Formalizing Moessner's theorem and generalizations in Nuprl

Moessner's theorem describes a procedure for generating a sequence of n integer sequences that lead unexpectedly to the sequence of nth powers 1n, 2n, 3n, … . Several generalizations of Moessner's theorem exist. Recently, Kozen and Silva gave an algebraic proof of a general theorem that su...

Full description

Saved in:
Bibliographic Details
Published inJournal of logical and algebraic methods in programming Vol. 124; p. 100713
Main Authors Bickford, Mark, Kozen, Dexter, Silva, Alexandra
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Moessner's theorem describes a procedure for generating a sequence of n integer sequences that lead unexpectedly to the sequence of nth powers 1n, 2n, 3n, … . Several generalizations of Moessner's theorem exist. Recently, Kozen and Silva gave an algebraic proof of a general theorem that subsumes Moessner's original theorem and its known generalizations. In this note, we describe the formalization of this theorem that the first author did in Nuprl. On the one hand, the formalization remains remarkably close to the original proof. On the other hand, it leads to new insights in the proof, pointing to small gaps and ambiguities that would never raise any objections in pen and pencil proofs, but which must be resolved in machine formalization.
AbstractList Moessner's theorem describes a procedure for generating a sequence of n integer sequences that lead unexpectedly to the sequence of nth powers 1n, 2n, 3n, … . Several generalizations of Moessner's theorem exist. Recently, Kozen and Silva gave an algebraic proof of a general theorem that subsumes Moessner's original theorem and its known generalizations. In this note, we describe the formalization of this theorem that the first author did in Nuprl. On the one hand, the formalization remains remarkably close to the original proof. On the other hand, it leads to new insights in the proof, pointing to small gaps and ambiguities that would never raise any objections in pen and pencil proofs, but which must be resolved in machine formalization.
ArticleNumber 100713
Author Kozen, Dexter
Bickford, Mark
Silva, Alexandra
Author_xml – sequence: 1
  givenname: Mark
  surname: Bickford
  fullname: Bickford, Mark
  email: markb@cs.cornell.edu
  organization: Computer Science Department, Cornell University, Ithaca, NY, USA
– sequence: 2
  givenname: Dexter
  surname: Kozen
  fullname: Kozen, Dexter
  email: kozen@cs.cornell.edu
  organization: Computer Science Department, Cornell University, Ithaca, NY, USA
– sequence: 3
  givenname: Alexandra
  surname: Silva
  fullname: Silva, Alexandra
  email: alexandra.silva@ucl.ac.uk
  organization: Computer Science Department, University College London, London, United Kingdom
BookMark eNqFj7FOwzAURT0UiVL6BSzZmFL87CZxhBhQRQtSgQVmy7Wfi6PEruyABF9P2jIxwHSlq3uudM7IyAePhFwAnQGF8qqZNa3qdjNGGQwNrYCPyJjxguWMUXFKpik1lA5TUQkOY3K9DLFTrftyfps9BkzJY7xMWf-GIWKXKW-yLQ7dfqN6F3zKnM-e3nexPScnVrUJpz85Ia_Lu5fFfb5-Xj0sbte55pT3OS9UXdrSUphTw7Gy3AAvoS43qMBqLTTMOSuAm1ooFAWDDShdVhW1RhRK8Qnhx18dQ0oRrdxF16n4KYHKvbZs5EFb7rXlUXug6l-Udv3BoI_Ktf-wN0cWB60Ph1Em7dBrNC6i7qUJ7k_-G1CmeE8
CitedBy_id crossref_primary_10_4204_EPTCS_413_5
Cites_doi 10.2307/3615513
10.4169/amer.math.monthly.120.02.131
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jlamp.2021.100713
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_jlamp_2021_100713
S2352220821000766
GroupedDBID --M
0R~
4.4
457
4G.
7-5
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
AAYFN
ABBOA
ABMAC
ABVKL
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
GBLVA
GBOLZ
HZ~
KOM
M41
NCXOZ
O9-
OAUVE
RIG
ROL
SPC
SPCBC
SSV
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c303t-35a96f6f0140d3e7f3d136196bea1fcc8c1432513d98ae8521b1ac6770fd85aa3
IEDL.DBID AIKHN
ISSN 2352-2208
IngestDate Tue Jul 01 00:37:50 EDT 2025
Thu Apr 24 23:05:42 EDT 2025
Fri Feb 23 02:45:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nuprl
Formalization
Moessner's theorem
Pascal triangle
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-35a96f6f0140d3e7f3d136196bea1fcc8c1432513d98ae8521b1ac6770fd85aa3
ParticipantIDs crossref_primary_10_1016_j_jlamp_2021_100713
crossref_citationtrail_10_1016_j_jlamp_2021_100713
elsevier_sciencedirect_doi_10_1016_j_jlamp_2021_100713
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationTitle Journal of logical and algebraic methods in programming
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Long (br0070) October 1966; 73
Niqui, Rutten (br0100) 2011
Conway, Guy (br0010) 1996
Honsberger (br0030) 1991
Hinze (br0020) 2009; vol. 5836
Jackson (br0040) 1995
Long (br0080) December 1982; 66
Paasche (br0110) 1954; 12
Krebbers, Parlant, Silva (br0060)
Kozen, Silva (br0050) February 2013; 120
Perron (br0120) May 1951; 4
Moessner (br0090) March 1951
Honsberger (10.1016/j.jlamp.2021.100713_br0030) 1991
Long (10.1016/j.jlamp.2021.100713_br0080) 1982; 66
Hinze (10.1016/j.jlamp.2021.100713_br0020) 2009; vol. 5836
Krebbers (10.1016/j.jlamp.2021.100713_br0060)
Long (10.1016/j.jlamp.2021.100713_br0070) 1966; 73
Niqui (10.1016/j.jlamp.2021.100713_br0100) 2011
Jackson (10.1016/j.jlamp.2021.100713_br0040) 1995
Moessner (10.1016/j.jlamp.2021.100713_br0090) 1951
Perron (10.1016/j.jlamp.2021.100713_br0120) 1951; 4
Kozen (10.1016/j.jlamp.2021.100713_br0050) 2013; 120
Conway (10.1016/j.jlamp.2021.100713_br0010) 1996
Paasche (10.1016/j.jlamp.2021.100713_br0110) 1954; 12
References_xml – ident: br0060
  article-title: Moessner's theorem: an exercise in coinductive reasoning in Coq
– volume: 12
  start-page: 263
  year: 1954
  end-page: 270
  ident: br0110
  article-title: Eine Verallgemeinerung des Moessnerschen Satzes
  publication-title: Compos. Math.
– year: 1995
  ident: br0040
  article-title: Enhancing the Nuprl proof development system and applying it to computational abstract algebra
– volume: 4
  start-page: 31
  year: May 1951
  end-page: 34
  ident: br0120
  article-title: Beweis des Moessnerschen Satzes
  publication-title: Sitzungsber. - Bayer. Akad. Wiss., Math.-Nat.wiss. Kl.
– volume: vol. 5836
  year: 2009
  ident: br0020
  article-title: Scans and convolutions—a calculational proof of Moessner's theorem
  publication-title: Post-Proceedings of the 20th International Symposium on the Implementation and Application of Functional Languages (IFL '08)
– year: 1991
  ident: br0030
  article-title: More Mathematical Morsels
– volume: 73
  start-page: 846
  year: October 1966
  end-page: 851
  ident: br0070
  article-title: On the Moessner theorem on integral powers
  publication-title: Am. Math. Mon.
– year: 2011
  ident: br0100
  article-title: An exercise in coinduction: Moessner's theorem
– volume: 120
  start-page: 131
  year: February 2013
  end-page: 139
  ident: br0050
  article-title: On Moessner's theorem
  publication-title: Am. Math. Mon.
– volume: 66
  start-page: 273
  year: December 1982
  end-page: 277
  ident: br0080
  article-title: Strike it out–add it up
  publication-title: Math. Gaz.
– start-page: 63
  year: 1996
  end-page: 65
  ident: br0010
  article-title: Moessner's magic
  publication-title: The Book of Numbers
– year: March 1951
  ident: br0090
  article-title: Eine Bemerkung über die Potenzen der natürlichen Zahlen
  publication-title: Sitzungsber. Bayer. Akad. Wiss., Math.-Nat.wiss. Kl.
– year: 1991
  ident: 10.1016/j.jlamp.2021.100713_br0030
– year: 1951
  ident: 10.1016/j.jlamp.2021.100713_br0090
  article-title: Eine Bemerkung über die Potenzen der natürlichen Zahlen
  publication-title: Sitzungsber. Bayer. Akad. Wiss., Math.-Nat.wiss. Kl.
– year: 2011
  ident: 10.1016/j.jlamp.2021.100713_br0100
– volume: 4
  start-page: 31
  year: 1951
  ident: 10.1016/j.jlamp.2021.100713_br0120
  article-title: Beweis des Moessnerschen Satzes
  publication-title: Sitzungsber. - Bayer. Akad. Wiss., Math.-Nat.wiss. Kl.
– volume: 73
  start-page: 846
  issue: 8
  year: 1966
  ident: 10.1016/j.jlamp.2021.100713_br0070
  article-title: On the Moessner theorem on integral powers
  publication-title: Am. Math. Mon.
– volume: 66
  start-page: 273
  issue: 438
  year: 1982
  ident: 10.1016/j.jlamp.2021.100713_br0080
  article-title: Strike it out–add it up
  publication-title: Math. Gaz.
  doi: 10.2307/3615513
– volume: vol. 5836
  year: 2009
  ident: 10.1016/j.jlamp.2021.100713_br0020
  article-title: Scans and convolutions—a calculational proof of Moessner's theorem
– start-page: 63
  year: 1996
  ident: 10.1016/j.jlamp.2021.100713_br0010
  article-title: Moessner's magic
– volume: 12
  start-page: 263
  year: 1954
  ident: 10.1016/j.jlamp.2021.100713_br0110
  article-title: Eine Verallgemeinerung des Moessnerschen Satzes
  publication-title: Compos. Math.
– volume: 120
  start-page: 131
  issue: 2
  year: 2013
  ident: 10.1016/j.jlamp.2021.100713_br0050
  article-title: On Moessner's theorem
  publication-title: Am. Math. Mon.
  doi: 10.4169/amer.math.monthly.120.02.131
– ident: 10.1016/j.jlamp.2021.100713_br0060
– year: 1995
  ident: 10.1016/j.jlamp.2021.100713_br0040
SSID ssj0001687831
Score 2.1916804
Snippet Moessner's theorem describes a procedure for generating a sequence of n integer sequences that lead unexpectedly to the sequence of nth powers 1n, 2n, 3n, … ....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100713
SubjectTerms Formalization
Moessner's theorem
Nuprl
Pascal triangle
Title Formalizing Moessner's theorem and generalizations in Nuprl
URI https://dx.doi.org/10.1016/j.jlamp.2021.100713
Volume 124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe_HiW6wv9iB4MTSbbTYbPJViqUp70UJvYbMPSalpqe3FX-_uZuMDxIPXkAnhSzLzzWTmG4ArLIlOY0YDrikPuqybByyn2GoR6iQySTaXtg45GtPhpPswjacN6NezMLat0vv-yqc7b-2PdDyanWVRdJ4iyx0iE8Kw-59Et6BlLp6ETWj17h-H469SC2UJc5sJrUlgbWr9IdfpNTPYW-nKCLueAUx-j1Hf4s5gD3Y8YUS96p72oaHKA9itlzEg_20ewu3Ass958W5iERotjAMr1er6DVWTiq-IlxK9VBrT9eglKko03ixX8yOYDO6e-8PAb0YIhAk564DEPKWaapseSaISTSQmJhWiueJYC8GEoUGGuRCZMq6YCdE55oImSaglizknx9AsF6U6ARSHoRRSC5kqYYUjWW5Zl9DaZKg8TFkbohqLTHjZcLu9Yp7V_WGzzAGYWQCzCsA23HwaLSvVjL9PpzXI2Y-Hnxm__pfh6X8Nz2A7snMMrpZyDs31aqMuDLtY55f-7fkAdAzL4g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwELYoDO3Sd1X69FCpSyOSmDiOOiFUFApkKUhsluNHFUQDorD019dOnD6kiqFrlJOiL87dd5e77wC48wRSUUCwwxRmTpu0U4ek2DNahCr0dZLNhKlDjhIcT9rP02BaA91qFsa0VVrfX_r0wlvbKy2LZmuZZa0X33AHX4cwr_ifhHdAw6hT6WPe6PQHcfJdasEkJMVmQmPiGJtKf6jo9Jpp7I10pe8VPQMe-jtG_Yg7vUOwbwkj7JTPdARqMj8GB9UyBmi_zRPw2DPsc5596FgERwvtwHK5un-H5aTiG2S5gK-lxnQ1egmzHCab5Wp-Cia9p3E3duxmBIfrkLN2UMAirLAy6ZFAMlRIeEinQjiVzFOcE65pkGYuSESESaJDdOoxjsPQVYIEjKEzUM8XuTwHMHBdwYXiIpLcCEeS1LAurpTOUJkbkSbwKywot7LhZnvFnFb9YTNaAEgNgLQEsAkevoyWpWrG9ttxBTL99fKp9uvbDC_-a3gLduPxaEiH_WRwCfZ8M9NQ1FWuQH292shrzTTW6Y09SZ8vF87R
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formalizing+Moessner%27s+theorem+and+generalizations+in+Nuprl&rft.jtitle=Journal+of+logical+and+algebraic+methods+in+programming&rft.au=Bickford%2C+Mark&rft.au=Kozen%2C+Dexter&rft.au=Silva%2C+Alexandra&rft.date=2022-01-01&rft.issn=2352-2208&rft.volume=124&rft.spage=100713&rft_id=info:doi/10.1016%2Fj.jlamp.2021.100713&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jlamp_2021_100713
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-2208&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-2208&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-2208&client=summon