Short-term wind speed forecasting using multivariate pretreatment technique and correntropy loss-enhanced selective combination

Short-term wind speed prediction is an effective measure for the rational integration of wind energy into the grid system. Subject to the complex characteristics of natural winds, achieving accurate predictions often pose a significant challenge. For this purpose, this paper develops a new hybrid fo...

Full description

Saved in:
Bibliographic Details
Published inJournal of wind engineering and industrial aerodynamics Vol. 254; p. 105898
Main Authors Jiang, Yan, Liu, Shuoyu, Zhao, Ning, Liu, Duote
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2024
Subjects
Online AccessGet full text
ISSN0167-6105
DOI10.1016/j.jweia.2024.105898

Cover

Loading…
Abstract Short-term wind speed prediction is an effective measure for the rational integration of wind energy into the grid system. Subject to the complex characteristics of natural winds, achieving accurate predictions often pose a significant challenge. For this purpose, this paper develops a new hybrid forecasting method based on multivariate variational mode decomposition (MVMD), four different predictors and correntropy loss-enhanced selective combination. Specifically, MVMD is first used to decompose the multi-height wind speed data into a number of subseries groups with a well mode-alignment attribute, thereby avoiding the problem of model aliasing to some extent. Then, four predictors with different design principles (i.e., the consideration of model diversity) are constructed for capturing multiple data features. Further, the correntropy loss is used to replace the conventional mean square error loss for reflecting the actual noise environment in a robust manner. On this basis, an improved group method of data handling with high practicability is developed to realize the selective combination prediction. Finally, numerical examples based on three groups of multi-channel datasets are employed to demonstrate the forecasting ability of the proposed method. The results indicate that this method is superior to the other concerned methods. For example, compared with VMD-based method, the average improvement realized via the proposed method in term of mean absolute error is 20.3343%. •MVMD is used for high-quality data processing.•Model diversity is considered for explaining more data characteristics.•MCC is employed as an optimization criterion or a robust loss function.•An improved GMDH is developed to consider the model practicability.
AbstractList Short-term wind speed prediction is an effective measure for the rational integration of wind energy into the grid system. Subject to the complex characteristics of natural winds, achieving accurate predictions often pose a significant challenge. For this purpose, this paper develops a new hybrid forecasting method based on multivariate variational mode decomposition (MVMD), four different predictors and correntropy loss-enhanced selective combination. Specifically, MVMD is first used to decompose the multi-height wind speed data into a number of subseries groups with a well mode-alignment attribute, thereby avoiding the problem of model aliasing to some extent. Then, four predictors with different design principles (i.e., the consideration of model diversity) are constructed for capturing multiple data features. Further, the correntropy loss is used to replace the conventional mean square error loss for reflecting the actual noise environment in a robust manner. On this basis, an improved group method of data handling with high practicability is developed to realize the selective combination prediction. Finally, numerical examples based on three groups of multi-channel datasets are employed to demonstrate the forecasting ability of the proposed method. The results indicate that this method is superior to the other concerned methods. For example, compared with VMD-based method, the average improvement realized via the proposed method in term of mean absolute error is 20.3343%. •MVMD is used for high-quality data processing.•Model diversity is considered for explaining more data characteristics.•MCC is employed as an optimization criterion or a robust loss function.•An improved GMDH is developed to consider the model practicability.
ArticleNumber 105898
Author Liu, Duote
Zhao, Ning
Jiang, Yan
Liu, Shuoyu
Author_xml – sequence: 1
  givenname: Yan
  surname: Jiang
  fullname: Jiang, Yan
  email: xnjtjiangyan@163.com
  organization: College of Engineering and Technology, Southwest University, Chongqing, 400715, China
– sequence: 2
  givenname: Shuoyu
  surname: Liu
  fullname: Liu, Shuoyu
  email: lsy19880924@gmail.com
  organization: College of Engineering and Technology, Southwest University, Chongqing, 400715, China
– sequence: 3
  givenname: Ning
  surname: Zhao
  fullname: Zhao, Ning
  email: zhaoning199010@163.com
  organization: College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
– sequence: 4
  givenname: Duote
  surname: Liu
  fullname: Liu, Duote
  email: liuduote@my.swjtu.edu.cn
  organization: School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China
BookMark eNqFkD1PwzAQhj0UiRb4BSz-AynnfGdgQBVfUiUGYLYc50IdJXaw3Vad-Os4LRMDLD75zs-r87MgM200EnLNYMmA5TfdstujEssY4jR0srIqZ2QeJkWUh-s5WTjXAUCRFsmcfL1ujPWRRzvQvdINdSNiQ1tjUQrnlf6gWzedw7b3aiesEh7paNFbFH5A7alHudHqc4tUBF4aa0PXmvFAe-NchHojtAyZDnuUIQPDm6FWWnhl9CU5a0Xv8OqnXpD3h_u31VO0fnl8Xt2tI5lA4qMYM9EAq5q6KeKa1ViIHJBllcRYQJXFLE6bFCTUUDdVCUUMIi8Fy5IEWJG3yQVJTrnShqUstny0ahD2wBnwyRvv-NEbn7zxk7dAVb8oqfxxb2-F6v9hb08shm_tFFrupMLJhApuPW-M-pP_BlxnkpU
CitedBy_id crossref_primary_10_1016_j_jweia_2025_106011
Cites_doi 10.1016/j.energy.2021.121523
10.1016/j.jweia.2020.104198
10.1016/j.energy.2021.121275
10.1016/j.jweia.2023.105499
10.1016/j.engstruct.2022.114285
10.1016/j.apenergy.2018.06.053
10.1016/j.enconman.2018.03.010
10.1016/j.asoc.2017.10.033
10.1016/j.jweia.2023.105507
10.1016/j.renene.2021.04.091
10.1016/j.enconman.2019.111981
10.1016/j.enconman.2020.113076
10.1016/j.enconman.2018.10.089
10.1016/j.enconman.2019.02.018
10.1016/j.commatsci.2011.07.053
10.1016/j.energy.2022.123761
10.1109/TSP.2007.896065
10.1016/j.enconman.2020.112995
10.1016/j.measurement.2022.110740
10.1109/ACCESS.2020.2988552
10.1016/j.energy.2016.06.075
10.1016/j.jweia.2021.104561
10.1016/j.apenergy.2022.118777
10.1016/j.apenergy.2010.09.028
10.1109/TII.2018.2854549
10.1016/j.eswa.2011.03.063
10.1016/j.energy.2024.130580
10.1093/biomet/65.2.297
10.1016/j.enconman.2017.04.064
10.1016/j.jweia.2019.104090
10.1061/(ASCE)EM.1943-7889.0000975
10.1016/j.apenergy.2019.04.047
10.1016/S0925-2312(01)00644-0
10.1016/j.energy.2017.02.150
10.1016/j.apenergy.2017.09.043
10.1109/TSP.2019.2951223
10.1016/j.apenergy.2010.10.031
10.1007/s13369-022-06655-2
10.1016/j.enconman.2016.08.086
10.1016/j.enconman.2019.112099
10.1016/j.renene.2019.08.018
10.1016/j.enconman.2015.05.065
10.1016/j.energy.2020.118980
10.1016/j.energy.2021.120904
10.1016/j.ins.2008.05.013
10.1016/j.jweia.2024.105813
10.1016/j.jweia.2017.12.019
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jweia.2024.105898
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_jweia_2024_105898
S0167610524002617
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXKI
AAXUO
ABFNM
ABMAC
ABTAH
ABXDB
ACDAQ
ACGFS
ACKIV
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSR
SST
SSZ
T5K
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c303t-2e5ad019dbd72b1be7a60e159ce2a0952124d40c0b0bd980720a68a15330176f3
IEDL.DBID .~1
ISSN 0167-6105
IngestDate Thu Apr 24 22:56:42 EDT 2025
Tue Jul 01 04:09:50 EDT 2025
Sat Nov 16 16:00:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multiple predictors
Selective combination
Wind speed prediction
Multivariate pretreatment technique
Correntropy loss
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-2e5ad019dbd72b1be7a60e159ce2a0952124d40c0b0bd980720a68a15330176f3
ParticipantIDs crossref_primary_10_1016_j_jweia_2024_105898
crossref_citationtrail_10_1016_j_jweia_2024_105898
elsevier_sciencedirect_doi_10_1016_j_jweia_2024_105898
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationTitle Journal of wind engineering and industrial aerodynamics
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cai, Jia, Feng, Li, Hsu, Lee (bib2) 2020; 146
Zhang, Chen, Xiao, Zhang, Feng (bib52) 2021; 174
MacKay (bib28) 1998; 168
Erdem, Shi (bib6) 2011; 88
Liu, Zhang, Huang, Zhao, Dai (bib25) 2024; 252
Liu, Pokharel, Principe (bib21) 2007; 55
Jiang, Huang (bib12) 2017; 144
Wang, Heng, Xiao, Wang (bib40) 2017; 125
Mo, Xie, Jiang, Teng, Xu, Xiao (bib31) 2018; 62
Zhu, Liu, Chen, Gao, Wang, Xu (bib54) 2021; 236
Yang, Huang, Li, Xu, Pan (bib47) 2023; 240
Madandoust, Bungey, Ghavidel (bib29) 2012; 51
Jiang, Liu, Zhao, Xin, Wu (bib16) 2020; 220
Xin, Jiang, Zhou, Peng, Liu, Tang (bib46) 2022; 261
Zhang, Peng, Pan, Liu (bib50) 2019; 180
Liu, Tan, Huang (bib24) 2022; 191
Chen, Zhang, Zhang, Peng, Cai (bib4) 2019; 185
Jiang, Zhao, Peng, Liu (bib15) 2019; 199
Zhang, Ye, Qin, Liu, Wang, Yu (bib51) 2019; 247
Jiang, Huang, Peng, Li, Yang (bib13) 2018; 174
Yuan, Chen, Yuan, Huang, Tan (bib48) 2015; 101
Peláez-Rodríguez, Pérez-Aracil, Prieto-Godino, Ghimire, Deo, Salcedo-Sanz (bib33) 2023; 240
Wang, Zhang, Mao, Wan (bib42) 2020; 202
Liu, Yang, Duan (bib23) 2020; 217
Cao, Wang, Zhou (bib3) 2020; 8
Widodo, Shim, Caesarendra, Yang (bib45) 2011; 38
Duan, Wang, Ma, Tian, Fang, Cheng (bib5) 2021; 214
Liang, Zhao, Lv, Sun (bib18) 2021; 230
Onwubolu (bib32) 2008; 178
ur Rehman, Aftab (bib38) 2019; 67
Han, Mi, Shen, Cai, Liu, Li (bib8) 2022; 312
Wang, Wang, Lu, Zhao (bib44) 2021; 234
Huang, Su, Kareem, Liao (bib11) 2016; 142
Liu, Erdem, Shi (bib22) 2011; 88
Wang, Hu, Meng, Zhu (bib41) 2017; 208
Singla, Duhan, Saroha (bib35) 2022; 47
Liao, Jing, Ma, Tao, Li (bib20) 2020; 197
Zheng, Wang (bib53) 2024; 293
He, Li (bib9) 2018; 164
Wang, Wu (bib39) 2016; 112
Liang, Chai, Sun, Tan (bib19) 2022; 250
Ren, Wen, Liu, Zhang (bib34) 2020; 225
Luo, Sun, Wang, Wang, Zhao, Wu (bib27) 2018; 14
Wang, Wang, Li, Li, Yang (bib43) 2020; 40
Fine, Scheinberg (bib7) 2001; 2
Zhang, Wei, Zhao, Liu, Zhang (bib49) 2016; 126
Mak, Yang (bib30) 2007; 1
Ljung, Box (bib26) 1978; 65
Tao, Shi, Wang, Ai (bib37) 2021; 211
Bai, Liu, Ding, Ma (bib1) 2021; 30
Suykens, De Brabanter, Lukas, Vandewalle (bib36) 2002; 48
He, Wang, Lu (bib10) 2018; 226
Jiang, Liu, Peng, Zhao (bib14) 2019; 200
Zhang (10.1016/j.jweia.2024.105898_bib51) 2019; 247
Fine (10.1016/j.jweia.2024.105898_bib7) 2001; 2
Peláez-Rodríguez (10.1016/j.jweia.2024.105898_bib33) 2023; 240
Madandoust (10.1016/j.jweia.2024.105898_bib29) 2012; 51
Liu (10.1016/j.jweia.2024.105898_bib22) 2011; 88
Luo (10.1016/j.jweia.2024.105898_bib27) 2018; 14
Wang (10.1016/j.jweia.2024.105898_bib42) 2020; 202
Liu (10.1016/j.jweia.2024.105898_bib24) 2022; 191
Zhang (10.1016/j.jweia.2024.105898_bib50) 2019; 180
Ren (10.1016/j.jweia.2024.105898_bib34) 2020; 225
Han (10.1016/j.jweia.2024.105898_bib8) 2022; 312
Liu (10.1016/j.jweia.2024.105898_bib21) 2007; 55
Singla (10.1016/j.jweia.2024.105898_bib35) 2022; 47
Zheng (10.1016/j.jweia.2024.105898_bib53) 2024; 293
Jiang (10.1016/j.jweia.2024.105898_bib16) 2020; 220
Mo (10.1016/j.jweia.2024.105898_bib31) 2018; 62
Bai (10.1016/j.jweia.2024.105898_bib1) 2021; 30
Liao (10.1016/j.jweia.2024.105898_bib20) 2020; 197
MacKay (10.1016/j.jweia.2024.105898_bib28) 1998; 168
Zhu (10.1016/j.jweia.2024.105898_bib54) 2021; 236
Wang (10.1016/j.jweia.2024.105898_bib41) 2017; 208
Wang (10.1016/j.jweia.2024.105898_bib39) 2016; 112
Duan (10.1016/j.jweia.2024.105898_bib5) 2021; 214
Suykens (10.1016/j.jweia.2024.105898_bib36) 2002; 48
Yuan (10.1016/j.jweia.2024.105898_bib48) 2015; 101
Wang (10.1016/j.jweia.2024.105898_bib40) 2017; 125
He (10.1016/j.jweia.2024.105898_bib10) 2018; 226
Tao (10.1016/j.jweia.2024.105898_bib37) 2021; 211
Jiang (10.1016/j.jweia.2024.105898_bib12) 2017; 144
Mak (10.1016/j.jweia.2024.105898_bib30) 2007; 1
ur Rehman (10.1016/j.jweia.2024.105898_bib38) 2019; 67
Liu (10.1016/j.jweia.2024.105898_bib23) 2020; 217
Jiang (10.1016/j.jweia.2024.105898_bib15) 2019; 199
Liu (10.1016/j.jweia.2024.105898_bib25) 2024; 252
Zhang (10.1016/j.jweia.2024.105898_bib52) 2021; 174
Jiang (10.1016/j.jweia.2024.105898_bib13) 2018; 174
Widodo (10.1016/j.jweia.2024.105898_bib45) 2011; 38
Jiang (10.1016/j.jweia.2024.105898_bib14) 2019; 200
Liang (10.1016/j.jweia.2024.105898_bib18) 2021; 230
Cao (10.1016/j.jweia.2024.105898_bib3) 2020; 8
He (10.1016/j.jweia.2024.105898_bib9) 2018; 164
Erdem (10.1016/j.jweia.2024.105898_bib6) 2011; 88
Wang (10.1016/j.jweia.2024.105898_bib43) 2020; 40
Cai (10.1016/j.jweia.2024.105898_bib2) 2020; 146
Xin (10.1016/j.jweia.2024.105898_bib46) 2022; 261
Wang (10.1016/j.jweia.2024.105898_bib44) 2021; 234
Chen (10.1016/j.jweia.2024.105898_bib4) 2019; 185
Liang (10.1016/j.jweia.2024.105898_bib19) 2022; 250
Huang (10.1016/j.jweia.2024.105898_bib11) 2016; 142
Onwubolu (10.1016/j.jweia.2024.105898_bib32) 2008; 178
Yang (10.1016/j.jweia.2024.105898_bib47) 2023; 240
Ljung (10.1016/j.jweia.2024.105898_bib26) 1978; 65
Zhang (10.1016/j.jweia.2024.105898_bib49) 2016; 126
References_xml – volume: 185
  start-page: 783
  year: 2019
  end-page: 799
  ident: bib4
  article-title: Multifactor spatio-temporal correlation model based on a combination of convolutional neural network and long short-term memory neural network for wind speed forecasting
  publication-title: Energy Convers. Manag.
– volume: 178
  start-page: 3616
  year: 2008
  end-page: 3634
  ident: bib32
  article-title: Design of hybrid differential evolution and group method of data handling networks for modeling and prediction
  publication-title: Inf. Sci.
– volume: 144
  start-page: 340
  year: 2017
  end-page: 350
  ident: bib12
  article-title: Short-term wind speed prediction: hybrid of ensemble empirical mode decomposition, feature selection and error correction
  publication-title: Energy Convers. Manag.
– volume: 174
  start-page: 688
  year: 2021
  end-page: 704
  ident: bib52
  article-title: Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism
  publication-title: Renew. Energy
– volume: 217
  year: 2020
  ident: bib23
  article-title: Wind speed forecasting using a new multi-factor fusion and multi-resolution ensemble model with real-time decomposition and adaptive error correction
  publication-title: Energy Convers. Manag.
– volume: 168
  start-page: 133
  year: 1998
  end-page: 166
  ident: bib28
  article-title: Introduction to Gaussian processes
  publication-title: NATO ASI series F computer and systems sciences
– volume: 240
  year: 2023
  ident: bib33
  article-title: A fuzzy-based cascade ensemble model for improving extreme wind speeds prediction
  publication-title: J. Wind Eng. Ind. Aerod.
– volume: 247
  start-page: 270
  year: 2019
  end-page: 284
  ident: bib51
  article-title: Wind speed prediction method using shared weight long short-term memory network and Gaussian process regression
  publication-title: Applied energy
– volume: 220
  year: 2020
  ident: bib16
  article-title: Short-term wind speed prediction using time varying filter-based empirical mode decomposition and group method of data handling-based hybrid model
  publication-title: Energy Convers. Manag.
– volume: 214
  year: 2021
  ident: bib5
  article-title: Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and Correntropy Long Short-term memory neural network
  publication-title: Energy
– volume: 200
  year: 2019
  ident: bib14
  article-title: A novel wind speed prediction method based on robust local mean decomposition, group method of data handling and conditional kernel density estimation
  publication-title: Energy Convers. Manag.
– volume: 250
  year: 2022
  ident: bib19
  article-title: Wind speed prediction based on multi-variable Capsnet-BILSTM-MOHHO for WPCCC
  publication-title: Energy
– volume: 47
  start-page: 14185
  year: 2022
  end-page: 14211
  ident: bib35
  article-title: A hybrid solar irradiance forecasting using full wavelet packet decomposition and bi-directional long short-term memory (BiLSTM)
  publication-title: Arabian J. Sci. Eng.
– volume: 293
  year: 2024
  ident: bib53
  article-title: Short-term wind speed forecasting based on recurrent neural networks and Levy crystal structure algorithm
  publication-title: Energy
– volume: 67
  start-page: 6039
  year: 2019
  end-page: 6052
  ident: bib38
  article-title: Multivariate variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
– volume: 14
  start-page: 4963
  year: 2018
  end-page: 4971
  ident: bib27
  article-title: Short-term wind speed forecasting via stacked extreme learning machine with generalized correntropy
  publication-title: IEEE Trans. Ind. Inf.
– volume: 30
  year: 2021
  ident: bib1
  article-title: Double-layer staged training echo-state networks for wind speed prediction using variational mode decomposition
  publication-title: Appl. Energy
– volume: 197
  year: 2020
  ident: bib20
  article-title: Field measurement study on turbulence field by wind tower and Windcube Lidar in mountain valley
  publication-title: J. Wind Eng. Ind. Aerod.
– volume: 191
  year: 2022
  ident: bib24
  article-title: Maximum correntropy criterion-based blind deconvolution and its application for bearing fault detection
  publication-title: Measurement
– volume: 174
  start-page: 28
  year: 2018
  end-page: 38
  ident: bib13
  article-title: A novel wind speed prediction method: hybrid of correlation-aided DWT, LSSVM and GARCH
  publication-title: J. Wind Eng. Ind. Aerod.
– volume: 146
  start-page: 2112
  year: 2020
  end-page: 2123
  ident: bib2
  article-title: Gaussian process regression for numerical wind speed prediction enhancement
  publication-title: Renew. Energy
– volume: 236
  year: 2021
  ident: bib54
  article-title: Wind speed behaviors feather analysis and its utilization on wind speed prediction using 3D-CNN
  publication-title: Energy
– volume: 252
  year: 2024
  ident: bib25
  article-title: Hybrid neural network-aided strong wind speed prediction along rail network
  publication-title: J. Wind Eng. Ind. Aerod.
– volume: 199
  year: 2019
  ident: bib15
  article-title: A new hybrid framework for probabilistic wind speed prediction using deep feature selection and multi-error modification
  publication-title: Energy Convers. Manag.
– volume: 180
  start-page: 338
  year: 2019
  end-page: 357
  ident: bib50
  article-title: A novel wind speed forecasting based on hybrid decomposition and online sequential outlier robust extreme learning machine
  publication-title: Energy Convers. Manag.
– volume: 225
  year: 2020
  ident: bib34
  article-title: A short-term wind speed prediction method based on interval type 2 fuzzy model considering the selection of important input variables
  publication-title: J. Wind Eng. Ind. Aerod.
– volume: 1
  start-page: 7
  year: 2007
  end-page: 12
  ident: bib30
  article-title: Forecasting Hong Kong's container throughput with approximate least squares support vector machines
  publication-title: World Congress on Engineering
– volume: 312
  year: 2022
  ident: bib8
  article-title: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting
  publication-title: Appl. Energy
– volume: 101
  start-page: 393
  year: 2015
  end-page: 401
  ident: bib48
  article-title: Short-term wind power prediction based on LSSVM–GSA model
  publication-title: Energy Convers. Manag.
– volume: 62
  start-page: 478
  year: 2018
  end-page: 490
  ident: bib31
  article-title: GMDH-based hybrid model for container throughput forecasting: selective combination forecasting in nonlinear subseries
  publication-title: Appl. Soft Comput.
– volume: 226
  start-page: 756
  year: 2018
  end-page: 771
  ident: bib10
  article-title: A hybrid system for short-term wind speed forecasting
  publication-title: Appl. Energy
– volume: 202
  year: 2020
  ident: bib42
  article-title: A probabilistic approach for short-term prediction of wind gust speed using ensemble learning
  publication-title: J. Wind Eng. Ind. Aerod.
– volume: 125
  start-page: 591
  year: 2017
  end-page: 613
  ident: bib40
  article-title: Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting
  publication-title: Energy
– volume: 88
  start-page: 1405
  year: 2011
  end-page: 1414
  ident: bib6
  article-title: ARMA based approaches for forecasting the tuple of wind speed and direction
  publication-title: Appl. Energy
– volume: 208
  start-page: 1097
  year: 2017
  end-page: 1112
  ident: bib41
  article-title: Deterministic and probabilistic wind power forecasting using a variational Bayesian-based adaptive robust multi-kernel regression model
  publication-title: Applied energy
– volume: 55
  start-page: 5286
  year: 2007
  end-page: 5298
  ident: bib21
  article-title: Correntropy: properties and applications in non-Gaussian signal processing
  publication-title: IEEE Trans. Signal Process.
– volume: 112
  start-page: 208
  year: 2016
  end-page: 220
  ident: bib39
  article-title: On practical challenges of decomposition-based hybrid forecasting algorithms for wind speed and solar irradiation
  publication-title: Energy
– volume: 261
  year: 2022
  ident: bib46
  article-title: Bridge deformation prediction based on SHM data using improved VMD and conditional KDE
  publication-title: Eng. Struct.
– volume: 240
  year: 2023
  ident: bib47
  article-title: A novel short-term wind speed prediction method based on hybrid statistical-artificial intelligence model with empirical wavelet transform and hyperparameter optimization
  publication-title: J. Wind Eng. Ind. Aerod.
– volume: 164
  start-page: 374
  year: 2018
  end-page: 384
  ident: bib9
  article-title: Probability density forecasting of wind power using quantile regression neural network and kernel density estimation
  publication-title: Energy Convers. Manag.
– volume: 230
  year: 2021
  ident: bib18
  article-title: A novel wind speed prediction strategy based on Bi-LSTM, MOOFADA and transfer learning for centralized control centers
  publication-title: Energy
– volume: 8
  start-page: 74039
  year: 2020
  end-page: 74047
  ident: bib3
  article-title: Multichannel signal denoising using multivariate variational mode decomposition with subspace projection
  publication-title: IEEE Access
– volume: 234
  year: 2021
  ident: bib44
  article-title: A novel combined model for wind speed prediction–Combination of linear model, shallow neural networks, and deep learning approaches
  publication-title: Energy
– volume: 51
  start-page: 261
  year: 2012
  end-page: 272
  ident: bib29
  article-title: Prediction of the concrete compressive strength by means of core testing using GMDH-type neural network and ANFIS models
  publication-title: Comput. Mater. Sci.
– volume: 40
  year: 2020
  ident: bib43
  article-title: A combined framework based on data preprocessing, neural networks and multi-tracker optimizer for wind speed prediction
  publication-title: Sustain. Energy Technol. Assessments
– volume: 2
  start-page: 243
  year: 2001
  end-page: 264
  ident: bib7
  article-title: Efficient SVM training using low-rank kernel representations
  publication-title: J. Mach. Learn. Res.
– volume: 142
  year: 2016
  ident: bib11
  article-title: Time-frequency analysis of nonstationary process based on multivariate empirical mode decomposition
  publication-title: J. Eng. Mech.
– volume: 88
  start-page: 724
  year: 2011
  end-page: 732
  ident: bib22
  article-title: Comprehensive evaluation of ARMA–GARCH(-M) approaches for modeling the mean and volatility of wind speed
  publication-title: Appl. Energy
– volume: 38
  start-page: 11763
  year: 2011
  end-page: 11769
  ident: bib45
  article-title: Intelligent prognostics for battery health monitoring based on sample entropy
  publication-title: Expert Syst. Appl.
– volume: 48
  start-page: 85
  year: 2002
  end-page: 105
  ident: bib36
  article-title: Weighted least squares support vector machines: robustness and sparse approximation
  publication-title: Neurocomputing
– volume: 126
  start-page: 1084
  year: 2016
  end-page: 1092
  ident: bib49
  article-title: Gaussian process regression based hybrid approach for short-term wind speed prediction
  publication-title: Energy Convers. Manag.
– volume: 211
  year: 2021
  ident: bib37
  article-title: Short-term prediction of downburst winds: a double-step modification enhanced approach
  publication-title: J. Wind Eng. Ind. Aerod.
– volume: 65
  start-page: 297
  year: 1978
  end-page: 303
  ident: bib26
  article-title: On a measure of lack of fit in time series models
  publication-title: Biometrika
– volume: 40
  year: 2020
  ident: 10.1016/j.jweia.2024.105898_bib43
  article-title: A combined framework based on data preprocessing, neural networks and multi-tracker optimizer for wind speed prediction
  publication-title: Sustain. Energy Technol. Assessments
– volume: 236
  year: 2021
  ident: 10.1016/j.jweia.2024.105898_bib54
  article-title: Wind speed behaviors feather analysis and its utilization on wind speed prediction using 3D-CNN
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121523
– volume: 202
  year: 2020
  ident: 10.1016/j.jweia.2024.105898_bib42
  article-title: A probabilistic approach for short-term prediction of wind gust speed using ensemble learning
  publication-title: J. Wind Eng. Ind. Aerod.
  doi: 10.1016/j.jweia.2020.104198
– volume: 234
  year: 2021
  ident: 10.1016/j.jweia.2024.105898_bib44
  article-title: A novel combined model for wind speed prediction–Combination of linear model, shallow neural networks, and deep learning approaches
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121275
– volume: 240
  year: 2023
  ident: 10.1016/j.jweia.2024.105898_bib47
  article-title: A novel short-term wind speed prediction method based on hybrid statistical-artificial intelligence model with empirical wavelet transform and hyperparameter optimization
  publication-title: J. Wind Eng. Ind. Aerod.
  doi: 10.1016/j.jweia.2023.105499
– volume: 225
  year: 2020
  ident: 10.1016/j.jweia.2024.105898_bib34
  article-title: A short-term wind speed prediction method based on interval type 2 fuzzy model considering the selection of important input variables
  publication-title: J. Wind Eng. Ind. Aerod.
– volume: 261
  year: 2022
  ident: 10.1016/j.jweia.2024.105898_bib46
  article-title: Bridge deformation prediction based on SHM data using improved VMD and conditional KDE
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2022.114285
– volume: 226
  start-page: 756
  year: 2018
  ident: 10.1016/j.jweia.2024.105898_bib10
  article-title: A hybrid system for short-term wind speed forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.06.053
– volume: 164
  start-page: 374
  year: 2018
  ident: 10.1016/j.jweia.2024.105898_bib9
  article-title: Probability density forecasting of wind power using quantile regression neural network and kernel density estimation
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.03.010
– volume: 62
  start-page: 478
  year: 2018
  ident: 10.1016/j.jweia.2024.105898_bib31
  article-title: GMDH-based hybrid model for container throughput forecasting: selective combination forecasting in nonlinear subseries
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.10.033
– volume: 240
  year: 2023
  ident: 10.1016/j.jweia.2024.105898_bib33
  article-title: A fuzzy-based cascade ensemble model for improving extreme wind speeds prediction
  publication-title: J. Wind Eng. Ind. Aerod.
  doi: 10.1016/j.jweia.2023.105507
– volume: 174
  start-page: 688
  year: 2021
  ident: 10.1016/j.jweia.2024.105898_bib52
  article-title: Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.04.091
– volume: 199
  year: 2019
  ident: 10.1016/j.jweia.2024.105898_bib15
  article-title: A new hybrid framework for probabilistic wind speed prediction using deep feature selection and multi-error modification
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.111981
– volume: 220
  year: 2020
  ident: 10.1016/j.jweia.2024.105898_bib16
  article-title: Short-term wind speed prediction using time varying filter-based empirical mode decomposition and group method of data handling-based hybrid model
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2020.113076
– volume: 180
  start-page: 338
  year: 2019
  ident: 10.1016/j.jweia.2024.105898_bib50
  article-title: A novel wind speed forecasting based on hybrid decomposition and online sequential outlier robust extreme learning machine
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.10.089
– volume: 185
  start-page: 783
  year: 2019
  ident: 10.1016/j.jweia.2024.105898_bib4
  article-title: Multifactor spatio-temporal correlation model based on a combination of convolutional neural network and long short-term memory neural network for wind speed forecasting
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.02.018
– volume: 2
  start-page: 243
  issue: Dec
  year: 2001
  ident: 10.1016/j.jweia.2024.105898_bib7
  article-title: Efficient SVM training using low-rank kernel representations
  publication-title: J. Mach. Learn. Res.
– volume: 51
  start-page: 261
  issue: 1
  year: 2012
  ident: 10.1016/j.jweia.2024.105898_bib29
  article-title: Prediction of the concrete compressive strength by means of core testing using GMDH-type neural network and ANFIS models
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2011.07.053
– volume: 250
  year: 2022
  ident: 10.1016/j.jweia.2024.105898_bib19
  article-title: Wind speed prediction based on multi-variable Capsnet-BILSTM-MOHHO for WPCCC
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123761
– volume: 55
  start-page: 5286
  issue: 11
  year: 2007
  ident: 10.1016/j.jweia.2024.105898_bib21
  article-title: Correntropy: properties and applications in non-Gaussian signal processing
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.896065
– volume: 30
  year: 2021
  ident: 10.1016/j.jweia.2024.105898_bib1
  article-title: Double-layer staged training echo-state networks for wind speed prediction using variational mode decomposition
  publication-title: Appl. Energy
– volume: 217
  year: 2020
  ident: 10.1016/j.jweia.2024.105898_bib23
  article-title: Wind speed forecasting using a new multi-factor fusion and multi-resolution ensemble model with real-time decomposition and adaptive error correction
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2020.112995
– volume: 191
  year: 2022
  ident: 10.1016/j.jweia.2024.105898_bib24
  article-title: Maximum correntropy criterion-based blind deconvolution and its application for bearing fault detection
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.110740
– volume: 8
  start-page: 74039
  year: 2020
  ident: 10.1016/j.jweia.2024.105898_bib3
  article-title: Multichannel signal denoising using multivariate variational mode decomposition with subspace projection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2988552
– volume: 112
  start-page: 208
  year: 2016
  ident: 10.1016/j.jweia.2024.105898_bib39
  article-title: On practical challenges of decomposition-based hybrid forecasting algorithms for wind speed and solar irradiation
  publication-title: Energy
  doi: 10.1016/j.energy.2016.06.075
– volume: 211
  year: 2021
  ident: 10.1016/j.jweia.2024.105898_bib37
  article-title: Short-term prediction of downburst winds: a double-step modification enhanced approach
  publication-title: J. Wind Eng. Ind. Aerod.
  doi: 10.1016/j.jweia.2021.104561
– volume: 312
  year: 2022
  ident: 10.1016/j.jweia.2024.105898_bib8
  article-title: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.118777
– volume: 88
  start-page: 724
  issue: 3
  year: 2011
  ident: 10.1016/j.jweia.2024.105898_bib22
  article-title: Comprehensive evaluation of ARMA–GARCH(-M) approaches for modeling the mean and volatility of wind speed
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2010.09.028
– volume: 14
  start-page: 4963
  issue: 11
  year: 2018
  ident: 10.1016/j.jweia.2024.105898_bib27
  article-title: Short-term wind speed forecasting via stacked extreme learning machine with generalized correntropy
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2018.2854549
– volume: 38
  start-page: 11763
  issue: 9
  year: 2011
  ident: 10.1016/j.jweia.2024.105898_bib45
  article-title: Intelligent prognostics for battery health monitoring based on sample entropy
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.03.063
– volume: 293
  year: 2024
  ident: 10.1016/j.jweia.2024.105898_bib53
  article-title: Short-term wind speed forecasting based on recurrent neural networks and Levy crystal structure algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2024.130580
– volume: 1
  start-page: 7
  year: 2007
  ident: 10.1016/j.jweia.2024.105898_bib30
  article-title: Forecasting Hong Kong's container throughput with approximate least squares support vector machines
  publication-title: World Congress on Engineering
– volume: 65
  start-page: 297
  issue: 2
  year: 1978
  ident: 10.1016/j.jweia.2024.105898_bib26
  article-title: On a measure of lack of fit in time series models
  publication-title: Biometrika
  doi: 10.1093/biomet/65.2.297
– volume: 144
  start-page: 340
  year: 2017
  ident: 10.1016/j.jweia.2024.105898_bib12
  article-title: Short-term wind speed prediction: hybrid of ensemble empirical mode decomposition, feature selection and error correction
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.04.064
– volume: 197
  year: 2020
  ident: 10.1016/j.jweia.2024.105898_bib20
  article-title: Field measurement study on turbulence field by wind tower and Windcube Lidar in mountain valley
  publication-title: J. Wind Eng. Ind. Aerod.
  doi: 10.1016/j.jweia.2019.104090
– volume: 142
  issue: 1
  year: 2016
  ident: 10.1016/j.jweia.2024.105898_bib11
  article-title: Time-frequency analysis of nonstationary process based on multivariate empirical mode decomposition
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)EM.1943-7889.0000975
– volume: 247
  start-page: 270
  year: 2019
  ident: 10.1016/j.jweia.2024.105898_bib51
  article-title: Wind speed prediction method using shared weight long short-term memory network and Gaussian process regression
  publication-title: Applied energy
  doi: 10.1016/j.apenergy.2019.04.047
– volume: 48
  start-page: 85
  issue: 1–4
  year: 2002
  ident: 10.1016/j.jweia.2024.105898_bib36
  article-title: Weighted least squares support vector machines: robustness and sparse approximation
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00644-0
– volume: 125
  start-page: 591
  year: 2017
  ident: 10.1016/j.jweia.2024.105898_bib40
  article-title: Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2017.02.150
– volume: 208
  start-page: 1097
  year: 2017
  ident: 10.1016/j.jweia.2024.105898_bib41
  article-title: Deterministic and probabilistic wind power forecasting using a variational Bayesian-based adaptive robust multi-kernel regression model
  publication-title: Applied energy
  doi: 10.1016/j.apenergy.2017.09.043
– volume: 67
  start-page: 6039
  issue: 23
  year: 2019
  ident: 10.1016/j.jweia.2024.105898_bib38
  article-title: Multivariate variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2019.2951223
– volume: 88
  start-page: 1405
  issue: 4
  year: 2011
  ident: 10.1016/j.jweia.2024.105898_bib6
  article-title: ARMA based approaches for forecasting the tuple of wind speed and direction
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2010.10.031
– volume: 47
  start-page: 14185
  issue: 11
  year: 2022
  ident: 10.1016/j.jweia.2024.105898_bib35
  article-title: A hybrid solar irradiance forecasting using full wavelet packet decomposition and bi-directional long short-term memory (BiLSTM)
  publication-title: Arabian J. Sci. Eng.
  doi: 10.1007/s13369-022-06655-2
– volume: 126
  start-page: 1084
  year: 2016
  ident: 10.1016/j.jweia.2024.105898_bib49
  article-title: Gaussian process regression based hybrid approach for short-term wind speed prediction
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.08.086
– volume: 200
  year: 2019
  ident: 10.1016/j.jweia.2024.105898_bib14
  article-title: A novel wind speed prediction method based on robust local mean decomposition, group method of data handling and conditional kernel density estimation
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.112099
– volume: 146
  start-page: 2112
  year: 2020
  ident: 10.1016/j.jweia.2024.105898_bib2
  article-title: Gaussian process regression for numerical wind speed prediction enhancement
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.08.018
– volume: 101
  start-page: 393
  year: 2015
  ident: 10.1016/j.jweia.2024.105898_bib48
  article-title: Short-term wind power prediction based on LSSVM–GSA model
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2015.05.065
– volume: 214
  year: 2021
  ident: 10.1016/j.jweia.2024.105898_bib5
  article-title: Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and Correntropy Long Short-term memory neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118980
– volume: 230
  year: 2021
  ident: 10.1016/j.jweia.2024.105898_bib18
  article-title: A novel wind speed prediction strategy based on Bi-LSTM, MOOFADA and transfer learning for centralized control centers
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120904
– volume: 178
  start-page: 3616
  issue: 18
  year: 2008
  ident: 10.1016/j.jweia.2024.105898_bib32
  article-title: Design of hybrid differential evolution and group method of data handling networks for modeling and prediction
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2008.05.013
– volume: 252
  year: 2024
  ident: 10.1016/j.jweia.2024.105898_bib25
  article-title: Hybrid neural network-aided strong wind speed prediction along rail network
  publication-title: J. Wind Eng. Ind. Aerod.
  doi: 10.1016/j.jweia.2024.105813
– volume: 168
  start-page: 133
  year: 1998
  ident: 10.1016/j.jweia.2024.105898_bib28
  article-title: Introduction to Gaussian processes
  publication-title: NATO ASI series F computer and systems sciences
– volume: 174
  start-page: 28
  year: 2018
  ident: 10.1016/j.jweia.2024.105898_bib13
  article-title: A novel wind speed prediction method: hybrid of correlation-aided DWT, LSSVM and GARCH
  publication-title: J. Wind Eng. Ind. Aerod.
  doi: 10.1016/j.jweia.2017.12.019
SSID ssj0007473
Score 2.4352384
Snippet Short-term wind speed prediction is an effective measure for the rational integration of wind energy into the grid system. Subject to the complex...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105898
SubjectTerms Correntropy loss
Multiple predictors
Multivariate pretreatment technique
Selective combination
Wind speed prediction
Title Short-term wind speed forecasting using multivariate pretreatment technique and correntropy loss-enhanced selective combination
URI https://dx.doi.org/10.1016/j.jweia.2024.105898
Volume 254
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjB-Iz4IHvw6Eppt68jIRLUyAVJuDXb3a1AsDSAEi_6153ZtoiJ4eCxzU6ymZ3OfJN--w0h1w63oU9WDpNBkDAumgn-31VMNEMdcytQOYnmqed1B_xh6A4rpF3ehUFaZZH785xusnXxplF4s5GNx40-Euih-LvIgkRdcbzBzn2M8tvPH5oHwGWn1PfG1aXykOF4TVZ6jOJDNsd5t0EY_F2dNipO54DsF1CRtvLdHJKKTo_I3oaA4DH56o8APjNMr3QF3TVdZFCNKABRLcUCGc0Uie0v1PAG36EvBmhJkWNY8svpWsSVCrCXMyPXNJ9lH3QKO2Q6HRmOAF2YgTmQG2HNK7TT5kRPyKBz99zusmKkApNQq5bM1q5QgOpUrHw7bsbaF56lAdLgXDBAW1DIuOKWtGIrVmFg-bYlvEAgKIRP10ucU1JNZ6k-IxT6NOmG4H4Za86lI2yFLuSO7Tgq4bxG7NKVkSz0xnHsxTQqiWWTyPg_Qv9Huf9r5GZtlOVyG9uXe-UZRb-iJoKCsM3w_L-GF2QXn_LbiJekupy_6SuAJcu4buKuTnZa94_d3jf-ueP0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHNSD8RnxuQePNpR2W8qREEmRxwVIuDXb3UUgCA2gxJN_3Zk-CCaGg9d2J9nMbGe-Sb_9BuDJ5hb2yco2pOeNDC7KI_q_qwxRruqQm55KSDSdrusP-OvQGeagnt2FIVplmvuTnB5n6_RJKfVmKZpMSj0i0GPxd4gFSbriB1AgdSonD4Vas-V3twkZEbOdSXyTQSY-FNO8phs9If0hi9PIW6_q_V2gdopO4xROUrTIasmGziCn5-dwvKMheAHfvTEiaIMyLNtgg81WERYkhlhUS7EiUjMjbvsbi6mDn9gaI7pkRDPMKOZsq-PKBNrLRazYtFxEX2yGOzT0fBzTBNgqnpmD6RHXvGNHHQf1EgaNl37dN9KpCobEcrU2LO0IhcBOhapiheVQV4RrakQ1NBoMARfWMq64Kc3QDFXVMyuWKVxPEC7Er9cd2VeQny_m-hoYtmrSqWIEZKg5l7awFLmQ25ZtqxHnRbAyVwYylRynyRezIOOWTYPY_wH5P0j8X4TnrVGUKG7sX-5mMQp-HZwAa8I-w5v_Gj7Cod_vtIN2s9u6hSN6k1xOvIP8evmh7xGlrMOH9BT-ANBA5qU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-term+wind+speed+forecasting+using+multivariate+pretreatment+technique+and+correntropy+loss-enhanced+selective+combination&rft.jtitle=Journal+of+wind+engineering+and+industrial+aerodynamics&rft.au=Jiang%2C+Yan&rft.au=Liu%2C+Shuoyu&rft.au=Zhao%2C+Ning&rft.au=Liu%2C+Duote&rft.date=2024-11-01&rft.pub=Elsevier+Ltd&rft.issn=0167-6105&rft.volume=254&rft_id=info:doi/10.1016%2Fj.jweia.2024.105898&rft.externalDocID=S0167610524002617
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6105&client=summon