Transmission dynamics of varicella zoster virus modeled by classical and novel fractional operators using real statistical data
This study proposes a new epidemiological fractional order mathematical model called MSEIR (Maternally-derived immunity, Susceptible, Exposed, Infectious, and Recovered) using three most widely used operators, namely, the classical Caputo, the Caputo–Fabrizio (CF) and the Atangana–Baleanu–Caputo (AB...
Saved in:
Published in | Physica A Vol. 534; p. 122149 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study proposes a new epidemiological fractional order mathematical model called MSEIR (Maternally-derived immunity, Susceptible, Exposed, Infectious, and Recovered) using three most widely used operators, namely, the classical Caputo, the Caputo–Fabrizio (CF) and the Atangana–Baleanu–Caputo (ABC). During the process of fractionalization of the classical model, the dimensional consistency has been taken care of and the experimental data (for 20 weeks) available in literature for the chickenpox outbreak in 2014 among school children of the Shenzhen city of China has been employed in order to validate the fractional order model. The use of fixed point theory helps to prove the existence and the uniqueness for the solutions of each fractional order model under consideration. It is also proved that the model possesses a positively invariant region for a positive hyper-octant R+4. For the fractional models, disease free and endemic equilibria are found while computing basic reproduction number R0 which helps to determine local asymptotic stability for the steady states. Furthermore, three numerical methods recently made available in literature are used to carry out the numerical simulations for each operator under consideration. An interesting feature called the norm is obtained based upon the statistical data in which the parameter for the transmission rate (β) of the epidemic and the fractional-order parameters (λ,μ,ρ) in the models are obtained via least squares technique of optimization revealing the highest rate of performance for the ABC fractional operator.
•New fractional epidemiological models under Caputo, CFC and ABC are proposed.•Real statistical data are used to support the analysis.•Existence and uniqueness for the solutions of models are thoroughly investigated.•Steady states, positivity, and boundedness of the models’ solution are discussed.•Least squares approach is employed to show the model with better performance. |
---|---|
AbstractList | This study proposes a new epidemiological fractional order mathematical model called MSEIR (Maternally-derived immunity, Susceptible, Exposed, Infectious, and Recovered) using three most widely used operators, namely, the classical Caputo, the Caputo–Fabrizio (CF) and the Atangana–Baleanu–Caputo (ABC). During the process of fractionalization of the classical model, the dimensional consistency has been taken care of and the experimental data (for 20 weeks) available in literature for the chickenpox outbreak in 2014 among school children of the Shenzhen city of China has been employed in order to validate the fractional order model. The use of fixed point theory helps to prove the existence and the uniqueness for the solutions of each fractional order model under consideration. It is also proved that the model possesses a positively invariant region for a positive hyper-octant R+4. For the fractional models, disease free and endemic equilibria are found while computing basic reproduction number R0 which helps to determine local asymptotic stability for the steady states. Furthermore, three numerical methods recently made available in literature are used to carry out the numerical simulations for each operator under consideration. An interesting feature called the norm is obtained based upon the statistical data in which the parameter for the transmission rate (β) of the epidemic and the fractional-order parameters (λ,μ,ρ) in the models are obtained via least squares technique of optimization revealing the highest rate of performance for the ABC fractional operator.
•New fractional epidemiological models under Caputo, CFC and ABC are proposed.•Real statistical data are used to support the analysis.•Existence and uniqueness for the solutions of models are thoroughly investigated.•Steady states, positivity, and boundedness of the models’ solution are discussed.•Least squares approach is employed to show the model with better performance. |
ArticleNumber | 122149 |
Author | Qureshi, Sania Inc, Mustafa Shaikh, Asif Ali Yusuf, Abdullahi |
Author_xml | – sequence: 1 givenname: Sania surname: Qureshi fullname: Qureshi, Sania email: sania.qureshi@faculty.muet.edu.pk organization: Department of Basic Sciences and Related Studies, Mehran University of Engineering and Technology, 76062, Jamshoro, Pakistan – sequence: 2 givenname: Abdullahi surname: Yusuf fullname: Yusuf, Abdullahi email: yusufabdullahi@fud.edu.ng organization: Firat University, Science Faculty, Department of Mathematics, 23119 Elazig, Turkey – sequence: 3 givenname: Asif Ali surname: Shaikh fullname: Shaikh, Asif Ali email: asif.shaikh@faculty.muet.edu.pk organization: Department of Basic Sciences and Related Studies, Mehran University of Engineering and Technology, 76062, Jamshoro, Pakistan – sequence: 4 givenname: Mustafa surname: Inc fullname: Inc, Mustafa email: minc@firat.edu.tr organization: Firat University, Science Faculty, Department of Mathematics, 23119 Elazig, Turkey |
BookMark | eNqFkMFuEzEQhq2qSE0LT9CLX2CDx17W8YEDqoAiVeJSztZgz1JHGzvyuJHChVfHaThxAM1hRr_0jfR_1-Iyl0xC3IJag4Lp7Xa9fzoyrrUCtwatYXQXYgUbawYN4C7FShm7GUZj4UpcM2-VUmCNXolfjxUz7xJzKlnGY8ZdCizLLA9YU6BlQfmzcKMqD6k-s9yVSAtF-f0ow4IdC7hIzFHmcqBFzhVD6696WPZUsZXK8plT_iEr9ZAbtsTthYrY8LV4NePC9ObPvhHfPn18vLsfHr5-_nL34WEIRpk2gCXnbNCTmfUmRHTaQq8QVZ93Y69L2hicTIwmAPXTGTs5mHAkSzOM5kaY899QC3Ol2e9r2mE9elD-5NBv_YtDf3Lozw475f6iQjoVKLlVTMt_2PdnlnqtQ6LqOSTKgWKqFJqPJf2T_w3NNJOW |
CitedBy_id | crossref_primary_10_1016_j_rico_2023_100277 crossref_primary_10_1016_j_rico_2024_100431 crossref_primary_10_1140_epjs_s11734_022_00455_3 crossref_primary_10_1140_epjp_s13360_021_01159_8 crossref_primary_10_1140_epjp_s13360_020_00133_0 crossref_primary_10_1155_2022_8785197 crossref_primary_10_1115_1_4054347 crossref_primary_10_3390_math10071125 crossref_primary_10_1002_mma_6432 crossref_primary_10_1016_j_chaos_2020_109744 crossref_primary_10_1140_epjs_s11734_024_01208_0 crossref_primary_10_3390_fractalfract6090500 crossref_primary_10_1016_j_apnum_2022_12_004 crossref_primary_10_1007_s13540_023_00231_7 crossref_primary_10_3390_su15065306 crossref_primary_10_1016_j_aej_2020_09_047 crossref_primary_10_1016_j_chaos_2020_109878 crossref_primary_10_1016_j_joes_2022_02_010 crossref_primary_10_1016_j_rinp_2022_105555 crossref_primary_10_1155_2021_5516392 crossref_primary_10_1016_j_chaos_2019_109478 crossref_primary_10_1155_2021_5225019 crossref_primary_10_1016_j_chaos_2019_109552 crossref_primary_10_1016_j_chaos_2021_111605 crossref_primary_10_1016_j_rinp_2020_103776 crossref_primary_10_1016_j_health_2024_100302 crossref_primary_10_1016_j_padiff_2024_100807 crossref_primary_10_53391_mmnsa_1274004 crossref_primary_10_1016_j_chaos_2020_110564 crossref_primary_10_1007_s42967_021_00177_8 crossref_primary_10_1177_1687814019896962 crossref_primary_10_1088_1742_6596_1722_1_012034 crossref_primary_10_3390_en15166082 crossref_primary_10_11121_ijocta_1464 crossref_primary_10_3390_vaccines10111846 crossref_primary_10_1016_j_health_2023_100266 crossref_primary_10_1016_j_aej_2024_03_061 crossref_primary_10_1155_2021_9915551 crossref_primary_10_1155_2022_9174488 crossref_primary_10_1002_mma_6614 crossref_primary_10_1155_2020_1352982 crossref_primary_10_1007_s40819_021_01034_1 crossref_primary_10_1007_s13370_024_01226_0 crossref_primary_10_1016_j_physa_2019_123942 crossref_primary_10_1140_epjp_i2019_13003_7 crossref_primary_10_1016_j_matcom_2023_11_014 crossref_primary_10_1038_s41598_024_73983_8 crossref_primary_10_1016_j_aej_2021_01_041 crossref_primary_10_1088_1402_4896_ac13e0 crossref_primary_10_1186_s13662_020_02698_7 crossref_primary_10_3934_math_2023180 crossref_primary_10_1016_j_chaos_2019_109532 crossref_primary_10_1063_5_0010057 crossref_primary_10_1140_epjs_s11734_022_00437_5 |
Cites_doi | 10.1016/j.jksus.2012.01.003 10.1063/1.5074084 10.1016/j.rinp.2018.01.040 10.1007/s00521-015-1860-9 10.1016/j.camwa.2016.11.032 10.1080/09205071.2018.1445039 10.1108/HFF-07-2016-0278 10.1016/j.chaos.2019.04.020 10.1007/s11071-012-0475-2 10.1016/j.chaos.2018.10.006 10.1016/j.cam.2015.12.005 10.7566/JPSJ.82.044004 10.3390/math7040374 10.1002/cta.2348 10.1016/j.chaos.2018.06.009 10.1016/j.chaos.2018.10.013 10.17654/DE019030275 10.1016/j.vaccine.2007.07.036 10.1016/j.ijleo.2018.12.064 10.2298/TSCI160111018A 10.1515/ijnsns-2017-0267 10.1002/num.22209 10.1016/j.chaos.2019.03.020 10.1016/j.jcp.2014.09.034 10.1016/j.chaos.2018.12.003 10.1016/j.jcp.2014.08.004 10.1140/epjp/i2019-12661-7 10.1051/mmnp/2018074 10.1128/JCM.01806-08 10.1137/S0036144500371907 10.1016/j.cnsns.2018.04.019 10.1140/epjp/i2019-12442-4 10.1016/j.ijleo.2018.08.007 10.1371/journal.pone.0177514 10.1016/j.physa.2019.121127 10.1063/1.5082907 10.1002/num.22236 10.1097/INF.0b013e3181d7380e 10.1142/S0217984918503177 10.1007/s00521-016-2484-4 10.1515/nleng-2018-0033 10.1111/j.1601-5223.1963.tb01891.x |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.physa.2019.122149 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1873-2119 |
ExternalDocumentID | 10_1016_j_physa_2019_122149 S0378437119312488 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAPFB AAXUO ABAOU ABMAC ABNEU ABYKQ ACAZW ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE ADFHU ADGUI AEBSH AEKER AEYQN AFFNX AFKWA AFTJW AGHFR AGTHC AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIIAU AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR AXLSJ BKOJK BLXMC EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IXIXF J1W K-O KOM M38 M41 MHUIS MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSB SSF SSQ SSW SSZ T5K TN5 TWZ WH7 XPP YNT ZMT ~02 ~G- 29O 5VS 6TJ AAFFL AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACNNM ACROA ACRPL ADMUD ADNMO ADVLN AEIPS AFJKZ AFODL AFXIZ AGCQF AGQPQ AGRNS AIIUN AJWLA ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BEHZQ BEZPJ BGSCR BNPGV BNTGB BPUDD BULVW BZJEE CITATION FEDTE FGOYB HMV HVGLF HZ~ MVM NDZJH R2- SEW SPG SSH VOH WUQ XJT XOL YYP ZY4 |
ID | FETCH-LOGICAL-c303t-17e997c263f28cda9271001d0d0d54149e233a63dd3c1e33a9376916a4e7ef143 |
IEDL.DBID | .~1 |
ISSN | 0378-4371 |
IngestDate | Tue Jul 01 01:32:14 EDT 2025 Thu Apr 24 22:51:54 EDT 2025 Fri Feb 23 02:47:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Reproductive number Numerical simulations Caputo Positivity Steady states |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-17e997c263f28cda9271001d0d0d54149e233a63dd3c1e33a9376916a4e7ef143 |
ParticipantIDs | crossref_primary_10_1016_j_physa_2019_122149 crossref_citationtrail_10_1016_j_physa_2019_122149 elsevier_sciencedirect_doi_10_1016_j_physa_2019_122149 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-15 |
PublicationDateYYYYMMDD | 2019-11-15 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Physica A |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Vigo-Aguiar, Higinio, Carmelo (b59) 2017; 318 Petráš (b49) 2011 Aliya, Shaikh, Qureshi (b58) 2018; 19 Arqub, Maayah (b35) 2018; 29 Diethelm (b50) 2010 Fu, Wang, Liang, Xu, Wang, Bialek (b3) 2010; 29 Osman, Ghanbari, Machado (b38) 2019; 134 Baleanu, Jajarmi, Hajipour (b56) 2018 Xu, Wang, Xie (b4) 2005; 3 Atangana, Bildik (b9) 2013 Atangana, Qureshi (b23) 2019; 123 Qureshi, Higinio (b57) 2018; 19 Abu Arqub (b21) 2018; 28 Taylor, Lay (b52) 1980 Osman, Abdel-Gawad, El Mahdy (b36) 2018; 8 Osman, Machado (b37) 2018; 32 Tang, Zhao, Chiu, Ma, Xie, Mei, …, He (b8) 2017; 12 Osman (b41) 2019 Arqub, El-Ajou (b34) 2013; 25 Uçar, Uçar, Özdemir, Hammouch (b28) 2019; 118 Nardone, De Ory, Carton, Cohen, Van Damme, Davidkin, Tischer (b5) 2007; 25 Caputo, Fabrizio (b46) 2015; 1 Rezazadeh, Osman, Eslami, Mirzazadeh, Zhou, Badri, Korkmaz (b40) 2019; 8 Chapra, Canale (b53) 2010 Tariq, Younis, Rezazadeh, Rizvi, Osman (b31) 2018; 32 Qureshi, Yusuf, Shaikh, Inc, Baleanu (b22) 2019; 29 Abdel-Gawad, Elazab, Osman (b42) 2013; 82 Liu, Wang, Gan, Yang, Chen (b2) 2009; 47 Qureshi, Yusuf (b27) 2019; 134 Arqub, El-Ajou, Momani (b16) 2015; 293 Li, Zeng (b54) 2015 Abu Arqub, Al-Smadi (b15) 2018; 117 Jarad, Abdeljawad, Hammouch (b30) 2018; 117 Podlubny (b45) 1998 Ding, Osman, Wazwaz (b32) 2019; 181 Hethcote (b7) 2000; 42 Jajarmi, Baleanu (b55) 2018; 113 Abu Arqub (b17) 2018; 34 Gómez-Aguilar, Atangana, Morales-Delgado (b14) 2017; 45 Osman, Ghanbari (b33) 2018; 175 Qureshi, Yusuf (b10) 2019; 122 Abu Arqub, AlSmadi (b19) 2018; 34 Zeidler (b51) 1986 Atangana (b12) 2015; 26 Singh, Kumar, Hammouch, Atangana (b29) 2018; 316 Qureshi, Rangaig, Baleanu (b39) 2019; 7 Abu Arqub (b24) 2017; 73 Qureshi, Atangana (b20) 2019; 526 Atangana, Baleanu (b48) 2016; 20 Ya-ni (b6) 2006; 7 Losada, Nieto (b47) 2015; 1 Almeida, da Cruz, Martins, Monteiro (b44) 2018 Ullah, Khan, Farooq, Hammouch, Baleanu (b25) 2019; 1 Khan, Hammouch, Baleanu (b26) 2019; 14 Yusuf, Qureshi, Inc, Aliyu, Baleanu, Shaikh (b18) 2018; 28 El-Ajou, Arqub, Momani (b13) 2015; 293 Sun, Zhang, Baleanu, Chen, Chen (b11) 2018 Aula (b1) 1963; 49 Diethelm (b43) 2013; 71 Atangana (10.1016/j.physa.2019.122149_b12) 2015; 26 Osman (10.1016/j.physa.2019.122149_b38) 2019; 134 Diethelm (10.1016/j.physa.2019.122149_b43) 2013; 71 Arqub (10.1016/j.physa.2019.122149_b16) 2015; 293 Tariq (10.1016/j.physa.2019.122149_b31) 2018; 32 Qureshi (10.1016/j.physa.2019.122149_b27) 2019; 134 Nardone (10.1016/j.physa.2019.122149_b5) 2007; 25 Arqub (10.1016/j.physa.2019.122149_b34) 2013; 25 El-Ajou (10.1016/j.physa.2019.122149_b13) 2015; 293 Qureshi (10.1016/j.physa.2019.122149_b39) 2019; 7 Abdel-Gawad (10.1016/j.physa.2019.122149_b42) 2013; 82 Tang (10.1016/j.physa.2019.122149_b8) 2017; 12 Zeidler (10.1016/j.physa.2019.122149_b51) 1986 Almeida (10.1016/j.physa.2019.122149_b44) 2018 Vigo-Aguiar (10.1016/j.physa.2019.122149_b59) 2017; 318 Hethcote (10.1016/j.physa.2019.122149_b7) 2000; 42 Osman (10.1016/j.physa.2019.122149_b37) 2018; 32 Liu (10.1016/j.physa.2019.122149_b2) 2009; 47 Taylor (10.1016/j.physa.2019.122149_b52) 1980 Abu Arqub (10.1016/j.physa.2019.122149_b15) 2018; 117 Osman (10.1016/j.physa.2019.122149_b33) 2018; 175 Abu Arqub (10.1016/j.physa.2019.122149_b24) 2017; 73 Abu Arqub (10.1016/j.physa.2019.122149_b17) 2018; 34 Qureshi (10.1016/j.physa.2019.122149_b22) 2019; 29 Rezazadeh (10.1016/j.physa.2019.122149_b40) 2019; 8 Uçar (10.1016/j.physa.2019.122149_b28) 2019; 118 Abu Arqub (10.1016/j.physa.2019.122149_b21) 2018; 28 Atangana (10.1016/j.physa.2019.122149_b9) 2013 Yusuf (10.1016/j.physa.2019.122149_b18) 2018; 28 Jarad (10.1016/j.physa.2019.122149_b30) 2018; 117 Baleanu (10.1016/j.physa.2019.122149_b56) 2018 Podlubny (10.1016/j.physa.2019.122149_b45) 1998 Qureshi (10.1016/j.physa.2019.122149_b10) 2019; 122 Arqub (10.1016/j.physa.2019.122149_b35) 2018; 29 Losada (10.1016/j.physa.2019.122149_b47) 2015; 1 Qureshi (10.1016/j.physa.2019.122149_b20) 2019; 526 Khan (10.1016/j.physa.2019.122149_b26) 2019; 14 Atangana (10.1016/j.physa.2019.122149_b23) 2019; 123 Ullah (10.1016/j.physa.2019.122149_b25) 2019; 1 Sun (10.1016/j.physa.2019.122149_b11) 2018 Atangana (10.1016/j.physa.2019.122149_b48) 2016; 20 Petráš (10.1016/j.physa.2019.122149_b49) 2011 Li (10.1016/j.physa.2019.122149_b54) 2015 Caputo (10.1016/j.physa.2019.122149_b46) 2015; 1 Aula (10.1016/j.physa.2019.122149_b1) 1963; 49 Xu (10.1016/j.physa.2019.122149_b4) 2005; 3 Aliya (10.1016/j.physa.2019.122149_b58) 2018; 19 Ding (10.1016/j.physa.2019.122149_b32) 2019; 181 Gómez-Aguilar (10.1016/j.physa.2019.122149_b14) 2017; 45 Osman (10.1016/j.physa.2019.122149_b41) 2019 Diethelm (10.1016/j.physa.2019.122149_b50) 2010 Ya-ni (10.1016/j.physa.2019.122149_b6) 2006; 7 Fu (10.1016/j.physa.2019.122149_b3) 2010; 29 Singh (10.1016/j.physa.2019.122149_b29) 2018; 316 Qureshi (10.1016/j.physa.2019.122149_b57) 2018; 19 Abu Arqub (10.1016/j.physa.2019.122149_b19) 2018; 34 Chapra (10.1016/j.physa.2019.122149_b53) 2010 Osman (10.1016/j.physa.2019.122149_b36) 2018; 8 Jajarmi (10.1016/j.physa.2019.122149_b55) 2018; 113 |
References_xml | – year: 2011 ident: b49 article-title: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation – volume: 1 start-page: 87 year: 2015 end-page: 92 ident: b47 article-title: Properties of a new fractional derivative without singular kernel publication-title: Progr. Fract. Differ. Appl. – volume: 293 start-page: 81 year: 2015 end-page: 95 ident: b13 article-title: Approximate analytical solution of the nonlinear fractional KdV–Burgers equation: a new iterative algorithm publication-title: J. Comput. Phys. – volume: 42 start-page: 599 year: 2000 end-page: 653 ident: b7 article-title: The mathematics of infectious diseases publication-title: SIAM Rev. – volume: 3 start-page: 034 year: 2005 ident: b4 article-title: Strategy on varicella vaccine and its immunization publication-title: Chin. J. Vaccines Immunization – volume: 113 start-page: 221 year: 2018 end-page: 229 ident: b55 article-title: A new fractional analysis on the interaction of HIV with CD4+ T-cells publication-title: Chaos Solitons Fractals – volume: 49 start-page: 451 year: 1963 end-page: 453 ident: b1 article-title: Chromosome breaks in leukocytes of chickenpox patients. Preliminary communication publication-title: Hereditas – volume: 14 start-page: 311 year: 2019 ident: b26 article-title: Modeling the dynamics of hepatitis E via the Caputo–Fabrizio derivative publication-title: Math. Model. Nat. Phenom. – volume: 117 start-page: 16 year: 2018 end-page: 20 ident: b30 article-title: On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative publication-title: Chaos Solitons Fractals – volume: 28 start-page: 828 year: 2018 end-page: 856 ident: b21 article-title: Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm publication-title: Internat. J. Numer. Methods Heat Fluid Flow – volume: 8 start-page: 224 year: 2019 end-page: 230 ident: b40 article-title: Hyperbolic rational solutions to a variety of conformable fractional Boussinesq-Like equations publication-title: Nonlinear Eng. – start-page: 1 year: 2018 end-page: 18 ident: b56 article-title: On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag–Leffler kernel publication-title: Nonlinear Dynam. – volume: 1 start-page: 73 year: 2015 end-page: 85 ident: b46 article-title: A new definition of fractional derivative without singular kernel publication-title: Prog. Fract. Differ. Appl. – volume: 293 start-page: 385 year: 2015 end-page: 399 ident: b16 article-title: Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations publication-title: J. Comput. Phys. – volume: 45 start-page: 1514 year: 2017 end-page: 1533 ident: b14 article-title: Electrical circuits RC, LC, and RL described by Atangana–Baleanu fractional derivatives publication-title: Int. J. Circuit Theory Appl. – volume: 123 start-page: 320 year: 2019 end-page: 337 ident: b23 article-title: Modeling attractors of chaotic dynamical systems with fractal–fractional operators publication-title: Chaos Solitons Fractals – volume: 29 year: 2019 ident: b22 article-title: Fractional modeling of blood ethanol concentration system with real data application publication-title: Chaos – volume: 25 start-page: 73 year: 2013 end-page: 81 ident: b34 article-title: Solution of the fractional epidemic model by homotopy analysis method publication-title: J. King Saud Univ.-Sci. – volume: 7 start-page: 374 year: 2019 ident: b39 article-title: New numerical aspects of Caputo-Fabrizio fractional derivative operator publication-title: Mathematics – volume: 20 start-page: 763 year: 2016 end-page: 769 ident: b48 article-title: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model publication-title: Therm. Sci. – volume: 8 start-page: 1054 year: 2018 end-page: 1060 ident: b36 article-title: Two-layer-atmospheric blocking in a medium with high nonlinearity and lateral dispersion publication-title: Results Phys. – volume: 318 start-page: 599 year: 2017 end-page: 603 ident: b59 article-title: A first approach in solving initial-value problems in ODEs by elliptic fitting methods publication-title: J. Comput. Appl. Math. – volume: 28 year: 2018 ident: b18 article-title: Two-strain epidemic model involving fractional derivative with Mittag-Leffler kernel publication-title: Chaos – volume: 1 start-page: 1 year: 2019 end-page: 27 ident: b25 article-title: A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative publication-title: Discrete Contin. Dyn. Syst. S – volume: 71 start-page: 613 year: 2013 end-page: 619 ident: b43 article-title: A fractional calculus based model for the simulation of an outbreak of dengue fever publication-title: Nonlinear Dynam. – year: 2013 ident: b9 article-title: Approximate solution of tuberculosis disease population dynamics model publication-title: Abstract and Applied Analysis (Vol. 2013) – year: 2015 ident: b54 article-title: Numerical Methods for Fractional Calculus – volume: 117 start-page: 161 year: 2018 end-page: 167 ident: b15 article-title: Atangana–Baleanu fractional approach to the solutions of Bagley–Torvik and Painlevé equations in Hilbert space publication-title: Chaos Solitons Fractals – volume: 47 start-page: 1418 year: 2009 end-page: 1423 ident: b2 article-title: Genotyping of clinical varicella-zoster virus isolates collected in China publication-title: J. Clin. Microbiol. – year: 2018 ident: b11 article-title: A new collection of real world applications of fractional calculus in science and engineering publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 34 start-page: 1577 year: 2018 end-page: 1597 ident: b19 article-title: Numerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions publication-title: Numer. Methods Partial Differential Equations – volume: 12 start-page: 1 year: 2017 end-page: 17 ident: b8 article-title: Modelling the transmission and control strategies of varicella among school children in Shenzhen, China publication-title: PLoS One – start-page: 1 year: 2018 end-page: 9 ident: b44 article-title: An epidemiological MSEIR model described by the Caputo fractional derivative publication-title: Int. J. Dyn. Control – volume: 32 start-page: 1457 year: 2018 end-page: 1464 ident: b37 article-title: The dynamical behavior of mixed-type soliton solutions described by (2+ 1)-dimensional Bogoyavlensky–Konopelchenko equation with variable coefficients publication-title: J. Electromagn. Waves Appl. – year: 2010 ident: b50 article-title: The Analysis of Fractional Differential Equation – volume: 175 start-page: 328 year: 2018 end-page: 333 ident: b33 article-title: New optical solitary wave solutions of Fokas-Lenells equation in presence of perturbation terms by a novel approach publication-title: Optik – year: 1986 ident: b51 article-title: Non-Linear Functional Analysis and Its Application – volume: 32 year: 2018 ident: b31 article-title: Optical solitons with quadratic–cubic nonlinearity and fractional temporal evolution publication-title: Modern Phys. Lett. B – volume: 526 year: 2019 ident: b20 article-title: Mathematical analysis of dengue fever outbreak by novel fractional operators with field data publication-title: Physica A – volume: 7 start-page: 022 year: 2006 ident: b6 article-title: Seroepidemiological survey of prevalence of varicella-zoster virus in healthy population in Shenzhen City publication-title: China Tropical Med. – volume: 73 start-page: 1243 year: 2017 end-page: 1261 ident: b24 article-title: Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and neumann boundary conditions publication-title: Comput. Math. Appl. – volume: 19 start-page: 275 year: 2018 end-page: 285 ident: b58 article-title: Development of a nonlinear hybrid numerical method publication-title: Adv. Differential Equations Control Process. – volume: 122 start-page: 111 year: 2019 end-page: 118 ident: b10 article-title: Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu publication-title: Chaos Solitons Fractals – volume: 26 start-page: 1895 year: 2015 end-page: 1903 ident: b12 article-title: A novel model for the lassa hemorrhagic fever: deathly disease for pregnant women publication-title: Neural Comput. Appl. – volume: 316 start-page: 504 year: 2018 end-page: 515 ident: b29 article-title: A fractional epidemiological model for computer viruses pertaining to a new fractional derivative publication-title: Appl. Math. Comput. – volume: 25 start-page: 7866 year: 2007 end-page: 7872 ident: b5 article-title: The comparative sero-epidemiology of varicella zoster virus in 11 countries in the European region publication-title: Vaccine – volume: 19 start-page: 741 year: 2018 end-page: 751 ident: b57 article-title: L-stable explicit nonlinear method with constant and variable step-size formulation for solving initial value problems publication-title: Int. J. Nonlinear Sci. Numer. Simul. – volume: 29 start-page: 690 year: 2010 end-page: 693 ident: b3 article-title: The effectiveness of varicella vaccine in China publication-title: Pediatric Infec. Dis. J. – volume: 181 start-page: 503 year: 2019 end-page: 513 ident: b32 article-title: Abundant complex wave solutions for the nonautonomous Fokas–Lenells equation in presence of perturbation terms publication-title: Optik – volume: 82 year: 2013 ident: b42 article-title: Exact solutions of space dependent Korteweg–de Vries equation by the extended unified method publication-title: J. Phys. Soc. Japan – volume: 34 start-page: 1759 year: 2018 end-page: 1780 ident: b17 article-title: Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space publication-title: Numer. Methods Partial Differential Equations – year: 1980 ident: b52 article-title: Introduction to Functional Analysis – year: 2010 ident: b53 article-title: Numerical Methods for Engineers – start-page: 1 year: 2019 end-page: 6 ident: b41 article-title: One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada–Kotera equation publication-title: Nonlinear Dynam. – volume: 118 start-page: 300 year: 2019 end-page: 306 ident: b28 article-title: Mathematical analysis and numerical simulation for a smoking model with Atangana–Baleanu derivative publication-title: Chaos Solitons Fractals – year: 1998 ident: b45 article-title: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications (Vol. 198) – volume: 29 start-page: 1465 year: 2018 end-page: 1479 ident: b35 article-title: Solutions of Bagley–Torvik and Painlevé Equations of fractional order using iterative reproducing kernel algorithm with error estimates publication-title: Neural Comput. Appl. – volume: 134 start-page: 20 year: 2019 ident: b38 article-title: New complex waves in nonlinear optics based on the complex Ginzburg-Landau equation with Kerr law nonlinearity publication-title: Eur. Phys. J. Plus – volume: 134 start-page: 171 year: 2019 ident: b27 article-title: Fractional derivatives applied to MSEIR problems: Comparative study with real world data publication-title: Eur. Phys. J. Plus – volume: 1 start-page: 1 year: 2019 ident: 10.1016/j.physa.2019.122149_b25 article-title: A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative publication-title: Discrete Contin. Dyn. Syst. S – volume: 25 start-page: 73 issue: 1 year: 2013 ident: 10.1016/j.physa.2019.122149_b34 article-title: Solution of the fractional epidemic model by homotopy analysis method publication-title: J. King Saud Univ.-Sci. doi: 10.1016/j.jksus.2012.01.003 – volume: 28 issue: 12 year: 2018 ident: 10.1016/j.physa.2019.122149_b18 article-title: Two-strain epidemic model involving fractional derivative with Mittag-Leffler kernel publication-title: Chaos doi: 10.1063/1.5074084 – volume: 8 start-page: 1054 year: 2018 ident: 10.1016/j.physa.2019.122149_b36 article-title: Two-layer-atmospheric blocking in a medium with high nonlinearity and lateral dispersion publication-title: Results Phys. doi: 10.1016/j.rinp.2018.01.040 – year: 1998 ident: 10.1016/j.physa.2019.122149_b45 – volume: 26 start-page: 1895 issue: 8 year: 2015 ident: 10.1016/j.physa.2019.122149_b12 article-title: A novel model for the lassa hemorrhagic fever: deathly disease for pregnant women publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1860-9 – volume: 73 start-page: 1243 year: 2017 ident: 10.1016/j.physa.2019.122149_b24 article-title: Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and neumann boundary conditions publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2016.11.032 – volume: 32 start-page: 1457 issue: 11 year: 2018 ident: 10.1016/j.physa.2019.122149_b37 article-title: The dynamical behavior of mixed-type soliton solutions described by (2+ 1)-dimensional Bogoyavlensky–Konopelchenko equation with variable coefficients publication-title: J. Electromagn. Waves Appl. doi: 10.1080/09205071.2018.1445039 – volume: 28 start-page: 828 issue: 4 year: 2018 ident: 10.1016/j.physa.2019.122149_b21 article-title: Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm publication-title: Internat. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-07-2016-0278 – volume: 123 start-page: 320 year: 2019 ident: 10.1016/j.physa.2019.122149_b23 article-title: Modeling attractors of chaotic dynamical systems with fractal–fractional operators publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2019.04.020 – volume: 71 start-page: 613 issue: 4 year: 2013 ident: 10.1016/j.physa.2019.122149_b43 article-title: A fractional calculus based model for the simulation of an outbreak of dengue fever publication-title: Nonlinear Dynam. doi: 10.1007/s11071-012-0475-2 – volume: 117 start-page: 16 year: 2018 ident: 10.1016/j.physa.2019.122149_b30 article-title: On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2018.10.006 – volume: 318 start-page: 599 year: 2017 ident: 10.1016/j.physa.2019.122149_b59 article-title: A first approach in solving initial-value problems in ODEs by elliptic fitting methods publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2015.12.005 – volume: 316 start-page: 504 year: 2018 ident: 10.1016/j.physa.2019.122149_b29 article-title: A fractional epidemiological model for computer viruses pertaining to a new fractional derivative publication-title: Appl. Math. Comput. – volume: 82 issue: 4 year: 2013 ident: 10.1016/j.physa.2019.122149_b42 article-title: Exact solutions of space dependent Korteweg–de Vries equation by the extended unified method publication-title: J. Phys. Soc. Japan doi: 10.7566/JPSJ.82.044004 – year: 1980 ident: 10.1016/j.physa.2019.122149_b52 – volume: 7 start-page: 374 issue: 4 year: 2019 ident: 10.1016/j.physa.2019.122149_b39 article-title: New numerical aspects of Caputo-Fabrizio fractional derivative operator publication-title: Mathematics doi: 10.3390/math7040374 – volume: 1 start-page: 73 issue: 2 year: 2015 ident: 10.1016/j.physa.2019.122149_b46 article-title: A new definition of fractional derivative without singular kernel publication-title: Prog. Fract. Differ. Appl. – year: 2010 ident: 10.1016/j.physa.2019.122149_b53 – year: 2015 ident: 10.1016/j.physa.2019.122149_b54 – start-page: 1 year: 2019 ident: 10.1016/j.physa.2019.122149_b41 article-title: One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada–Kotera equation publication-title: Nonlinear Dynam. – volume: 45 start-page: 1514 issue: 11 year: 2017 ident: 10.1016/j.physa.2019.122149_b14 article-title: Electrical circuits RC, LC, and RL described by Atangana–Baleanu fractional derivatives publication-title: Int. J. Circuit Theory Appl. doi: 10.1002/cta.2348 – volume: 113 start-page: 221 year: 2018 ident: 10.1016/j.physa.2019.122149_b55 article-title: A new fractional analysis on the interaction of HIV with CD4+ T-cells publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2018.06.009 – volume: 117 start-page: 161 year: 2018 ident: 10.1016/j.physa.2019.122149_b15 article-title: Atangana–Baleanu fractional approach to the solutions of Bagley–Torvik and Painlevé equations in Hilbert space publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2018.10.013 – volume: 19 start-page: 275 issue: 3 year: 2018 ident: 10.1016/j.physa.2019.122149_b58 article-title: Development of a nonlinear hybrid numerical method publication-title: Adv. Differential Equations Control Process. doi: 10.17654/DE019030275 – volume: 25 start-page: 7866 issue: 45 year: 2007 ident: 10.1016/j.physa.2019.122149_b5 article-title: The comparative sero-epidemiology of varicella zoster virus in 11 countries in the European region publication-title: Vaccine doi: 10.1016/j.vaccine.2007.07.036 – volume: 1 start-page: 87 issue: 2 year: 2015 ident: 10.1016/j.physa.2019.122149_b47 article-title: Properties of a new fractional derivative without singular kernel publication-title: Progr. Fract. Differ. Appl. – volume: 181 start-page: 503 year: 2019 ident: 10.1016/j.physa.2019.122149_b32 article-title: Abundant complex wave solutions for the nonautonomous Fokas–Lenells equation in presence of perturbation terms publication-title: Optik doi: 10.1016/j.ijleo.2018.12.064 – volume: 20 start-page: 763 issue: 2 year: 2016 ident: 10.1016/j.physa.2019.122149_b48 article-title: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model publication-title: Therm. Sci. doi: 10.2298/TSCI160111018A – volume: 19 start-page: 741 issue: 7–8 year: 2018 ident: 10.1016/j.physa.2019.122149_b57 article-title: L-stable explicit nonlinear method with constant and variable step-size formulation for solving initial value problems publication-title: Int. J. Nonlinear Sci. Numer. Simul. doi: 10.1515/ijnsns-2017-0267 – volume: 3 start-page: 034 year: 2005 ident: 10.1016/j.physa.2019.122149_b4 article-title: Strategy on varicella vaccine and its immunization publication-title: Chin. J. Vaccines Immunization – volume: 34 start-page: 1577 issue: 5 year: 2018 ident: 10.1016/j.physa.2019.122149_b19 article-title: Numerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions publication-title: Numer. Methods Partial Differential Equations doi: 10.1002/num.22209 – volume: 122 start-page: 111 year: 2019 ident: 10.1016/j.physa.2019.122149_b10 article-title: Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2019.03.020 – volume: 293 start-page: 385 year: 2015 ident: 10.1016/j.physa.2019.122149_b16 article-title: Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.09.034 – volume: 118 start-page: 300 year: 2019 ident: 10.1016/j.physa.2019.122149_b28 article-title: Mathematical analysis and numerical simulation for a smoking model with Atangana–Baleanu derivative publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2018.12.003 – volume: 293 start-page: 81 year: 2015 ident: 10.1016/j.physa.2019.122149_b13 article-title: Approximate analytical solution of the nonlinear fractional KdV–Burgers equation: a new iterative algorithm publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.08.004 – volume: 134 start-page: 171 issue: 4 year: 2019 ident: 10.1016/j.physa.2019.122149_b27 article-title: Fractional derivatives applied to MSEIR problems: Comparative study with real world data publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2019-12661-7 – volume: 14 start-page: 311 issue: 3 year: 2019 ident: 10.1016/j.physa.2019.122149_b26 article-title: Modeling the dynamics of hepatitis E via the Caputo–Fabrizio derivative publication-title: Math. Model. Nat. Phenom. doi: 10.1051/mmnp/2018074 – volume: 47 start-page: 1418 issue: 5 year: 2009 ident: 10.1016/j.physa.2019.122149_b2 article-title: Genotyping of clinical varicella-zoster virus isolates collected in China publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.01806-08 – year: 2011 ident: 10.1016/j.physa.2019.122149_b49 – volume: 42 start-page: 599 issue: 4 year: 2000 ident: 10.1016/j.physa.2019.122149_b7 article-title: The mathematics of infectious diseases publication-title: SIAM Rev. doi: 10.1137/S0036144500371907 – year: 2018 ident: 10.1016/j.physa.2019.122149_b11 article-title: A new collection of real world applications of fractional calculus in science and engineering publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2018.04.019 – volume: 134 start-page: 20 issue: 1 year: 2019 ident: 10.1016/j.physa.2019.122149_b38 article-title: New complex waves in nonlinear optics based on the complex Ginzburg-Landau equation with Kerr law nonlinearity publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2019-12442-4 – volume: 175 start-page: 328 year: 2018 ident: 10.1016/j.physa.2019.122149_b33 article-title: New optical solitary wave solutions of Fokas-Lenells equation in presence of perturbation terms by a novel approach publication-title: Optik doi: 10.1016/j.ijleo.2018.08.007 – volume: 12 start-page: 1 issue: 5 year: 2017 ident: 10.1016/j.physa.2019.122149_b8 article-title: Modelling the transmission and control strategies of varicella among school children in Shenzhen, China publication-title: PLoS One doi: 10.1371/journal.pone.0177514 – year: 2010 ident: 10.1016/j.physa.2019.122149_b50 – volume: 526 year: 2019 ident: 10.1016/j.physa.2019.122149_b20 article-title: Mathematical analysis of dengue fever outbreak by novel fractional operators with field data publication-title: Physica A doi: 10.1016/j.physa.2019.121127 – volume: 29 issue: 1 year: 2019 ident: 10.1016/j.physa.2019.122149_b22 article-title: Fractional modeling of blood ethanol concentration system with real data application publication-title: Chaos doi: 10.1063/1.5082907 – volume: 7 start-page: 022 year: 2006 ident: 10.1016/j.physa.2019.122149_b6 article-title: Seroepidemiological survey of prevalence of varicella-zoster virus in healthy population in Shenzhen City publication-title: China Tropical Med. – start-page: 1 year: 2018 ident: 10.1016/j.physa.2019.122149_b44 article-title: An epidemiological MSEIR model described by the Caputo fractional derivative publication-title: Int. J. Dyn. Control – volume: 34 start-page: 1759 year: 2018 ident: 10.1016/j.physa.2019.122149_b17 article-title: Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space publication-title: Numer. Methods Partial Differential Equations doi: 10.1002/num.22236 – volume: 29 start-page: 690 issue: 8 year: 2010 ident: 10.1016/j.physa.2019.122149_b3 article-title: The effectiveness of varicella vaccine in China publication-title: Pediatric Infec. Dis. J. doi: 10.1097/INF.0b013e3181d7380e – volume: 32 issue: 26 year: 2018 ident: 10.1016/j.physa.2019.122149_b31 article-title: Optical solitons with quadratic–cubic nonlinearity and fractional temporal evolution publication-title: Modern Phys. Lett. B doi: 10.1142/S0217984918503177 – volume: 29 start-page: 1465 issue: 5 year: 2018 ident: 10.1016/j.physa.2019.122149_b35 article-title: Solutions of Bagley–Torvik and Painlevé Equations of fractional order using iterative reproducing kernel algorithm with error estimates publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2484-4 – year: 1986 ident: 10.1016/j.physa.2019.122149_b51 – volume: 8 start-page: 224 issue: 1 year: 2019 ident: 10.1016/j.physa.2019.122149_b40 article-title: Hyperbolic rational solutions to a variety of conformable fractional Boussinesq-Like equations publication-title: Nonlinear Eng. doi: 10.1515/nleng-2018-0033 – start-page: 1 year: 2018 ident: 10.1016/j.physa.2019.122149_b56 article-title: On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag–Leffler kernel publication-title: Nonlinear Dynam. – volume: 49 start-page: 451 issue: 3 year: 1963 ident: 10.1016/j.physa.2019.122149_b1 article-title: Chromosome breaks in leukocytes of chickenpox patients. Preliminary communication publication-title: Hereditas doi: 10.1111/j.1601-5223.1963.tb01891.x – year: 2013 ident: 10.1016/j.physa.2019.122149_b9 article-title: Approximate solution of tuberculosis disease population dynamics model |
SSID | ssj0001732 |
Score | 2.5286236 |
Snippet | This study proposes a new epidemiological fractional order mathematical model called MSEIR (Maternally-derived immunity, Susceptible, Exposed, Infectious, and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 122149 |
SubjectTerms | Caputo Numerical simulations Positivity Reproductive number Steady states |
Title | Transmission dynamics of varicella zoster virus modeled by classical and novel fractional operators using real statistical data |
URI | https://dx.doi.org/10.1016/j.physa.2019.122149 |
Volume | 534 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iCF7EJz6XHDza3eaxTXuURVkVvaiwt5LmIStLd2nXBT3oX3emDx8gHqSXNCQlzKSZL8nMN4ScZNYoHesw6IeZD2Ss4ZeSmQy85sLKCPMdY4DzzW00fJBXo_5oiQzaWBh0q2zW_npNr1brpqbXSLM3G497d6FQsRSKAQSBL8YY8Culwlneffty82BK1DcJsFvC1i3zUOXjhacHSD7Eki7jnCGh5m_W6ZvFudgg6w1UpGf1aDbJksu3yGrlsmnKbfJemRlQE553UVtnli_p1NOFRqYg0C99xRCOgi7GxXNJ66Q3lmYv1CBmRvVQnVuaTxduQn1RxzhA5XTmqtv3kqJb_CMFYDmhGHpUsTpDGf1Kd8jDxfn9YBg06RQCA3ZqHjDlkkQZHgnPY2N1wpHZh9kQHkwGnjguhI6EtcIwB0VALhGgRy2dch5w1S5Zzqe52yM0yyQY-iSOkDxfKw_q9T7mhlsZw8422ye8FWNqGq5xTHkxSVunsqe0kn2Ksk9r2e-T089Os5pq4-_mUauf9MeMScEY_NXx4L8dD8kavmEkIusfkeV58eyOAZLMs0415zpk5ezyenj7AXqv4ok |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FIEQuiFUkbHWAG85ML2O3DxwiIJqQ5UIi5WbavaCJRp7ReDJROMBH8YOp8sIioRyQIl9abXfLri5XvbarXgG8Lr3LrLHDZDQsY6KNpVdKlzqJViqvU653zAnOh0fp-ER_Oh2drsHPPheGwyo729_a9MZadz2DTpqD-WQy-DxUmdEqEwRBaEZjusjK_XB5Qfu2-t3eB1rkN1Lufjx-P0660gKJI5u9TEQW8jxzMlVRGudtLpnlRvghHVwYOw9SKZsq75UTgZrkxVNCUlaHLETCGDTvLbityVxw2YTt77_jSkSm2l8XtD3j2-upjpqgMv5cwWxHIt8WUgpm8PyXO_zDxe3eh3sdNsWd9vEfwFqoHsKdJkbU1Y_gR-PXSC_4Axv6tpR9jbOIK8vURKRQ-I1zRha4mizOa2yr7HgsL9ExSGd9QFt5rGarMMW4aJMqqHM2D83v_ho5Dv8rEpKdIuc6NTTS1OZA1sdwciNCfgLr1awKTwHLUhOyyE3KbP02i6RPMRrppNeGttLlJshejIXryM25xsa06KPYzopG9gXLvmhlvwlvfw2at9we11-e9utT_KWiBXmf6wZu_e_AV3B3fHx4UBzsHe0_gw0-w2mQYvQc1peL8_CC8NCyfNnoH8KXm1b4K6lCHGY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transmission+dynamics+of+varicella+zoster+virus+modeled+by+classical+and+novel+fractional+operators+using+real+statistical+data&rft.jtitle=Physica+A&rft.au=Qureshi%2C+Sania&rft.au=Yusuf%2C+Abdullahi&rft.au=Shaikh%2C+Asif+Ali&rft.au=Inc%2C+Mustafa&rft.date=2019-11-15&rft.issn=0378-4371&rft.volume=534&rft.spage=122149&rft_id=info:doi/10.1016%2Fj.physa.2019.122149&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physa_2019_122149 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon |