Fe-Ni Invar alloys: A review

•Historical development of Invar alloys.•Explanation of Invar anomaly.•Review of magnetic properties of Invars.•Mixed ground state of Invars. Fe-Ni alloys with face centred cubic structure having Ni concentration around 36% exhibit extremely low or no coefficient of thermal expansion over a wide ran...

Full description

Saved in:
Bibliographic Details
Published inMaterials today : proceedings Vol. 43; pp. 2242 - 2244
Main Authors Sahoo, A., Medicherla, V.R.R.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Historical development of Invar alloys.•Explanation of Invar anomaly.•Review of magnetic properties of Invars.•Mixed ground state of Invars. Fe-Ni alloys with face centred cubic structure having Ni concentration around 36% exhibit extremely low or no coefficient of thermal expansion over a wide range of temperatures around room temperature which is called Invar behaviour. The Invar behaviour was first observed in Fe-Ni alloys by Charles Édouard Guillaume in the year 1896 and was awarded Nobel prize in physics in the year 1920. The observed Invar behaviour was puzzling and elusive for physicists. The origin of Invar phenomena has been the subject of serious concern for physicists since the observation of the phenomenon. The first model explained the Invar behaviour is called two gamma state model suggested by Weiss, considers two magnetic states of Fe in Invar alloys one with high spin high volume and another with low spin low volume states. When the temperature is increased low spin low volume states get populated at the cost of high spin high volume states and thus compensate the expected thermal expansion. However, this was shown to be incorrect and it seems that high moment to low moment transition is preceded by a frustrated ferromagnetic state. The moment volume instabilities in Invar alloys also lead to anomalous elastic properties. The Invar alloys find applications in the fabrication of watches, cryogenic storage dewars and aerospace engineering parts.
AbstractList •Historical development of Invar alloys.•Explanation of Invar anomaly.•Review of magnetic properties of Invars.•Mixed ground state of Invars. Fe-Ni alloys with face centred cubic structure having Ni concentration around 36% exhibit extremely low or no coefficient of thermal expansion over a wide range of temperatures around room temperature which is called Invar behaviour. The Invar behaviour was first observed in Fe-Ni alloys by Charles Édouard Guillaume in the year 1896 and was awarded Nobel prize in physics in the year 1920. The observed Invar behaviour was puzzling and elusive for physicists. The origin of Invar phenomena has been the subject of serious concern for physicists since the observation of the phenomenon. The first model explained the Invar behaviour is called two gamma state model suggested by Weiss, considers two magnetic states of Fe in Invar alloys one with high spin high volume and another with low spin low volume states. When the temperature is increased low spin low volume states get populated at the cost of high spin high volume states and thus compensate the expected thermal expansion. However, this was shown to be incorrect and it seems that high moment to low moment transition is preceded by a frustrated ferromagnetic state. The moment volume instabilities in Invar alloys also lead to anomalous elastic properties. The Invar alloys find applications in the fabrication of watches, cryogenic storage dewars and aerospace engineering parts.
Author Medicherla, V.R.R.
Sahoo, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Sahoo
  fullname: Sahoo, A.
– sequence: 2
  givenname: V.R.R.
  surname: Medicherla
  fullname: Medicherla, V.R.R.
  email: venkatamedicherla@soa.ac.in
BookMark eNqFz8FKw0AQgOFFKlhrn0APeYHE2dnNJhE8lGK1UPSi52W7O4EtaVJ2Q6Vvb9p6EA96mmHgH_iu2ajtWmLslkPGgav7TbY1_S5kCDhcMMuxuGBjRC7ToszF6Md-xaYxbgCA5wpKrsbsbkHpq0-W7d6ExDRNd4gPySwJtPf0ecMua9NEmn7PCftYPL3PX9LV2_NyPlulVoDoU4GK16VFJyVUAgW3hZFlXTowUBm0jtacpAIpLBhVVE4WgtYIwlbOIZKYsOr814YuxkC1tr43ve_aPhjfaA76KNUbfZLqo1Rz1IN0aMWvdhf81oTDP9XjuaKBNVCDjtZTa8n5QLbXrvN_9l9XN23Q
CitedBy_id crossref_primary_10_1016_j_jmrt_2024_05_064
crossref_primary_10_1007_s40194_022_01438_7
crossref_primary_10_1016_j_jpowsour_2025_236245
crossref_primary_10_1002_pssb_202400160
crossref_primary_10_1038_s41586_024_07932_w
crossref_primary_10_1007_s40042_024_01114_7
crossref_primary_10_3390_ma15041504
crossref_primary_10_3390_ma18030691
crossref_primary_10_1080_10408436_2023_2170975
crossref_primary_10_1109_TMAG_2023_3293195
crossref_primary_10_18185_erzifbed_1250712
crossref_primary_10_22226_2410_3535_2021_4_382_385
crossref_primary_10_1016_j_cap_2022_03_011
crossref_primary_10_1021_acs_jpcc_4c05726
crossref_primary_10_1007_s40194_022_01295_4
crossref_primary_10_37434_tpwj2024_11_01
crossref_primary_10_1016_j_jobe_2024_109813
crossref_primary_10_2139_ssrn_4167570
crossref_primary_10_1016_j_jmrt_2024_07_150
crossref_primary_10_1038_s41598_024_62306_6
crossref_primary_10_3390_ma16082956
crossref_primary_10_1021_acs_chemmater_3c01894
crossref_primary_10_1016_j_jmrt_2022_06_114
crossref_primary_10_1016_j_xcrp_2023_101254
crossref_primary_10_1016_j_jmrt_2022_06_078
crossref_primary_10_1103_PhysRevB_110_144419
crossref_primary_10_1002_sdtp_17916
crossref_primary_10_1016_j_jmst_2022_12_024
crossref_primary_10_1016_j_optlastec_2024_111789
crossref_primary_10_3390_machines12040255
crossref_primary_10_1007_s40194_023_01510_w
crossref_primary_10_1016_j_physb_2024_416074
crossref_primary_10_1016_j_matchar_2024_113709
crossref_primary_10_1016_j_jmrt_2023_06_062
crossref_primary_10_1016_j_wear_2023_204648
crossref_primary_10_1016_j_jmrt_2022_12_182
crossref_primary_10_3390_ma16124433
crossref_primary_10_1016_j_jmapro_2025_01_067
crossref_primary_10_1021_jacs_3c03160
crossref_primary_10_1016_j_jmrt_2024_02_125
crossref_primary_10_1103_PhysRevLett_133_258001
crossref_primary_10_1007_s10948_021_06026_2
crossref_primary_10_1016_j_jallcom_2023_171132
crossref_primary_10_1016_j_jallcom_2024_176860
crossref_primary_10_1002_adem_202301460
crossref_primary_10_1016_j_cjsc_2022_100009
crossref_primary_10_1103_PhysRevB_109_214112
Cites_doi 10.1002/pssa.2210610118
10.1038/071134a0
10.1016/0378-4363(77)90303-5
10.1098/rspa.1963.0045
10.1103/PhysRevB.47.8739
10.1143/JPSJ.25.287
10.1103/PhysRevB.66.014416
10.1103/PhysRevB.75.054402
10.1088/0370-1328/82/2/314
10.1103/PhysRevB.54.12225
10.1016/0304-8853(91)90828-X
10.1016/0304-8853(84)90025-8
10.1063/1.335075
10.1038/21848
10.1103/PhysRev.21.402
10.1016/j.elspec.2020.146933
10.1088/0305-4608/7/7/004
10.1103/PhysRevB.41.9600
10.1063/1.30451
10.1103/PhysRevB.47.8706
10.1007/BF01507947
10.1103/PhysRevB.76.014434
10.1103/PhysRevB.43.3318
10.1103/PhysRevB.35.4796
10.1103/PhysRevB.41.6939
10.2320/jinstmet1937.12.6_1
10.1016/j.jmmm.2003.12.181
10.1103/PhysRevB.51.1058
10.1016/0304-8853(90)90197-X
10.1051/jp4:1995216
10.1143/JPSJ.25.286
10.1016/S1574-9304(05)80063-X
10.1016/0304-8853(84)90324-X
10.1063/1.1984733
10.1103/PhysRevB.52.188
10.1016/j.elspec.2016.07.004
10.1051/jphys:01975003606054500
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.matpr.2020.12.527
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2214-7853
EndPage 2244
ExternalDocumentID 10_1016_j_matpr_2020_12_527
S2214785320402445
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
GBLVA
HZ~
KOM
M41
NCXOZ
O9-
OAUVE
P-8
P-9
PC.
ROL
SPC
SPCBC
SSM
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c303t-3261f8c2d44093231c7a48f8d0a09a2cdeb1e46043c0a679d473eb203c9dd22e3
IEDL.DBID .~1
ISSN 2214-7853
IngestDate Thu Apr 24 22:56:05 EDT 2025
Tue Jul 01 01:53:31 EDT 2025
Fri Feb 23 02:45:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Invar alloy
Thermal expansion
Moment volume instability
Two gamma state model
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-3261f8c2d44093231c7a48f8d0a09a2cdeb1e46043c0a679d473eb203c9dd22e3
PageCount 3
ParticipantIDs crossref_citationtrail_10_1016_j_matpr_2020_12_527
crossref_primary_10_1016_j_matpr_2020_12_527
elsevier_sciencedirect_doi_10_1016_j_matpr_2020_12_527
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Materials today : proceedings
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Andersen, Madsen, Poulsen, Jepsen, Kollár (b0075) 1977; 86-88
Moruzzi (b0085) 1990; 41
J.B. Müller, J. Hesse, A model for magnetic abnormalies of FeNi Invar alloys, Z. Phys. B – Condensed Matter. 54 (1983) 35-42.
Roy, Pettifor (b0065) 1977; 7
H. Ullrich, J. Hesse, Hyperfine field vectors and hyperfine field distributions in FeNi alloys, J. Magn. Magn. Mater. 45 (1984) 315-327.
J. Wittenauer, The invar effect: a centennial symposium, The Minerals, The Minerals, Metals, Materials Society, Warrendale, (1997).
Guillaume (b0005) 1904; 71
Miyazaki, Ando, Takahasi (b0230) 1985; 57
McKeehan (b0010) 1923; 21
W. Stamm, Ph.D. thesis (Department of Physics, University of Duisburg), (1988).
Akai, Dederichs (b0105) 1993; 47
J.B. Muller, J. Hesse, A model for abnormalies of Fe-Ni Invar alloys, Z. Phys. B. Condensed Matter. 54 (1983) 35-42.
Abrikosov, Kissavos, Liot, Alling, Simak, Peil, Ruban (b0155) 2007; 76
M. Acet, T. Schneider and E.F. Wassermann, Magnetic aspects of martensitic transformations in FeNi alloys, Le Journal de Physique IV. 5 (1995) C2-105-C2-109.
Abrikosov, Eriksson, Soderlind, Skriver, Johansson (b0115) 1995; 51
Kussmann (b0165) 1937; 38
Wildes, Cowlam (b0150) 2004; 272–276
H. Masumoto, T. Kobayashi, Japanese Patent No. 123879 {Appl. Feb. 18, (1936)}, J. Japan Inst. Metals. 12 (1948) 1-4.
van Schilfgaarde, Abrikosov, Johansson (b0130) 1999; 400
S.F. Dubinin, S.G. Teplouchov, S.K. Sidorov, Yu.A. Izyumov, V.N. Syromyatnikov, Magnetic structure of the Fe-Ni invar alloys, Phys. Stat. Solidi (A). 61 (1980) 159-167.
Rancourt, Hargraves, Lamarche, Dunlap (b0240) 1990; 87
Weiss (b0060) 1963; 82
M. Takahashi, F. 0no and K. Takakura, The invar characteristics on Co-Fe alloys, AIP Conf. Proc. 29 (1976) 562-563.
Kussmann, Jessen (b0175) 1962; 17
Acharya, Bapna, Ali, Biswas, Rawat, Medicherla, Maiti (b0045) 2020; 240
Rancourt, Dang (b0125) 1996; 54
D.D. Johnson, F.J. Pinski, J.B. Staunton, B.L. Gyorffy, G.M. Stocks, K.C. Russell, D.F. Smith, Physical Metallurgy of Controlled Expansion Invar-Type Alloys, (1990) 3-24.
Schröter, Ebert, Akai, Entel, Hoffmann, Reddy (b0070) 1995; 52
H. Asamo, Mössbauer Study of γ Fe–Ni Alloys of Low Nickel Concentration, J. Phys. Soc. Jpn. 25 (1968) 286-286.
Mohn, Schwarz, Wagner (b0090) 1991; 43
D.D. Johnson, W.A. Shelton, The Invar effect: A Centennial Symposium (1997) 63-74.
Entel, Hoffmann, Mohn, Schwarz, Moruzzi (b0095) 1993; 47
Abd-Elmeguid, Hobuss, Micklitz, Huck, Hesse (b0145) 1987; 35
Sedov (b0185) 1971; 14
Kondorsky, Sedov (b0180) 1960; 31
Crisan, Entel, Ebert, Akai, Johnson, Staunton (b0135) 2002; 66
Wassermann (b0020) 1991; 100
Ruban, Khmelevskyi, Mohn, Johansson (b0140) 2007; 75
E. F. Wassermann, Chapter 3 Invar: Moment-volume instabilities in transition metals and alloys, Handbook of Ferromagnetic Materials, Elsevier. 5 (1990) 237-322.
Acharya, Medicherla, Rawat, Bapna, Ali, Biswas, Maiti (b0235) 2016; 212
Shiga, Nakamura (b0215) 1984; 40
Makarov, Puzei, Sakharov, Basar (b0225) 1985; 61
Jones, Pumphrey (b0050) 1949; 163
Crangle, Hallam (b0030) 1963; 272
G. Blaise and M. C. Cadeville, Electronic structure of fcc NiFe alloys, investigated by means of secondary ion emission, J. Phys. (France). 36 (1975) 545-550.
Moroni, Jarlborg (b0080) 1990; 41
Nakamura, Takeda, Shiga (b0190) 1968; 25
Miyazaki, Ando, Takahashi (b0055) 1985; 57
Miyazaki (10.1016/j.matpr.2020.12.527_b0230) 1985; 57
Crangle (10.1016/j.matpr.2020.12.527_b0030) 1963; 272
Makarov (10.1016/j.matpr.2020.12.527_b0225) 1985; 61
Crisan (10.1016/j.matpr.2020.12.527_b0135) 2002; 66
Wildes (10.1016/j.matpr.2020.12.527_b0150) 2004; 272–276
Miyazaki (10.1016/j.matpr.2020.12.527_b0055) 1985; 57
Abrikosov (10.1016/j.matpr.2020.12.527_b0155) 2007; 76
10.1016/j.matpr.2020.12.527_b0205
Akai (10.1016/j.matpr.2020.12.527_b0105) 1993; 47
10.1016/j.matpr.2020.12.527_b0200
10.1016/j.matpr.2020.12.527_b0025
10.1016/j.matpr.2020.12.527_b0220
10.1016/j.matpr.2020.12.527_b0100
Rancourt (10.1016/j.matpr.2020.12.527_b0240) 1990; 87
10.1016/j.matpr.2020.12.527_b0120
Wassermann (10.1016/j.matpr.2020.12.527_b0020) 1991; 100
10.1016/j.matpr.2020.12.527_b0040
Weiss (10.1016/j.matpr.2020.12.527_b0060) 1963; 82
10.1016/j.matpr.2020.12.527_b0160
Roy (10.1016/j.matpr.2020.12.527_b0065) 1977; 7
Guillaume (10.1016/j.matpr.2020.12.527_b0005) 1904; 71
Abrikosov (10.1016/j.matpr.2020.12.527_b0115) 1995; 51
Moruzzi (10.1016/j.matpr.2020.12.527_b0085) 1990; 41
Kussmann (10.1016/j.matpr.2020.12.527_b0175) 1962; 17
Shiga (10.1016/j.matpr.2020.12.527_b0215) 1984; 40
Acharya (10.1016/j.matpr.2020.12.527_b0235) 2016; 212
Schröter (10.1016/j.matpr.2020.12.527_b0070) 1995; 52
Jones (10.1016/j.matpr.2020.12.527_b0050) 1949; 163
van Schilfgaarde (10.1016/j.matpr.2020.12.527_b0130) 1999; 400
Rancourt (10.1016/j.matpr.2020.12.527_b0125) 1996; 54
Andersen (10.1016/j.matpr.2020.12.527_b0075) 1977; 86-88
Mohn (10.1016/j.matpr.2020.12.527_b0090) 1991; 43
Entel (10.1016/j.matpr.2020.12.527_b0095) 1993; 47
Ruban (10.1016/j.matpr.2020.12.527_b0140) 2007; 75
Acharya (10.1016/j.matpr.2020.12.527_b0045) 2020; 240
10.1016/j.matpr.2020.12.527_b0015
10.1016/j.matpr.2020.12.527_b0035
McKeehan (10.1016/j.matpr.2020.12.527_b0010) 1923; 21
Nakamura (10.1016/j.matpr.2020.12.527_b0190) 1968; 25
10.1016/j.matpr.2020.12.527_b0110
Kondorsky (10.1016/j.matpr.2020.12.527_b0180) 1960; 31
10.1016/j.matpr.2020.12.527_b0210
Abd-Elmeguid (10.1016/j.matpr.2020.12.527_b0145) 1987; 35
Sedov (10.1016/j.matpr.2020.12.527_b0185) 1971; 14
Kussmann (10.1016/j.matpr.2020.12.527_b0165) 1937; 38
10.1016/j.matpr.2020.12.527_b0195
10.1016/j.matpr.2020.12.527_b0170
Moroni (10.1016/j.matpr.2020.12.527_b0080) 1990; 41
References_xml – volume: 57
  start-page: 3456
  year: 1985
  end-page: 3458
  ident: b0055
  article-title: Spin glass in Fe-Ni Invar alloys
  publication-title: J. Appl. Phys.
– reference: H. Masumoto, T. Kobayashi, Japanese Patent No. 123879 {Appl. Feb. 18, (1936)}, J. Japan Inst. Metals. 12 (1948) 1-4.
– volume: 25
  start-page: 287
  year: 1968
  end-page: 288
  ident: b0190
  article-title: Mössbauer effect and exchange anisotropy of iron-rich FeNi alloys with face-centered cubic structure
  publication-title: J. Phys. Soc. Jpn.
– reference: G. Blaise and M. C. Cadeville, Electronic structure of fcc NiFe alloys, investigated by means of secondary ion emission, J. Phys. (France). 36 (1975) 545-550.
– volume: 100
  start-page: 346
  year: 1991
  end-page: 362
  ident: b0020
  article-title: The Invar problem
  publication-title: J. Magn. Magn. Mater.
– volume: 400
  start-page: 46
  year: 1999
  end-page: 49
  ident: b0130
  article-title: Origin of the Invar effect in Iron-Nickel alloys
  publication-title: Nature
– volume: 75
  year: 2007
  ident: b0140
  article-title: Temperature-induced longitudinal spin fluctuations in Fe and Ni
  publication-title: Phys. Rev. B
– volume: 76
  year: 2007
  ident: b0155
  article-title: Competition between magnetic structures in the Fe rich fcc Fe-Ni alloys
  publication-title: Phys. Rev. B
– reference: J.B. Müller, J. Hesse, A model for magnetic abnormalies of FeNi Invar alloys, Z. Phys. B – Condensed Matter. 54 (1983) 35-42.
– volume: 272
  start-page: 119
  year: 1963
  end-page: 132
  ident: b0030
  article-title: The magnetization of face-centred cubic and body-centred cubic iron + nickel alloys
  publication-title: Proc. R. Soc. Lond. A
– reference: W. Stamm, Ph.D. thesis (Department of Physics, University of Duisburg), (1988).
– volume: 52
  start-page: 188
  year: 1995
  end-page: 209
  ident: b0070
  article-title: First-principles investigations of atomic disorder effects on magnetic and structural instabilities in transition-metal alloys
  publication-title: Phys. Rev. B
– reference: J.B. Muller, J. Hesse, A model for abnormalies of Fe-Ni Invar alloys, Z. Phys. B. Condensed Matter. 54 (1983) 35-42.
– volume: 54
  start-page: 12225
  year: 1996
  end-page: 12231
  ident: b0125
  article-title: Relation between anomalous magneto-volume behavior and magnetic frustration in Invar alloys
  publication-title: Phys. Rev. B
– volume: 47
  start-page: 8739
  year: 1993
  end-page: 8747
  ident: b0105
  article-title: Local moment disorder in ferromagnetic alloys
  publication-title: Phys. Rev. B
– volume: 272–276
  start-page: 536
  year: 2004
  end-page: 538
  ident: b0150
  article-title: Does non-collinear ferromagnetism exist in INVAR?
  publication-title: J. Magn. Magn. Mater.
– volume: 31
  start-page: 331S
  year: 1960
  end-page: 335S
  ident: b0180
  article-title: Antiferromagnetism of iron in face-centered crystalline lattice and the causes of anomalies in invar physical properties
  publication-title: J. Appl. Phys.
– volume: 51
  start-page: 1058
  year: 1995
  end-page: 1063
  ident: b0115
  article-title: Theoretical aspects of the Fe
  publication-title: Phys. Rev. B.
– volume: 14
  start-page: 341
  year: 1971
  end-page: 342
  ident: b0185
  article-title: Antiferromagnetism in Invar Alloys
  publication-title: JETP Lett.
– reference: S.F. Dubinin, S.G. Teplouchov, S.K. Sidorov, Yu.A. Izyumov, V.N. Syromyatnikov, Magnetic structure of the Fe-Ni invar alloys, Phys. Stat. Solidi (A). 61 (1980) 159-167.
– volume: 86-88
  start-page: 249
  year: 1977
  end-page: 256
  ident: b0075
  article-title: Magnetic ground state properties of transition metals
  publication-title: Physica B+C
– volume: 71
  start-page: 134
  year: 1904
  end-page: 139
  ident: b0005
  article-title: Invar and its applications
  publication-title: Nature
– reference: M. Takahashi, F. 0no and K. Takakura, The invar characteristics on Co-Fe alloys, AIP Conf. Proc. 29 (1976) 562-563.
– reference: M. Acet, T. Schneider and E.F. Wassermann, Magnetic aspects of martensitic transformations in FeNi alloys, Le Journal de Physique IV. 5 (1995) C2-105-C2-109.
– volume: 57
  start-page: 3456
  year: 1985
  end-page: 3458
  ident: b0230
  article-title: Spin glass in Fe-Ni Invar alloys
  publication-title: J. Appl. Phys.
– reference: J. Wittenauer, The invar effect: a centennial symposium, The Minerals, The Minerals, Metals, Materials Society, Warrendale, (1997).
– volume: 47
  start-page: 8706
  year: 1993
  end-page: 8720
  ident: b0095
  article-title: First-principles calculations of the instability leading to the Invar effect
  publication-title: Phys. Rev. B
– volume: 17
  start-page: 136
  year: 1962
  end-page: 139
  ident: b0175
  article-title: Invar behaviour and magnetic moments of the γ-phase of iron-palladium alloys
  publication-title: J. Phys. Soc. Japan
– reference: H. Asamo, Mössbauer Study of γ Fe–Ni Alloys of Low Nickel Concentration, J. Phys. Soc. Jpn. 25 (1968) 286-286.
– volume: 41
  start-page: 9600
  year: 1990
  end-page: 9602
  ident: b0080
  article-title: Calculation of Invar anomalies
  publication-title: Phys. Rev. B
– reference: D.D. Johnson, W.A. Shelton, The Invar effect: A Centennial Symposium (1997) 63-74.
– reference: E. F. Wassermann, Chapter 3 Invar: Moment-volume instabilities in transition metals and alloys, Handbook of Ferromagnetic Materials, Elsevier. 5 (1990) 237-322.
– volume: 7
  start-page: L183
  year: 1977
  end-page: L187
  ident: b0065
  article-title: Stoner theory support for the two-state hypothesis for gamma iron
  publication-title: J. Phys. F: Metal Phys.
– volume: 40
  start-page: 319
  year: 1984
  end-page: 327
  ident: b0215
  article-title: A contribution to the invar problem by hyperfine field distribution analyses
  publication-title: J. Magn. Magn. Mater.
– volume: 87
  start-page: 71
  year: 1990
  end-page: 82
  ident: b0240
  article-title: Microstructure and low temperature magnetism of Fe-Ni invar alloys
  publication-title: J. Magn. Magn. Mat.
– volume: 41
  start-page: 6939
  year: 1990
  end-page: 6946
  ident: b0085
  article-title: High-spin and low-spin states in Invar and related alloys
  publication-title: Phys. Rev. B
– volume: 38
  start-page: 41
  year: 1937
  end-page: 42
  ident: b0165
  publication-title: Z. Phys.
– volume: 43
  start-page: 3318
  year: 1991
  end-page: 3324
  ident: b0090
  article-title: Magnetoelastic anomalies in Fe-Ni Invar alloys
  publication-title: Phys. Rev. B
– volume: 212
  start-page: 1
  year: 2016
  end-page: 4
  ident: b0235
  article-title: Temperature dependence of L3M45M45 Auger transition in Fe1−xNix alloys
  publication-title: J. Electron Spectr. Relat. Phenom.
– volume: 82
  start-page: 281
  year: 1963
  end-page: 288
  ident: b0060
  article-title: The origin of the Invar effect
  publication-title: Proc. Phys. Soc.
– reference: D.D. Johnson, F.J. Pinski, J.B. Staunton, B.L. Gyorffy, G.M. Stocks, K.C. Russell, D.F. Smith, Physical Metallurgy of Controlled Expansion Invar-Type Alloys, (1990) 3-24.
– volume: 35
  start-page: 4796
  year: 1987
  end-page: 4800
  ident: b0145
  article-title: Nature of the magnetic ground state in Fe-Ni Invar alloys
  publication-title: Phys. Rev. B
– volume: 66
  year: 2002
  ident: b0135
  article-title: Magneto-chemical origin for Invar anomalies in Iron-Nickel alloys
  publication-title: Phys. Rev. B
– volume: 21
  start-page: 402
  year: 1923
  end-page: 407
  ident: b0010
  article-title: The crystal structure of iron-nickel alloys
  publication-title: Phys. Rev.
– volume: 240
  year: 2020
  ident: b0045
  article-title: Exchange correlation and magnetism in bcc Fe
  publication-title: J. Electron Spec. Relat. Phenom.
– reference: H. Ullrich, J. Hesse, Hyperfine field vectors and hyperfine field distributions in FeNi alloys, J. Magn. Magn. Mater. 45 (1984) 315-327.
– volume: 61
  start-page: 839
  year: 1985
  end-page: 842
  ident: b0225
  article-title: Mössbauer investigation of Invar. A new model of the expansion anomaly and magnetism of iron atoms
  publication-title: Sov. Phys. JETP
– volume: 163
  start-page: 121
  year: 1949
  end-page: 131
  ident: b0050
  article-title: Free energy and metastable states in the iron nickel and iron manganese systems
  publication-title: J. Iron Steel Inst.
– ident: 10.1016/j.matpr.2020.12.527_b0205
  doi: 10.1002/pssa.2210610118
– volume: 71
  start-page: 134
  issue: 1832
  year: 1904
  ident: 10.1016/j.matpr.2020.12.527_b0005
  article-title: Invar and its applications
  publication-title: Nature
  doi: 10.1038/071134a0
– volume: 86-88
  start-page: 249
  year: 1977
  ident: 10.1016/j.matpr.2020.12.527_b0075
  article-title: Magnetic ground state properties of transition metals
  publication-title: Physica B+C
  doi: 10.1016/0378-4363(77)90303-5
– volume: 272
  start-page: 119
  year: 1963
  ident: 10.1016/j.matpr.2020.12.527_b0030
  article-title: The magnetization of face-centred cubic and body-centred cubic iron + nickel alloys
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1963.0045
– volume: 47
  start-page: 8739
  year: 1993
  ident: 10.1016/j.matpr.2020.12.527_b0105
  article-title: Local moment disorder in ferromagnetic alloys
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.8739
– volume: 25
  start-page: 287
  issue: 1
  year: 1968
  ident: 10.1016/j.matpr.2020.12.527_b0190
  article-title: Mössbauer effect and exchange anisotropy of iron-rich FeNi alloys with face-centered cubic structure
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.25.287
– volume: 66
  year: 2002
  ident: 10.1016/j.matpr.2020.12.527_b0135
  article-title: Magneto-chemical origin for Invar anomalies in Iron-Nickel alloys
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.66.014416
– volume: 75
  year: 2007
  ident: 10.1016/j.matpr.2020.12.527_b0140
  article-title: Temperature-induced longitudinal spin fluctuations in Fe and Ni
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.054402
– volume: 82
  start-page: 281
  issue: 2
  year: 1963
  ident: 10.1016/j.matpr.2020.12.527_b0060
  article-title: The origin of the Invar effect
  publication-title: Proc. Phys. Soc.
  doi: 10.1088/0370-1328/82/2/314
– ident: 10.1016/j.matpr.2020.12.527_b0025
– volume: 54
  start-page: 12225
  year: 1996
  ident: 10.1016/j.matpr.2020.12.527_b0125
  article-title: Relation between anomalous magneto-volume behavior and magnetic frustration in Invar alloys
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.12225
– volume: 61
  start-page: 839
  year: 1985
  ident: 10.1016/j.matpr.2020.12.527_b0225
  article-title: Mössbauer investigation of Invar. A new model of the expansion anomaly and magnetism of iron atoms
  publication-title: Sov. Phys. JETP
– volume: 100
  start-page: 346
  issue: 1-3
  year: 1991
  ident: 10.1016/j.matpr.2020.12.527_b0020
  article-title: The Invar problem
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/0304-8853(91)90828-X
– ident: 10.1016/j.matpr.2020.12.527_b0220
  doi: 10.1016/0304-8853(84)90025-8
– volume: 57
  start-page: 3456
  year: 1985
  ident: 10.1016/j.matpr.2020.12.527_b0230
  article-title: Spin glass in Fe-Ni Invar alloys
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.335075
– volume: 400
  start-page: 46
  year: 1999
  ident: 10.1016/j.matpr.2020.12.527_b0130
  article-title: Origin of the Invar effect in Iron-Nickel alloys
  publication-title: Nature
  doi: 10.1038/21848
– volume: 21
  start-page: 402
  issue: 4
  year: 1923
  ident: 10.1016/j.matpr.2020.12.527_b0010
  article-title: The crystal structure of iron-nickel alloys
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.21.402
– volume: 240
  year: 2020
  ident: 10.1016/j.matpr.2020.12.527_b0045
  article-title: Exchange correlation and magnetism in bcc Fe0.8Ni0.2 alloy
  publication-title: J. Electron Spec. Relat. Phenom.
  doi: 10.1016/j.elspec.2020.146933
– volume: 7
  start-page: L183
  year: 1977
  ident: 10.1016/j.matpr.2020.12.527_b0065
  article-title: Stoner theory support for the two-state hypothesis for gamma iron
  publication-title: J. Phys. F: Metal Phys.
  doi: 10.1088/0305-4608/7/7/004
– volume: 41
  start-page: 9600
  issue: 13
  year: 1990
  ident: 10.1016/j.matpr.2020.12.527_b0080
  article-title: Calculation of Invar anomalies
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.41.9600
– ident: 10.1016/j.matpr.2020.12.527_b0160
  doi: 10.1063/1.30451
– volume: 47
  start-page: 8706
  issue: 14
  year: 1993
  ident: 10.1016/j.matpr.2020.12.527_b0095
  article-title: First-principles calculations of the instability leading to the Invar effect
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.8706
– ident: 10.1016/j.matpr.2020.12.527_b0210
  doi: 10.1007/BF01507947
– volume: 76
  year: 2007
  ident: 10.1016/j.matpr.2020.12.527_b0155
  article-title: Competition between magnetic structures in the Fe rich fcc Fe-Ni alloys
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.014434
– volume: 43
  start-page: 3318
  issue: 4
  year: 1991
  ident: 10.1016/j.matpr.2020.12.527_b0090
  article-title: Magnetoelastic anomalies in Fe-Ni Invar alloys
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.43.3318
– volume: 35
  start-page: 4796
  year: 1987
  ident: 10.1016/j.matpr.2020.12.527_b0145
  article-title: Nature of the magnetic ground state in Fe-Ni Invar alloys
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.35.4796
– volume: 41
  start-page: 6939
  issue: 10
  year: 1990
  ident: 10.1016/j.matpr.2020.12.527_b0085
  article-title: High-spin and low-spin states in Invar and related alloys
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.41.6939
– volume: 38
  start-page: 41
  year: 1937
  ident: 10.1016/j.matpr.2020.12.527_b0165
  publication-title: Z. Phys.
– ident: 10.1016/j.matpr.2020.12.527_b0110
– ident: 10.1016/j.matpr.2020.12.527_b0170
  doi: 10.2320/jinstmet1937.12.6_1
– volume: 57
  start-page: 3456
  issue: 8
  year: 1985
  ident: 10.1016/j.matpr.2020.12.527_b0055
  article-title: Spin glass in Fe-Ni Invar alloys
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.335075
– volume: 272–276
  start-page: 536
  year: 2004
  ident: 10.1016/j.matpr.2020.12.527_b0150
  article-title: Does non-collinear ferromagnetism exist in INVAR?
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2003.12.181
– volume: 51
  start-page: 1058
  year: 1995
  ident: 10.1016/j.matpr.2020.12.527_b0115
  article-title: Theoretical aspects of the FecNi1−c Invar alloy
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.51.1058
– volume: 17
  start-page: 136
  year: 1962
  ident: 10.1016/j.matpr.2020.12.527_b0175
  article-title: Invar behaviour and magnetic moments of the γ-phase of iron-palladium alloys
  publication-title: J. Phys. Soc. Japan
– volume: 87
  start-page: 71
  issue: 1-2
  year: 1990
  ident: 10.1016/j.matpr.2020.12.527_b0240
  article-title: Microstructure and low temperature magnetism of Fe-Ni invar alloys
  publication-title: J. Magn. Magn. Mat.
  doi: 10.1016/0304-8853(90)90197-X
– ident: 10.1016/j.matpr.2020.12.527_b0040
  doi: 10.1051/jp4:1995216
– ident: 10.1016/j.matpr.2020.12.527_b0100
– ident: 10.1016/j.matpr.2020.12.527_b0195
  doi: 10.1143/JPSJ.25.286
– ident: 10.1016/j.matpr.2020.12.527_b0015
  doi: 10.1016/S1574-9304(05)80063-X
– volume: 14
  start-page: 341
  year: 1971
  ident: 10.1016/j.matpr.2020.12.527_b0185
  article-title: Antiferromagnetism in Invar Alloys
  publication-title: JETP Lett.
– volume: 40
  start-page: 319
  issue: 3
  year: 1984
  ident: 10.1016/j.matpr.2020.12.527_b0215
  article-title: A contribution to the invar problem by hyperfine field distribution analyses
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/0304-8853(84)90324-X
– ident: 10.1016/j.matpr.2020.12.527_b0120
  doi: 10.1007/BF01507947
– volume: 31
  start-page: 331S
  year: 1960
  ident: 10.1016/j.matpr.2020.12.527_b0180
  article-title: Antiferromagnetism of iron in face-centered crystalline lattice and the causes of anomalies in invar physical properties
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1984733
– volume: 52
  start-page: 188
  issue: 1
  year: 1995
  ident: 10.1016/j.matpr.2020.12.527_b0070
  article-title: First-principles investigations of atomic disorder effects on magnetic and structural instabilities in transition-metal alloys
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.52.188
– volume: 212
  start-page: 1
  year: 2016
  ident: 10.1016/j.matpr.2020.12.527_b0235
  article-title: Temperature dependence of L3M45M45 Auger transition in Fe1−xNix alloys
  publication-title: J. Electron Spectr. Relat. Phenom.
  doi: 10.1016/j.elspec.2016.07.004
– volume: 163
  start-page: 121
  year: 1949
  ident: 10.1016/j.matpr.2020.12.527_b0050
  article-title: Free energy and metastable states in the iron nickel and iron manganese systems
  publication-title: J. Iron Steel Inst.
– ident: 10.1016/j.matpr.2020.12.527_b0035
– ident: 10.1016/j.matpr.2020.12.527_b0200
  doi: 10.1051/jphys:01975003606054500
SSID ssj0001560816
Score 2.448628
Snippet •Historical development of Invar alloys.•Explanation of Invar anomaly.•Review of magnetic properties of Invars.•Mixed ground state of Invars. Fe-Ni alloys with...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 2242
SubjectTerms Invar alloy
Moment volume instability
Thermal expansion
Two gamma state model
Title Fe-Ni Invar alloys: A review
URI https://dx.doi.org/10.1016/j.matpr.2020.12.527
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXryIomK1lj14NG02ye5mvZViaRV70UJvIZtkoSJrqVXw4m93Zh8-QHrwGjKw-yXMKzPzEXIRWcdMZOEEXCiozIynRjpBU8-c5XkEZhYT-nezeDKXN4to0SKjphcGyypr3V_p9FJb1yuDGs3Barkc3HOk2FFIbAAxkJTYaC5lgre8_xF-51nApKuSARX3UxRohg-VZV7gF65wLijHQQv9CNll_jJQP4zOeJ_s1d5iMKw-6IC0fHFIumNPZ8tgWryZdYDv5u8vV8EwqJpQjsh8fP0wmtCa5IBasB4bCu5TmCvLnYRIS4C3ZRMjVa4AQpYabh0oUy9jJoVlJk5SJxMB0TATNnWOcy-OSbt4LvwJCXKXZKn3eRxlobRMGStkKpRXljknQ9shvPkzbesJ4EhE8aSbUq9HXcKhEQ4dcg1wdMjll9CqGoCxfXvcQKZ_naMGFb1N8PS_gmdkl2OdSZkW6ZL2Zv3qz8FR2GS98ib0yM5wejuZfQJiObrK
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGH6Z20Evoqg4ndqDR-PSJG1Tb2M4Nrf14ga7hTRJYSJ1zCn470364QfIDl5LXmielPerb54H4DpQGstA2RPQPkUslQZJpimKDdaKZIENs66hP03C4Zw9LIJFA_r1XRg3Vln5_tKnF966etKt0OyulsvuI3ESO9wJG9gaiLFgB1qOnSpoQqs3Gg-T71aLjeq8EEF1JsjZ1PxDxaSXTQ1XjhqUOK6F28AJzPwVo37EncEB7FcJo9cr3-kQGiY_gs7AoGTpjfJ3ufbcr_OP1zuv55X3UI5hPrif9Yeo0jlAygaQDbIZlJ9xRTSzxRa1CZeKJOMZtyjiWBKlrT81LMSMKizDKNYsorYgxlTFWhNi6Ak085fcnIKX6SiNjcnCIPWZwlwqymLKDVdYa-arNpB6Z0JVJOBOi-JZ1NNeT6KAQzg4hE-EhaMNN19Gq5IDY_vysIZM_DpKYb30NsOz_xpewe5wNp2IySgZn8MecWMnRZekA83N-s1c2Lxhk15W38Un6j29ew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fe-Ni+Invar+alloys%3A+A+review&rft.jtitle=Materials+today+%3A+proceedings&rft.au=Sahoo%2C+A.&rft.au=Medicherla%2C+V.R.R.&rft.date=2021-01-01&rft.issn=2214-7853&rft.eissn=2214-7853&rft.volume=43&rft.spage=2242&rft.epage=2244&rft_id=info:doi/10.1016%2Fj.matpr.2020.12.527&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matpr_2020_12_527
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-7853&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-7853&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-7853&client=summon