A method for automatic identification of openings in buildings facades based on mobile LiDAR point clouds for assessing impacts of floodings
•An opening detection approach dedicated to houses in rural context without repetitive pattern.•A region growing method adaptive to point density to extract simple to complex facade.•Inventory of frequent opening detection challenges in mobile LiDAR point cloud. Given the high frequency and major im...
Saved in:
Published in | International journal of applied earth observation and geoinformation Vol. 108; p. 102757 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •An opening detection approach dedicated to houses in rural context without repetitive pattern.•A region growing method adaptive to point density to extract simple to complex facade.•Inventory of frequent opening detection challenges in mobile LiDAR point cloud.
Given the high frequency and major impact of flood events, decision-makers are in urgent need to have tools allowing them to predict or assess the impact of flood events on the population, such as flood simulation through digital 3D cities. While building’s lowest openings are more subject to potential damages during the flood, 3D building models of rural environments still lack this information. Thus, it would be required to provide the location of the building lowest openings, in the context of flood risk assessment. Unlike frequently developed methods in opening detection domain that benefit from the repetitive structure and symmetrical characterization of the openings on the facades of modern buildings in urban areas, this paper proposed a comprehensive approach that investigates low-rise residential houses of rural areas where openings have various shapes, sizes, and non-symmetrical positions on the facade. First, it proposed a generalized segmentation approach in a context involving various and complex facade structures, in the presence of frequent occlusion and noticeable point density changes. Second, it proposed a simple and consistent hole-based opening detection by effective elimination of window crossbars and curtains. Finally, by proposing an inventory of frequent challenges related to facade extraction and opening detection tasks, it enables a better understanding of the difficulties to help in providing more efficient and relevant solutions in rural residential contexts. Qualitative and quantitative evaluations were performed using an MLS real-world dataset of the Quebec Province, Canada. Related statistics revealed that the proposed approach could obtain good performance rates despite the complexity of the dataset, representative of the data acquired in real situations. Challenges regarding the characteristics of the MLS point cloud and the presence of large surrounding occlusions should be further investigated for obtaining more accurate opening information on the facade. |
---|---|
AbstractList | Given the high frequency and major impact of flood events, decision-makers are in urgent need to have tools allowing them to predict or assess the impact of flood events on the population, such as flood simulation through digital 3D cities. While building’s lowest openings are more subject to potential damages during the flood, 3D building models of rural environments still lack this information. Thus, it would be required to provide the location of the building lowest openings, in the context of flood risk assessment. Unlike frequently developed methods in opening detection domain that benefit from the repetitive structure and symmetrical characterization of the openings on the facades of modern buildings in urban areas, this paper proposed a comprehensive approach that investigates low-rise residential houses of rural areas where openings have various shapes, sizes, and non-symmetrical positions on the facade. First, it proposed a generalized segmentation approach in a context involving various and complex facade structures, in the presence of frequent occlusion and noticeable point density changes. Second, it proposed a simple and consistent hole-based opening detection by effective elimination of window crossbars and curtains. Finally, by proposing an inventory of frequent challenges related to facade extraction and opening detection tasks, it enables a better understanding of the difficulties to help in providing more efficient and relevant solutions in rural residential contexts. Qualitative and quantitative evaluations were performed using an MLS real-world dataset of the Quebec Province, Canada. Related statistics revealed that the proposed approach could obtain good performance rates despite the complexity of the dataset, representative of the data acquired in real situations. Challenges regarding the characteristics of the MLS point cloud and the presence of large surrounding occlusions should be further investigated for obtaining more accurate opening information on the facade. •An opening detection approach dedicated to houses in rural context without repetitive pattern.•A region growing method adaptive to point density to extract simple to complex facade.•Inventory of frequent opening detection challenges in mobile LiDAR point cloud. Given the high frequency and major impact of flood events, decision-makers are in urgent need to have tools allowing them to predict or assess the impact of flood events on the population, such as flood simulation through digital 3D cities. While building’s lowest openings are more subject to potential damages during the flood, 3D building models of rural environments still lack this information. Thus, it would be required to provide the location of the building lowest openings, in the context of flood risk assessment. Unlike frequently developed methods in opening detection domain that benefit from the repetitive structure and symmetrical characterization of the openings on the facades of modern buildings in urban areas, this paper proposed a comprehensive approach that investigates low-rise residential houses of rural areas where openings have various shapes, sizes, and non-symmetrical positions on the facade. First, it proposed a generalized segmentation approach in a context involving various and complex facade structures, in the presence of frequent occlusion and noticeable point density changes. Second, it proposed a simple and consistent hole-based opening detection by effective elimination of window crossbars and curtains. Finally, by proposing an inventory of frequent challenges related to facade extraction and opening detection tasks, it enables a better understanding of the difficulties to help in providing more efficient and relevant solutions in rural residential contexts. Qualitative and quantitative evaluations were performed using an MLS real-world dataset of the Quebec Province, Canada. Related statistics revealed that the proposed approach could obtain good performance rates despite the complexity of the dataset, representative of the data acquired in real situations. Challenges regarding the characteristics of the MLS point cloud and the presence of large surrounding occlusions should be further investigated for obtaining more accurate opening information on the facade. |
ArticleNumber | 102757 |
Author | Haghighatgou, Niloufar Daniel, Sylvie Badard, Thierry |
Author_xml | – sequence: 1 givenname: Niloufar surname: Haghighatgou fullname: Haghighatgou, Niloufar email: niloufar.haghighatgou.1@ulaval.ca – sequence: 2 givenname: Sylvie surname: Daniel fullname: Daniel, Sylvie – sequence: 3 givenname: Thierry surname: Badard fullname: Badard, Thierry |
BookMark | eNp9kE-LFDEQxYOs4O7qB_CWo5cek3Qn6cHTsP6FgQVR8BbSSWWtoTtpO2nB7-CHNjPtaQ97qnrwfq-od0OuYopAyGvOdpxx9fa0O9mHnWBCVC201M_INe-1aHqhflzVXap903eteEFucj4xxrVW_TX5e6ATlJ_J05AWateSJlvQUfQQCwZ0VaVIU6BphojxIVOMdFhx9BcRrLMeMh1sBk-rc0oDjkCP-P7wlc4JY6FuTKvP24GcIedKUpxm60o-J4cxpUvaS_I82DHDq__zlnz_-OHb3efmeP_py93h2LiWtaUR7dAp7bVgEoZ6v2P7IB10UgfQwVvpLAe7h9AyJblsnQOpHBN75vkQhq69JW-23HlJv1bIxUyYHYyjjZDWbITSUupeaVatfLO6JeW8QDDzgpNd_hjOzLl5czK1eXNu3mzNV0Y_YhyWS49lsTg-Sb7bSKjf_0ZYTHYI0YHHBVwxPuET9D_1A6LG |
CitedBy_id | crossref_primary_10_1680_jsmic_21_00035 crossref_primary_10_1016_j_jag_2024_103728 crossref_primary_10_1111_tgis_13063 |
Cites_doi | 10.1016/j.isprsjprs.2018.01.013 10.1177/1536867X0300300204 10.1016/0031-3203(81)90009-1 10.14358/PERS.78.11.1129 10.1080/01431161.2014.975420 10.1145/358669.358692 10.1109/MGRS.2019.2937630 10.1016/j.autcon.2020.103206 10.1111/cgf.13024 10.1016/j.isprsjprs.2009.04.001 10.1016/j.isprsjprs.2018.04.004 10.5194/isprs-archives-XLIII-B2-2021-277-2021 10.1109/JSTARS.2019.2897987 10.1080/01431161.2018.1463113 10.2298/CSIS150222062V 10.1016/j.compenvurbsys.2022.101759 10.5194/isprs-annals-IV-2-W5-365-2019 10.1016/j.isprsjprs.2016.06.011 |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jag.2022.102757 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Statistics |
EISSN | 1872-826X |
ExternalDocumentID | 10_1016_j_jag_2022_102757 S0303243422000836 |
GeographicLocations | Quebec |
GeographicLocations_xml | – name: Quebec |
GroupedDBID | 29J 4.4 5GY 6I. AAFTH AAQXK AAXUO ABFYP ABLST ABQEM ABQYD ABYKQ ACLVX ACRLP ACSBN ADBBV ADMUD AFKWA AFTJW AFXIZ AGYEJ AHEUO AIKHN AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AZFZN BKOJK BLECG EBS EJD FDB FEDTE FIRID FYGXN GROUPED_DOAJ HVGLF IMUCA KCYFY KOM M41 O-L P-8 P-9 P2P R2- RIG ROL SDF SDG SES SPC SSE SSJ T5K ~02 AAHBH AALRI AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ADNMO ADVLN AEIPS AFJKZ AGCQF AGQPQ AGRNS AIIUN AITUG ANKPU APXCP BNPGV CITATION EFJIC SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c303t-23b467d7205ebaca409f5ce457fe7fda5ca1ea9ef3065153cce56c0290d1bfb43 |
IEDL.DBID | AIKHN |
ISSN | 1569-8432 |
IngestDate | Fri Jul 11 07:18:22 EDT 2025 Thu Apr 24 23:08:40 EDT 2025 Tue Jul 01 02:15:20 EDT 2025 Fri Feb 23 02:39:51 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mobile LiDAR point cloud Rural building Region growing segmentation Opening detection |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-23b467d7205ebaca409f5ce457fe7fda5ca1ea9ef3065153cce56c0290d1bfb43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0303243422000836 |
PQID | 2675578670 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2675578670 crossref_primary_10_1016_j_jag_2022_102757 crossref_citationtrail_10_1016_j_jag_2022_102757 elsevier_sciencedirect_doi_10_1016_j_jag_2022_102757 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2022 2022-04-00 20220401 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
PublicationDecade | 2020 |
PublicationTitle | International journal of applied earth observation and geoinformation |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Xu, Ye, Huang, Hoegner, Stilla (b0130) 2020; 117 Fischler, Bolles (b0040) 1981; 24 Vosselman, Gorte, Sithole, Rabbani (b0095) 2004; 1–6 Pu, Vosselman (b0070) 2009; 64 Li, Xiong, Biljecki, Schrotter (b0060) 2018; 42 Aijazi, Checchin, Trassoudaine (b0005) 2014; 35 Rabbani, van den Heuvel, Vosselman (b0075) 2006; 36 Voelsen, Schachtschneider, Brenner (b0090) 2021; 89 Wang, Ferrie, Macfarlane (b0115) 2012; 78 Zou, Sester (b0150) 2021; XLIII-B2-2 Zhou, Ma, Li, Li (b0135) 2018 Dong, Yang, Hu, Scherer (b0030) 2018; 137 Badard, Janssens-Coron, Engelinus, Malet (b0010) 2021; 48 Sun, Li, Sun (b0080) 2020; 14 Pu, Vosselman (b0065) 2007; 36 Grilli, Menna, Remondino (b0045) 2017; 42 Guinard, Landrieu, Caraffa, Vallet (b0050) 2019; 4 Van Kerm (b0085) 2003; 3 Wang, Bach, Ferrie (b0110) 2011 Boulaassal, Landes, Grussenmeyer, Tarsha-Kurdi (b0025) 2007; 36 Ballard (b0015) 1981; 13 Wang, Xu, Remil, Xie, Ye, Yi, Wei (b0105) 2016; 35 Boulaassal, Landes, Grussenmeyer (b0020) 2009; 7 Xia, Wang (b0120) 2019; 12 Hao, Wang, Liang (b0055) 2018; 39 Zolanvari, Laefer, Natanzi (b0145) 2018; 143 Feng, Xiao, Brenner, Peche, Yang, Feuerhake, Sester (b0035) 2022; 93 Xie, Tian, Zhu (b0125) 2020; 8 Zolanvari, Laefer (b0140) 2016; 119 Vračar, Kononenko, Robnik-Šikonja (b0100) 2016; 13 Zolanvari (10.1016/j.jag.2022.102757_b0145) 2018; 143 Aijazi (10.1016/j.jag.2022.102757_b0005) 2014; 35 Badard (10.1016/j.jag.2022.102757_b0010) 2021; 48 Vračar (10.1016/j.jag.2022.102757_b0100) 2016; 13 Xie (10.1016/j.jag.2022.102757_b0125) 2020; 8 Zolanvari (10.1016/j.jag.2022.102757_b0140) 2016; 119 Fischler (10.1016/j.jag.2022.102757_b0040) 1981; 24 Pu (10.1016/j.jag.2022.102757_b0070) 2009; 64 Guinard (10.1016/j.jag.2022.102757_b0050) 2019; 4 Rabbani (10.1016/j.jag.2022.102757_b0075) 2006; 36 Ballard (10.1016/j.jag.2022.102757_b0015) 1981; 13 Vosselman (10.1016/j.jag.2022.102757_b0095) 2004; 1–6 Wang (10.1016/j.jag.2022.102757_b0110) 2011 Voelsen (10.1016/j.jag.2022.102757_b0090) 2021; 89 Wang (10.1016/j.jag.2022.102757_b0105) 2016; 35 Xia (10.1016/j.jag.2022.102757_b0120) 2019; 12 Zou (10.1016/j.jag.2022.102757_b0150) 2021; XLIII-B2-2 Pu (10.1016/j.jag.2022.102757_b0065) 2007; 36 Hao (10.1016/j.jag.2022.102757_b0055) 2018; 39 Li (10.1016/j.jag.2022.102757_b0060) 2018; 42 Feng (10.1016/j.jag.2022.102757_b0035) 2022; 93 Boulaassal (10.1016/j.jag.2022.102757_b0025) 2007; 36 Boulaassal (10.1016/j.jag.2022.102757_b0020) 2009; 7 Wang (10.1016/j.jag.2022.102757_b0115) 2012; 78 Zhou (10.1016/j.jag.2022.102757_b0135) 2018 Dong (10.1016/j.jag.2022.102757_b0030) 2018; 137 Grilli (10.1016/j.jag.2022.102757_b0045) 2017; 42 Van Kerm (10.1016/j.jag.2022.102757_b0085) 2003; 3 Sun (10.1016/j.jag.2022.102757_b0080) 2020; 14 Xu (10.1016/j.jag.2022.102757_b0130) 2020; 117 |
References_xml | – volume: 64 start-page: 575 year: 2009 end-page: 584 ident: b0070 article-title: Knowledge based reconstruction of building models from terrestrial laser scanning data publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 48 year: 2021 ident: b0010 article-title: Conception d’une base de données sur les bâtiments pour améliorer la connaissance des risques liés aux inondations publication-title: Géomatique – volume: 42 start-page: 339 year: 2017 end-page: 344 ident: b0045 article-title: A review of point clouds segmentation and classification algorithms. Int. Arch. Photogramm. Remote Sens publication-title: Spat. Inf. Sci. - ISPRS Arch. – start-page: 58 year: 2011 end-page: 65 ident: b0110 article-title: Window detection from mobile LiDAR data publication-title: In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition IEEE Workshop on Applications of Computer Vision (WACV). IEEE – volume: 7 start-page: 1 year: 2009 end-page: 20 ident: b0020 article-title: Automatic Extraction of Planar Clusters and Their Contours on Building Facades Recorded by Terrestrial Laser Scanner publication-title: Int. J. Archit. Comput. – volume: 1–6 year: 2004 ident: b0095 article-title: Recognising structure in laser scanner point clouds publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. – volume: 13 start-page: 111 year: 1981 end-page: 122 ident: b0015 article-title: Generalizing the Hough transform to detect arbitrary shapes publication-title: Pattern Recognit. – volume: 39 start-page: 6587 year: 2018 end-page: 6606 ident: b0055 article-title: Slice-based building facade reconstruction from 3D point clouds publication-title: Int. J. Remote Sens. – volume: 24 start-page: 381 year: 1981 end-page: 395 ident: b0040 article-title: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography publication-title: Commun. ACM – volume: 8 start-page: 38 year: 2020 end-page: 59 ident: b0125 article-title: Linking Points With Labels in 3D: A Review of Point Cloud Semantic Segmentation publication-title: IEEE Geosci. Remote Sens. – volume: 117 start-page: 103206 year: 2020 ident: b0130 article-title: Robust segmentation and localization of structural planes from photogrammetric point clouds in construction sites publication-title: Autom. Constr. – start-page: 4304 year: 2018 end-page: 4307 ident: b0135 article-title: Extraction of building windows from mobile laser scanning point clouds publication-title: In: International Geoscience and Remote Sensing Symposium (IGARSS). Institute of Electrical and Electronics Engineers Inc – volume: 89 start-page: 195 year: 2021 end-page: 207 ident: b0090 article-title: Classification and Change Detection in Mobile Mapping LiDAR Point Clouds. PFG - publication-title: J. Photogramm. Remote Sens. Geoinf. Sci. – volume: 36 start-page: W52 year: 2007 ident: b0025 article-title: Automatic segmentation of building facades using Terrestrial Laser Data publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. – volume: 137 start-page: 112 year: 2018 end-page: 133 ident: b0030 article-title: An efficient global energy optimization approach for robust 3D plane segmentation of point clouds publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 36 start-page: 248 year: 2006 end-page: 253 ident: b0075 article-title: Segmentation of point clouds using smoothness constraint publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - Comm V Symp. ’Image Eng. Vis. Metrol. – volume: 93 year: 2022 ident: b0035 article-title: Determination of building flood risk maps from LiDAR mobile mapping data publication-title: Comput. Environ. Urban Syst. – volume: 119 start-page: 334 year: 2016 end-page: 346 ident: b0140 article-title: Slicing Method for curved facade and window extraction from point clouds publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 14 start-page: 1 year: 2020 ident: b0080 article-title: Window detection employing a global regularity level set from oblique unmanned aerial vehicle images and point clouds publication-title: J. Appl. Remote Sens. – volume: 35 start-page: 7726 year: 2014 end-page: 7748 ident: b0005 article-title: Automatic detection and feature estimation of windows in 3D urban point clouds exploiting facade symmetry and temporal correspondences publication-title: Int. J. Remote Sens. – volume: 13 start-page: 23 year: 2016 end-page: 43 ident: b0100 article-title: Obtaining structural descriptions of building facades publication-title: Comput. Sci. Inf. Syst. – volume: 35 start-page: 269 year: 2016 end-page: 278 ident: b0105 article-title: Automatic Modeling of Urban Facades from Raw LiDAR Point Data publication-title: Comput. Graph. Forum – volume: 78 start-page: 1129 year: 2012 end-page: 1140 ident: b0115 article-title: A method for detecting windows from mobile lidar data publication-title: Photogramm. Eng. Remote Sens. – volume: 42 start-page: 97 year: 2018 end-page: 103 ident: b0060 article-title: A sliding window method for detecting corners of openings from terrestrial LiDAr data. Int. Arch. Photogramm. Remote Sens publication-title: Spat. Inf. Sci. - ISPRS Arch. – volume: 3 start-page: 148 year: 2003 end-page: 156 ident: b0085 article-title: Adaptive Kernel Density Estimation publication-title: Stata J. Promot. Commun. Stat. Stata – volume: 143 start-page: 134 year: 2018 end-page: 149 ident: b0145 article-title: Three-dimensional building facade segmentation and opening area detection from point clouds publication-title: ISPRS J. Photogramm. Remote Sens. – volume: XLIII-B2-2 start-page: 277 year: 2021 end-page: 282 ident: b0150 article-title: Incremental Map Refinement of Building Information Using Lidar Point Clouds publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. – volume: 36 start-page: 12 year: 2007 end-page: 14 ident: b0065 article-title: Extracting windows from terrestrial laser scanning. Intl Arch publication-title: Photogramm. Remote Sens. Spat. Inf. Sci. – volume: 12 start-page: 1041 year: 2019 end-page: 1052 ident: b0120 article-title: Facade Separation in Ground-Based LiDAR Point Clouds Based on Edges and Windows publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 4 start-page: 365 year: 2019 end-page: 372 ident: b0050 article-title: PIECEWISE-planar approximation of large 3D data as graph-structured optimization publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. – volume: 137 start-page: 112 year: 2018 ident: 10.1016/j.jag.2022.102757_b0030 article-title: An efficient global energy optimization approach for robust 3D plane segmentation of point clouds publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.01.013 – volume: 3 start-page: 148 issue: 2 year: 2003 ident: 10.1016/j.jag.2022.102757_b0085 article-title: Adaptive Kernel Density Estimation publication-title: Stata J. Promot. Commun. Stat. Stata doi: 10.1177/1536867X0300300204 – volume: 36 start-page: 248 year: 2006 ident: 10.1016/j.jag.2022.102757_b0075 article-title: Segmentation of point clouds using smoothness constraint publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - Comm V Symp. ’Image Eng. Vis. Metrol. – volume: 7 start-page: 1 year: 2009 ident: 10.1016/j.jag.2022.102757_b0020 article-title: Automatic Extraction of Planar Clusters and Their Contours on Building Facades Recorded by Terrestrial Laser Scanner publication-title: Int. J. Archit. Comput. – volume: 13 start-page: 111 issue: 2 year: 1981 ident: 10.1016/j.jag.2022.102757_b0015 article-title: Generalizing the Hough transform to detect arbitrary shapes publication-title: Pattern Recognit. doi: 10.1016/0031-3203(81)90009-1 – volume: 36 start-page: 12 year: 2007 ident: 10.1016/j.jag.2022.102757_b0065 article-title: Extracting windows from terrestrial laser scanning. Intl Arch publication-title: Photogramm. Remote Sens. Spat. Inf. Sci. – volume: 78 start-page: 1129 issue: 11 year: 2012 ident: 10.1016/j.jag.2022.102757_b0115 article-title: A method for detecting windows from mobile lidar data publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.78.11.1129 – volume: 42 start-page: 339 year: 2017 ident: 10.1016/j.jag.2022.102757_b0045 article-title: A review of point clouds segmentation and classification algorithms. Int. Arch. Photogramm. Remote Sens publication-title: Spat. Inf. Sci. - ISPRS Arch. – volume: 35 start-page: 7726 year: 2014 ident: 10.1016/j.jag.2022.102757_b0005 article-title: Automatic detection and feature estimation of windows in 3D urban point clouds exploiting facade symmetry and temporal correspondences publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2014.975420 – volume: 24 start-page: 381 issue: 6 year: 1981 ident: 10.1016/j.jag.2022.102757_b0040 article-title: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography publication-title: Commun. ACM doi: 10.1145/358669.358692 – start-page: 4304 year: 2018 ident: 10.1016/j.jag.2022.102757_b0135 article-title: Extraction of building windows from mobile laser scanning point clouds – volume: 1–6 year: 2004 ident: 10.1016/j.jag.2022.102757_b0095 article-title: Recognising structure in laser scanner point clouds publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. – start-page: 58 year: 2011 ident: 10.1016/j.jag.2022.102757_b0110 article-title: Window detection from mobile LiDAR data – volume: 8 start-page: 38 issue: 4 year: 2020 ident: 10.1016/j.jag.2022.102757_b0125 article-title: Linking Points With Labels in 3D: A Review of Point Cloud Semantic Segmentation publication-title: IEEE Geosci. Remote Sens. doi: 10.1109/MGRS.2019.2937630 – volume: 14 start-page: 1 year: 2020 ident: 10.1016/j.jag.2022.102757_b0080 article-title: Window detection employing a global regularity level set from oblique unmanned aerial vehicle images and point clouds publication-title: J. Appl. Remote Sens. – volume: 117 start-page: 103206 year: 2020 ident: 10.1016/j.jag.2022.102757_b0130 article-title: Robust segmentation and localization of structural planes from photogrammetric point clouds in construction sites publication-title: Autom. Constr. doi: 10.1016/j.autcon.2020.103206 – volume: 35 start-page: 269 issue: 7 year: 2016 ident: 10.1016/j.jag.2022.102757_b0105 article-title: Automatic Modeling of Urban Facades from Raw LiDAR Point Data publication-title: Comput. Graph. Forum doi: 10.1111/cgf.13024 – volume: 89 start-page: 195 issue: 3 year: 2021 ident: 10.1016/j.jag.2022.102757_b0090 article-title: Classification and Change Detection in Mobile Mapping LiDAR Point Clouds. PFG - publication-title: J. Photogramm. Remote Sens. Geoinf. Sci. – volume: 36 start-page: W52 year: 2007 ident: 10.1016/j.jag.2022.102757_b0025 article-title: Automatic segmentation of building facades using Terrestrial Laser Data publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. – volume: 64 start-page: 575 issue: 6 year: 2009 ident: 10.1016/j.jag.2022.102757_b0070 article-title: Knowledge based reconstruction of building models from terrestrial laser scanning data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2009.04.001 – volume: 143 start-page: 134 year: 2018 ident: 10.1016/j.jag.2022.102757_b0145 article-title: Three-dimensional building facade segmentation and opening area detection from point clouds publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.04.004 – volume: XLIII-B2-2 start-page: 277 year: 2021 ident: 10.1016/j.jag.2022.102757_b0150 article-title: Incremental Map Refinement of Building Information Using Lidar Point Clouds publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprs-archives-XLIII-B2-2021-277-2021 – volume: 12 start-page: 1041 year: 2019 ident: 10.1016/j.jag.2022.102757_b0120 article-title: Facade Separation in Ground-Based LiDAR Point Clouds Based on Edges and Windows publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2019.2897987 – volume: 39 start-page: 6587 issue: 20 year: 2018 ident: 10.1016/j.jag.2022.102757_b0055 article-title: Slice-based building facade reconstruction from 3D point clouds publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2018.1463113 – volume: 42 start-page: 97 year: 2018 ident: 10.1016/j.jag.2022.102757_b0060 article-title: A sliding window method for detecting corners of openings from terrestrial LiDAr data. Int. Arch. Photogramm. Remote Sens publication-title: Spat. Inf. Sci. - ISPRS Arch. – volume: 13 start-page: 23 year: 2016 ident: 10.1016/j.jag.2022.102757_b0100 article-title: Obtaining structural descriptions of building facades publication-title: Comput. Sci. Inf. Syst. doi: 10.2298/CSIS150222062V – volume: 93 year: 2022 ident: 10.1016/j.jag.2022.102757_b0035 article-title: Determination of building flood risk maps from LiDAR mobile mapping data publication-title: Comput. Environ. Urban Syst. doi: 10.1016/j.compenvurbsys.2022.101759 – volume: 4 start-page: 365 year: 2019 ident: 10.1016/j.jag.2022.102757_b0050 article-title: PIECEWISE-planar approximation of large 3D data as graph-structured optimization publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprs-annals-IV-2-W5-365-2019 – volume: 48 year: 2021 ident: 10.1016/j.jag.2022.102757_b0010 article-title: Conception d’une base de données sur les bâtiments pour améliorer la connaissance des risques liés aux inondations publication-title: Géomatique – volume: 119 start-page: 334 year: 2016 ident: 10.1016/j.jag.2022.102757_b0140 article-title: Slicing Method for curved facade and window extraction from point clouds publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.06.011 |
SSID | ssj0017768 |
Score | 2.370329 |
Snippet | •An opening detection approach dedicated to houses in rural context without repetitive pattern.•A region growing method adaptive to point density to extract... Given the high frequency and major impact of flood events, decision-makers are in urgent need to have tools allowing them to predict or assess the impact of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 102757 |
SubjectTerms | data collection decision making inventories lidar Mobile LiDAR point cloud Opening detection Quebec Region growing segmentation risk assessment Rural building spatial data statistics |
Title | A method for automatic identification of openings in buildings facades based on mobile LiDAR point clouds for assessing impacts of floodings |
URI | https://dx.doi.org/10.1016/j.jag.2022.102757 https://www.proquest.com/docview/2675578670 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoXOgBtbSo9LEyUk9I0WYdP5LjagvatoAQLRI3y3bsKgiSVZP9F_zojh-hUCEOPSbyI_JMvpnxvBD6DEbPrGLEZQUlOqOO8ax0xicCgyWmuNAuONpPz_jykn67YlcbaDHmwviwyoT9EdMDWqc303Sa01XTTH8Ae4I2AHuQoEjwF2iLFBUH1t6af_2-PLt3JggRM-IYr7KSFmR0boYwr2v1C6xEQnwNA-GF1NPi6R-gDtLn-BXaSWojnscve402bLuLXj4oJriL9o7-5qzB0PTT9m_Q3RzHPtEYFFSs1kMXyrTipk6RQoE4uHPYt9LyN-e4abFO_bJ77JSPoe-xF3g1hpG3nQYswSfNl_kFXnVNO2Bz063rPm4Q3MgwE8cMzN6v7Hx8vF_tLbo8Pvq5WGapCUNm4HyHjBQasLQWJGdWw35gDzpmLGXCWeFqxYyaWVVZ51vQA3waYxk3ntT1TDtNiz202XatfYdw5VRRUlXpnJe0dLqqc1Exyg1VsLSo91E-nr00qUK5b5RxI8dQtGsJ5JKeXDKSax8d3k9ZxfIczw2mI0HlIx6TID6em3YwEl_Cv-cdKqq13bqXBKwtQDwu8vf_t_QHtO2fYiTQR7Q5_F7bT6DkDHoCTLy4ODmfJGaehMuCPw5w_qw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QE4oFKoaIFiJE5I0WYTP5LjqrTa0u0eoJV6s2zHRqlKsmqy_4IfzTh2ykNVD70m9jjy2N_MZF4An9DomZUsc0lOM51Qx3hSOOMTgdESU1xoNzjaz1d8cUm_XrGrLTgac2F8WGXE_oDpA1rHJ9O4m9N1XU-_4_FEbQDXyAZFgj-BbV-dik1ge356tljdOROECBlxjJdJQfNsdG4OYV7X6gdaiVnmaxgIL6TuF0__AfUgfU524EVUG8k8fNlL2LLNLjz_q5jgLuwd_8lZw6Hx0nav4NechD7RBBVUojZ9O5RpJXUVI4UG5pDWEd9Ky_85J3VDdOyX3RGnfAx9R7zAqwiO_NlqxBKyrL_Mv5F1Wzc9MTftpurCAoMbGWeSkIHZecrOx8d7aq_h8uT44miRxCYMicH97ZMs14illchSZjWuh_agY8ZSJpwVrlLMqJlVpXW-BT3CpzGWceNZXc200zTfg0nTNvYNkNKpvKCq1CkvaOF0WaWiZJQbqpC0qPYhHfdemlih3DfKuJFjKNq1RHZJzy4Z2LUPn--mrEN5jocG05Gh8p8zJlF8PDTt48h8iXfPO1RUY9tNJzO0thDxuEgPHkf6AzxdXJwv5fJ0dfYWnvk3ISroHUz62419jwpPrw_jgf4NGWP_CA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+for+automatic+identification+of+openings+in+buildings+facades+based+on+mobile+LiDAR+point+clouds+for+assessing+impacts+of+floodings&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Haghighatgou%2C+Niloufar&rft.au=Daniel%2C+Sylvie&rft.au=Badard%2C+Thierry&rft.date=2022-04-01&rft.issn=1569-8432&rft.volume=108&rft.spage=102757&rft_id=info:doi/10.1016%2Fj.jag.2022.102757&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jag_2022_102757 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon |