Short-term wind speed forecasting using multivariate pretreatment technique and correntropy loss-enhanced selective combination
Short-term wind speed prediction is an effective measure for the rational integration of wind energy into the grid system. Subject to the complex characteristics of natural winds, achieving accurate predictions often pose a significant challenge. For this purpose, this paper develops a new hybrid fo...
Saved in:
Published in | Journal of wind engineering and industrial aerodynamics Vol. 254; p. 105898 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0167-6105 |
DOI | 10.1016/j.jweia.2024.105898 |
Cover
Loading…
Abstract | Short-term wind speed prediction is an effective measure for the rational integration of wind energy into the grid system. Subject to the complex characteristics of natural winds, achieving accurate predictions often pose a significant challenge. For this purpose, this paper develops a new hybrid forecasting method based on multivariate variational mode decomposition (MVMD), four different predictors and correntropy loss-enhanced selective combination. Specifically, MVMD is first used to decompose the multi-height wind speed data into a number of subseries groups with a well mode-alignment attribute, thereby avoiding the problem of model aliasing to some extent. Then, four predictors with different design principles (i.e., the consideration of model diversity) are constructed for capturing multiple data features. Further, the correntropy loss is used to replace the conventional mean square error loss for reflecting the actual noise environment in a robust manner. On this basis, an improved group method of data handling with high practicability is developed to realize the selective combination prediction. Finally, numerical examples based on three groups of multi-channel datasets are employed to demonstrate the forecasting ability of the proposed method. The results indicate that this method is superior to the other concerned methods. For example, compared with VMD-based method, the average improvement realized via the proposed method in term of mean absolute error is 20.3343%.
•MVMD is used for high-quality data processing.•Model diversity is considered for explaining more data characteristics.•MCC is employed as an optimization criterion or a robust loss function.•An improved GMDH is developed to consider the model practicability. |
---|---|
AbstractList | Short-term wind speed prediction is an effective measure for the rational integration of wind energy into the grid system. Subject to the complex characteristics of natural winds, achieving accurate predictions often pose a significant challenge. For this purpose, this paper develops a new hybrid forecasting method based on multivariate variational mode decomposition (MVMD), four different predictors and correntropy loss-enhanced selective combination. Specifically, MVMD is first used to decompose the multi-height wind speed data into a number of subseries groups with a well mode-alignment attribute, thereby avoiding the problem of model aliasing to some extent. Then, four predictors with different design principles (i.e., the consideration of model diversity) are constructed for capturing multiple data features. Further, the correntropy loss is used to replace the conventional mean square error loss for reflecting the actual noise environment in a robust manner. On this basis, an improved group method of data handling with high practicability is developed to realize the selective combination prediction. Finally, numerical examples based on three groups of multi-channel datasets are employed to demonstrate the forecasting ability of the proposed method. The results indicate that this method is superior to the other concerned methods. For example, compared with VMD-based method, the average improvement realized via the proposed method in term of mean absolute error is 20.3343%.
•MVMD is used for high-quality data processing.•Model diversity is considered for explaining more data characteristics.•MCC is employed as an optimization criterion or a robust loss function.•An improved GMDH is developed to consider the model practicability. |
ArticleNumber | 105898 |
Author | Liu, Duote Zhao, Ning Jiang, Yan Liu, Shuoyu |
Author_xml | – sequence: 1 givenname: Yan surname: Jiang fullname: Jiang, Yan email: xnjtjiangyan@163.com organization: College of Engineering and Technology, Southwest University, Chongqing, 400715, China – sequence: 2 givenname: Shuoyu surname: Liu fullname: Liu, Shuoyu email: lsy19880924@gmail.com organization: College of Engineering and Technology, Southwest University, Chongqing, 400715, China – sequence: 3 givenname: Ning surname: Zhao fullname: Zhao, Ning email: zhaoning199010@163.com organization: College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China – sequence: 4 givenname: Duote surname: Liu fullname: Liu, Duote email: liuduote@my.swjtu.edu.cn organization: School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China |
BookMark | eNqFkD1PwzAQhj0UiRb4BSz-AynnfGdgQBVfUiUGYLYc50IdJXaw3Vad-Os4LRMDLD75zs-r87MgM200EnLNYMmA5TfdstujEssY4jR0srIqZ2QeJkWUh-s5WTjXAUCRFsmcfL1ujPWRRzvQvdINdSNiQ1tjUQrnlf6gWzedw7b3aiesEh7paNFbFH5A7alHudHqc4tUBF4aa0PXmvFAe-NchHojtAyZDnuUIQPDm6FWWnhl9CU5a0Xv8OqnXpD3h_u31VO0fnl8Xt2tI5lA4qMYM9EAq5q6KeKa1ViIHJBllcRYQJXFLE6bFCTUUDdVCUUMIi8Fy5IEWJG3yQVJTrnShqUstny0ahD2wBnwyRvv-NEbn7zxk7dAVb8oqfxxb2-F6v9hb08shm_tFFrupMLJhApuPW-M-pP_BlxnkpU |
CitedBy_id | crossref_primary_10_1016_j_jweia_2025_106011 |
Cites_doi | 10.1016/j.energy.2021.121523 10.1016/j.jweia.2020.104198 10.1016/j.energy.2021.121275 10.1016/j.jweia.2023.105499 10.1016/j.engstruct.2022.114285 10.1016/j.apenergy.2018.06.053 10.1016/j.enconman.2018.03.010 10.1016/j.asoc.2017.10.033 10.1016/j.jweia.2023.105507 10.1016/j.renene.2021.04.091 10.1016/j.enconman.2019.111981 10.1016/j.enconman.2020.113076 10.1016/j.enconman.2018.10.089 10.1016/j.enconman.2019.02.018 10.1016/j.commatsci.2011.07.053 10.1016/j.energy.2022.123761 10.1109/TSP.2007.896065 10.1016/j.enconman.2020.112995 10.1016/j.measurement.2022.110740 10.1109/ACCESS.2020.2988552 10.1016/j.energy.2016.06.075 10.1016/j.jweia.2021.104561 10.1016/j.apenergy.2022.118777 10.1016/j.apenergy.2010.09.028 10.1109/TII.2018.2854549 10.1016/j.eswa.2011.03.063 10.1016/j.energy.2024.130580 10.1093/biomet/65.2.297 10.1016/j.enconman.2017.04.064 10.1016/j.jweia.2019.104090 10.1061/(ASCE)EM.1943-7889.0000975 10.1016/j.apenergy.2019.04.047 10.1016/S0925-2312(01)00644-0 10.1016/j.energy.2017.02.150 10.1016/j.apenergy.2017.09.043 10.1109/TSP.2019.2951223 10.1016/j.apenergy.2010.10.031 10.1007/s13369-022-06655-2 10.1016/j.enconman.2016.08.086 10.1016/j.enconman.2019.112099 10.1016/j.renene.2019.08.018 10.1016/j.enconman.2015.05.065 10.1016/j.energy.2020.118980 10.1016/j.energy.2021.120904 10.1016/j.ins.2008.05.013 10.1016/j.jweia.2024.105813 10.1016/j.jweia.2017.12.019 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jweia.2024.105898 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_jweia_2024_105898 S0167610524002617 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXKI AAXUO ABFNM ABMAC ABTAH ABXDB ACDAQ ACGFS ACKIV ACNNM ACRLP ADBBV ADEZE ADHUB ADMUD ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AI. AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SPD SSR SST SSZ T5K VH1 WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c303t-2e5ad019dbd72b1be7a60e159ce2a0952124d40c0b0bd980720a68a15330176f3 |
IEDL.DBID | .~1 |
ISSN | 0167-6105 |
IngestDate | Thu Apr 24 22:56:42 EDT 2025 Tue Jul 01 04:09:50 EDT 2025 Sat Nov 16 16:00:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multiple predictors Selective combination Wind speed prediction Multivariate pretreatment technique Correntropy loss |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-2e5ad019dbd72b1be7a60e159ce2a0952124d40c0b0bd980720a68a15330176f3 |
ParticipantIDs | crossref_primary_10_1016_j_jweia_2024_105898 crossref_citationtrail_10_1016_j_jweia_2024_105898 elsevier_sciencedirect_doi_10_1016_j_jweia_2024_105898 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationTitle | Journal of wind engineering and industrial aerodynamics |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Cai, Jia, Feng, Li, Hsu, Lee (bib2) 2020; 146 Zhang, Chen, Xiao, Zhang, Feng (bib52) 2021; 174 MacKay (bib28) 1998; 168 Erdem, Shi (bib6) 2011; 88 Liu, Zhang, Huang, Zhao, Dai (bib25) 2024; 252 Liu, Pokharel, Principe (bib21) 2007; 55 Jiang, Huang (bib12) 2017; 144 Wang, Heng, Xiao, Wang (bib40) 2017; 125 Mo, Xie, Jiang, Teng, Xu, Xiao (bib31) 2018; 62 Zhu, Liu, Chen, Gao, Wang, Xu (bib54) 2021; 236 Yang, Huang, Li, Xu, Pan (bib47) 2023; 240 Madandoust, Bungey, Ghavidel (bib29) 2012; 51 Jiang, Liu, Zhao, Xin, Wu (bib16) 2020; 220 Xin, Jiang, Zhou, Peng, Liu, Tang (bib46) 2022; 261 Zhang, Peng, Pan, Liu (bib50) 2019; 180 Liu, Tan, Huang (bib24) 2022; 191 Chen, Zhang, Zhang, Peng, Cai (bib4) 2019; 185 Jiang, Zhao, Peng, Liu (bib15) 2019; 199 Zhang, Ye, Qin, Liu, Wang, Yu (bib51) 2019; 247 Jiang, Huang, Peng, Li, Yang (bib13) 2018; 174 Yuan, Chen, Yuan, Huang, Tan (bib48) 2015; 101 Peláez-Rodríguez, Pérez-Aracil, Prieto-Godino, Ghimire, Deo, Salcedo-Sanz (bib33) 2023; 240 Wang, Zhang, Mao, Wan (bib42) 2020; 202 Liu, Yang, Duan (bib23) 2020; 217 Cao, Wang, Zhou (bib3) 2020; 8 Widodo, Shim, Caesarendra, Yang (bib45) 2011; 38 Duan, Wang, Ma, Tian, Fang, Cheng (bib5) 2021; 214 Liang, Zhao, Lv, Sun (bib18) 2021; 230 Onwubolu (bib32) 2008; 178 ur Rehman, Aftab (bib38) 2019; 67 Han, Mi, Shen, Cai, Liu, Li (bib8) 2022; 312 Wang, Wang, Lu, Zhao (bib44) 2021; 234 Huang, Su, Kareem, Liao (bib11) 2016; 142 Liu, Erdem, Shi (bib22) 2011; 88 Wang, Hu, Meng, Zhu (bib41) 2017; 208 Singla, Duhan, Saroha (bib35) 2022; 47 Liao, Jing, Ma, Tao, Li (bib20) 2020; 197 Zheng, Wang (bib53) 2024; 293 He, Li (bib9) 2018; 164 Wang, Wu (bib39) 2016; 112 Liang, Chai, Sun, Tan (bib19) 2022; 250 Ren, Wen, Liu, Zhang (bib34) 2020; 225 Luo, Sun, Wang, Wang, Zhao, Wu (bib27) 2018; 14 Wang, Wang, Li, Li, Yang (bib43) 2020; 40 Fine, Scheinberg (bib7) 2001; 2 Zhang, Wei, Zhao, Liu, Zhang (bib49) 2016; 126 Mak, Yang (bib30) 2007; 1 Ljung, Box (bib26) 1978; 65 Tao, Shi, Wang, Ai (bib37) 2021; 211 Bai, Liu, Ding, Ma (bib1) 2021; 30 Suykens, De Brabanter, Lukas, Vandewalle (bib36) 2002; 48 He, Wang, Lu (bib10) 2018; 226 Jiang, Liu, Peng, Zhao (bib14) 2019; 200 Zhang (10.1016/j.jweia.2024.105898_bib51) 2019; 247 Fine (10.1016/j.jweia.2024.105898_bib7) 2001; 2 Peláez-Rodríguez (10.1016/j.jweia.2024.105898_bib33) 2023; 240 Madandoust (10.1016/j.jweia.2024.105898_bib29) 2012; 51 Liu (10.1016/j.jweia.2024.105898_bib22) 2011; 88 Luo (10.1016/j.jweia.2024.105898_bib27) 2018; 14 Wang (10.1016/j.jweia.2024.105898_bib42) 2020; 202 Liu (10.1016/j.jweia.2024.105898_bib24) 2022; 191 Zhang (10.1016/j.jweia.2024.105898_bib50) 2019; 180 Ren (10.1016/j.jweia.2024.105898_bib34) 2020; 225 Han (10.1016/j.jweia.2024.105898_bib8) 2022; 312 Liu (10.1016/j.jweia.2024.105898_bib21) 2007; 55 Singla (10.1016/j.jweia.2024.105898_bib35) 2022; 47 Zheng (10.1016/j.jweia.2024.105898_bib53) 2024; 293 Jiang (10.1016/j.jweia.2024.105898_bib16) 2020; 220 Mo (10.1016/j.jweia.2024.105898_bib31) 2018; 62 Bai (10.1016/j.jweia.2024.105898_bib1) 2021; 30 Liao (10.1016/j.jweia.2024.105898_bib20) 2020; 197 MacKay (10.1016/j.jweia.2024.105898_bib28) 1998; 168 Zhu (10.1016/j.jweia.2024.105898_bib54) 2021; 236 Wang (10.1016/j.jweia.2024.105898_bib41) 2017; 208 Wang (10.1016/j.jweia.2024.105898_bib39) 2016; 112 Duan (10.1016/j.jweia.2024.105898_bib5) 2021; 214 Suykens (10.1016/j.jweia.2024.105898_bib36) 2002; 48 Yuan (10.1016/j.jweia.2024.105898_bib48) 2015; 101 Wang (10.1016/j.jweia.2024.105898_bib40) 2017; 125 He (10.1016/j.jweia.2024.105898_bib10) 2018; 226 Tao (10.1016/j.jweia.2024.105898_bib37) 2021; 211 Jiang (10.1016/j.jweia.2024.105898_bib12) 2017; 144 Mak (10.1016/j.jweia.2024.105898_bib30) 2007; 1 ur Rehman (10.1016/j.jweia.2024.105898_bib38) 2019; 67 Liu (10.1016/j.jweia.2024.105898_bib23) 2020; 217 Jiang (10.1016/j.jweia.2024.105898_bib15) 2019; 199 Liu (10.1016/j.jweia.2024.105898_bib25) 2024; 252 Zhang (10.1016/j.jweia.2024.105898_bib52) 2021; 174 Jiang (10.1016/j.jweia.2024.105898_bib13) 2018; 174 Widodo (10.1016/j.jweia.2024.105898_bib45) 2011; 38 Jiang (10.1016/j.jweia.2024.105898_bib14) 2019; 200 Liang (10.1016/j.jweia.2024.105898_bib18) 2021; 230 Cao (10.1016/j.jweia.2024.105898_bib3) 2020; 8 He (10.1016/j.jweia.2024.105898_bib9) 2018; 164 Erdem (10.1016/j.jweia.2024.105898_bib6) 2011; 88 Wang (10.1016/j.jweia.2024.105898_bib43) 2020; 40 Cai (10.1016/j.jweia.2024.105898_bib2) 2020; 146 Xin (10.1016/j.jweia.2024.105898_bib46) 2022; 261 Wang (10.1016/j.jweia.2024.105898_bib44) 2021; 234 Chen (10.1016/j.jweia.2024.105898_bib4) 2019; 185 Liang (10.1016/j.jweia.2024.105898_bib19) 2022; 250 Huang (10.1016/j.jweia.2024.105898_bib11) 2016; 142 Onwubolu (10.1016/j.jweia.2024.105898_bib32) 2008; 178 Yang (10.1016/j.jweia.2024.105898_bib47) 2023; 240 Ljung (10.1016/j.jweia.2024.105898_bib26) 1978; 65 Zhang (10.1016/j.jweia.2024.105898_bib49) 2016; 126 |
References_xml | – volume: 185 start-page: 783 year: 2019 end-page: 799 ident: bib4 article-title: Multifactor spatio-temporal correlation model based on a combination of convolutional neural network and long short-term memory neural network for wind speed forecasting publication-title: Energy Convers. Manag. – volume: 178 start-page: 3616 year: 2008 end-page: 3634 ident: bib32 article-title: Design of hybrid differential evolution and group method of data handling networks for modeling and prediction publication-title: Inf. Sci. – volume: 144 start-page: 340 year: 2017 end-page: 350 ident: bib12 article-title: Short-term wind speed prediction: hybrid of ensemble empirical mode decomposition, feature selection and error correction publication-title: Energy Convers. Manag. – volume: 174 start-page: 688 year: 2021 end-page: 704 ident: bib52 article-title: Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism publication-title: Renew. Energy – volume: 217 year: 2020 ident: bib23 article-title: Wind speed forecasting using a new multi-factor fusion and multi-resolution ensemble model with real-time decomposition and adaptive error correction publication-title: Energy Convers. Manag. – volume: 168 start-page: 133 year: 1998 end-page: 166 ident: bib28 article-title: Introduction to Gaussian processes publication-title: NATO ASI series F computer and systems sciences – volume: 240 year: 2023 ident: bib33 article-title: A fuzzy-based cascade ensemble model for improving extreme wind speeds prediction publication-title: J. Wind Eng. Ind. Aerod. – volume: 247 start-page: 270 year: 2019 end-page: 284 ident: bib51 article-title: Wind speed prediction method using shared weight long short-term memory network and Gaussian process regression publication-title: Applied energy – volume: 220 year: 2020 ident: bib16 article-title: Short-term wind speed prediction using time varying filter-based empirical mode decomposition and group method of data handling-based hybrid model publication-title: Energy Convers. Manag. – volume: 214 year: 2021 ident: bib5 article-title: Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and Correntropy Long Short-term memory neural network publication-title: Energy – volume: 200 year: 2019 ident: bib14 article-title: A novel wind speed prediction method based on robust local mean decomposition, group method of data handling and conditional kernel density estimation publication-title: Energy Convers. Manag. – volume: 250 year: 2022 ident: bib19 article-title: Wind speed prediction based on multi-variable Capsnet-BILSTM-MOHHO for WPCCC publication-title: Energy – volume: 47 start-page: 14185 year: 2022 end-page: 14211 ident: bib35 article-title: A hybrid solar irradiance forecasting using full wavelet packet decomposition and bi-directional long short-term memory (BiLSTM) publication-title: Arabian J. Sci. Eng. – volume: 293 year: 2024 ident: bib53 article-title: Short-term wind speed forecasting based on recurrent neural networks and Levy crystal structure algorithm publication-title: Energy – volume: 67 start-page: 6039 year: 2019 end-page: 6052 ident: bib38 article-title: Multivariate variational mode decomposition publication-title: IEEE Trans. Signal Process. – volume: 14 start-page: 4963 year: 2018 end-page: 4971 ident: bib27 article-title: Short-term wind speed forecasting via stacked extreme learning machine with generalized correntropy publication-title: IEEE Trans. Ind. Inf. – volume: 30 year: 2021 ident: bib1 article-title: Double-layer staged training echo-state networks for wind speed prediction using variational mode decomposition publication-title: Appl. Energy – volume: 197 year: 2020 ident: bib20 article-title: Field measurement study on turbulence field by wind tower and Windcube Lidar in mountain valley publication-title: J. Wind Eng. Ind. Aerod. – volume: 191 year: 2022 ident: bib24 article-title: Maximum correntropy criterion-based blind deconvolution and its application for bearing fault detection publication-title: Measurement – volume: 174 start-page: 28 year: 2018 end-page: 38 ident: bib13 article-title: A novel wind speed prediction method: hybrid of correlation-aided DWT, LSSVM and GARCH publication-title: J. Wind Eng. Ind. Aerod. – volume: 146 start-page: 2112 year: 2020 end-page: 2123 ident: bib2 article-title: Gaussian process regression for numerical wind speed prediction enhancement publication-title: Renew. Energy – volume: 236 year: 2021 ident: bib54 article-title: Wind speed behaviors feather analysis and its utilization on wind speed prediction using 3D-CNN publication-title: Energy – volume: 252 year: 2024 ident: bib25 article-title: Hybrid neural network-aided strong wind speed prediction along rail network publication-title: J. Wind Eng. Ind. Aerod. – volume: 199 year: 2019 ident: bib15 article-title: A new hybrid framework for probabilistic wind speed prediction using deep feature selection and multi-error modification publication-title: Energy Convers. Manag. – volume: 180 start-page: 338 year: 2019 end-page: 357 ident: bib50 article-title: A novel wind speed forecasting based on hybrid decomposition and online sequential outlier robust extreme learning machine publication-title: Energy Convers. Manag. – volume: 225 year: 2020 ident: bib34 article-title: A short-term wind speed prediction method based on interval type 2 fuzzy model considering the selection of important input variables publication-title: J. Wind Eng. Ind. Aerod. – volume: 1 start-page: 7 year: 2007 end-page: 12 ident: bib30 article-title: Forecasting Hong Kong's container throughput with approximate least squares support vector machines publication-title: World Congress on Engineering – volume: 312 year: 2022 ident: bib8 article-title: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting publication-title: Appl. Energy – volume: 101 start-page: 393 year: 2015 end-page: 401 ident: bib48 article-title: Short-term wind power prediction based on LSSVM–GSA model publication-title: Energy Convers. Manag. – volume: 62 start-page: 478 year: 2018 end-page: 490 ident: bib31 article-title: GMDH-based hybrid model for container throughput forecasting: selective combination forecasting in nonlinear subseries publication-title: Appl. Soft Comput. – volume: 226 start-page: 756 year: 2018 end-page: 771 ident: bib10 article-title: A hybrid system for short-term wind speed forecasting publication-title: Appl. Energy – volume: 202 year: 2020 ident: bib42 article-title: A probabilistic approach for short-term prediction of wind gust speed using ensemble learning publication-title: J. Wind Eng. Ind. Aerod. – volume: 125 start-page: 591 year: 2017 end-page: 613 ident: bib40 article-title: Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting publication-title: Energy – volume: 88 start-page: 1405 year: 2011 end-page: 1414 ident: bib6 article-title: ARMA based approaches for forecasting the tuple of wind speed and direction publication-title: Appl. Energy – volume: 208 start-page: 1097 year: 2017 end-page: 1112 ident: bib41 article-title: Deterministic and probabilistic wind power forecasting using a variational Bayesian-based adaptive robust multi-kernel regression model publication-title: Applied energy – volume: 55 start-page: 5286 year: 2007 end-page: 5298 ident: bib21 article-title: Correntropy: properties and applications in non-Gaussian signal processing publication-title: IEEE Trans. Signal Process. – volume: 112 start-page: 208 year: 2016 end-page: 220 ident: bib39 article-title: On practical challenges of decomposition-based hybrid forecasting algorithms for wind speed and solar irradiation publication-title: Energy – volume: 261 year: 2022 ident: bib46 article-title: Bridge deformation prediction based on SHM data using improved VMD and conditional KDE publication-title: Eng. Struct. – volume: 240 year: 2023 ident: bib47 article-title: A novel short-term wind speed prediction method based on hybrid statistical-artificial intelligence model with empirical wavelet transform and hyperparameter optimization publication-title: J. Wind Eng. Ind. Aerod. – volume: 164 start-page: 374 year: 2018 end-page: 384 ident: bib9 article-title: Probability density forecasting of wind power using quantile regression neural network and kernel density estimation publication-title: Energy Convers. Manag. – volume: 230 year: 2021 ident: bib18 article-title: A novel wind speed prediction strategy based on Bi-LSTM, MOOFADA and transfer learning for centralized control centers publication-title: Energy – volume: 8 start-page: 74039 year: 2020 end-page: 74047 ident: bib3 article-title: Multichannel signal denoising using multivariate variational mode decomposition with subspace projection publication-title: IEEE Access – volume: 234 year: 2021 ident: bib44 article-title: A novel combined model for wind speed prediction–Combination of linear model, shallow neural networks, and deep learning approaches publication-title: Energy – volume: 51 start-page: 261 year: 2012 end-page: 272 ident: bib29 article-title: Prediction of the concrete compressive strength by means of core testing using GMDH-type neural network and ANFIS models publication-title: Comput. Mater. Sci. – volume: 40 year: 2020 ident: bib43 article-title: A combined framework based on data preprocessing, neural networks and multi-tracker optimizer for wind speed prediction publication-title: Sustain. Energy Technol. Assessments – volume: 2 start-page: 243 year: 2001 end-page: 264 ident: bib7 article-title: Efficient SVM training using low-rank kernel representations publication-title: J. Mach. Learn. Res. – volume: 142 year: 2016 ident: bib11 article-title: Time-frequency analysis of nonstationary process based on multivariate empirical mode decomposition publication-title: J. Eng. Mech. – volume: 88 start-page: 724 year: 2011 end-page: 732 ident: bib22 article-title: Comprehensive evaluation of ARMA–GARCH(-M) approaches for modeling the mean and volatility of wind speed publication-title: Appl. Energy – volume: 38 start-page: 11763 year: 2011 end-page: 11769 ident: bib45 article-title: Intelligent prognostics for battery health monitoring based on sample entropy publication-title: Expert Syst. Appl. – volume: 48 start-page: 85 year: 2002 end-page: 105 ident: bib36 article-title: Weighted least squares support vector machines: robustness and sparse approximation publication-title: Neurocomputing – volume: 126 start-page: 1084 year: 2016 end-page: 1092 ident: bib49 article-title: Gaussian process regression based hybrid approach for short-term wind speed prediction publication-title: Energy Convers. Manag. – volume: 211 year: 2021 ident: bib37 article-title: Short-term prediction of downburst winds: a double-step modification enhanced approach publication-title: J. Wind Eng. Ind. Aerod. – volume: 65 start-page: 297 year: 1978 end-page: 303 ident: bib26 article-title: On a measure of lack of fit in time series models publication-title: Biometrika – volume: 40 year: 2020 ident: 10.1016/j.jweia.2024.105898_bib43 article-title: A combined framework based on data preprocessing, neural networks and multi-tracker optimizer for wind speed prediction publication-title: Sustain. Energy Technol. Assessments – volume: 236 year: 2021 ident: 10.1016/j.jweia.2024.105898_bib54 article-title: Wind speed behaviors feather analysis and its utilization on wind speed prediction using 3D-CNN publication-title: Energy doi: 10.1016/j.energy.2021.121523 – volume: 202 year: 2020 ident: 10.1016/j.jweia.2024.105898_bib42 article-title: A probabilistic approach for short-term prediction of wind gust speed using ensemble learning publication-title: J. Wind Eng. Ind. Aerod. doi: 10.1016/j.jweia.2020.104198 – volume: 234 year: 2021 ident: 10.1016/j.jweia.2024.105898_bib44 article-title: A novel combined model for wind speed prediction–Combination of linear model, shallow neural networks, and deep learning approaches publication-title: Energy doi: 10.1016/j.energy.2021.121275 – volume: 240 year: 2023 ident: 10.1016/j.jweia.2024.105898_bib47 article-title: A novel short-term wind speed prediction method based on hybrid statistical-artificial intelligence model with empirical wavelet transform and hyperparameter optimization publication-title: J. Wind Eng. Ind. Aerod. doi: 10.1016/j.jweia.2023.105499 – volume: 225 year: 2020 ident: 10.1016/j.jweia.2024.105898_bib34 article-title: A short-term wind speed prediction method based on interval type 2 fuzzy model considering the selection of important input variables publication-title: J. Wind Eng. Ind. Aerod. – volume: 261 year: 2022 ident: 10.1016/j.jweia.2024.105898_bib46 article-title: Bridge deformation prediction based on SHM data using improved VMD and conditional KDE publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2022.114285 – volume: 226 start-page: 756 year: 2018 ident: 10.1016/j.jweia.2024.105898_bib10 article-title: A hybrid system for short-term wind speed forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.06.053 – volume: 164 start-page: 374 year: 2018 ident: 10.1016/j.jweia.2024.105898_bib9 article-title: Probability density forecasting of wind power using quantile regression neural network and kernel density estimation publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.03.010 – volume: 62 start-page: 478 year: 2018 ident: 10.1016/j.jweia.2024.105898_bib31 article-title: GMDH-based hybrid model for container throughput forecasting: selective combination forecasting in nonlinear subseries publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.10.033 – volume: 240 year: 2023 ident: 10.1016/j.jweia.2024.105898_bib33 article-title: A fuzzy-based cascade ensemble model for improving extreme wind speeds prediction publication-title: J. Wind Eng. Ind. Aerod. doi: 10.1016/j.jweia.2023.105507 – volume: 174 start-page: 688 year: 2021 ident: 10.1016/j.jweia.2024.105898_bib52 article-title: Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism publication-title: Renew. Energy doi: 10.1016/j.renene.2021.04.091 – volume: 199 year: 2019 ident: 10.1016/j.jweia.2024.105898_bib15 article-title: A new hybrid framework for probabilistic wind speed prediction using deep feature selection and multi-error modification publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.111981 – volume: 220 year: 2020 ident: 10.1016/j.jweia.2024.105898_bib16 article-title: Short-term wind speed prediction using time varying filter-based empirical mode decomposition and group method of data handling-based hybrid model publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2020.113076 – volume: 180 start-page: 338 year: 2019 ident: 10.1016/j.jweia.2024.105898_bib50 article-title: A novel wind speed forecasting based on hybrid decomposition and online sequential outlier robust extreme learning machine publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.10.089 – volume: 185 start-page: 783 year: 2019 ident: 10.1016/j.jweia.2024.105898_bib4 article-title: Multifactor spatio-temporal correlation model based on a combination of convolutional neural network and long short-term memory neural network for wind speed forecasting publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.02.018 – volume: 2 start-page: 243 issue: Dec year: 2001 ident: 10.1016/j.jweia.2024.105898_bib7 article-title: Efficient SVM training using low-rank kernel representations publication-title: J. Mach. Learn. Res. – volume: 51 start-page: 261 issue: 1 year: 2012 ident: 10.1016/j.jweia.2024.105898_bib29 article-title: Prediction of the concrete compressive strength by means of core testing using GMDH-type neural network and ANFIS models publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2011.07.053 – volume: 250 year: 2022 ident: 10.1016/j.jweia.2024.105898_bib19 article-title: Wind speed prediction based on multi-variable Capsnet-BILSTM-MOHHO for WPCCC publication-title: Energy doi: 10.1016/j.energy.2022.123761 – volume: 55 start-page: 5286 issue: 11 year: 2007 ident: 10.1016/j.jweia.2024.105898_bib21 article-title: Correntropy: properties and applications in non-Gaussian signal processing publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2007.896065 – volume: 30 year: 2021 ident: 10.1016/j.jweia.2024.105898_bib1 article-title: Double-layer staged training echo-state networks for wind speed prediction using variational mode decomposition publication-title: Appl. Energy – volume: 217 year: 2020 ident: 10.1016/j.jweia.2024.105898_bib23 article-title: Wind speed forecasting using a new multi-factor fusion and multi-resolution ensemble model with real-time decomposition and adaptive error correction publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2020.112995 – volume: 191 year: 2022 ident: 10.1016/j.jweia.2024.105898_bib24 article-title: Maximum correntropy criterion-based blind deconvolution and its application for bearing fault detection publication-title: Measurement doi: 10.1016/j.measurement.2022.110740 – volume: 8 start-page: 74039 year: 2020 ident: 10.1016/j.jweia.2024.105898_bib3 article-title: Multichannel signal denoising using multivariate variational mode decomposition with subspace projection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2988552 – volume: 112 start-page: 208 year: 2016 ident: 10.1016/j.jweia.2024.105898_bib39 article-title: On practical challenges of decomposition-based hybrid forecasting algorithms for wind speed and solar irradiation publication-title: Energy doi: 10.1016/j.energy.2016.06.075 – volume: 211 year: 2021 ident: 10.1016/j.jweia.2024.105898_bib37 article-title: Short-term prediction of downburst winds: a double-step modification enhanced approach publication-title: J. Wind Eng. Ind. Aerod. doi: 10.1016/j.jweia.2021.104561 – volume: 312 year: 2022 ident: 10.1016/j.jweia.2024.105898_bib8 article-title: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.118777 – volume: 88 start-page: 724 issue: 3 year: 2011 ident: 10.1016/j.jweia.2024.105898_bib22 article-title: Comprehensive evaluation of ARMA–GARCH(-M) approaches for modeling the mean and volatility of wind speed publication-title: Appl. Energy doi: 10.1016/j.apenergy.2010.09.028 – volume: 14 start-page: 4963 issue: 11 year: 2018 ident: 10.1016/j.jweia.2024.105898_bib27 article-title: Short-term wind speed forecasting via stacked extreme learning machine with generalized correntropy publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2018.2854549 – volume: 38 start-page: 11763 issue: 9 year: 2011 ident: 10.1016/j.jweia.2024.105898_bib45 article-title: Intelligent prognostics for battery health monitoring based on sample entropy publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.03.063 – volume: 293 year: 2024 ident: 10.1016/j.jweia.2024.105898_bib53 article-title: Short-term wind speed forecasting based on recurrent neural networks and Levy crystal structure algorithm publication-title: Energy doi: 10.1016/j.energy.2024.130580 – volume: 1 start-page: 7 year: 2007 ident: 10.1016/j.jweia.2024.105898_bib30 article-title: Forecasting Hong Kong's container throughput with approximate least squares support vector machines publication-title: World Congress on Engineering – volume: 65 start-page: 297 issue: 2 year: 1978 ident: 10.1016/j.jweia.2024.105898_bib26 article-title: On a measure of lack of fit in time series models publication-title: Biometrika doi: 10.1093/biomet/65.2.297 – volume: 144 start-page: 340 year: 2017 ident: 10.1016/j.jweia.2024.105898_bib12 article-title: Short-term wind speed prediction: hybrid of ensemble empirical mode decomposition, feature selection and error correction publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.04.064 – volume: 197 year: 2020 ident: 10.1016/j.jweia.2024.105898_bib20 article-title: Field measurement study on turbulence field by wind tower and Windcube Lidar in mountain valley publication-title: J. Wind Eng. Ind. Aerod. doi: 10.1016/j.jweia.2019.104090 – volume: 142 issue: 1 year: 2016 ident: 10.1016/j.jweia.2024.105898_bib11 article-title: Time-frequency analysis of nonstationary process based on multivariate empirical mode decomposition publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)EM.1943-7889.0000975 – volume: 247 start-page: 270 year: 2019 ident: 10.1016/j.jweia.2024.105898_bib51 article-title: Wind speed prediction method using shared weight long short-term memory network and Gaussian process regression publication-title: Applied energy doi: 10.1016/j.apenergy.2019.04.047 – volume: 48 start-page: 85 issue: 1–4 year: 2002 ident: 10.1016/j.jweia.2024.105898_bib36 article-title: Weighted least squares support vector machines: robustness and sparse approximation publication-title: Neurocomputing doi: 10.1016/S0925-2312(01)00644-0 – volume: 125 start-page: 591 year: 2017 ident: 10.1016/j.jweia.2024.105898_bib40 article-title: Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting publication-title: Energy doi: 10.1016/j.energy.2017.02.150 – volume: 208 start-page: 1097 year: 2017 ident: 10.1016/j.jweia.2024.105898_bib41 article-title: Deterministic and probabilistic wind power forecasting using a variational Bayesian-based adaptive robust multi-kernel regression model publication-title: Applied energy doi: 10.1016/j.apenergy.2017.09.043 – volume: 67 start-page: 6039 issue: 23 year: 2019 ident: 10.1016/j.jweia.2024.105898_bib38 article-title: Multivariate variational mode decomposition publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2019.2951223 – volume: 88 start-page: 1405 issue: 4 year: 2011 ident: 10.1016/j.jweia.2024.105898_bib6 article-title: ARMA based approaches for forecasting the tuple of wind speed and direction publication-title: Appl. Energy doi: 10.1016/j.apenergy.2010.10.031 – volume: 47 start-page: 14185 issue: 11 year: 2022 ident: 10.1016/j.jweia.2024.105898_bib35 article-title: A hybrid solar irradiance forecasting using full wavelet packet decomposition and bi-directional long short-term memory (BiLSTM) publication-title: Arabian J. Sci. Eng. doi: 10.1007/s13369-022-06655-2 – volume: 126 start-page: 1084 year: 2016 ident: 10.1016/j.jweia.2024.105898_bib49 article-title: Gaussian process regression based hybrid approach for short-term wind speed prediction publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.08.086 – volume: 200 year: 2019 ident: 10.1016/j.jweia.2024.105898_bib14 article-title: A novel wind speed prediction method based on robust local mean decomposition, group method of data handling and conditional kernel density estimation publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.112099 – volume: 146 start-page: 2112 year: 2020 ident: 10.1016/j.jweia.2024.105898_bib2 article-title: Gaussian process regression for numerical wind speed prediction enhancement publication-title: Renew. Energy doi: 10.1016/j.renene.2019.08.018 – volume: 101 start-page: 393 year: 2015 ident: 10.1016/j.jweia.2024.105898_bib48 article-title: Short-term wind power prediction based on LSSVM–GSA model publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.05.065 – volume: 214 year: 2021 ident: 10.1016/j.jweia.2024.105898_bib5 article-title: Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and Correntropy Long Short-term memory neural network publication-title: Energy doi: 10.1016/j.energy.2020.118980 – volume: 230 year: 2021 ident: 10.1016/j.jweia.2024.105898_bib18 article-title: A novel wind speed prediction strategy based on Bi-LSTM, MOOFADA and transfer learning for centralized control centers publication-title: Energy doi: 10.1016/j.energy.2021.120904 – volume: 178 start-page: 3616 issue: 18 year: 2008 ident: 10.1016/j.jweia.2024.105898_bib32 article-title: Design of hybrid differential evolution and group method of data handling networks for modeling and prediction publication-title: Inf. Sci. doi: 10.1016/j.ins.2008.05.013 – volume: 252 year: 2024 ident: 10.1016/j.jweia.2024.105898_bib25 article-title: Hybrid neural network-aided strong wind speed prediction along rail network publication-title: J. Wind Eng. Ind. Aerod. doi: 10.1016/j.jweia.2024.105813 – volume: 168 start-page: 133 year: 1998 ident: 10.1016/j.jweia.2024.105898_bib28 article-title: Introduction to Gaussian processes publication-title: NATO ASI series F computer and systems sciences – volume: 174 start-page: 28 year: 2018 ident: 10.1016/j.jweia.2024.105898_bib13 article-title: A novel wind speed prediction method: hybrid of correlation-aided DWT, LSSVM and GARCH publication-title: J. Wind Eng. Ind. Aerod. doi: 10.1016/j.jweia.2017.12.019 |
SSID | ssj0007473 |
Score | 2.4352384 |
Snippet | Short-term wind speed prediction is an effective measure for the rational integration of wind energy into the grid system. Subject to the complex... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105898 |
SubjectTerms | Correntropy loss Multiple predictors Multivariate pretreatment technique Selective combination Wind speed prediction |
Title | Short-term wind speed forecasting using multivariate pretreatment technique and correntropy loss-enhanced selective combination |
URI | https://dx.doi.org/10.1016/j.jweia.2024.105898 |
Volume | 254 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjB-Iz4IHvw6Eppt68jIRLUyAVJuDXb3a1AsDSAEi_6153ZtoiJ4eCxzU6ymZ3OfJN--w0h1w63oU9WDpNBkDAumgn-31VMNEMdcytQOYnmqed1B_xh6A4rpF3ehUFaZZH785xusnXxplF4s5GNx40-Euih-LvIgkRdcbzBzn2M8tvPH5oHwGWn1PfG1aXykOF4TVZ6jOJDNsd5t0EY_F2dNipO54DsF1CRtvLdHJKKTo_I3oaA4DH56o8APjNMr3QF3TVdZFCNKABRLcUCGc0Uie0v1PAG36EvBmhJkWNY8svpWsSVCrCXMyPXNJ9lH3QKO2Q6HRmOAF2YgTmQG2HNK7TT5kRPyKBz99zusmKkApNQq5bM1q5QgOpUrHw7bsbaF56lAdLgXDBAW1DIuOKWtGIrVmFg-bYlvEAgKIRP10ucU1JNZ6k-IxT6NOmG4H4Za86lI2yFLuSO7Tgq4bxG7NKVkSz0xnHsxTQqiWWTyPg_Qv9Huf9r5GZtlOVyG9uXe-UZRb-iJoKCsM3w_L-GF2QXn_LbiJekupy_6SuAJcu4buKuTnZa94_d3jf-ueP0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHNSD8RnxuQePNpR2W8qREEmRxwVIuDXb3UUgCA2gxJN_3Zk-CCaGg9d2J9nMbGe-Sb_9BuDJ5hb2yco2pOeNDC7KI_q_qwxRruqQm55KSDSdrusP-OvQGeagnt2FIVplmvuTnB5n6_RJKfVmKZpMSj0i0GPxd4gFSbriB1AgdSonD4Vas-V3twkZEbOdSXyTQSY-FNO8phs9If0hi9PIW6_q_V2gdopO4xROUrTIasmGziCn5-dwvKMheAHfvTEiaIMyLNtgg81WERYkhlhUS7EiUjMjbvsbi6mDn9gaI7pkRDPMKOZsq-PKBNrLRazYtFxEX2yGOzT0fBzTBNgqnpmD6RHXvGNHHQf1EgaNl37dN9KpCobEcrU2LO0IhcBOhapiheVQV4RrakQ1NBoMARfWMq64Kc3QDFXVMyuWKVxPEC7Er9cd2VeQny_m-hoYtmrSqWIEZKg5l7awFLmQ25ZtqxHnRbAyVwYylRynyRezIOOWTYPY_wH5P0j8X4TnrVGUKG7sX-5mMQp-HZwAa8I-w5v_Gj7Cod_vtIN2s9u6hSN6k1xOvIP8evmh7xGlrMOH9BT-ANBA5qU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-term+wind+speed+forecasting+using+multivariate+pretreatment+technique+and+correntropy+loss-enhanced+selective+combination&rft.jtitle=Journal+of+wind+engineering+and+industrial+aerodynamics&rft.au=Jiang%2C+Yan&rft.au=Liu%2C+Shuoyu&rft.au=Zhao%2C+Ning&rft.au=Liu%2C+Duote&rft.date=2024-11-01&rft.pub=Elsevier+Ltd&rft.issn=0167-6105&rft.volume=254&rft_id=info:doi/10.1016%2Fj.jweia.2024.105898&rft.externalDocID=S0167610524002617 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6105&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6105&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6105&client=summon |