Triple pendulum model involving fractional derivatives with different kernels

The aim of this work is to study the non-local dynamic behavior of triple pendulum-type systems. We use the Euler-Lagrange and the Hamiltonian formalisms to obtain the dynamic models, based on the Riemann-Liouville, Liouville-Caputo, Caputo-Fabrizio and Atangana-Baleanu-Caputo fractional derivative...

Full description

Saved in:
Bibliographic Details
Published inChaos, solitons and fractals Vol. 91; pp. 248 - 261
Main Authors Coronel-Escamilla, A., Gómez-Aguilar, J.F., López-López, M.G., Alvarado-Martínez, V.M., Guerrero-Ramírez, G.V.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The aim of this work is to study the non-local dynamic behavior of triple pendulum-type systems. We use the Euler-Lagrange and the Hamiltonian formalisms to obtain the dynamic models, based on the Riemann-Liouville, Liouville-Caputo, Caputo-Fabrizio and Atangana-Baleanu-Caputo fractional derivative definitions. In these representations, an auxiliary parameter σ is introduced, to define the equations in a fractal temporal geometry, which provides an entire new family of solutions for the dynamic behavior of the pendulum-type systems. The phase diagrams allow to visualize the effect of considering the fractional order approach, the classical behavior is recovered when the order of the fractional derivative is 1.
ISSN:0960-0779
1873-2887
DOI:10.1016/j.chaos.2016.06.007