338 ident: bib38 article-title: A hybrid GA-PSO approach for reliability optimization in redundancy allocation problem publication-title: Int. J. Adv. Manuf. Technol. – volume: 38 start-page: 1599 year: 1998 end-page: 1605 ident: bib26 article-title: Genetic algorithms for reliability design problems publication-title: Microelectron. Reliab. – volume: 55 start-page: 37 year: 2006 end-page: 43 ident: bib6 article-title: Multi-path heuristic for redundancy allocation: the tree heuristic publication-title: IEEE Trans. Reliab. – volume: 27 start-page: 320 year: 1978 end-page: 324 ident: bib4 article-title: A note on heuristic methods in optimal system reliability publication-title: IEEE Trans. Reliab. – year: 2013 ident: bib25 article-title: Reliability optimization with high and low level redundancies in interval environment via Genetic Algorithm publication-title: Int. J. Syst. Assur. Eng. Manag. – volume: R-26 start-page: 162 year: 1977 end-page: 165 ident: bib9 article-title: Determining component reliability and redundancy for optimum system reliability publication-title: IEEE Trans. Reliab. – volume: 30 start-page: 905 year: 1996 end-page: 917 ident: bib29 article-title: Genetic algorithm for non-linear mixed-integer programming problems and its applications publication-title: Comput. Ind. Eng. – volume: R-28 start-page: 316 year: 1979 end-page: 319 ident: bib7 article-title: Reliability optimization by generalized lagrangian-function and reduced-gradient methods publication-title: IEEE Trans. Reliab. – year: 1989 ident: bib32 article-title: Genetic Algorithms in Search, Optimization, and Machine Learning – volume: R-42 start-page: 572 year: 1993 end-page: 578 ident: bib3 article-title: A heuristic method for solving redundancy optimization problems in complex systems publication-title: IEEE Trans. Reliab. – year: 1997 ident: bib33 article-title: Genetic algorithms and engineering design – reference: M. Clerc, The swarm and queen: towards a deterministic and adaptive particle swarm optimization. In: Procedings of IEEE Congress n Evolutionary Computation, Washington, DC, USA, vol. 3, 1999, pp. 1951–1957. – volume: R-26 start-page: 156 year: 1977 end-page: 161 ident: bib2 article-title: A heuristic method for determining optimal reliability allocation publication-title: IEEE Trans. Reliab. – volume: R-30 start-page: 175 year: 1981 end-page: 180 ident: bib13 article-title: Surrogate constraints algorithm for reliability optimization problems with two constraints publication-title: IEEE Trans. Reliab. – volume: 216 start-page: 929 year: 2010 end-page: 939 ident: bib19 article-title: Reliability stochastic optimization for a series system with interval component reliability via genetic algorithm publication-title: Appl. Math. Comput. – reference: J.J. Liang, P.N. Suganthan, Dynamic multi-swarm particle swarm optimizer, In: IEEE Proceedings of Swarm Intelligence Symposium, 2005, pp. 1–6. – volume: 93 start-page: 550 year: 2008 end-page: 556 ident: bib16 article-title: Reliability optimization of series-parallel systems with a choice of redundancy strategies using a genetic algorithm publication-title: Reliab. Eng. Syst. Saf. – reference: A.K. Bhunia, L. Sahoo, Genetic algorithm based reliability optimization in interval environment, Innovative Computing Methods and Their Applications to Engineering Problems, N. Nedjah (Eds.).SCI 357, 2011, pp. 13–36 – volume: 12 start-page: 354 year: 2006 end-page: 363 ident: bib28 article-title: Reliability-redundancy optimization using simulated annealing algorithms publication-title: J. Qual. Maint. Eng. – reference: R.C. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, In: Proceedings of the 6th International Symposium on Micro Machine and Human Science, 1995, pp. 39–43. – volume: 7 start-page: 284 year: 2012 end-page: 295 ident: bib23 article-title: Reliability-redundancy optimization problem with interval valued reliabilities of components via genetic algorithm publication-title: J. Inf. Comput. Sci. – volume: 10 start-page: 281 year: 2006 end-page: 295 ident: bib39 article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions publication-title: IEEE Trans. Evol. Comput. – volume: 11 start-page: 309 year: 1992 end-page: 315 ident: bib1 article-title: On the computational complexity of reliability allocation in a series system publication-title: Oper. Res. Lett. – volume: 41 start-page: 473 year: 1992 end-page: 480 ident: bib14 article-title: Reliability optimization of systems by a surrogate constraints algorithm publication-title: IEEE Trans. Reliab. – volume: 232 start-page: 275 year: 2009 end-page: 284 ident: bib18 article-title: A GA based penalty function technique for solving constrained redundancy allocation problem of series system with interval valued reliabilities of components publication-title: J. Comput. Appl. Math. – volume: 94 start-page: 830 year: 2009 end-page: 837 ident: bib30 article-title: An efficient particle swarm approach for mixed-integer programming in reliability-redundancy optimization applications publication-title: Reliab. Eng. Syst. Saf. – volume: 95 start-page: 120 year: 2010 ident: 10.1016/j.swevo.2014.07.002_bib17 article-title: Some improvements on adaptive genetic algorithms for reliability-related applications publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2009.09.001 – volume: 27 start-page: 320 issue: 5 year: 1978 ident: 10.1016/j.swevo.2014.07.002_bib4 article-title: A note on heuristic methods in optimal system reliability publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.1978.5220401 – volume: 30 start-page: 905 issue: 4 year: 1996 ident: 10.1016/j.swevo.2014.07.002_bib29 article-title: Genetic algorithm for non-linear mixed-integer programming problems and its applications publication-title: Comput. Ind. Eng. doi: 10.1016/0360-8352(96)00041-1 – volume: 216 start-page: 929 year: 2010 ident: 10.1016/j.swevo.2014.07.002_bib19 article-title: Reliability stochastic optimization for a series system with interval component reliability via genetic algorithm publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2010.01.106 – volume: 62 start-page: 152 year: 2012 ident: 10.1016/j.swevo.2014.07.002_bib21 article-title: Genetic algorithm based multi-objective reliability optimization in interval environment publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2011.09.003 – ident: 10.1016/j.swevo.2014.07.002_bib36 doi: 10.1109/CEC.1999.785513 – volume: 38 start-page: 1599 year: 1998 ident: 10.1016/j.swevo.2014.07.002_bib26 article-title: Genetic algorithms for reliability design problems publication-title: Microelectron. Reliab. doi: 10.1016/S0026-2714(98)00028-6 – volume: R-36 start-page: 624 year: 1987 ident: 10.1016/j.swevo.2014.07.002_bib8 article-title: Reliability optimization with the lagrange multiplier and branch-and-bound technique publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.1987.5222487 – volume: 6 start-page: 58 issue: 1 year: 2002 ident: 10.1016/j.swevo.2014.07.002_bib37 article-title: The particle swarm- explosion, stability and convergence in a multidimensional complex space publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.985692 – volume: 94 start-page: 830 year: 2009 ident: 10.1016/j.swevo.2014.07.002_bib30 article-title: An efficient particle swarm approach for mixed-integer programming in reliability-redundancy optimization applications publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2008.09.001 – ident: 10.1016/j.swevo.2014.07.002_bib34 doi: 10.1109/MHS.1995.494215 – volume: 8 start-page: 204 year: 2004 ident: 10.1016/j.swevo.2014.07.002_bib41 article-title: The fully informed particle swarm: Simpler, maybe better publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.826074 – volume: 10 start-page: 281 issue: 3 year: 2006 ident: 10.1016/j.swevo.2014.07.002_bib39 article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.857610 – volume: 55 start-page: 37 year: 2006 ident: 10.1016/j.swevo.2014.07.002_bib6 article-title: Multi-path heuristic for redundancy allocation: the tree heuristic publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2005.859227 – volume: R-28 start-page: 316 year: 1979 ident: 10.1016/j.swevo.2014.07.002_bib7 article-title: Reliability optimization by generalized lagrangian-function and reduced-gradient methods publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.1979.5220617 – volume: R-26 start-page: 162 issue: 3 year: 1977 ident: 10.1016/j.swevo.2014.07.002_bib9 article-title: Determining component reliability and redundancy for optimum system reliability publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.1977.5220102 – volume: 1 start-page: 2 issue: 1 year: 2012 ident: 10.1016/j.swevo.2014.07.002_bib22 article-title: An application of genetic algorithm in solving reliability optimization problem under interval component Weibull parameters publication-title: Mex. J. Oper. Res. – start-page: 325 year: 2004 ident: 10.1016/j.swevo.2014.07.002_bib42 article-title: Particle swarm optimization with particles having quantum behavior publication-title: IEEE Proc. Congr. Evol. Comput. – volume: R-42 start-page: 572 issue: 4 year: 1993 ident: 10.1016/j.swevo.2014.07.002_bib3 article-title: A heuristic method for solving redundancy optimization problems in complex systems publication-title: IEEE Trans. Reliab. – volume: 232 start-page: 275 year: 2009 ident: 10.1016/j.swevo.2014.07.002_bib18 article-title: A GA based penalty function technique for solving constrained redundancy allocation problem of series system with interval valued reliabilities of components publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2009.06.008 – volume: 11 start-page: 309 issue: 5 year: 1992 ident: 10.1016/j.swevo.2014.07.002_bib1 article-title: On the computational complexity of reliability allocation in a series system publication-title: Oper. Res. Lett. doi: 10.1016/0167-6377(92)90008-Q – year: 2001 ident: 10.1016/j.swevo.2014.07.002_bib27 – ident: 10.1016/j.swevo.2014.07.002_bib35 doi: 10.1109/ICNN.1995.488968 – volume: 3 start-page: 53 year: 2002 ident: 10.1016/j.swevo.2014.07.002_bib10 article-title: Optimality condition and branch and bound algorithm for constrained redundancy optimization in series system publication-title: Optim. Eng. doi: 10.1023/A:1016541912439 – volume: 12 start-page: 354 issue: 4 year: 2006 ident: 10.1016/j.swevo.2014.07.002_bib28 article-title: Reliability-redundancy optimization using simulated annealing algorithms publication-title: J. Qual. Maint. Eng. doi: 10.1108/13552510610705928 – volume: 182 start-page: 1556 issue: 2 year: 2006 ident: 10.1016/j.swevo.2014.07.002_bib31 article-title: IAs based approach for reliability redundancy allocation problems publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2006.05.044 – volume: R-26 start-page: 156 issue: 3 year: 1977 ident: 10.1016/j.swevo.2014.07.002_bib2 article-title: A heuristic method for determining optimal reliability allocation publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.1977.5220101 – volume: 31 start-page: 698 issue: 6 year: 2014 ident: 10.1016/j.swevo.2014.07.002_bib24 article-title: Reliability optimization in stochastic domain via genetic algorithm publication-title: Int. J. Qual. Reliab. Manag. doi: 10.1108/IJQRM-06-2011-0090 – volume: 68 start-page: 317 year: 2013 ident: 10.1016/j.swevo.2014.07.002_bib38 article-title: A hybrid GA-PSO approach for reliability optimization in redundancy allocation problem publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-013-4730-6 – volume: 48 start-page: 108 year: 1999 ident: 10.1016/j.swevo.2014.07.002_bib11 article-title: Branch-and-bound redundancy optimization for a series system with multiple-choice constraints publication-title: IEEE Trans. Reliab. doi: 10.1109/24.784268 – ident: 10.1016/j.swevo.2014.07.002_bib40 doi: 10.1109/CEC.2005.1554727 – volume: 40 start-page: 81 year: 1991 ident: 10.1016/j.swevo.2014.07.002_bib12 article-title: An efficient algorithm to solve integer programming problems arising in system reliability design publication-title: IEEE Trans. Reliab. doi: 10.1109/24.75341 – volume: R-30 start-page: 175 year: 1981 ident: 10.1016/j.swevo.2014.07.002_bib13 article-title: Surrogate constraints algorithm for reliability optimization problems with two constraints publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.1981.5221024 – volume: 41 start-page: 473 issue: 3 year: 1992 ident: 10.1016/j.swevo.2014.07.002_bib14 article-title: Reliability optimization of systems by a surrogate constraints algorithm publication-title: IEEE Trans. Reliab. doi: 10.1109/24.159825 – year: 1989 ident: 10.1016/j.swevo.2014.07.002_bib32 – volume: 1 start-page: 179 issue: 3 year: 1997 ident: 10.1016/j.swevo.2014.07.002_bib15 article-title: Local search genetic algorithm for optimal design of reliable networks publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.661548 – ident: 10.1016/j.swevo.2014.07.002_bib20 doi: 10.1007/978-3-642-20958-1_2 – volume: 7 start-page: 284 issue: 4 year: 2012 ident: 10.1016/j.swevo.2014.07.002_bib23 article-title: Reliability-redundancy optimization problem with interval valued reliabilities of components via genetic algorithm publication-title: J. Inf. Comput. Sci. – volume: 93 start-page: 550 year: 2008 ident: 10.1016/j.swevo.2014.07.002_bib16 article-title: Reliability optimization of series-parallel systems with a choice of redundancy strategies using a genetic algorithm publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2007.02.009 – year: 2013 ident: 10.1016/j.swevo.2014.07.002_bib25 article-title: Reliability optimization with high and low level redundancies in interval environment via Genetic Algorithm publication-title: Int. J. Syst. Assur. Eng. Manag. doi: 10.1007/s13198-013-0199-9 – year: 1997 ident: 10.1016/j.swevo.2014.07.002_bib33 – volume: 54 start-page: 549 year: 2005 ident: 10.1016/j.swevo.2014.07.002_bib5 article-title: Penalty function approach in heuristic algorithms for constrained publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2005.853285 |
SSID | ssj0000602559 |
Score | 2.2745159 |
Snippet | This paper deals with the development of an efficient hybrid approach based on genetic algorithm and particle swarm optimization for solving mixed integer... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 43 |
SubjectTerms | Genetic algorithm Particle swarm optimization Penalty function Reliability optimization |
Title | An efficient GA–PSO approach for solving mixed-integer nonlinear programming problem in reliability optimization |
URI | https://dx.doi.org/10.1016/j.swevo.2014.07.002 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YGR0MRxkmaMKkoBUZBKpW6R7dhSUBuqUl4L4j_wD_klnB2nAiF1YIzliyL7fPfd5fwdQseAIALYZuVIT0KAQhV1wAn7TuwycCdwwspkznU_7A3p5SgY1VCnugujyyqt7S9turHWdqRlV7M1zfPWgEC0AviCQIigVUlzgmr2OtDp03dvkWdxQ4OadY85mO9ogYp8yJR5Pb7IZ30J0KOGxNOmV_44qB9Op7uB1ixaxEn5QZuoJosttF51YsD2YG6jWVJgacggwIfg8-Tr4_N2cIMrwnAMyBSDkunkAZ7krzJzDE0EvKIoqTLYDNtKrYmeY9vM4LzAMznOSy7vN_wA9mViL27uoGH37K7Tc2w3BUeAm5pDoEhFGHtChIS1CWMB4TRWMYwFivFAEggdSCBl5GUuB7_OBQmYm4W-UoC6Yurvojp8k9xDWPAs4kRRP2JtKiLKg8yPVEhVOwP4S2UDkWoJU2GpxnXHi3Fa1ZTdp2bdU73uqat_gZMGOlkITUumjeXTw2pv0l8Kk4IvWCa4_1_BA7Sqn8palkNUn8-e5BEgkjlvGpVropXk4qrX_wbf_OI9 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdoALb8R45sCRal2atuuxmhgdbANpm7Rb1UciFW1lKuN14z_wD_klOG06gZB24JrWVZQ49mfX-QxwgQjCxG0WGm9yDFCYYBo6YUNz9ADdCZ6wIpnTH1jemN1MzEkF2uVdGFlWqWx_YdNza61GGmo1G_MkaQwpRiuILyiGCFKV2BrUJDsVq0LN7d56g2WqRbdy4CzbzKGIJmVK_qG80uvplb_Ie4BNlvN4qgzLHx_1w-90tmFTAUbiFnPagQpPd2GrbMZA1Nncg8xNCc_5INCNkGv36-PzfnhHSs5wguCUoJ7J_AGZJW881nKmCPxEWrBlBBlRxVoz-Y7qNEOSlGR8mhR03u_kEU3MTN3d3Idx52rU9jTVUEGL0FMtMFZkkeU0o8iiQYsGgUlD5ggHx0wRhCanGD1Qk3O7GeshuvYwomagx5YhBAIvhxkHUMU58UMgURjbIRXMsIMWi2wWmrFhC4uJVowImPE60HIJ_UixjcumF1O_LCt78PN19-W6-7r8C07rcLkUmhdkG6tft8q98X_pjI_uYJXg0X8Fz2HdG_V7fq87uD2GDfmkKG05geoie-anCFAW4ZlSwG-grOTu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+GA%E2%80%93PSO+approach+for+solving+mixed-integer+nonlinear+programming+problem+in+reliability+optimization&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Sahoo%2C+Laxminarayan&rft.au=Banerjee%2C+Avishek&rft.au=Bhunia%2C+Asoke+Kumar&rft.au=Chattopadhyay%2C+Samiran&rft.date=2014-12-01&rft.issn=2210-6502&rft.volume=19&rft.spage=43&rft.epage=51&rft_id=info:doi/10.1016%2Fj.swevo.2014.07.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_swevo_2014_07_002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon |