A method for automatic identification of openings in buildings facades based on mobile LiDAR point clouds for assessing impacts of floodings

•An opening detection approach dedicated to houses in rural context without repetitive pattern.•A region growing method adaptive to point density to extract simple to complex facade.•Inventory of frequent opening detection challenges in mobile LiDAR point cloud. Given the high frequency and major im...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied earth observation and geoinformation Vol. 108; p. 102757
Main Authors Haghighatgou, Niloufar, Daniel, Sylvie, Badard, Thierry
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •An opening detection approach dedicated to houses in rural context without repetitive pattern.•A region growing method adaptive to point density to extract simple to complex facade.•Inventory of frequent opening detection challenges in mobile LiDAR point cloud. Given the high frequency and major impact of flood events, decision-makers are in urgent need to have tools allowing them to predict or assess the impact of flood events on the population, such as flood simulation through digital 3D cities. While building’s lowest openings are more subject to potential damages during the flood, 3D building models of rural environments still lack this information. Thus, it would be required to provide the location of the building lowest openings, in the context of flood risk assessment. Unlike frequently developed methods in opening detection domain that benefit from the repetitive structure and symmetrical characterization of the openings on the facades of modern buildings in urban areas, this paper proposed a comprehensive approach that investigates low-rise residential houses of rural areas where openings have various shapes, sizes, and non-symmetrical positions on the facade. First, it proposed a generalized segmentation approach in a context involving various and complex facade structures, in the presence of frequent occlusion and noticeable point density changes. Second, it proposed a simple and consistent hole-based opening detection by effective elimination of window crossbars and curtains. Finally, by proposing an inventory of frequent challenges related to facade extraction and opening detection tasks, it enables a better understanding of the difficulties to help in providing more efficient and relevant solutions in rural residential contexts. Qualitative and quantitative evaluations were performed using an MLS real-world dataset of the Quebec Province, Canada. Related statistics revealed that the proposed approach could obtain good performance rates despite the complexity of the dataset, representative of the data acquired in real situations. Challenges regarding the characteristics of the MLS point cloud and the presence of large surrounding occlusions should be further investigated for obtaining more accurate opening information on the facade.
AbstractList Given the high frequency and major impact of flood events, decision-makers are in urgent need to have tools allowing them to predict or assess the impact of flood events on the population, such as flood simulation through digital 3D cities. While building’s lowest openings are more subject to potential damages during the flood, 3D building models of rural environments still lack this information. Thus, it would be required to provide the location of the building lowest openings, in the context of flood risk assessment. Unlike frequently developed methods in opening detection domain that benefit from the repetitive structure and symmetrical characterization of the openings on the facades of modern buildings in urban areas, this paper proposed a comprehensive approach that investigates low-rise residential houses of rural areas where openings have various shapes, sizes, and non-symmetrical positions on the facade. First, it proposed a generalized segmentation approach in a context involving various and complex facade structures, in the presence of frequent occlusion and noticeable point density changes. Second, it proposed a simple and consistent hole-based opening detection by effective elimination of window crossbars and curtains. Finally, by proposing an inventory of frequent challenges related to facade extraction and opening detection tasks, it enables a better understanding of the difficulties to help in providing more efficient and relevant solutions in rural residential contexts. Qualitative and quantitative evaluations were performed using an MLS real-world dataset of the Quebec Province, Canada. Related statistics revealed that the proposed approach could obtain good performance rates despite the complexity of the dataset, representative of the data acquired in real situations. Challenges regarding the characteristics of the MLS point cloud and the presence of large surrounding occlusions should be further investigated for obtaining more accurate opening information on the facade.
•An opening detection approach dedicated to houses in rural context without repetitive pattern.•A region growing method adaptive to point density to extract simple to complex facade.•Inventory of frequent opening detection challenges in mobile LiDAR point cloud. Given the high frequency and major impact of flood events, decision-makers are in urgent need to have tools allowing them to predict or assess the impact of flood events on the population, such as flood simulation through digital 3D cities. While building’s lowest openings are more subject to potential damages during the flood, 3D building models of rural environments still lack this information. Thus, it would be required to provide the location of the building lowest openings, in the context of flood risk assessment. Unlike frequently developed methods in opening detection domain that benefit from the repetitive structure and symmetrical characterization of the openings on the facades of modern buildings in urban areas, this paper proposed a comprehensive approach that investigates low-rise residential houses of rural areas where openings have various shapes, sizes, and non-symmetrical positions on the facade. First, it proposed a generalized segmentation approach in a context involving various and complex facade structures, in the presence of frequent occlusion and noticeable point density changes. Second, it proposed a simple and consistent hole-based opening detection by effective elimination of window crossbars and curtains. Finally, by proposing an inventory of frequent challenges related to facade extraction and opening detection tasks, it enables a better understanding of the difficulties to help in providing more efficient and relevant solutions in rural residential contexts. Qualitative and quantitative evaluations were performed using an MLS real-world dataset of the Quebec Province, Canada. Related statistics revealed that the proposed approach could obtain good performance rates despite the complexity of the dataset, representative of the data acquired in real situations. Challenges regarding the characteristics of the MLS point cloud and the presence of large surrounding occlusions should be further investigated for obtaining more accurate opening information on the facade.
ArticleNumber 102757
Author Haghighatgou, Niloufar
Daniel, Sylvie
Badard, Thierry
Author_xml – sequence: 1
  givenname: Niloufar
  surname: Haghighatgou
  fullname: Haghighatgou, Niloufar
  email: niloufar.haghighatgou.1@ulaval.ca
– sequence: 2
  givenname: Sylvie
  surname: Daniel
  fullname: Daniel, Sylvie
– sequence: 3
  givenname: Thierry
  surname: Badard
  fullname: Badard, Thierry
BookMark eNp9kE-LFDEQxYOs4O7qB_CWo5cek3Qn6cHTsP6FgQVR8BbSSWWtoTtpO2nB7-CHNjPtaQ97qnrwfq-od0OuYopAyGvOdpxx9fa0O9mHnWBCVC201M_INe-1aHqhflzVXap903eteEFucj4xxrVW_TX5e6ATlJ_J05AWateSJlvQUfQQCwZ0VaVIU6BphojxIVOMdFhx9BcRrLMeMh1sBk-rc0oDjkCP-P7wlc4JY6FuTKvP24GcIedKUpxm60o-J4cxpUvaS_I82DHDq__zlnz_-OHb3efmeP_py93h2LiWtaUR7dAp7bVgEoZ6v2P7IB10UgfQwVvpLAe7h9AyJblsnQOpHBN75vkQhq69JW-23HlJv1bIxUyYHYyjjZDWbITSUupeaVatfLO6JeW8QDDzgpNd_hjOzLl5czK1eXNu3mzNV0Y_YhyWS49lsTg-Sb7bSKjf_0ZYTHYI0YHHBVwxPuET9D_1A6LG
CitedBy_id crossref_primary_10_1680_jsmic_21_00035
crossref_primary_10_1016_j_jag_2024_103728
crossref_primary_10_1111_tgis_13063
Cites_doi 10.1016/j.isprsjprs.2018.01.013
10.1177/1536867X0300300204
10.1016/0031-3203(81)90009-1
10.14358/PERS.78.11.1129
10.1080/01431161.2014.975420
10.1145/358669.358692
10.1109/MGRS.2019.2937630
10.1016/j.autcon.2020.103206
10.1111/cgf.13024
10.1016/j.isprsjprs.2009.04.001
10.1016/j.isprsjprs.2018.04.004
10.5194/isprs-archives-XLIII-B2-2021-277-2021
10.1109/JSTARS.2019.2897987
10.1080/01431161.2018.1463113
10.2298/CSIS150222062V
10.1016/j.compenvurbsys.2022.101759
10.5194/isprs-annals-IV-2-W5-365-2019
10.1016/j.isprsjprs.2016.06.011
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jag.2022.102757
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Statistics
EISSN 1872-826X
ExternalDocumentID 10_1016_j_jag_2022_102757
S0303243422000836
GeographicLocations Quebec
GeographicLocations_xml – name: Quebec
GroupedDBID 29J
4.4
5GY
6I.
AAFTH
AAQXK
AAXUO
ABFYP
ABLST
ABQEM
ABQYD
ABYKQ
ACLVX
ACRLP
ACSBN
ADBBV
ADMUD
AFKWA
AFTJW
AFXIZ
AGYEJ
AHEUO
AIKHN
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLECG
EBS
EJD
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
KOM
M41
O-L
P-8
P-9
P2P
R2-
RIG
ROL
SDF
SDG
SES
SPC
SSE
SSJ
T5K
~02
AAHBH
AALRI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ADNMO
ADVLN
AEIPS
AFJKZ
AGCQF
AGQPQ
AGRNS
AIIUN
AITUG
ANKPU
APXCP
BNPGV
CITATION
EFJIC
SSH
7S9
L.6
ID FETCH-LOGICAL-c303t-23b467d7205ebaca409f5ce457fe7fda5ca1ea9ef3065153cce56c0290d1bfb43
IEDL.DBID AIKHN
ISSN 1569-8432
IngestDate Fri Jul 11 07:18:22 EDT 2025
Thu Apr 24 23:08:40 EDT 2025
Tue Jul 01 02:15:20 EDT 2025
Fri Feb 23 02:39:51 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Mobile LiDAR point cloud
Rural building
Region growing segmentation
Opening detection
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-23b467d7205ebaca409f5ce457fe7fda5ca1ea9ef3065153cce56c0290d1bfb43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0303243422000836
PQID 2675578670
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2675578670
crossref_primary_10_1016_j_jag_2022_102757
crossref_citationtrail_10_1016_j_jag_2022_102757
elsevier_sciencedirect_doi_10_1016_j_jag_2022_102757
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Xu, Ye, Huang, Hoegner, Stilla (b0130) 2020; 117
Fischler, Bolles (b0040) 1981; 24
Vosselman, Gorte, Sithole, Rabbani (b0095) 2004; 1–6
Pu, Vosselman (b0070) 2009; 64
Li, Xiong, Biljecki, Schrotter (b0060) 2018; 42
Aijazi, Checchin, Trassoudaine (b0005) 2014; 35
Rabbani, van den Heuvel, Vosselman (b0075) 2006; 36
Voelsen, Schachtschneider, Brenner (b0090) 2021; 89
Wang, Ferrie, Macfarlane (b0115) 2012; 78
Zou, Sester (b0150) 2021; XLIII-B2-2
Zhou, Ma, Li, Li (b0135) 2018
Dong, Yang, Hu, Scherer (b0030) 2018; 137
Badard, Janssens-Coron, Engelinus, Malet (b0010) 2021; 48
Sun, Li, Sun (b0080) 2020; 14
Pu, Vosselman (b0065) 2007; 36
Grilli, Menna, Remondino (b0045) 2017; 42
Guinard, Landrieu, Caraffa, Vallet (b0050) 2019; 4
Van Kerm (b0085) 2003; 3
Wang, Bach, Ferrie (b0110) 2011
Boulaassal, Landes, Grussenmeyer, Tarsha-Kurdi (b0025) 2007; 36
Ballard (b0015) 1981; 13
Wang, Xu, Remil, Xie, Ye, Yi, Wei (b0105) 2016; 35
Boulaassal, Landes, Grussenmeyer (b0020) 2009; 7
Xia, Wang (b0120) 2019; 12
Hao, Wang, Liang (b0055) 2018; 39
Zolanvari, Laefer, Natanzi (b0145) 2018; 143
Feng, Xiao, Brenner, Peche, Yang, Feuerhake, Sester (b0035) 2022; 93
Xie, Tian, Zhu (b0125) 2020; 8
Zolanvari, Laefer (b0140) 2016; 119
Vračar, Kononenko, Robnik-Šikonja (b0100) 2016; 13
Zolanvari (10.1016/j.jag.2022.102757_b0145) 2018; 143
Aijazi (10.1016/j.jag.2022.102757_b0005) 2014; 35
Badard (10.1016/j.jag.2022.102757_b0010) 2021; 48
Vračar (10.1016/j.jag.2022.102757_b0100) 2016; 13
Xie (10.1016/j.jag.2022.102757_b0125) 2020; 8
Zolanvari (10.1016/j.jag.2022.102757_b0140) 2016; 119
Fischler (10.1016/j.jag.2022.102757_b0040) 1981; 24
Pu (10.1016/j.jag.2022.102757_b0070) 2009; 64
Guinard (10.1016/j.jag.2022.102757_b0050) 2019; 4
Rabbani (10.1016/j.jag.2022.102757_b0075) 2006; 36
Ballard (10.1016/j.jag.2022.102757_b0015) 1981; 13
Vosselman (10.1016/j.jag.2022.102757_b0095) 2004; 1–6
Wang (10.1016/j.jag.2022.102757_b0110) 2011
Voelsen (10.1016/j.jag.2022.102757_b0090) 2021; 89
Wang (10.1016/j.jag.2022.102757_b0105) 2016; 35
Xia (10.1016/j.jag.2022.102757_b0120) 2019; 12
Zou (10.1016/j.jag.2022.102757_b0150) 2021; XLIII-B2-2
Pu (10.1016/j.jag.2022.102757_b0065) 2007; 36
Hao (10.1016/j.jag.2022.102757_b0055) 2018; 39
Li (10.1016/j.jag.2022.102757_b0060) 2018; 42
Feng (10.1016/j.jag.2022.102757_b0035) 2022; 93
Boulaassal (10.1016/j.jag.2022.102757_b0025) 2007; 36
Boulaassal (10.1016/j.jag.2022.102757_b0020) 2009; 7
Wang (10.1016/j.jag.2022.102757_b0115) 2012; 78
Zhou (10.1016/j.jag.2022.102757_b0135) 2018
Dong (10.1016/j.jag.2022.102757_b0030) 2018; 137
Grilli (10.1016/j.jag.2022.102757_b0045) 2017; 42
Van Kerm (10.1016/j.jag.2022.102757_b0085) 2003; 3
Sun (10.1016/j.jag.2022.102757_b0080) 2020; 14
Xu (10.1016/j.jag.2022.102757_b0130) 2020; 117
References_xml – volume: 64
  start-page: 575
  year: 2009
  end-page: 584
  ident: b0070
  article-title: Knowledge based reconstruction of building models from terrestrial laser scanning data
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 48
  year: 2021
  ident: b0010
  article-title: Conception d’une base de données sur les bâtiments pour améliorer la connaissance des risques liés aux inondations
  publication-title: Géomatique
– volume: 42
  start-page: 339
  year: 2017
  end-page: 344
  ident: b0045
  article-title: A review of point clouds segmentation and classification algorithms. Int. Arch. Photogramm. Remote Sens
  publication-title: Spat. Inf. Sci. - ISPRS Arch.
– start-page: 58
  year: 2011
  end-page: 65
  ident: b0110
  article-title: Window detection from mobile LiDAR data
  publication-title: In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition IEEE Workshop on Applications of Computer Vision (WACV). IEEE
– volume: 7
  start-page: 1
  year: 2009
  end-page: 20
  ident: b0020
  article-title: Automatic Extraction of Planar Clusters and Their Contours on Building Facades Recorded by Terrestrial Laser Scanner
  publication-title: Int. J. Archit. Comput.
– volume: 1–6
  year: 2004
  ident: b0095
  article-title: Recognising structure in laser scanner point clouds
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
– volume: 13
  start-page: 111
  year: 1981
  end-page: 122
  ident: b0015
  article-title: Generalizing the Hough transform to detect arbitrary shapes
  publication-title: Pattern Recognit.
– volume: 39
  start-page: 6587
  year: 2018
  end-page: 6606
  ident: b0055
  article-title: Slice-based building facade reconstruction from 3D point clouds
  publication-title: Int. J. Remote Sens.
– volume: 24
  start-page: 381
  year: 1981
  end-page: 395
  ident: b0040
  article-title: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography
  publication-title: Commun. ACM
– volume: 8
  start-page: 38
  year: 2020
  end-page: 59
  ident: b0125
  article-title: Linking Points With Labels in 3D: A Review of Point Cloud Semantic Segmentation
  publication-title: IEEE Geosci. Remote Sens.
– volume: 117
  start-page: 103206
  year: 2020
  ident: b0130
  article-title: Robust segmentation and localization of structural planes from photogrammetric point clouds in construction sites
  publication-title: Autom. Constr.
– start-page: 4304
  year: 2018
  end-page: 4307
  ident: b0135
  article-title: Extraction of building windows from mobile laser scanning point clouds
  publication-title: In: International Geoscience and Remote Sensing Symposium (IGARSS). Institute of Electrical and Electronics Engineers Inc
– volume: 89
  start-page: 195
  year: 2021
  end-page: 207
  ident: b0090
  article-title: Classification and Change Detection in Mobile Mapping LiDAR Point Clouds. PFG -
  publication-title: J. Photogramm. Remote Sens. Geoinf. Sci.
– volume: 36
  start-page: W52
  year: 2007
  ident: b0025
  article-title: Automatic segmentation of building facades using Terrestrial Laser Data
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
– volume: 137
  start-page: 112
  year: 2018
  end-page: 133
  ident: b0030
  article-title: An efficient global energy optimization approach for robust 3D plane segmentation of point clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 36
  start-page: 248
  year: 2006
  end-page: 253
  ident: b0075
  article-title: Segmentation of point clouds using smoothness constraint
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - Comm V Symp. ’Image Eng. Vis. Metrol.
– volume: 93
  year: 2022
  ident: b0035
  article-title: Determination of building flood risk maps from LiDAR mobile mapping data
  publication-title: Comput. Environ. Urban Syst.
– volume: 119
  start-page: 334
  year: 2016
  end-page: 346
  ident: b0140
  article-title: Slicing Method for curved facade and window extraction from point clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 14
  start-page: 1
  year: 2020
  ident: b0080
  article-title: Window detection employing a global regularity level set from oblique unmanned aerial vehicle images and point clouds
  publication-title: J. Appl. Remote Sens.
– volume: 35
  start-page: 7726
  year: 2014
  end-page: 7748
  ident: b0005
  article-title: Automatic detection and feature estimation of windows in 3D urban point clouds exploiting facade symmetry and temporal correspondences
  publication-title: Int. J. Remote Sens.
– volume: 13
  start-page: 23
  year: 2016
  end-page: 43
  ident: b0100
  article-title: Obtaining structural descriptions of building facades
  publication-title: Comput. Sci. Inf. Syst.
– volume: 35
  start-page: 269
  year: 2016
  end-page: 278
  ident: b0105
  article-title: Automatic Modeling of Urban Facades from Raw LiDAR Point Data
  publication-title: Comput. Graph. Forum
– volume: 78
  start-page: 1129
  year: 2012
  end-page: 1140
  ident: b0115
  article-title: A method for detecting windows from mobile lidar data
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 42
  start-page: 97
  year: 2018
  end-page: 103
  ident: b0060
  article-title: A sliding window method for detecting corners of openings from terrestrial LiDAr data. Int. Arch. Photogramm. Remote Sens
  publication-title: Spat. Inf. Sci. - ISPRS Arch.
– volume: 3
  start-page: 148
  year: 2003
  end-page: 156
  ident: b0085
  article-title: Adaptive Kernel Density Estimation
  publication-title: Stata J. Promot. Commun. Stat. Stata
– volume: 143
  start-page: 134
  year: 2018
  end-page: 149
  ident: b0145
  article-title: Three-dimensional building facade segmentation and opening area detection from point clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: XLIII-B2-2
  start-page: 277
  year: 2021
  end-page: 282
  ident: b0150
  article-title: Incremental Map Refinement of Building Information Using Lidar Point Clouds
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
– volume: 36
  start-page: 12
  year: 2007
  end-page: 14
  ident: b0065
  article-title: Extracting windows from terrestrial laser scanning. Intl Arch
  publication-title: Photogramm. Remote Sens. Spat. Inf. Sci.
– volume: 12
  start-page: 1041
  year: 2019
  end-page: 1052
  ident: b0120
  article-title: Facade Separation in Ground-Based LiDAR Point Clouds Based on Edges and Windows
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 4
  start-page: 365
  year: 2019
  end-page: 372
  ident: b0050
  article-title: PIECEWISE-planar approximation of large 3D data as graph-structured optimization
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci.
– volume: 137
  start-page: 112
  year: 2018
  ident: 10.1016/j.jag.2022.102757_b0030
  article-title: An efficient global energy optimization approach for robust 3D plane segmentation of point clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.01.013
– volume: 3
  start-page: 148
  issue: 2
  year: 2003
  ident: 10.1016/j.jag.2022.102757_b0085
  article-title: Adaptive Kernel Density Estimation
  publication-title: Stata J. Promot. Commun. Stat. Stata
  doi: 10.1177/1536867X0300300204
– volume: 36
  start-page: 248
  year: 2006
  ident: 10.1016/j.jag.2022.102757_b0075
  article-title: Segmentation of point clouds using smoothness constraint
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - Comm V Symp. ’Image Eng. Vis. Metrol.
– volume: 7
  start-page: 1
  year: 2009
  ident: 10.1016/j.jag.2022.102757_b0020
  article-title: Automatic Extraction of Planar Clusters and Their Contours on Building Facades Recorded by Terrestrial Laser Scanner
  publication-title: Int. J. Archit. Comput.
– volume: 13
  start-page: 111
  issue: 2
  year: 1981
  ident: 10.1016/j.jag.2022.102757_b0015
  article-title: Generalizing the Hough transform to detect arbitrary shapes
  publication-title: Pattern Recognit.
  doi: 10.1016/0031-3203(81)90009-1
– volume: 36
  start-page: 12
  year: 2007
  ident: 10.1016/j.jag.2022.102757_b0065
  article-title: Extracting windows from terrestrial laser scanning. Intl Arch
  publication-title: Photogramm. Remote Sens. Spat. Inf. Sci.
– volume: 78
  start-page: 1129
  issue: 11
  year: 2012
  ident: 10.1016/j.jag.2022.102757_b0115
  article-title: A method for detecting windows from mobile lidar data
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.78.11.1129
– volume: 42
  start-page: 339
  year: 2017
  ident: 10.1016/j.jag.2022.102757_b0045
  article-title: A review of point clouds segmentation and classification algorithms. Int. Arch. Photogramm. Remote Sens
  publication-title: Spat. Inf. Sci. - ISPRS Arch.
– volume: 35
  start-page: 7726
  year: 2014
  ident: 10.1016/j.jag.2022.102757_b0005
  article-title: Automatic detection and feature estimation of windows in 3D urban point clouds exploiting facade symmetry and temporal correspondences
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2014.975420
– volume: 24
  start-page: 381
  issue: 6
  year: 1981
  ident: 10.1016/j.jag.2022.102757_b0040
  article-title: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography
  publication-title: Commun. ACM
  doi: 10.1145/358669.358692
– start-page: 4304
  year: 2018
  ident: 10.1016/j.jag.2022.102757_b0135
  article-title: Extraction of building windows from mobile laser scanning point clouds
– volume: 1–6
  year: 2004
  ident: 10.1016/j.jag.2022.102757_b0095
  article-title: Recognising structure in laser scanner point clouds
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
– start-page: 58
  year: 2011
  ident: 10.1016/j.jag.2022.102757_b0110
  article-title: Window detection from mobile LiDAR data
– volume: 8
  start-page: 38
  issue: 4
  year: 2020
  ident: 10.1016/j.jag.2022.102757_b0125
  article-title: Linking Points With Labels in 3D: A Review of Point Cloud Semantic Segmentation
  publication-title: IEEE Geosci. Remote Sens.
  doi: 10.1109/MGRS.2019.2937630
– volume: 14
  start-page: 1
  year: 2020
  ident: 10.1016/j.jag.2022.102757_b0080
  article-title: Window detection employing a global regularity level set from oblique unmanned aerial vehicle images and point clouds
  publication-title: J. Appl. Remote Sens.
– volume: 117
  start-page: 103206
  year: 2020
  ident: 10.1016/j.jag.2022.102757_b0130
  article-title: Robust segmentation and localization of structural planes from photogrammetric point clouds in construction sites
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103206
– volume: 35
  start-page: 269
  issue: 7
  year: 2016
  ident: 10.1016/j.jag.2022.102757_b0105
  article-title: Automatic Modeling of Urban Facades from Raw LiDAR Point Data
  publication-title: Comput. Graph. Forum
  doi: 10.1111/cgf.13024
– volume: 89
  start-page: 195
  issue: 3
  year: 2021
  ident: 10.1016/j.jag.2022.102757_b0090
  article-title: Classification and Change Detection in Mobile Mapping LiDAR Point Clouds. PFG -
  publication-title: J. Photogramm. Remote Sens. Geoinf. Sci.
– volume: 36
  start-page: W52
  year: 2007
  ident: 10.1016/j.jag.2022.102757_b0025
  article-title: Automatic segmentation of building facades using Terrestrial Laser Data
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
– volume: 64
  start-page: 575
  issue: 6
  year: 2009
  ident: 10.1016/j.jag.2022.102757_b0070
  article-title: Knowledge based reconstruction of building models from terrestrial laser scanning data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2009.04.001
– volume: 143
  start-page: 134
  year: 2018
  ident: 10.1016/j.jag.2022.102757_b0145
  article-title: Three-dimensional building facade segmentation and opening area detection from point clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.04.004
– volume: XLIII-B2-2
  start-page: 277
  year: 2021
  ident: 10.1016/j.jag.2022.102757_b0150
  article-title: Incremental Map Refinement of Building Information Using Lidar Point Clouds
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-archives-XLIII-B2-2021-277-2021
– volume: 12
  start-page: 1041
  year: 2019
  ident: 10.1016/j.jag.2022.102757_b0120
  article-title: Facade Separation in Ground-Based LiDAR Point Clouds Based on Edges and Windows
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2019.2897987
– volume: 39
  start-page: 6587
  issue: 20
  year: 2018
  ident: 10.1016/j.jag.2022.102757_b0055
  article-title: Slice-based building facade reconstruction from 3D point clouds
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2018.1463113
– volume: 42
  start-page: 97
  year: 2018
  ident: 10.1016/j.jag.2022.102757_b0060
  article-title: A sliding window method for detecting corners of openings from terrestrial LiDAr data. Int. Arch. Photogramm. Remote Sens
  publication-title: Spat. Inf. Sci. - ISPRS Arch.
– volume: 13
  start-page: 23
  year: 2016
  ident: 10.1016/j.jag.2022.102757_b0100
  article-title: Obtaining structural descriptions of building facades
  publication-title: Comput. Sci. Inf. Syst.
  doi: 10.2298/CSIS150222062V
– volume: 93
  year: 2022
  ident: 10.1016/j.jag.2022.102757_b0035
  article-title: Determination of building flood risk maps from LiDAR mobile mapping data
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/j.compenvurbsys.2022.101759
– volume: 4
  start-page: 365
  year: 2019
  ident: 10.1016/j.jag.2022.102757_b0050
  article-title: PIECEWISE-planar approximation of large 3D data as graph-structured optimization
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-annals-IV-2-W5-365-2019
– volume: 48
  year: 2021
  ident: 10.1016/j.jag.2022.102757_b0010
  article-title: Conception d’une base de données sur les bâtiments pour améliorer la connaissance des risques liés aux inondations
  publication-title: Géomatique
– volume: 119
  start-page: 334
  year: 2016
  ident: 10.1016/j.jag.2022.102757_b0140
  article-title: Slicing Method for curved facade and window extraction from point clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.06.011
SSID ssj0017768
Score 2.370329
Snippet •An opening detection approach dedicated to houses in rural context without repetitive pattern.•A region growing method adaptive to point density to extract...
Given the high frequency and major impact of flood events, decision-makers are in urgent need to have tools allowing them to predict or assess the impact of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102757
SubjectTerms data collection
decision making
inventories
lidar
Mobile LiDAR point cloud
Opening detection
Quebec
Region growing segmentation
risk assessment
Rural building
spatial data
statistics
Title A method for automatic identification of openings in buildings facades based on mobile LiDAR point clouds for assessing impacts of floodings
URI https://dx.doi.org/10.1016/j.jag.2022.102757
https://www.proquest.com/docview/2675578670
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoXOgBtbSo9LEyUk9I0WYdP5LjagvatoAQLRI3y3bsKgiSVZP9F_zojh-hUCEOPSbyI_JMvpnxvBD6DEbPrGLEZQUlOqOO8ax0xicCgyWmuNAuONpPz_jykn67YlcbaDHmwviwyoT9EdMDWqc303Sa01XTTH8Ae4I2AHuQoEjwF2iLFBUH1t6af_2-PLt3JggRM-IYr7KSFmR0boYwr2v1C6xEQnwNA-GF1NPi6R-gDtLn-BXaSWojnscve402bLuLXj4oJriL9o7-5qzB0PTT9m_Q3RzHPtEYFFSs1kMXyrTipk6RQoE4uHPYt9LyN-e4abFO_bJ77JSPoe-xF3g1hpG3nQYswSfNl_kFXnVNO2Bz063rPm4Q3MgwE8cMzN6v7Hx8vF_tLbo8Pvq5WGapCUNm4HyHjBQasLQWJGdWw35gDzpmLGXCWeFqxYyaWVVZ51vQA3waYxk3ntT1TDtNiz202XatfYdw5VRRUlXpnJe0dLqqc1Exyg1VsLSo91E-nr00qUK5b5RxI8dQtGsJ5JKeXDKSax8d3k9ZxfIczw2mI0HlIx6TID6em3YwEl_Cv-cdKqq13bqXBKwtQDwu8vf_t_QHtO2fYiTQR7Q5_F7bT6DkDHoCTLy4ODmfJGaehMuCPw5w_qw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QE4oFKoaIFiJE5I0WYTP5LjqrTa0u0eoJV6s2zHRqlKsmqy_4IfzTh2ykNVD70m9jjy2N_MZF4An9DomZUsc0lOM51Qx3hSOOMTgdESU1xoNzjaz1d8cUm_XrGrLTgac2F8WGXE_oDpA1rHJ9O4m9N1XU-_4_FEbQDXyAZFgj-BbV-dik1ge356tljdOROECBlxjJdJQfNsdG4OYV7X6gdaiVnmaxgIL6TuF0__AfUgfU524EVUG8k8fNlL2LLNLjz_q5jgLuwd_8lZw6Hx0nav4NechD7RBBVUojZ9O5RpJXUVI4UG5pDWEd9Ky_85J3VDdOyX3RGnfAx9R7zAqwiO_NlqxBKyrL_Mv5F1Wzc9MTftpurCAoMbGWeSkIHZecrOx8d7aq_h8uT44miRxCYMicH97ZMs14illchSZjWuh_agY8ZSJpwVrlLMqJlVpXW-BT3CpzGWceNZXc200zTfg0nTNvYNkNKpvKCq1CkvaOF0WaWiZJQbqpC0qPYhHfdemlih3DfKuJFjKNq1RHZJzy4Z2LUPn--mrEN5jocG05Gh8p8zJlF8PDTt48h8iXfPO1RUY9tNJzO0thDxuEgPHkf6AzxdXJwv5fJ0dfYWnvk3ISroHUz62419jwpPrw_jgf4NGWP_CA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+for+automatic+identification+of+openings+in+buildings+facades+based+on+mobile+LiDAR+point+clouds+for+assessing+impacts+of+floodings&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Haghighatgou%2C+Niloufar&rft.au=Daniel%2C+Sylvie&rft.au=Badard%2C+Thierry&rft.date=2022-04-01&rft.issn=1569-8432&rft.volume=108&rft.spage=102757&rft_id=info:doi/10.1016%2Fj.jag.2022.102757&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jag_2022_102757
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon