Formalizing Moessner's theorem and generalizations in Nuprl
Moessner's theorem describes a procedure for generating a sequence of n integer sequences that lead unexpectedly to the sequence of nth powers 1n, 2n, 3n, … . Several generalizations of Moessner's theorem exist. Recently, Kozen and Silva gave an algebraic proof of a general theorem that su...
Saved in:
Published in | Journal of logical and algebraic methods in programming Vol. 124; p. 100713 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Moessner's theorem describes a procedure for generating a sequence of n integer sequences that lead unexpectedly to the sequence of nth powers 1n, 2n, 3n, … . Several generalizations of Moessner's theorem exist. Recently, Kozen and Silva gave an algebraic proof of a general theorem that subsumes Moessner's original theorem and its known generalizations. In this note, we describe the formalization of this theorem that the first author did in Nuprl. On the one hand, the formalization remains remarkably close to the original proof. On the other hand, it leads to new insights in the proof, pointing to small gaps and ambiguities that would never raise any objections in pen and pencil proofs, but which must be resolved in machine formalization. |
---|---|
AbstractList | Moessner's theorem describes a procedure for generating a sequence of n integer sequences that lead unexpectedly to the sequence of nth powers 1n, 2n, 3n, … . Several generalizations of Moessner's theorem exist. Recently, Kozen and Silva gave an algebraic proof of a general theorem that subsumes Moessner's original theorem and its known generalizations. In this note, we describe the formalization of this theorem that the first author did in Nuprl. On the one hand, the formalization remains remarkably close to the original proof. On the other hand, it leads to new insights in the proof, pointing to small gaps and ambiguities that would never raise any objections in pen and pencil proofs, but which must be resolved in machine formalization. |
ArticleNumber | 100713 |
Author | Kozen, Dexter Bickford, Mark Silva, Alexandra |
Author_xml | – sequence: 1 givenname: Mark surname: Bickford fullname: Bickford, Mark email: markb@cs.cornell.edu organization: Computer Science Department, Cornell University, Ithaca, NY, USA – sequence: 2 givenname: Dexter surname: Kozen fullname: Kozen, Dexter email: kozen@cs.cornell.edu organization: Computer Science Department, Cornell University, Ithaca, NY, USA – sequence: 3 givenname: Alexandra surname: Silva fullname: Silva, Alexandra email: alexandra.silva@ucl.ac.uk organization: Computer Science Department, University College London, London, United Kingdom |
BookMark | eNqFj7FOwzAURT0UiVL6BSzZmFL87CZxhBhQRQtSgQVmy7Wfi6PEruyABF9P2jIxwHSlq3uudM7IyAePhFwAnQGF8qqZNa3qdjNGGQwNrYCPyJjxguWMUXFKpik1lA5TUQkOY3K9DLFTrftyfps9BkzJY7xMWf-GIWKXKW-yLQ7dfqN6F3zKnM-e3nexPScnVrUJpz85Ia_Lu5fFfb5-Xj0sbte55pT3OS9UXdrSUphTw7Gy3AAvoS43qMBqLTTMOSuAm1ooFAWDDShdVhW1RhRK8Qnhx18dQ0oRrdxF16n4KYHKvbZs5EFb7rXlUXug6l-Udv3BoI_Ktf-wN0cWB60Ph1Em7dBrNC6i7qUJ7k_-G1CmeE8 |
CitedBy_id | crossref_primary_10_4204_EPTCS_413_5 |
Cites_doi | 10.2307/3615513 10.4169/amer.math.monthly.120.02.131 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. |
Copyright_xml | – notice: 2021 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jlamp.2021.100713 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_jlamp_2021_100713 S2352220821000766 |
GroupedDBID | --M 0R~ 4.4 457 4G. 7-5 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO AAYFN ABBOA ABMAC ABVKL ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN GBLVA GBOLZ HZ~ KOM M41 NCXOZ O9- OAUVE RIG ROL SPC SPCBC SSV SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c303t-35a96f6f0140d3e7f3d136196bea1fcc8c1432513d98ae8521b1ac6770fd85aa3 |
IEDL.DBID | AIKHN |
ISSN | 2352-2208 |
IngestDate | Tue Jul 01 00:37:50 EDT 2025 Thu Apr 24 23:05:42 EDT 2025 Fri Feb 23 02:45:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nuprl Formalization Moessner's theorem Pascal triangle |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-35a96f6f0140d3e7f3d136196bea1fcc8c1432513d98ae8521b1ac6770fd85aa3 |
ParticipantIDs | crossref_primary_10_1016_j_jlamp_2021_100713 crossref_citationtrail_10_1016_j_jlamp_2021_100713 elsevier_sciencedirect_doi_10_1016_j_jlamp_2021_100713 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of logical and algebraic methods in programming |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Long (br0070) October 1966; 73 Niqui, Rutten (br0100) 2011 Conway, Guy (br0010) 1996 Honsberger (br0030) 1991 Hinze (br0020) 2009; vol. 5836 Jackson (br0040) 1995 Long (br0080) December 1982; 66 Paasche (br0110) 1954; 12 Krebbers, Parlant, Silva (br0060) Kozen, Silva (br0050) February 2013; 120 Perron (br0120) May 1951; 4 Moessner (br0090) March 1951 Honsberger (10.1016/j.jlamp.2021.100713_br0030) 1991 Long (10.1016/j.jlamp.2021.100713_br0080) 1982; 66 Hinze (10.1016/j.jlamp.2021.100713_br0020) 2009; vol. 5836 Krebbers (10.1016/j.jlamp.2021.100713_br0060) Long (10.1016/j.jlamp.2021.100713_br0070) 1966; 73 Niqui (10.1016/j.jlamp.2021.100713_br0100) 2011 Jackson (10.1016/j.jlamp.2021.100713_br0040) 1995 Moessner (10.1016/j.jlamp.2021.100713_br0090) 1951 Perron (10.1016/j.jlamp.2021.100713_br0120) 1951; 4 Kozen (10.1016/j.jlamp.2021.100713_br0050) 2013; 120 Conway (10.1016/j.jlamp.2021.100713_br0010) 1996 Paasche (10.1016/j.jlamp.2021.100713_br0110) 1954; 12 |
References_xml | – ident: br0060 article-title: Moessner's theorem: an exercise in coinductive reasoning in Coq – volume: 12 start-page: 263 year: 1954 end-page: 270 ident: br0110 article-title: Eine Verallgemeinerung des Moessnerschen Satzes publication-title: Compos. Math. – year: 1995 ident: br0040 article-title: Enhancing the Nuprl proof development system and applying it to computational abstract algebra – volume: 4 start-page: 31 year: May 1951 end-page: 34 ident: br0120 article-title: Beweis des Moessnerschen Satzes publication-title: Sitzungsber. - Bayer. Akad. Wiss., Math.-Nat.wiss. Kl. – volume: vol. 5836 year: 2009 ident: br0020 article-title: Scans and convolutions—a calculational proof of Moessner's theorem publication-title: Post-Proceedings of the 20th International Symposium on the Implementation and Application of Functional Languages (IFL '08) – year: 1991 ident: br0030 article-title: More Mathematical Morsels – volume: 73 start-page: 846 year: October 1966 end-page: 851 ident: br0070 article-title: On the Moessner theorem on integral powers publication-title: Am. Math. Mon. – year: 2011 ident: br0100 article-title: An exercise in coinduction: Moessner's theorem – volume: 120 start-page: 131 year: February 2013 end-page: 139 ident: br0050 article-title: On Moessner's theorem publication-title: Am. Math. Mon. – volume: 66 start-page: 273 year: December 1982 end-page: 277 ident: br0080 article-title: Strike it out–add it up publication-title: Math. Gaz. – start-page: 63 year: 1996 end-page: 65 ident: br0010 article-title: Moessner's magic publication-title: The Book of Numbers – year: March 1951 ident: br0090 article-title: Eine Bemerkung über die Potenzen der natürlichen Zahlen publication-title: Sitzungsber. Bayer. Akad. Wiss., Math.-Nat.wiss. Kl. – year: 1991 ident: 10.1016/j.jlamp.2021.100713_br0030 – year: 1951 ident: 10.1016/j.jlamp.2021.100713_br0090 article-title: Eine Bemerkung über die Potenzen der natürlichen Zahlen publication-title: Sitzungsber. Bayer. Akad. Wiss., Math.-Nat.wiss. Kl. – year: 2011 ident: 10.1016/j.jlamp.2021.100713_br0100 – volume: 4 start-page: 31 year: 1951 ident: 10.1016/j.jlamp.2021.100713_br0120 article-title: Beweis des Moessnerschen Satzes publication-title: Sitzungsber. - Bayer. Akad. Wiss., Math.-Nat.wiss. Kl. – volume: 73 start-page: 846 issue: 8 year: 1966 ident: 10.1016/j.jlamp.2021.100713_br0070 article-title: On the Moessner theorem on integral powers publication-title: Am. Math. Mon. – volume: 66 start-page: 273 issue: 438 year: 1982 ident: 10.1016/j.jlamp.2021.100713_br0080 article-title: Strike it out–add it up publication-title: Math. Gaz. doi: 10.2307/3615513 – volume: vol. 5836 year: 2009 ident: 10.1016/j.jlamp.2021.100713_br0020 article-title: Scans and convolutions—a calculational proof of Moessner's theorem – start-page: 63 year: 1996 ident: 10.1016/j.jlamp.2021.100713_br0010 article-title: Moessner's magic – volume: 12 start-page: 263 year: 1954 ident: 10.1016/j.jlamp.2021.100713_br0110 article-title: Eine Verallgemeinerung des Moessnerschen Satzes publication-title: Compos. Math. – volume: 120 start-page: 131 issue: 2 year: 2013 ident: 10.1016/j.jlamp.2021.100713_br0050 article-title: On Moessner's theorem publication-title: Am. Math. Mon. doi: 10.4169/amer.math.monthly.120.02.131 – ident: 10.1016/j.jlamp.2021.100713_br0060 – year: 1995 ident: 10.1016/j.jlamp.2021.100713_br0040 |
SSID | ssj0001687831 |
Score | 2.1916804 |
Snippet | Moessner's theorem describes a procedure for generating a sequence of n integer sequences that lead unexpectedly to the sequence of nth powers 1n, 2n, 3n, … .... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 100713 |
SubjectTerms | Formalization Moessner's theorem Nuprl Pascal triangle |
Title | Formalizing Moessner's theorem and generalizations in Nuprl |
URI | https://dx.doi.org/10.1016/j.jlamp.2021.100713 |
Volume | 124 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe_HiW6wv9iB4MTSbbTYbPJViqUp70UJvYbMPSalpqe3FX-_uZuMDxIPXkAnhSzLzzWTmG4ArLIlOY0YDrikPuqybByyn2GoR6iQySTaXtg45GtPhpPswjacN6NezMLat0vv-yqc7b-2PdDyanWVRdJ4iyx0iE8Kw-59Et6BlLp6ETWj17h-H469SC2UJc5sJrUlgbWr9IdfpNTPYW-nKCLueAUx-j1Hf4s5gD3Y8YUS96p72oaHKA9itlzEg_20ewu3Ass958W5iERotjAMr1er6DVWTiq-IlxK9VBrT9eglKko03ixX8yOYDO6e-8PAb0YIhAk564DEPKWaapseSaISTSQmJhWiueJYC8GEoUGGuRCZMq6YCdE55oImSaglizknx9AsF6U6ARSHoRRSC5kqYYUjWW5Zl9DaZKg8TFkbohqLTHjZcLu9Yp7V_WGzzAGYWQCzCsA23HwaLSvVjL9PpzXI2Y-Hnxm__pfh6X8Nz2A7snMMrpZyDs31aqMuDLtY55f-7fkAdAzL4g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwELYoDO3Sd1X69FCpSyOSmDiOOiFUFApkKUhsluNHFUQDorD019dOnD6kiqFrlJOiL87dd5e77wC48wRSUUCwwxRmTpu0U4ek2DNahCr0dZLNhKlDjhIcT9rP02BaA91qFsa0VVrfX_r0wlvbKy2LZmuZZa0X33AHX4cwr_ifhHdAw6hT6WPe6PQHcfJdasEkJMVmQmPiGJtKf6jo9Jpp7I10pe8VPQMe-jtG_Yg7vUOwbwkj7JTPdARqMj8GB9UyBmi_zRPw2DPsc5596FgERwvtwHK5un-H5aTiG2S5gK-lxnQ1egmzHCab5Wp-Cia9p3E3duxmBIfrkLN2UMAirLAy6ZFAMlRIeEinQjiVzFOcE65pkGYuSESESaJDdOoxjsPQVYIEjKEzUM8XuTwHMHBdwYXiIpLcCEeS1LAurpTOUJkbkSbwKywot7LhZnvFnFb9YTNaAEgNgLQEsAkevoyWpWrG9ttxBTL99fKp9uvbDC_-a3gLduPxaEiH_WRwCfZ8M9NQ1FWuQH292shrzTTW6Y09SZ8vF87R |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formalizing+Moessner%27s+theorem+and+generalizations+in+Nuprl&rft.jtitle=Journal+of+logical+and+algebraic+methods+in+programming&rft.au=Bickford%2C+Mark&rft.au=Kozen%2C+Dexter&rft.au=Silva%2C+Alexandra&rft.date=2022-01-01&rft.issn=2352-2208&rft.volume=124&rft.spage=100713&rft_id=info:doi/10.1016%2Fj.jlamp.2021.100713&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jlamp_2021_100713 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-2208&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-2208&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-2208&client=summon |