An initialization-free distributed algorithm for dynamic economic dispatch problems in microgrid: Modeling, optimization and analysis
In this paper, a distributed optimization algorithm is designed for a hybrid microgrid network to minimize the total generation cost in a dynamic economic dispatch problem (DEDP). The hybrid microgrid model is constructed with different types of traditional power resources, renewable energy and ener...
Saved in:
Published in | Sustainable Energy, Grids and Networks Vol. 34; p. 101004 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2352-4677 2352-4677 |
DOI | 10.1016/j.segan.2023.101004 |
Cover
Loading…
Abstract | In this paper, a distributed optimization algorithm is designed for a hybrid microgrid network to minimize the total generation cost in a dynamic economic dispatch problem (DEDP). The hybrid microgrid model is constructed with different types of traditional power resources, renewable energy and energy storage batteries, which are subject to the supply–demand balance, capacity, and ramp-rate constraints of the generation facilities. Meantime, from the perspective of environment protection, the pollutant emissions from traditional generators are considered to reduce its impact on environment. Firstly, we transform the multi-objective optimization problem to a single objective optimization problem through the weight-sum method. Then, compared to the most existing centralized algorithms, we propose a fully distributed algorithm that does not depend on the initialization process to solve the dynamic dispatch problem. Moreover, we assume that the optimization objective functions are convex functions rather than a strictly standard quadratic function, and the convergence of the proposed algorithm is analyzed through convex analysis and a Lyapunov function method. Finally, some experiments with quadratic or non-quadratic cost functions and comparison examples are simulated, the experimental results verify that the optimal solution satisfies the constraints of the supply–demand constraints and capacity inequalities in each time slot. |
---|---|
AbstractList | In this paper, a distributed optimization algorithm is designed for a hybrid microgrid network to minimize the total generation cost in a dynamic economic dispatch problem (DEDP). The hybrid microgrid model is constructed with different types of traditional power resources, renewable energy and energy storage batteries, which are subject to the supply–demand balance, capacity, and ramp-rate constraints of the generation facilities. Meantime, from the perspective of environment protection, the pollutant emissions from traditional generators are considered to reduce its impact on environment. Firstly, we transform the multi-objective optimization problem to a single objective optimization problem through the weight-sum method. Then, compared to the most existing centralized algorithms, we propose a fully distributed algorithm that does not depend on the initialization process to solve the dynamic dispatch problem. Moreover, we assume that the optimization objective functions are convex functions rather than a strictly standard quadratic function, and the convergence of the proposed algorithm is analyzed through convex analysis and a Lyapunov function method. Finally, some experiments with quadratic or non-quadratic cost functions and comparison examples are simulated, the experimental results verify that the optimal solution satisfies the constraints of the supply–demand constraints and capacity inequalities in each time slot. |
ArticleNumber | 101004 |
Author | Duan, Yuzhu Hu, Jiangping Zhao, Yiyi |
Author_xml | – sequence: 1 givenname: Yuzhu surname: Duan fullname: Duan, Yuzhu organization: School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China – sequence: 2 givenname: Yiyi surname: Zhao fullname: Zhao, Yiyi organization: School of Business Administration, Faculty of Business Administration, Southwestern University of Finance and Economics, Chengdu 611130, Sichuan, China – sequence: 3 givenname: Jiangping orcidid: 0000-0002-7559-8604 surname: Hu fullname: Hu, Jiangping email: hujp@uestc.edu.cn organization: School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China |
BookMark | eNqFkM1OwzAQhC0EEn99Ai5-AFIcu3FaJA4I8SeBuMDZ2tqbslViV7ZBKnfem4T2gDjAySPb3-zOHLJdHzwydlKKcSlKfbYcJ1yAH0sh1XAjxGSHHUhVyWKi63r3h95no5SWQghZzbSuqwP2eek5ecoELX1ApuCLJiJyRylHmr9ldBzaRYiUXzvehMjd2kNHlqMNPgyi_7qCbF_5KoZ5i13qDXn_EMMikjvnj8FhS35xysMqU7cdw8H3zh7adaJ0zPYaaBOOtucRe7m5fr66Kx6ebu-vLh8Kq4TKhdKqlpVyjcIJSAtO2rKa1K6cD2qOIKdTVU8VQqWbWuCscrq0Dme1AgtaqyOmNr79cilFbMwqUgdxbUphhjLN0nyXaYYyzabMnpr9oizl7xA5ArX_sBcbFvtY74TRJEvoLTqKaLNxgf7kvwBsVpbl |
CitedBy_id | crossref_primary_10_1016_j_jobe_2023_106274 crossref_primary_10_3390_su16177261 crossref_primary_10_1007_s00202_024_02239_5 crossref_primary_10_1155_2023_9604454 crossref_primary_10_1038_s41598_024_71167_y crossref_primary_10_1080_15567036_2024_2302003 crossref_primary_10_1093_ijlct_ctae196 crossref_primary_10_1038_s41598_024_71916_z crossref_primary_10_1038_s41598_024_55380_3 crossref_primary_10_1016_j_ijepes_2024_110085 crossref_primary_10_1016_j_eswa_2023_121712 crossref_primary_10_1038_s41598_024_73308_9 crossref_primary_10_1007_s00202_024_02434_4 crossref_primary_10_1049_rpg2_70004 crossref_primary_10_1007_s11227_023_05427_5 crossref_primary_10_3389_fenrg_2024_1420449 crossref_primary_10_1016_j_eswa_2025_126737 crossref_primary_10_3390_su15097600 crossref_primary_10_1016_j_renene_2024_121103 crossref_primary_10_1007_s40866_024_00210_8 crossref_primary_10_1007_s10586_024_04316_7 crossref_primary_10_1155_2023_1134633 crossref_primary_10_1007_s00202_024_02556_9 crossref_primary_10_3390_en16124573 crossref_primary_10_1038_s41598_024_61783_z crossref_primary_10_3390_en17174338 crossref_primary_10_1038_s41598_024_83579_x crossref_primary_10_3389_fenrg_2024_1342517 crossref_primary_10_1007_s42235_024_00479_6 crossref_primary_10_1093_ijlct_ctae170 crossref_primary_10_1080_00207721_2024_2367079 crossref_primary_10_3390_su162411233 crossref_primary_10_1080_03772063_2024_2380861 crossref_primary_10_1007_s42235_024_00555_x crossref_primary_10_1016_j_csite_2024_104613 crossref_primary_10_1016_j_tsep_2023_101932 crossref_primary_10_1016_j_enbuild_2024_115070 crossref_primary_10_1016_j_ijhydene_2024_12_137 crossref_primary_10_1155_2023_2148904 crossref_primary_10_1007_s44196_024_00425_8 crossref_primary_10_1016_j_esr_2024_101455 crossref_primary_10_1016_j_heliyon_2024_e31280 crossref_primary_10_1007_s00202_024_02583_6 crossref_primary_10_1038_s41598_024_59024_4 crossref_primary_10_1016_j_heliyon_2024_e31843 crossref_primary_10_1038_s41598_024_79381_4 crossref_primary_10_3390_en17184707 crossref_primary_10_1007_s10462_024_10959_0 crossref_primary_10_1016_j_heliyon_2024_e30990 crossref_primary_10_1016_j_compbiomed_2023_107197 crossref_primary_10_3389_fenrg_2024_1453711 crossref_primary_10_3390_su152215691 crossref_primary_10_3390_en16227635 crossref_primary_10_1016_j_csite_2024_105323 crossref_primary_10_1371_journal_pone_0307228 crossref_primary_10_1007_s44196_024_00415_w crossref_primary_10_1038_s41598_024_53214_w crossref_primary_10_1049_rpg2_13138 crossref_primary_10_1007_s00202_024_02504_7 crossref_primary_10_3390_biomimetics8050441 crossref_primary_10_1155_2023_7553080 crossref_primary_10_1007_s42835_023_01656_z crossref_primary_10_1155_2023_2797613 crossref_primary_10_3390_electronics14030456 crossref_primary_10_1371_journal_pone_0315251 crossref_primary_10_1038_s41598_024_71051_9 crossref_primary_10_1049_rpg2_12854 crossref_primary_10_1016_j_jclepro_2023_140534 crossref_primary_10_1049_rpg2_12973 crossref_primary_10_3389_fenrg_2024_1355867 crossref_primary_10_1371_journal_pone_0305272 crossref_primary_10_1109_ACCESS_2023_3298105 crossref_primary_10_1016_j_heliyon_2024_e26961 crossref_primary_10_1155_2024_6611240 crossref_primary_10_2516_stet_2024040 crossref_primary_10_1038_s41598_024_83202_z crossref_primary_10_1038_s41598_024_61367_x crossref_primary_10_1016_j_heliyon_2024_e28344 crossref_primary_10_1016_j_ijhydene_2024_12_381 crossref_primary_10_1038_s41598_024_54181_y crossref_primary_10_1049_rpg2_13156 crossref_primary_10_1038_s41598_024_58024_8 crossref_primary_10_3390_en17246386 crossref_primary_10_3390_en16227614 crossref_primary_10_3389_fenrg_2024_1329684 crossref_primary_10_1093_ijlct_ctae256 crossref_primary_10_1038_s41598_024_66644_3 crossref_primary_10_3389_fenrg_2024_1442502 crossref_primary_10_1155_2024_5520331 crossref_primary_10_3390_en17092146 crossref_primary_10_1016_j_csite_2024_104932 crossref_primary_10_1038_s41598_024_57610_0 crossref_primary_10_1038_s41598_023_49067_4 crossref_primary_10_1049_rpg2_12750 crossref_primary_10_17163_ings_n31_2024_03 crossref_primary_10_3389_fenrg_2024_1343635 crossref_primary_10_1049_smt2_12226 crossref_primary_10_1016_j_rineng_2024_103804 crossref_primary_10_1007_s00202_024_02911_w crossref_primary_10_1016_j_csite_2024_105210 crossref_primary_10_1016_j_esr_2024_101410 crossref_primary_10_1007_s00202_024_02458_w crossref_primary_10_1155_2024_5526545 crossref_primary_10_3390_electronics13010087 crossref_primary_10_3390_app13148537 crossref_primary_10_1016_j_renene_2024_120505 crossref_primary_10_1016_j_compeleceng_2024_109401 crossref_primary_10_3390_en17235911 crossref_primary_10_1007_s00202_024_02774_1 crossref_primary_10_1080_19942060_2024_2327437 crossref_primary_10_1016_j_ecmx_2024_100864 crossref_primary_10_1038_s41598_024_69734_4 crossref_primary_10_1038_s41598_025_86232_3 crossref_primary_10_1007_s42835_023_01536_6 crossref_primary_10_1038_s41598_024_64427_4 crossref_primary_10_3390_su15139970 crossref_primary_10_1109_ACCESS_2024_3354369 crossref_primary_10_1038_s41598_024_64092_7 crossref_primary_10_1007_s42235_023_00408_z crossref_primary_10_1080_15397734_2024_2389109 crossref_primary_10_1016_j_aej_2023_10_029 crossref_primary_10_1038_s41598_025_89318_0 crossref_primary_10_1016_j_apenergy_2024_124605 crossref_primary_10_1007_s44196_024_00420_z crossref_primary_10_1038_s41598_024_82193_1 crossref_primary_10_1038_s41598_024_64794_y crossref_primary_10_1016_j_energy_2025_135073 crossref_primary_10_1038_s41598_024_81125_3 crossref_primary_10_3390_su152115663 crossref_primary_10_1016_j_energy_2025_135634 crossref_primary_10_1007_s00202_024_02852_4 crossref_primary_10_1093_jcde_qwae080 crossref_primary_10_1109_TCSI_2024_3351942 crossref_primary_10_1038_s41598_024_77822_8 crossref_primary_10_1007_s10723_023_09701_x crossref_primary_10_1007_s10723_023_09723_5 crossref_primary_10_1016_j_heliyon_2024_e30018 crossref_primary_10_3390_math11092126 crossref_primary_10_1038_s41598_024_61413_8 crossref_primary_10_1016_j_energy_2024_133043 crossref_primary_10_1093_comnet_cnae001 crossref_primary_10_1016_j_heliyon_2024_e30134 crossref_primary_10_1007_s00202_024_02651_x crossref_primary_10_1007_s10586_024_04685_z crossref_primary_10_1016_j_csite_2024_104452 crossref_primary_10_1016_j_csite_2023_103166 crossref_primary_10_1016_j_energy_2024_131641 crossref_primary_10_1038_s41598_024_69483_4 crossref_primary_10_3390_pr12081749 crossref_primary_10_3390_en17123013 crossref_primary_10_3390_en17153822 crossref_primary_10_1038_s41598_024_62690_z crossref_primary_10_1080_15397734_2023_2229913 crossref_primary_10_1080_00051144_2024_2329506 crossref_primary_10_1016_j_heliyon_2024_e30466 crossref_primary_10_1007_s00477_024_02764_6 crossref_primary_10_1016_j_ijhydene_2025_02_178 crossref_primary_10_1007_s00202_024_02851_5 crossref_primary_10_1038_s41598_024_60116_4 crossref_primary_10_1016_j_psep_2023_03_056 crossref_primary_10_1016_j_heliyon_2024_e26665 crossref_primary_10_1038_s41598_024_83284_9 crossref_primary_10_1016_j_epsr_2024_110399 crossref_primary_10_2516_stet_2024054 crossref_primary_10_1007_s10723_024_09741_x crossref_primary_10_2516_stet_2024056 crossref_primary_10_1016_j_est_2023_110260 crossref_primary_10_1038_s41598_024_71584_z crossref_primary_10_1038_s41598_024_57398_z crossref_primary_10_1038_s41598_024_55988_5 crossref_primary_10_1016_j_scs_2025_106145 crossref_primary_10_3390_batteries10110383 crossref_primary_10_1016_j_asoc_2024_111734 crossref_primary_10_1007_s00521_023_08984_1 crossref_primary_10_1049_cit2_12345 crossref_primary_10_1016_j_scs_2023_104967 crossref_primary_10_1016_j_csite_2024_105046 crossref_primary_10_3389_fenrg_2024_1354262 crossref_primary_10_1093_jcde_qwae054 crossref_primary_10_1016_j_heliyon_2024_e35171 crossref_primary_10_3390_electronics13204086 crossref_primary_10_1038_s41598_024_72774_5 crossref_primary_10_1371_journal_pone_0301522 crossref_primary_10_1038_s41598_024_61713_z crossref_primary_10_1038_s41598_024_74051_x crossref_primary_10_3389_fenrg_2024_1458115 crossref_primary_10_3390_app13148265 crossref_primary_10_1109_TIA_2023_3317228 crossref_primary_10_3390_a17070313 crossref_primary_10_3390_su16093810 crossref_primary_10_1038_s41598_024_58785_2 crossref_primary_10_1155_2023_6506144 crossref_primary_10_3934_math_20241067 crossref_primary_10_1016_j_energy_2025_135158 crossref_primary_10_1038_s41598_024_53688_8 crossref_primary_10_1016_j_isci_2023_107736 crossref_primary_10_1038_s41598_024_72861_7 crossref_primary_10_1109_ACCESS_2024_3419551 crossref_primary_10_3389_fenrg_2023_1265309 crossref_primary_10_1038_s41598_024_56209_9 crossref_primary_10_1038_s41598_024_61192_2 crossref_primary_10_1016_j_psep_2023_03_083 crossref_primary_10_1016_j_scs_2024_105807 crossref_primary_10_1038_s41598_024_52083_7 crossref_primary_10_1155_2023_9979610 crossref_primary_10_3389_fenrg_2024_1400745 crossref_primary_10_3389_fenrg_2024_1492243 crossref_primary_10_1016_j_ijhydene_2024_02_004 crossref_primary_10_1016_j_energy_2024_132937 crossref_primary_10_1016_j_jclepro_2024_141311 crossref_primary_10_1016_j_est_2024_110633 crossref_primary_10_1007_s42235_024_00553_z crossref_primary_10_1007_s13235_024_00611_5 crossref_primary_10_1016_j_neucom_2023_126467 crossref_primary_10_1371_journal_pone_0300527 crossref_primary_10_3390_en16073251 crossref_primary_10_1016_j_scs_2024_105800 crossref_primary_10_1007_s10462_024_10923_y crossref_primary_10_3389_fenrg_2024_1413252 crossref_primary_10_1016_j_seta_2024_103784 crossref_primary_10_1007_s44196_024_00570_0 crossref_primary_10_1016_j_csite_2024_104084 crossref_primary_10_1016_j_enconman_2024_118768 crossref_primary_10_1016_j_energy_2024_130745 crossref_primary_10_1038_s41598_024_69802_9 crossref_primary_10_1007_s13762_023_05125_y crossref_primary_10_1016_j_aej_2023_08_081 crossref_primary_10_1016_j_est_2024_112389 crossref_primary_10_1016_j_asoc_2023_110664 crossref_primary_10_1016_j_csite_2024_104647 crossref_primary_10_1007_s44196_024_00434_7 crossref_primary_10_1038_s41598_024_55426_6 |
Cites_doi | 10.1109/TII.2017.2785366 10.1016/j.apenergy.2019.113965 10.1016/j.jocs.2020.101280 10.1109/TCNS.2021.3104103 10.1016/j.energy.2018.07.167 10.1016/j.energy.2022.123599 10.1016/j.ijepes.2015.11.118 10.1016/j.energy.2021.121407 10.1007/s42835-018-00001-z 10.1109/59.910777 10.1016/j.ijepes.2019.105794 10.1016/j.automatica.2016.08.007 10.1007/s11432-019-2638-2 10.1016/j.ijepes.2020.106217 10.1049/iet-gtd.2015.1345 10.1016/j.renene.2018.01.058 10.1002/rnc.5543 10.1016/j.automatica.2022.110492 10.1287/opre.1060.0309 10.1016/j.epsr.2008.03.011 10.1109/TCSI.2004.830694 10.1109/TPWRS.2011.2179952 10.1016/j.apenergy.2014.08.024 10.1109/TPWRS.2020.2986710 10.1016/j.jocs.2016.12.010 10.1016/j.jocs.2013.10.007 10.1109/TIE.2014.2356171 10.1016/j.neucom.2020.05.006 10.1109/TPWRS.2015.2428714 10.1109/TNN.2004.824425 10.1016/j.epsr.2019.105982 10.1016/j.ins.2020.05.119 10.1016/j.ins.2021.07.022 10.1002/oca.2538 10.1109/JAS.2020.1003156 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.segan.2023.101004 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2352-4677 |
ExternalDocumentID | 10_1016_j_segan_2023_101004 S2352467723000127 |
GroupedDBID | --M 0R~ 4.4 457 AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO AAYFN ABBOA ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AFKWA AFTJW AGHFR AGUBO AHJVU AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BELTK BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE ROL SPC SPCBC SSR SST SSV SSW SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ABJNI AEIPS AFJKZ AFXIZ AGCQF AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c303t-3637253df3e4a2cad2c1547d1bd2c1bea2883783ea56f70e95d61cde973aca663 |
IEDL.DBID | AIKHN |
ISSN | 2352-4677 |
IngestDate | Tue Jul 01 01:47:55 EDT 2025 Thu Apr 24 22:55:27 EDT 2025 Fri Feb 23 02:35:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Distributed optimization Dynamic economic dispatch Hybrid microgrid network Initialization-free |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-3637253df3e4a2cad2c1547d1bd2c1bea2883783ea56f70e95d61cde973aca663 |
ORCID | 0000-0002-7559-8604 |
ParticipantIDs | crossref_primary_10_1016_j_segan_2023_101004 crossref_citationtrail_10_1016_j_segan_2023_101004 elsevier_sciencedirect_doi_10_1016_j_segan_2023_101004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2023 2023-06-00 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
PublicationDecade | 2020 |
PublicationTitle | Sustainable Energy, Grids and Networks |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Chen, Li, Dong (b24) 2016; 8 Abdelaziz, Kamh, Mekhamer, Badr (b4) 2008; 78 Frangioni, Gentile (b19) 2006; 54 Yu, Song, Feng, Tan (b30) 2020; 118 Das, Wang, Putrus (b37) 2020; 257 Jubril, Olaniyan (b11) 2014; 134 Ji, Chen, Yu, Li, Yan, Song, Wang (b2) 2022; 248 Shao, Si, Wu, Tong (b21) 2020; 102 Ramli, Bouchekara, Alghamdi (b34) 2018; 121 Chen, Zhang (b9) 2019; 177 Bayon, Grau, Ruiz, Suarez (b40) 2012; 27 Mozaffari, Azimi, Gorji-Bandpy (b8) 2014; 5 Jian, Hu, Wang, Shi (b13) 2019; 40 Li, Hu, Qiu, Zhao, Ghosh (b15) 2021; 9 Han, Gooi, Kirschen (b20) 2001; 16 Zhao, Liu, Zhu, Li (b23) 2016; 10 Li, Hu (b38) 2018; 6 Ponciroli, Stauff, Ramsey, Ganda, Vilim (b6) 2020; 35 Chen, Huang, Fan, Liao (b10) 2016; 78 Mohammadian, Lorestani, Ardehali (b5) 2018; 161 Xu, Li (b27) 2014; 62 Li, Nian, Deng, Chen, Meng (b14) 2021; 31 Ruszczynski (b32) 2006 Liu, Li (b36) 2021; 235 Yi, Hong, Liu (b26) 2016; 74 Ren, Haupt, Guo (b12) 2021; 49 Takeang, Aurasopon (b22) 2019; 14 He, Yu, Huang, Li (b25) 2018; 27 Yang, Chen, Wang (b39) 2020; 7 Wang, Fu, Xu, Chen, Yu (b29) 2021; 64 Lv, Yang, Shi (b18) 2020; 538 Kim, Kim (b28) 2020; 123 Chen, Yang (b42) 2017; 14 Li, Zhao, Hu, Zhang, Ghosh (b16) 2020; 407 Zaman, Elsayed, Ray, Sarker (b3) 2016; 31 Xia, Wang (b41) 2004; 51 Deng, Chen (b1) 2022; 144 Kaboli, Selvaraj, Rahim (b7) 2017; 19 Gao (b33) 2004; 15 Wood, Wollenberg (b35) 1996 Li, Liu, Zeng (b17) 2021; 577 Rockafellar (b31) 1970 Han (10.1016/j.segan.2023.101004_b20) 2001; 16 Rockafellar (10.1016/j.segan.2023.101004_b31) 1970 Ramli (10.1016/j.segan.2023.101004_b34) 2018; 121 Zhao (10.1016/j.segan.2023.101004_b23) 2016; 10 Bayon (10.1016/j.segan.2023.101004_b40) 2012; 27 Lv (10.1016/j.segan.2023.101004_b18) 2020; 538 Yi (10.1016/j.segan.2023.101004_b26) 2016; 74 Ji (10.1016/j.segan.2023.101004_b2) 2022; 248 Ponciroli (10.1016/j.segan.2023.101004_b6) 2020; 35 Kaboli (10.1016/j.segan.2023.101004_b7) 2017; 19 Chen (10.1016/j.segan.2023.101004_b10) 2016; 78 Abdelaziz (10.1016/j.segan.2023.101004_b4) 2008; 78 Takeang (10.1016/j.segan.2023.101004_b22) 2019; 14 Jian (10.1016/j.segan.2023.101004_b13) 2019; 40 Mozaffari (10.1016/j.segan.2023.101004_b8) 2014; 5 Kim (10.1016/j.segan.2023.101004_b28) 2020; 123 Li (10.1016/j.segan.2023.101004_b14) 2021; 31 He (10.1016/j.segan.2023.101004_b25) 2018; 27 Wood (10.1016/j.segan.2023.101004_b35) 1996 Das (10.1016/j.segan.2023.101004_b37) 2020; 257 Shao (10.1016/j.segan.2023.101004_b21) 2020; 102 Li (10.1016/j.segan.2023.101004_b38) 2018; 6 Xia (10.1016/j.segan.2023.101004_b41) 2004; 51 Zaman (10.1016/j.segan.2023.101004_b3) 2016; 31 Chen (10.1016/j.segan.2023.101004_b9) 2019; 177 Li (10.1016/j.segan.2023.101004_b15) 2021; 9 Wang (10.1016/j.segan.2023.101004_b29) 2021; 64 Chen (10.1016/j.segan.2023.101004_b24) 2016; 8 Gao (10.1016/j.segan.2023.101004_b33) 2004; 15 Li (10.1016/j.segan.2023.101004_b16) 2020; 407 Jubril (10.1016/j.segan.2023.101004_b11) 2014; 134 Li (10.1016/j.segan.2023.101004_b17) 2021; 577 Ruszczynski (10.1016/j.segan.2023.101004_b32) 2006 Yu (10.1016/j.segan.2023.101004_b30) 2020; 118 Mohammadian (10.1016/j.segan.2023.101004_b5) 2018; 161 Frangioni (10.1016/j.segan.2023.101004_b19) 2006; 54 Chen (10.1016/j.segan.2023.101004_b42) 2017; 14 Deng (10.1016/j.segan.2023.101004_b1) 2022; 144 Xu (10.1016/j.segan.2023.101004_b27) 2014; 62 Liu (10.1016/j.segan.2023.101004_b36) 2021; 235 Ren (10.1016/j.segan.2023.101004_b12) 2021; 49 Yang (10.1016/j.segan.2023.101004_b39) 2020; 7 |
References_xml | – volume: 177 year: 2019 ident: b9 article-title: A Lagrange relaxation-based alternating iterative algorithm for non-convex combined heat and power dispatch problem publication-title: Electr. Power Syst. Res. – volume: 54 start-page: 767 year: 2006 end-page: 775 ident: b19 article-title: Solving nonlinear single-unit commitment problems with ramping constraints publication-title: Oper. Res. – volume: 27 start-page: 1 year: 2018 end-page: 8 ident: b25 article-title: Distributed power management for dynamic economic dispatch in the multimicrogrids environment publication-title: IEEE Trans. Control Syst. Technol. – volume: 19 start-page: 31 year: 2017 end-page: 42 ident: b7 article-title: Rain-fall optimization algorithm: A population based algorithm for solving constrained optimization problems publication-title: J. Comput. Sci. – volume: 64 year: 2021 ident: b29 article-title: Distributed fixed step-size algorithm for dynamic economic dispatch with power flow limits publication-title: Sci. China-Inf. Sci. – volume: 9 start-page: 356 year: 2021 end-page: 366 ident: b15 article-title: A distributed economic dispatch strategy for power–water networks publication-title: IEEE Trans. Control Netw. Syst. – volume: 40 start-page: 1071 year: 2019 end-page: 1087 ident: b13 article-title: Distributed inexact dual consensus ADMM for network resource allocation publication-title: Optim. Control Appl. Methods – volume: 407 start-page: 155 year: 2020 end-page: 162 ident: b16 article-title: Distributed initialization-free algorithms for multi-agent optimization problems with coupled inequality constraints publication-title: Neurocomputing – volume: 257 year: 2020 ident: b37 article-title: Multi-objective techno-economic-environmental optimisation of electric vehicle for energy services publication-title: Appl. Energy – volume: 577 start-page: 336 year: 2021 end-page: 352 ident: b17 article-title: Quantized event-triggered communication based multi-agent system for distributed resource allocation optimization publication-title: Inform. Sci. – volume: 121 start-page: 400 year: 2018 end-page: 411 ident: b34 article-title: Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm publication-title: Renew. Energ. – volume: 31 start-page: 5330 year: 2021 end-page: 5342 ident: b14 article-title: Distributed resource allocation of second-order nonlinear multiagent systems publication-title: Internat. J. Robust Nonlinear Control – year: 1970 ident: b31 article-title: Convex Analysis – year: 2006 ident: b32 article-title: Nonlinear Optimization – volume: 10 start-page: 2486 year: 2016 end-page: 2495 ident: b23 article-title: Fully decentralized multi-area dynamic economic dispatch for large-scale power systems via cutting plane consensus publication-title: IET Gener. Transm. Distrib. – year: 1996 ident: b35 article-title: Power Generation, Operation and Control – volume: 49 year: 2021 ident: b12 article-title: Communication-efficient hierarchical distributed optimization for multi-agent policy evaluation publication-title: J. Comput. Sci. – volume: 14 start-page: 3892 year: 2017 end-page: 3903 ident: b42 article-title: An ADMM-based distributed algorithm for economic dispatch in islanded microgrids publication-title: IEEE Trans. Ind. Inform. – volume: 161 start-page: 710 year: 2018 end-page: 724 ident: b5 article-title: Optimization of single and multi-areas economic dispatch problems based on evolutionary particle swarm optimization algorithm publication-title: Energy – volume: 538 start-page: 39 year: 2020 end-page: 53 ident: b18 article-title: Differentially private distributed optimization for multi-agent systems via the augmented lagrangian algorithm publication-title: Inform. Sci. – volume: 5 start-page: 206 year: 2014 end-page: 223 ident: b8 article-title: Ensemble mutable smart bee algorithm and a robust neural identifier for optimal design of a large scale power system publication-title: J. Comput. Sci. – volume: 78 start-page: 463 year: 2016 end-page: 469 ident: b10 article-title: A nonlinear fractional programming approach for environmental-economic power dispatch publication-title: Int. J. Electr. Power Energy Syst. – volume: 51 start-page: 1385 year: 2004 end-page: 1394 ident: b41 article-title: A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints publication-title: IEEE Trans. Circuits Syst. I-Regul. Pap. – volume: 118 year: 2020 ident: b30 article-title: A consensus approach for economic dispatch problem in a microgrid with random delay effects publication-title: Int. J. Electr. Power Energy Syst. – volume: 6 start-page: 2169 year: 2018 end-page: 3536 ident: b38 article-title: An ADMM based distributed finite-time algorithm for economic dispatch problems publication-title: IEEE Access – volume: 102 year: 2020 ident: b21 article-title: An agile and intelligent dynamic economic emission dispatcher based on multi-objective proximal policy optimization publication-title: Appl. Soft. Comput. – volume: 14 start-page: 111 year: 2019 end-page: 120 ident: b22 article-title: Multiple of hybrid lambda iteration and simulated annealing algorithm to solve economic dispatch problem with ramp rate limit and prohibited operating zones publication-title: Int. J. Electr. Eng. Technol. – volume: 235 year: 2021 ident: b36 article-title: Dynamic economic emission dispatch considering renewable energy generation: A novel multi-objective optimization approach publication-title: Energy – volume: 123 year: 2020 ident: b28 article-title: Dynamic programming for scalable just-in-time economic dispatch with non-convex constraints and anytime participation publication-title: Int. J. Electr. Power Energy Syst. – volume: 74 start-page: 259 year: 2016 end-page: 269 ident: b26 article-title: Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and application to economic dispatch of power systems publication-title: Automatica – volume: 8 start-page: 1026 year: 2016 end-page: 1027 ident: b24 article-title: Parallel and distributed computation for dynamical economic dispatch publication-title: IEEE Trans. Smart Grid – volume: 78 start-page: 1784 year: 2008 end-page: 1788 ident: b4 article-title: A hybrid HNN-QP approach for dynamic economic dispatch problem publication-title: Electr. Power Syst. Res. – volume: 134 start-page: 446 year: 2014 end-page: 455 ident: b11 article-title: Economic-emission dispatch problem: A semi-definite programming approach publication-title: Appl. Energy – volume: 16 start-page: 22 year: 2001 end-page: 28 ident: b20 article-title: Dynamic economic dispatch: Feasible and optimal solutions publication-title: IEEE Trans. Power Syst. – volume: 144 year: 2022 ident: b1 article-title: Distributed algorithm design for constrained resource allocation problems with high-order multi-agent systems publication-title: Automatica – volume: 62 start-page: 2584 year: 2014 end-page: 2592 ident: b27 article-title: Distributed optimal resource management based on the consensus algorithm in a microgrid publication-title: IEEE Trans. Ind. Electron. – volume: 27 start-page: 723 year: 2012 end-page: 731 ident: b40 article-title: The exact solution of the environmental/economic dispatch problem publication-title: IEEE Trans. Power Syst – volume: 35 start-page: 4005 year: 2020 end-page: 4013 ident: b6 article-title: An improved genetic algorithm approach to the unit commitment/economic dispatch problem publication-title: IEEE Trans. Power Syst. – volume: 15 start-page: 613 year: 2004 end-page: 621 ident: b33 article-title: A novel neural network for nonlinear convex programming publication-title: IEEE Trans. Neural Netw. – volume: 248 year: 2022 ident: b2 article-title: Robust operation for minimizing power consumption of data centers with flexible substation integration publication-title: Energy – volume: 7 start-page: 842 year: 2020 end-page: 852 ident: b39 article-title: ADMM-based distributed algorithm for economic dispatch in power systems with both packet drops and communication delays publication-title: IEEE-CAA J. Automatica Sin. – volume: 31 start-page: 1486 year: 2016 end-page: 1495 ident: b3 article-title: Evolutionary algorithms for dynamic economic dispatch problems publication-title: IEEE Trans. Power Syst. – volume: 14 start-page: 3892 issue: 9 year: 2017 ident: 10.1016/j.segan.2023.101004_b42 article-title: An ADMM-based distributed algorithm for economic dispatch in islanded microgrids publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2017.2785366 – volume: 257 year: 2020 ident: 10.1016/j.segan.2023.101004_b37 article-title: Multi-objective techno-economic-environmental optimisation of electric vehicle for energy services publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113965 – volume: 49 year: 2021 ident: 10.1016/j.segan.2023.101004_b12 article-title: Communication-efficient hierarchical distributed optimization for multi-agent policy evaluation publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2020.101280 – volume: 9 start-page: 356 issue: 1 year: 2021 ident: 10.1016/j.segan.2023.101004_b15 article-title: A distributed economic dispatch strategy for power–water networks publication-title: IEEE Trans. Control Netw. Syst. doi: 10.1109/TCNS.2021.3104103 – volume: 161 start-page: 710 year: 2018 ident: 10.1016/j.segan.2023.101004_b5 article-title: Optimization of single and multi-areas economic dispatch problems based on evolutionary particle swarm optimization algorithm publication-title: Energy doi: 10.1016/j.energy.2018.07.167 – volume: 248 year: 2022 ident: 10.1016/j.segan.2023.101004_b2 article-title: Robust operation for minimizing power consumption of data centers with flexible substation integration publication-title: Energy doi: 10.1016/j.energy.2022.123599 – volume: 78 start-page: 463 issue: June year: 2016 ident: 10.1016/j.segan.2023.101004_b10 article-title: A nonlinear fractional programming approach for environmental-economic power dispatch publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2015.11.118 – volume: 235 year: 2021 ident: 10.1016/j.segan.2023.101004_b36 article-title: Dynamic economic emission dispatch considering renewable energy generation: A novel multi-objective optimization approach publication-title: Energy doi: 10.1016/j.energy.2021.121407 – volume: 14 start-page: 111 issue: 1 year: 2019 ident: 10.1016/j.segan.2023.101004_b22 article-title: Multiple of hybrid lambda iteration and simulated annealing algorithm to solve economic dispatch problem with ramp rate limit and prohibited operating zones publication-title: Int. J. Electr. Eng. Technol. doi: 10.1007/s42835-018-00001-z – year: 1970 ident: 10.1016/j.segan.2023.101004_b31 – volume: 16 start-page: 22 issue: 1 year: 2001 ident: 10.1016/j.segan.2023.101004_b20 article-title: Dynamic economic dispatch: Feasible and optimal solutions publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.910777 – volume: 118 year: 2020 ident: 10.1016/j.segan.2023.101004_b30 article-title: A consensus approach for economic dispatch problem in a microgrid with random delay effects publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2019.105794 – year: 2006 ident: 10.1016/j.segan.2023.101004_b32 – volume: 74 start-page: 259 year: 2016 ident: 10.1016/j.segan.2023.101004_b26 article-title: Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and application to economic dispatch of power systems publication-title: Automatica doi: 10.1016/j.automatica.2016.08.007 – volume: 64 issue: 1 year: 2021 ident: 10.1016/j.segan.2023.101004_b29 article-title: Distributed fixed step-size algorithm for dynamic economic dispatch with power flow limits publication-title: Sci. China-Inf. Sci. doi: 10.1007/s11432-019-2638-2 – volume: 123 year: 2020 ident: 10.1016/j.segan.2023.101004_b28 article-title: Dynamic programming for scalable just-in-time economic dispatch with non-convex constraints and anytime participation publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2020.106217 – volume: 10 start-page: 2486 issue: 10 year: 2016 ident: 10.1016/j.segan.2023.101004_b23 article-title: Fully decentralized multi-area dynamic economic dispatch for large-scale power systems via cutting plane consensus publication-title: IET Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2015.1345 – volume: 121 start-page: 400 year: 2018 ident: 10.1016/j.segan.2023.101004_b34 article-title: Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm publication-title: Renew. Energ. doi: 10.1016/j.renene.2018.01.058 – volume: 31 start-page: 5330 issue: 11 year: 2021 ident: 10.1016/j.segan.2023.101004_b14 article-title: Distributed resource allocation of second-order nonlinear multiagent systems publication-title: Internat. J. Robust Nonlinear Control doi: 10.1002/rnc.5543 – volume: 144 year: 2022 ident: 10.1016/j.segan.2023.101004_b1 article-title: Distributed algorithm design for constrained resource allocation problems with high-order multi-agent systems publication-title: Automatica doi: 10.1016/j.automatica.2022.110492 – volume: 6 start-page: 2169 year: 2018 ident: 10.1016/j.segan.2023.101004_b38 article-title: An ADMM based distributed finite-time algorithm for economic dispatch problems publication-title: IEEE Access – volume: 54 start-page: 767 issue: 4 year: 2006 ident: 10.1016/j.segan.2023.101004_b19 article-title: Solving nonlinear single-unit commitment problems with ramping constraints publication-title: Oper. Res. doi: 10.1287/opre.1060.0309 – volume: 78 start-page: 1784 issue: 10 year: 2008 ident: 10.1016/j.segan.2023.101004_b4 article-title: A hybrid HNN-QP approach for dynamic economic dispatch problem publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2008.03.011 – volume: 51 start-page: 1385 issue: 7 year: 2004 ident: 10.1016/j.segan.2023.101004_b41 article-title: A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints publication-title: IEEE Trans. Circuits Syst. I-Regul. Pap. doi: 10.1109/TCSI.2004.830694 – volume: 102 issue: 3 year: 2020 ident: 10.1016/j.segan.2023.101004_b21 article-title: An agile and intelligent dynamic economic emission dispatcher based on multi-objective proximal policy optimization publication-title: Appl. Soft. Comput. – volume: 27 start-page: 723 issue: 2 year: 2012 ident: 10.1016/j.segan.2023.101004_b40 article-title: The exact solution of the environmental/economic dispatch problem publication-title: IEEE Trans. Power Syst doi: 10.1109/TPWRS.2011.2179952 – volume: 134 start-page: 446 issue: Dec year: 2014 ident: 10.1016/j.segan.2023.101004_b11 article-title: Economic-emission dispatch problem: A semi-definite programming approach publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.08.024 – year: 1996 ident: 10.1016/j.segan.2023.101004_b35 – volume: 35 start-page: 4005 issue: 5 year: 2020 ident: 10.1016/j.segan.2023.101004_b6 article-title: An improved genetic algorithm approach to the unit commitment/economic dispatch problem publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2020.2986710 – volume: 19 start-page: 31 year: 2017 ident: 10.1016/j.segan.2023.101004_b7 article-title: Rain-fall optimization algorithm: A population based algorithm for solving constrained optimization problems publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2016.12.010 – volume: 5 start-page: 206 issue: 2 year: 2014 ident: 10.1016/j.segan.2023.101004_b8 article-title: Ensemble mutable smart bee algorithm and a robust neural identifier for optimal design of a large scale power system publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2013.10.007 – volume: 62 start-page: 2584 issue: 4 year: 2014 ident: 10.1016/j.segan.2023.101004_b27 article-title: Distributed optimal resource management based on the consensus algorithm in a microgrid publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2014.2356171 – volume: 27 start-page: 1 issue: 4 year: 2018 ident: 10.1016/j.segan.2023.101004_b25 article-title: Distributed power management for dynamic economic dispatch in the multimicrogrids environment publication-title: IEEE Trans. Control Syst. Technol. – volume: 407 start-page: 155 year: 2020 ident: 10.1016/j.segan.2023.101004_b16 article-title: Distributed initialization-free algorithms for multi-agent optimization problems with coupled inequality constraints publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.05.006 – volume: 31 start-page: 1486 issue: 2 year: 2016 ident: 10.1016/j.segan.2023.101004_b3 article-title: Evolutionary algorithms for dynamic economic dispatch problems publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2015.2428714 – volume: 8 start-page: 1026 issue: 2 year: 2016 ident: 10.1016/j.segan.2023.101004_b24 article-title: Parallel and distributed computation for dynamical economic dispatch publication-title: IEEE Trans. Smart Grid – volume: 15 start-page: 613 issue: 3 year: 2004 ident: 10.1016/j.segan.2023.101004_b33 article-title: A novel neural network for nonlinear convex programming publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2004.824425 – volume: 177 year: 2019 ident: 10.1016/j.segan.2023.101004_b9 article-title: A Lagrange relaxation-based alternating iterative algorithm for non-convex combined heat and power dispatch problem publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2019.105982 – volume: 538 start-page: 39 year: 2020 ident: 10.1016/j.segan.2023.101004_b18 article-title: Differentially private distributed optimization for multi-agent systems via the augmented lagrangian algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.05.119 – volume: 577 start-page: 336 year: 2021 ident: 10.1016/j.segan.2023.101004_b17 article-title: Quantized event-triggered communication based multi-agent system for distributed resource allocation optimization publication-title: Inform. Sci. doi: 10.1016/j.ins.2021.07.022 – volume: 40 start-page: 1071 issue: 6 year: 2019 ident: 10.1016/j.segan.2023.101004_b13 article-title: Distributed inexact dual consensus ADMM for network resource allocation publication-title: Optim. Control Appl. Methods doi: 10.1002/oca.2538 – volume: 7 start-page: 842 issue: 3 year: 2020 ident: 10.1016/j.segan.2023.101004_b39 article-title: ADMM-based distributed algorithm for economic dispatch in power systems with both packet drops and communication delays publication-title: IEEE-CAA J. Automatica Sin. doi: 10.1109/JAS.2020.1003156 |
SSID | ssj0002596675 |
Score | 2.649656 |
Snippet | In this paper, a distributed optimization algorithm is designed for a hybrid microgrid network to minimize the total generation cost in a dynamic economic... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 101004 |
SubjectTerms | Distributed optimization Dynamic economic dispatch Hybrid microgrid network Initialization-free |
Title | An initialization-free distributed algorithm for dynamic economic dispatch problems in microgrid: Modeling, optimization and analysis |
URI | https://dx.doi.org/10.1016/j.segan.2023.101004 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09b8IwELUoLO1Q9VOlX_LQEYsQBzvphlARbSWWFoktcmwHUkFAQH9C_3fvEge1qsTQLbF8TuRzzi_J3XuEPBjuJUbyDpNpGrEgsRELtTHMJsYIT4e-VEWC7EgMx8HLpDupkX5VC4NplS72lzG9iNaupe1ms73KsvabD9gBHnMJILr4gXpAGj6PRFgnjd7z63C0-9QCCF-IgnIXTRjaVPxDRabXxk4VUqH6HFs8p9n2Z4_6se8MTsixA4y0V97TKanZ_Iwc_aARPCdfvZxmmASk5q6qkqVra6lBUlzUs7KGqvl0uc62swUFlEpNqUNPrStLxq4rCMoz6gRmNjAgXWCy3nSdmUeKkmlYuN6iS4gxC3cZqnIY2dGaXJDx4Om9P2ROXoFp2Le2jAsu_S43KbeB8rUyvgY8JU0nwaPEKhQiliG3qitS6dmoa0RHGxtJrrQCpHJJ6vkyt1eEykBDsPJ00AlVYKIQMJdIAng3sgoukoRN4lcTGmvHPY4SGPO4SjL7iAsvxOiFuPRCk7R2RquSemN_d1F5Kv61gmLYHPYZXv_X8IYc4lmZOHZL6tv1p70DiLJN7t0S_Aa1eect |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYAB8RRvPDBiNY1TO2GrEKi8ugASW-TYTglq06qUn8D_5i5xEAiJgS1yfE7kc85fkrvvAzi1IsisEh2u8jzhUeYSHhtrucuslYGJQ6WrBNmB7D9FN8_d5wW4aGphKK3Sx_46plfR2re0_Wy2p0XRfggRO-BjrhBEVz9QF2GJ2KmiFiz1rm_7g69PLYjwpawod8mEk03DP1Rler25oSYq1FBQS-A1237tUd_2nat1WPOAkfXqe9qABVduwuo3GsEt-OiVrKAkID3yVZU8nznHLJHikp6Vs0yPhpNZMX8ZM0SpzNY69Mz5smTqOsWg_MK8wMwbDsjGlKw3nBX2nJFkGhWun7EJxpixvwzTJY7saU224enq8vGiz728Aje4b825kEKFXWFz4SIdGm1Dg3hK2U5GR5nTJESsYuF0V-YqcEnXyo6xLlFCG41IZQda5aR0u8BUZDBYBSbqxDqySYyYS2YRvhs5jRfJ4j0ImwlNjeceJwmMUdokmb2mlRdS8kJae2EPzr6MpjX1xt_dZeOp9McKSnFz-Mtw_7-GJ7Dcf7y_S--uB7cHsEJn6iSyQ2jNZ-_uCOHKPDv2y_ETodHqEw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+initialization-free+distributed+algorithm+for+dynamic+economic+dispatch+problems+in+microgrid%3A+Modeling%2C+optimization+and+analysis&rft.jtitle=Sustainable+Energy%2C+Grids+and+Networks&rft.au=Duan%2C+Yuzhu&rft.au=Zhao%2C+Yiyi&rft.au=Hu%2C+Jiangping&rft.date=2023-06-01&rft.issn=2352-4677&rft.eissn=2352-4677&rft.volume=34&rft.spage=101004&rft_id=info:doi/10.1016%2Fj.segan.2023.101004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_segan_2023_101004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4677&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4677&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4677&client=summon |