Investigation of impact strength at different infill rates biodegradable PLA constituent through fused deposition modeling
Polylactic Acid (PLA) is a natural source of corn, cassava, and sugarcane which is an economically produced renewable, biodegradable, compostable, and bio plastic resource of this world. It plays an important role in automobile, aerospace, and consumer applications. Moreover, the PLA was in research...
Saved in:
Published in | Materials today : proceedings Vol. 62; pp. 551 - 558 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2214-7853 2214-7853 |
DOI | 10.1016/j.matpr.2022.03.591 |
Cover
Abstract | Polylactic Acid (PLA) is a natural source of corn, cassava, and sugarcane which is an economically produced renewable, biodegradable, compostable, and bio plastic resource of this world. It plays an important role in automobile, aerospace, and consumer applications. Moreover, the PLA was in research and development with high expectations for the industrial consumer, moving towards the development of a sustainable vehicle and the goal is greatly contributed to environmental friendly applications such as in two-wheeler and four-wheeler vehicles. The present investigation consists of different infill rates (50%, 75% & 100%). PLA was performed for two-wheeler mudguard material for improving the property through additive manufacturing (AM) followed by fused deposition modeling (FDM). Based on the literature survey, it was found that FDM printed PLA’s impact strength was lower than that fabricated through the Injection molding (IM) process due to improper selection of printing process parameters. In order to overcome this drawback were taken into account and to make a good environmentally friendly and biodegradable material was chosen as PLA. Finally, it was observed that the FDM-based PLA deposition has higher impact strength than IM because of introducing the printed sample of On-edge orientation and 100% infill rate. The finite element analysis (FEA) was performed to assess the impact strength of PLA at different infill rates by using the ANSYS software 17.2. The simulation results were compared with the experimental results, it was found that almost close to each other. |
---|---|
AbstractList | Polylactic Acid (PLA) is a natural source of corn, cassava, and sugarcane which is an economically produced renewable, biodegradable, compostable, and bio plastic resource of this world. It plays an important role in automobile, aerospace, and consumer applications. Moreover, the PLA was in research and development with high expectations for the industrial consumer, moving towards the development of a sustainable vehicle and the goal is greatly contributed to environmental friendly applications such as in two-wheeler and four-wheeler vehicles. The present investigation consists of different infill rates (50%, 75% & 100%). PLA was performed for two-wheeler mudguard material for improving the property through additive manufacturing (AM) followed by fused deposition modeling (FDM). Based on the literature survey, it was found that FDM printed PLA’s impact strength was lower than that fabricated through the Injection molding (IM) process due to improper selection of printing process parameters. In order to overcome this drawback were taken into account and to make a good environmentally friendly and biodegradable material was chosen as PLA. Finally, it was observed that the FDM-based PLA deposition has higher impact strength than IM because of introducing the printed sample of On-edge orientation and 100% infill rate. The finite element analysis (FEA) was performed to assess the impact strength of PLA at different infill rates by using the ANSYS software 17.2. The simulation results were compared with the experimental results, it was found that almost close to each other. |
Author | Salunkhe, Sachin Dharmalingam, G. Arun Prasad, M. |
Author_xml | – sequence: 1 givenname: G. surname: Dharmalingam fullname: Dharmalingam, G. email: dharma21sona@gmail.com – sequence: 2 givenname: M. surname: Arun Prasad fullname: Arun Prasad, M. – sequence: 3 givenname: Sachin surname: Salunkhe fullname: Salunkhe, Sachin |
BookMark | eNqFkE1LAzEQhoNUsNb-Ai_5A7vmYz8PHkrxo1DQg55DNpndpuwmJUkL-uvdth7Eg8LAzMA87_C-12hinQWEbilJKaHF3TYdZNz5lBHGUsLTvKYXaMoYzZKyyvnkx3yF5iFsCSE0L0hFiyn6XNkDhGg6GY2z2LXYDDupIg7Rg-3iBsuItWlbGNeIjW1N32MvIwTcGKeh81LLpgf8ul5g5eyoFffH07jxbt9tcLsPoLGGnQvm9GMYqd7Y7gZdtrIPMP_uM_T--PC2fE7WL0-r5WKdKE54THhdZRmUksmaN5w0GSt4TlVWNLymtawgLyqlQWVM8pKxXDVU03osCapsipzPUH3WVd6F4KEVysST3eil6QUl4pij2IpTjuKYoyBcjDmOLP_F7rwZpP_4h7o_UzDaOhjwIigDVoE2HlQU2pk_-S_K1JL1 |
CitedBy_id | crossref_primary_10_1016_j_jmapro_2024_01_038 crossref_primary_10_3390_polym16152117 |
Cites_doi | 10.1016/j.matdes.2017.03.065 10.3390/jcs3020052 10.3390/jcs1010007 10.1098/rstb.2008.0289 10.1016/j.polymer.2017.03.011 10.1016/j.rinp.2020.103346 10.1023/A:1020200822435 10.1007/s12046-021-01671-8 10.3390/molecules26113325 10.1016/j.jclepro.2016.11.139 10.1016/j.matdes.2014.02.038 10.3390/su12052088 10.1016/j.compositesb.2019.107341 10.3390/polym11050799 10.1016/j.addr.2016.06.012 10.2478/mme-2018-0070 10.1515/eng-2021-0063 10.1111/j.1541-4337.2010.00126.x |
ContentType | Journal Article |
Copyright | 2022 |
Copyright_xml | – notice: 2022 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.matpr.2022.03.591 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2214-7853 |
EndPage | 558 |
ExternalDocumentID | 10_1016_j_matpr_2022_03_591 S2214785322019423 |
GroupedDBID | --M .~1 0R~ 0SF 1~. 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABMAC ABXDB ACDAQ ACGFS ACRLP ADBBV ADEZE ADVLN AEBSH AEZYN AFJKZ AFKWA AFRZQ AFTJW AGHFR AGUBO AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EJD FDB FIRID FYGXN GBLVA HZ~ KOM M41 NCXOZ O9- OAUVE P-8 P-9 PC. ROL SPC SPCBC SSM SSZ T5K ~G- AATTM AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c303t-39844e7a2a93b30b426351c46b3919a8e568cdec42a37225cb1d19d19aec7b653 |
IEDL.DBID | AIKHN |
ISSN | 2214-7853 |
IngestDate | Thu Apr 24 23:04:24 EDT 2025 Tue Jul 01 02:57:29 EDT 2025 Mon Sep 30 11:37:01 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biodegradable FEA Additive manufacturing Infill rates PLA FDM |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-39844e7a2a93b30b426351c46b3919a8e568cdec42a37225cb1d19d19aec7b653 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1016_j_matpr_2022_03_591 crossref_primary_10_1016_j_matpr_2022_03_591 elsevier_sciencedirect_doi_10_1016_j_matpr_2022_03_591 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022 2022-00-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 2022 |
PublicationDecade | 2020 |
PublicationTitle | Materials today : proceedings |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Naik, Thakur (b0105) 2021; 46 Milosevic, Stoof, Pickering (b0015) 2017; 1 Ouhsti, El Haddadi, Belhouideg (b0080) 2018; 22 Tian, Liu, Wang, Dilmurat, Li, Ziegmann (b0010) 2017; 142 Chacón, Caminero, García-Plaza, Núnez (b0065) 2017; 124 Wang, Xie, Wang, Zhao, Peng, Rao (b0075) 2020; 18 Brostow, Datashvili (b0020) 2016 Lay, Thajudin, Hamid, Rusli, Abdullah, Shuib (b0060) 2019; 176 Bouzouita, Notta-Cuvier, Raquez, Lauro, Dubois (b0055) 2017; 177–219 Jamshidian, Tehrany, Imran, Jacquot, Desobry (b0005) 2010; 9 Song, Murphy, Narayan, Davies (b0025) 2009; 364 Caminero, Chacón, García-Plaza, Núñez, Reverte, Becar (b0110) 2019; 11 Kristiawan, Imaduddin, Ariawan, Ubaidillah, Arifin (b0070) 2021; 11 Farah, Anderson, Langer (b0040) 2016; 107 Birosz, Andó, Jeganmohan (b0090) 2021; 102 Wojnowska-Baryła, Kulikowska, Bernat (b0030) 2020; 12 Tymrak, Kreiger, Pearce (b0035) 2014; 58 Garlotta (b0045) 2001; 9 Backes, Pires, Costa, Passador, Pessan (b0050) 2019; 3 Wang, Gramlich, Gardner (b0085) 2017; 114 Balasubramanian, Rajeswari, Vaidheeswaran (b0095) 2020; 28 Catana, Pop, Brus (b0100) 2021; 26 Garlotta (10.1016/j.matpr.2022.03.591_b0045) 2001; 9 Farah (10.1016/j.matpr.2022.03.591_b0040) 2016; 107 Chacón (10.1016/j.matpr.2022.03.591_b0065) 2017; 124 Wojnowska-Baryła (10.1016/j.matpr.2022.03.591_b0030) 2020; 12 Tymrak (10.1016/j.matpr.2022.03.591_b0035) 2014; 58 Ouhsti (10.1016/j.matpr.2022.03.591_b0080) 2018; 22 Lay (10.1016/j.matpr.2022.03.591_b0060) 2019; 176 Backes (10.1016/j.matpr.2022.03.591_b0050) 2019; 3 Wang (10.1016/j.matpr.2022.03.591_b0085) 2017; 114 Birosz (10.1016/j.matpr.2022.03.591_b0090) 2021; 102 Brostow (10.1016/j.matpr.2022.03.591_b0020) 2016 Kristiawan (10.1016/j.matpr.2022.03.591_b0070) 2021; 11 Caminero (10.1016/j.matpr.2022.03.591_b0110) 2019; 11 Balasubramanian (10.1016/j.matpr.2022.03.591_b0095) 2020; 28 Naik (10.1016/j.matpr.2022.03.591_b0105) 2021; 46 Tian (10.1016/j.matpr.2022.03.591_b0010) 2017; 142 Milosevic (10.1016/j.matpr.2022.03.591_b0015) 2017; 1 Bouzouita (10.1016/j.matpr.2022.03.591_b0055) 2017; 177–219 Jamshidian (10.1016/j.matpr.2022.03.591_b0005) 2010; 9 Wang (10.1016/j.matpr.2022.03.591_b0075) 2020; 18 Song (10.1016/j.matpr.2022.03.591_b0025) 2009; 364 Catana (10.1016/j.matpr.2022.03.591_b0100) 2021; 26 |
References_xml | – start-page: 315 year: 2016 end-page: 338 ident: b0020 article-title: Environmental impact of natural polymers publication-title: Natural Polymers – volume: 124 start-page: 143 year: 2017 end-page: 157 ident: b0065 article-title: Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection publication-title: Mater. Des. – volume: 12 start-page: 2088 year: 2020 ident: b0030 article-title: Effect of bio-based products on waste management publication-title: Sustainability – volume: 102 start-page: 79 year: 2021 end-page: 85 ident: b0090 article-title: Finite element method modeling of additive manufactured compressor wheel publication-title: J. Inst. Eng. (India): Ser. D – volume: 176 start-page: 107341 year: 2019 ident: b0060 article-title: Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding publication-title: Compos. Part B: Eng. – volume: 114 start-page: 242 year: 2017 end-page: 248 ident: b0085 article-title: Improving the impact strength of Poly (lactic acid)(PLA) in fused layer modeling (FLM) publication-title: Polymer – volume: 26 start-page: 3325 year: 2021 ident: b0100 article-title: Comparison between the test and simulation results for PLA structures 3D printed, bending stressed publication-title: Molecules – volume: 364 start-page: 2127 year: 2009 end-page: 2139 ident: b0025 article-title: Biodegradable and compostable alternatives to conventional plastics publication-title: Philos. Trans. Roy. Soc. B: Biol. Sci. – volume: 177–219 year: 2017 ident: b0055 article-title: Poly (lactic acid)-based materials for automotive applications publication-title: Ind. Appl. Poly (lactic acid) – volume: 107 start-page: 367 year: 2016 end-page: 392 ident: b0040 article-title: Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review publication-title: Adv. Drug Delivery Rev. – volume: 9 start-page: 552 year: 2010 end-page: 571 ident: b0005 article-title: Poly-lactic acid: production, applications, nanocomposites, and release studies publication-title: Comprehens. Rev. Food Sci. Food Safety – volume: 22 start-page: 895 year: 2018 end-page: 907 ident: b0080 article-title: Effect of printing parameters on the mechanical properties of parts fabricated with open-source 3D printers in PLA by fused deposition modeling publication-title: Mech. Mech. Eng. – volume: 3 start-page: 52 year: 2019 ident: b0050 article-title: Analysis of the degradation during melt processing of PLA/Biosilicate® composites publication-title: J. Compos. Sci. – volume: 18 start-page: 103346 year: 2020 ident: b0075 article-title: Effects of infill characteristics and strain rate on the deformation and failure properties of additively manufactured polyamide-based composite structures publication-title: Results Phys. – volume: 28 start-page: 1149 year: 2020 end-page: 1153 ident: b0095 article-title: Analysis of mechanical properties of natural fibre composites by experimental with FEA publication-title: Mater. Today: Proc. – volume: 46 start-page: 1 year: 2021 end-page: 9 ident: b0105 article-title: Experimental investigation of effect of printing parameters on impact strength of the bio-inspired 3D printed specimen publication-title: Sādhanā – volume: 11 start-page: 799 year: 2019 ident: b0110 article-title: Additive manufacturing of PLA-based composites using fused filament fabrication: effect of graphene nanoplatelet reinforcement on mechanical properties, dimensional accuracy and texture publication-title: Polymers – volume: 1 start-page: 7 year: 2017 ident: b0015 article-title: Characterizing the mechanical properties of fused deposition modelling natural fiber recycled polypropylene composites publication-title: J. Compos. Sci. – volume: 58 start-page: 242 year: 2014 end-page: 246 ident: b0035 article-title: Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions publication-title: Mater. Des. – volume: 142 start-page: 1609 year: 2017 end-page: 1618 ident: b0010 article-title: Recycling and remanufacturing of 3D printed continuous carbon fiber reinforced PLA composites publication-title: J. Clean. Prod. – volume: 9 start-page: 63 year: 2001 end-page: 84 ident: b0045 article-title: A literature review of poly (lactic acid) publication-title: J. Polym. Environ. – volume: 11 start-page: 639 year: 2021 end-page: 649 ident: b0070 article-title: A review on the fused deposition modeling (FDM) 3D printing: filament processing, materials, and printing parameters publication-title: Open Eng. – volume: 124 start-page: 143 year: 2017 ident: 10.1016/j.matpr.2022.03.591_b0065 article-title: Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.03.065 – volume: 3 start-page: 52 issue: 2 year: 2019 ident: 10.1016/j.matpr.2022.03.591_b0050 article-title: Analysis of the degradation during melt processing of PLA/Biosilicate® composites publication-title: J. Compos. Sci. doi: 10.3390/jcs3020052 – volume: 1 start-page: 7 issue: 1 year: 2017 ident: 10.1016/j.matpr.2022.03.591_b0015 article-title: Characterizing the mechanical properties of fused deposition modelling natural fiber recycled polypropylene composites publication-title: J. Compos. Sci. doi: 10.3390/jcs1010007 – volume: 364 start-page: 2127 issue: 1526 year: 2009 ident: 10.1016/j.matpr.2022.03.591_b0025 article-title: Biodegradable and compostable alternatives to conventional plastics publication-title: Philos. Trans. Roy. Soc. B: Biol. Sci. doi: 10.1098/rstb.2008.0289 – volume: 114 start-page: 242 year: 2017 ident: 10.1016/j.matpr.2022.03.591_b0085 article-title: Improving the impact strength of Poly (lactic acid)(PLA) in fused layer modeling (FLM) publication-title: Polymer doi: 10.1016/j.polymer.2017.03.011 – volume: 18 start-page: 103346 year: 2020 ident: 10.1016/j.matpr.2022.03.591_b0075 article-title: Effects of infill characteristics and strain rate on the deformation and failure properties of additively manufactured polyamide-based composite structures publication-title: Results Phys. doi: 10.1016/j.rinp.2020.103346 – start-page: 315 year: 2016 ident: 10.1016/j.matpr.2022.03.591_b0020 article-title: Environmental impact of natural polymers – volume: 9 start-page: 63 issue: 2 year: 2001 ident: 10.1016/j.matpr.2022.03.591_b0045 article-title: A literature review of poly (lactic acid) publication-title: J. Polym. Environ. doi: 10.1023/A:1020200822435 – volume: 46 start-page: 1 issue: 3 year: 2021 ident: 10.1016/j.matpr.2022.03.591_b0105 article-title: Experimental investigation of effect of printing parameters on impact strength of the bio-inspired 3D printed specimen publication-title: Sādhanā doi: 10.1007/s12046-021-01671-8 – volume: 26 start-page: 3325 issue: 11 year: 2021 ident: 10.1016/j.matpr.2022.03.591_b0100 article-title: Comparison between the test and simulation results for PLA structures 3D printed, bending stressed publication-title: Molecules doi: 10.3390/molecules26113325 – volume: 142 start-page: 1609 year: 2017 ident: 10.1016/j.matpr.2022.03.591_b0010 article-title: Recycling and remanufacturing of 3D printed continuous carbon fiber reinforced PLA composites publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.11.139 – volume: 58 start-page: 242 year: 2014 ident: 10.1016/j.matpr.2022.03.591_b0035 article-title: Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions publication-title: Mater. Des. doi: 10.1016/j.matdes.2014.02.038 – volume: 12 start-page: 2088 issue: 5 year: 2020 ident: 10.1016/j.matpr.2022.03.591_b0030 article-title: Effect of bio-based products on waste management publication-title: Sustainability doi: 10.3390/su12052088 – volume: 177–219 year: 2017 ident: 10.1016/j.matpr.2022.03.591_b0055 article-title: Poly (lactic acid)-based materials for automotive applications publication-title: Ind. Appl. Poly (lactic acid) – volume: 176 start-page: 107341 year: 2019 ident: 10.1016/j.matpr.2022.03.591_b0060 article-title: Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding publication-title: Compos. Part B: Eng. doi: 10.1016/j.compositesb.2019.107341 – volume: 11 start-page: 799 issue: 5 year: 2019 ident: 10.1016/j.matpr.2022.03.591_b0110 article-title: Additive manufacturing of PLA-based composites using fused filament fabrication: effect of graphene nanoplatelet reinforcement on mechanical properties, dimensional accuracy and texture publication-title: Polymers doi: 10.3390/polym11050799 – volume: 107 start-page: 367 year: 2016 ident: 10.1016/j.matpr.2022.03.591_b0040 article-title: Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2016.06.012 – volume: 28 start-page: 1149 year: 2020 ident: 10.1016/j.matpr.2022.03.591_b0095 article-title: Analysis of mechanical properties of natural fibre composites by experimental with FEA publication-title: Mater. Today: Proc. – volume: 22 start-page: 895 issue: 4 year: 2018 ident: 10.1016/j.matpr.2022.03.591_b0080 article-title: Effect of printing parameters on the mechanical properties of parts fabricated with open-source 3D printers in PLA by fused deposition modeling publication-title: Mech. Mech. Eng. doi: 10.2478/mme-2018-0070 – volume: 11 start-page: 639 issue: 1 year: 2021 ident: 10.1016/j.matpr.2022.03.591_b0070 article-title: A review on the fused deposition modeling (FDM) 3D printing: filament processing, materials, and printing parameters publication-title: Open Eng. doi: 10.1515/eng-2021-0063 – volume: 9 start-page: 552 issue: 5 year: 2010 ident: 10.1016/j.matpr.2022.03.591_b0005 article-title: Poly-lactic acid: production, applications, nanocomposites, and release studies publication-title: Comprehens. Rev. Food Sci. Food Safety doi: 10.1111/j.1541-4337.2010.00126.x – volume: 102 start-page: 79 issue: 1 year: 2021 ident: 10.1016/j.matpr.2022.03.591_b0090 article-title: Finite element method modeling of additive manufactured compressor wheel publication-title: J. Inst. Eng. (India): Ser. D |
SSID | ssj0001560816 |
Score | 2.217836 |
Snippet | Polylactic Acid (PLA) is a natural source of corn, cassava, and sugarcane which is an economically produced renewable, biodegradable, compostable, and bio... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 551 |
SubjectTerms | Additive manufacturing Biodegradable FDM FEA Infill rates PLA |
Title | Investigation of impact strength at different infill rates biodegradable PLA constituent through fused deposition modeling |
URI | https://dx.doi.org/10.1016/j.matpr.2022.03.591 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF76uHgRRcX6KHvwaGyzjyR7LMVSX0XQQm9hd7PRSkmKTS8e_O3uJButID0IuSTsQJidzDdsZr4PoQueUpEIor2IRnBa5UtPSaG8kHNlwtRmh_IP_sMkGE_Z7YzPGmhYz8JAW6XL_VVOL7O1e9Jz3uwt5_PeEwGJHYs2xGKYsFVBE7UJFQFvofbg5m48-TlqsagelSKoYOKBTc0_VHZ62dJwCdSghADfKRf-3xi1gTujPbTrCkY8qN5pHzVMdoA-Nugx8gznKa6mHTGMfmQvxSuWBa61Twpso2i-WGBghVhhNc8TYIhIYGgKP94PsM6rjgFY6nR7cLpemQQnpm7qwqVkjsW5QzQdXT8Px55TUfC0hafCoyJizISSSEEV7StgaOe-ZoGiwhcyMjyIdGI0I5KG9uvWyk98YS9pdKgCTo9QK8szc4ww1UqolIVQl7CUMsmCSGmidNo3mie0g0jtt1g7inFQuljEdS_ZW1w6OwZnx30aW2d30OW30bJi2Ni-PKg3JP4VKLHFgG2GJ_81PEU7cFedu5yhVvG-Nue2EilUFzWvPv2ui7cvupngRA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF58HPQiior1uQePxjb7SLLHIpaqtQi20Nuyu9lopCTFphcP_nZ38tAK0oOQU7IDYXYy37CZ-T6ELnlCRSyI8SIawWmVrzythPZCzrUNE5cdyj_4j8OgP2b3Ez5ZQzfNLAy0Vda5v8rpZbau77Rrb7Znadp-JiCx49CGOAwTripYR5uM0xD6-q4__Z-DFofpUSmBCgYeWDTsQ2WflysMZ0AMSgiwnXLh_41QS6jT20U7dbmIu9Ub7aE1m-2jjyVyjDzDeYKrWUcMgx_ZS_GKVYEb5ZMCuxhKp1MMnBBzrNM8Bn6IGEam8NOgi01e9QvA0lq1ByeLuY1xbJuWLlwK5jiUO0Dj3u3opu_VGgqeceBUeFREjNlQESWoph0N_OzcNyzQVPhCRZYHkYmtYUTR0H3bRvuxL9ylrAl1wOkh2sjyzB4hTI0WOmEhVCUsoUyxINKGaJN0rOExbSHS-E2ammAcdC6msukke5OlsyU4W3aodM5uoatvo1nFr7F6edBsiPwVJtIhwCrD4_8aXqCt_uhxIAd3w4cTtA1PqhOYU7RRvC_smatJCn1extwXoq7hDw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+impact+strength+at+different+infill+rates+biodegradable+PLA+constituent+through+fused+deposition+modeling&rft.jtitle=Materials+today+%3A+proceedings&rft.au=Dharmalingam%2C+G.&rft.au=Arun+Prasad%2C+M.&rft.au=Salunkhe%2C+Sachin&rft.date=2022&rft.pub=Elsevier+Ltd&rft.issn=2214-7853&rft.eissn=2214-7853&rft.volume=62&rft.spage=551&rft.epage=558&rft_id=info:doi/10.1016%2Fj.matpr.2022.03.591&rft.externalDocID=S2214785322019423 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-7853&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-7853&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-7853&client=summon |