Transmission dynamics of varicella zoster virus modeled by classical and novel fractional operators using real statistical data

This study proposes a new epidemiological fractional order mathematical model called MSEIR (Maternally-derived immunity, Susceptible, Exposed, Infectious, and Recovered) using three most widely used operators, namely, the classical Caputo, the Caputo–Fabrizio (CF) and the Atangana–Baleanu–Caputo (AB...

Full description

Saved in:
Bibliographic Details
Published inPhysica A Vol. 534; p. 122149
Main Authors Qureshi, Sania, Yusuf, Abdullahi, Shaikh, Asif Ali, Inc, Mustafa
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study proposes a new epidemiological fractional order mathematical model called MSEIR (Maternally-derived immunity, Susceptible, Exposed, Infectious, and Recovered) using three most widely used operators, namely, the classical Caputo, the Caputo–Fabrizio (CF) and the Atangana–Baleanu–Caputo (ABC). During the process of fractionalization of the classical model, the dimensional consistency has been taken care of and the experimental data (for 20 weeks) available in literature for the chickenpox outbreak in 2014 among school children of the Shenzhen city of China has been employed in order to validate the fractional order model. The use of fixed point theory helps to prove the existence and the uniqueness for the solutions of each fractional order model under consideration. It is also proved that the model possesses a positively invariant region for a positive hyper-octant R+4. For the fractional models, disease free and endemic equilibria are found while computing basic reproduction number R0 which helps to determine local asymptotic stability for the steady states. Furthermore, three numerical methods recently made available in literature are used to carry out the numerical simulations for each operator under consideration. An interesting feature called the norm is obtained based upon the statistical data in which the parameter for the transmission rate (β) of the epidemic and the fractional-order parameters (λ,μ,ρ) in the models are obtained via least squares technique of optimization revealing the highest rate of performance for the ABC fractional operator. •New fractional epidemiological models under Caputo, CFC and ABC are proposed.•Real statistical data are used to support the analysis.•Existence and uniqueness for the solutions of models are thoroughly investigated.•Steady states, positivity, and boundedness of the models’ solution are discussed.•Least squares approach is employed to show the model with better performance.
AbstractList This study proposes a new epidemiological fractional order mathematical model called MSEIR (Maternally-derived immunity, Susceptible, Exposed, Infectious, and Recovered) using three most widely used operators, namely, the classical Caputo, the Caputo–Fabrizio (CF) and the Atangana–Baleanu–Caputo (ABC). During the process of fractionalization of the classical model, the dimensional consistency has been taken care of and the experimental data (for 20 weeks) available in literature for the chickenpox outbreak in 2014 among school children of the Shenzhen city of China has been employed in order to validate the fractional order model. The use of fixed point theory helps to prove the existence and the uniqueness for the solutions of each fractional order model under consideration. It is also proved that the model possesses a positively invariant region for a positive hyper-octant R+4. For the fractional models, disease free and endemic equilibria are found while computing basic reproduction number R0 which helps to determine local asymptotic stability for the steady states. Furthermore, three numerical methods recently made available in literature are used to carry out the numerical simulations for each operator under consideration. An interesting feature called the norm is obtained based upon the statistical data in which the parameter for the transmission rate (β) of the epidemic and the fractional-order parameters (λ,μ,ρ) in the models are obtained via least squares technique of optimization revealing the highest rate of performance for the ABC fractional operator. •New fractional epidemiological models under Caputo, CFC and ABC are proposed.•Real statistical data are used to support the analysis.•Existence and uniqueness for the solutions of models are thoroughly investigated.•Steady states, positivity, and boundedness of the models’ solution are discussed.•Least squares approach is employed to show the model with better performance.
ArticleNumber 122149
Author Qureshi, Sania
Inc, Mustafa
Shaikh, Asif Ali
Yusuf, Abdullahi
Author_xml – sequence: 1
  givenname: Sania
  surname: Qureshi
  fullname: Qureshi, Sania
  email: sania.qureshi@faculty.muet.edu.pk
  organization: Department of Basic Sciences and Related Studies, Mehran University of Engineering and Technology, 76062, Jamshoro, Pakistan
– sequence: 2
  givenname: Abdullahi
  surname: Yusuf
  fullname: Yusuf, Abdullahi
  email: yusufabdullahi@fud.edu.ng
  organization: Firat University, Science Faculty, Department of Mathematics, 23119 Elazig, Turkey
– sequence: 3
  givenname: Asif Ali
  surname: Shaikh
  fullname: Shaikh, Asif Ali
  email: asif.shaikh@faculty.muet.edu.pk
  organization: Department of Basic Sciences and Related Studies, Mehran University of Engineering and Technology, 76062, Jamshoro, Pakistan
– sequence: 4
  givenname: Mustafa
  surname: Inc
  fullname: Inc, Mustafa
  email: minc@firat.edu.tr
  organization: Firat University, Science Faculty, Department of Mathematics, 23119 Elazig, Turkey
BookMark eNqFkMFuEzEQhq2qSE0LT9CLX2CDx17W8YEDqoAiVeJSztZgz1JHGzvyuJHChVfHaThxAM1hRr_0jfR_1-Iyl0xC3IJag4Lp7Xa9fzoyrrUCtwatYXQXYgUbawYN4C7FShm7GUZj4UpcM2-VUmCNXolfjxUz7xJzKlnGY8ZdCizLLA9YU6BlQfmzcKMqD6k-s9yVSAtF-f0ow4IdC7hIzFHmcqBFzhVD6696WPZUsZXK8plT_iEr9ZAbtsTthYrY8LV4NePC9ObPvhHfPn18vLsfHr5-_nL34WEIRpk2gCXnbNCTmfUmRHTaQq8QVZ93Y69L2hicTIwmAPXTGTs5mHAkSzOM5kaY899QC3Ol2e9r2mE9elD-5NBv_YtDf3Lozw475f6iQjoVKLlVTMt_2PdnlnqtQ6LqOSTKgWKqFJqPJf2T_w3NNJOW
CitedBy_id crossref_primary_10_1016_j_rico_2023_100277
crossref_primary_10_1016_j_rico_2024_100431
crossref_primary_10_1140_epjs_s11734_022_00455_3
crossref_primary_10_1140_epjp_s13360_021_01159_8
crossref_primary_10_1140_epjp_s13360_020_00133_0
crossref_primary_10_1155_2022_8785197
crossref_primary_10_1115_1_4054347
crossref_primary_10_3390_math10071125
crossref_primary_10_1002_mma_6432
crossref_primary_10_1016_j_chaos_2020_109744
crossref_primary_10_1140_epjs_s11734_024_01208_0
crossref_primary_10_3390_fractalfract6090500
crossref_primary_10_1016_j_apnum_2022_12_004
crossref_primary_10_1007_s13540_023_00231_7
crossref_primary_10_3390_su15065306
crossref_primary_10_1016_j_aej_2020_09_047
crossref_primary_10_1016_j_chaos_2020_109878
crossref_primary_10_1016_j_joes_2022_02_010
crossref_primary_10_1016_j_rinp_2022_105555
crossref_primary_10_1155_2021_5516392
crossref_primary_10_1016_j_chaos_2019_109478
crossref_primary_10_1155_2021_5225019
crossref_primary_10_1016_j_chaos_2019_109552
crossref_primary_10_1016_j_chaos_2021_111605
crossref_primary_10_1016_j_rinp_2020_103776
crossref_primary_10_1016_j_health_2024_100302
crossref_primary_10_1016_j_padiff_2024_100807
crossref_primary_10_53391_mmnsa_1274004
crossref_primary_10_1016_j_chaos_2020_110564
crossref_primary_10_1007_s42967_021_00177_8
crossref_primary_10_1177_1687814019896962
crossref_primary_10_1088_1742_6596_1722_1_012034
crossref_primary_10_3390_en15166082
crossref_primary_10_11121_ijocta_1464
crossref_primary_10_3390_vaccines10111846
crossref_primary_10_1016_j_health_2023_100266
crossref_primary_10_1016_j_aej_2024_03_061
crossref_primary_10_1155_2021_9915551
crossref_primary_10_1155_2022_9174488
crossref_primary_10_1002_mma_6614
crossref_primary_10_1155_2020_1352982
crossref_primary_10_1007_s40819_021_01034_1
crossref_primary_10_1007_s13370_024_01226_0
crossref_primary_10_1016_j_physa_2019_123942
crossref_primary_10_1140_epjp_i2019_13003_7
crossref_primary_10_1016_j_matcom_2023_11_014
crossref_primary_10_1038_s41598_024_73983_8
crossref_primary_10_1016_j_aej_2021_01_041
crossref_primary_10_1088_1402_4896_ac13e0
crossref_primary_10_1186_s13662_020_02698_7
crossref_primary_10_3934_math_2023180
crossref_primary_10_1016_j_chaos_2019_109532
crossref_primary_10_1063_5_0010057
crossref_primary_10_1140_epjs_s11734_022_00437_5
Cites_doi 10.1016/j.jksus.2012.01.003
10.1063/1.5074084
10.1016/j.rinp.2018.01.040
10.1007/s00521-015-1860-9
10.1016/j.camwa.2016.11.032
10.1080/09205071.2018.1445039
10.1108/HFF-07-2016-0278
10.1016/j.chaos.2019.04.020
10.1007/s11071-012-0475-2
10.1016/j.chaos.2018.10.006
10.1016/j.cam.2015.12.005
10.7566/JPSJ.82.044004
10.3390/math7040374
10.1002/cta.2348
10.1016/j.chaos.2018.06.009
10.1016/j.chaos.2018.10.013
10.17654/DE019030275
10.1016/j.vaccine.2007.07.036
10.1016/j.ijleo.2018.12.064
10.2298/TSCI160111018A
10.1515/ijnsns-2017-0267
10.1002/num.22209
10.1016/j.chaos.2019.03.020
10.1016/j.jcp.2014.09.034
10.1016/j.chaos.2018.12.003
10.1016/j.jcp.2014.08.004
10.1140/epjp/i2019-12661-7
10.1051/mmnp/2018074
10.1128/JCM.01806-08
10.1137/S0036144500371907
10.1016/j.cnsns.2018.04.019
10.1140/epjp/i2019-12442-4
10.1016/j.ijleo.2018.08.007
10.1371/journal.pone.0177514
10.1016/j.physa.2019.121127
10.1063/1.5082907
10.1002/num.22236
10.1097/INF.0b013e3181d7380e
10.1142/S0217984918503177
10.1007/s00521-016-2484-4
10.1515/nleng-2018-0033
10.1111/j.1601-5223.1963.tb01891.x
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.physa.2019.122149
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2119
ExternalDocumentID 10_1016_j_physa_2019_122149
S0378437119312488
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAXUO
ABAOU
ABMAC
ABNEU
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFHU
ADGUI
AEBSH
AEKER
AEYQN
AFFNX
AFKWA
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIIAU
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
AXLSJ
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXIXF
J1W
K-O
KOM
M38
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSB
SSF
SSQ
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YNT
ZMT
~02
~G-
29O
5VS
6TJ
AAFFL
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACNNM
ACROA
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFODL
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJWLA
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BEHZQ
BEZPJ
BGSCR
BNPGV
BNTGB
BPUDD
BULVW
BZJEE
CITATION
FEDTE
FGOYB
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
SEW
SPG
SSH
VOH
WUQ
XJT
XOL
YYP
ZY4
ID FETCH-LOGICAL-c303t-17e997c263f28cda9271001d0d0d54149e233a63dd3c1e33a9376916a4e7ef143
IEDL.DBID .~1
ISSN 0378-4371
IngestDate Tue Jul 01 01:32:14 EDT 2025
Thu Apr 24 22:51:54 EDT 2025
Fri Feb 23 02:47:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Reproductive number
Numerical simulations
Caputo
Positivity
Steady states
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-17e997c263f28cda9271001d0d0d54149e233a63dd3c1e33a9376916a4e7ef143
ParticipantIDs crossref_primary_10_1016_j_physa_2019_122149
crossref_citationtrail_10_1016_j_physa_2019_122149
elsevier_sciencedirect_doi_10_1016_j_physa_2019_122149
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-15
PublicationDateYYYYMMDD 2019-11-15
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-15
  day: 15
PublicationDecade 2010
PublicationTitle Physica A
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Vigo-Aguiar, Higinio, Carmelo (b59) 2017; 318
Petráš (b49) 2011
Aliya, Shaikh, Qureshi (b58) 2018; 19
Arqub, Maayah (b35) 2018; 29
Diethelm (b50) 2010
Fu, Wang, Liang, Xu, Wang, Bialek (b3) 2010; 29
Osman, Ghanbari, Machado (b38) 2019; 134
Baleanu, Jajarmi, Hajipour (b56) 2018
Xu, Wang, Xie (b4) 2005; 3
Atangana, Bildik (b9) 2013
Atangana, Qureshi (b23) 2019; 123
Qureshi, Higinio (b57) 2018; 19
Abu Arqub (b21) 2018; 28
Taylor, Lay (b52) 1980
Osman, Abdel-Gawad, El Mahdy (b36) 2018; 8
Osman, Machado (b37) 2018; 32
Tang, Zhao, Chiu, Ma, Xie, Mei, …, He (b8) 2017; 12
Osman (b41) 2019
Arqub, El-Ajou (b34) 2013; 25
Uçar, Uçar, Özdemir, Hammouch (b28) 2019; 118
Nardone, De Ory, Carton, Cohen, Van Damme, Davidkin, Tischer (b5) 2007; 25
Caputo, Fabrizio (b46) 2015; 1
Rezazadeh, Osman, Eslami, Mirzazadeh, Zhou, Badri, Korkmaz (b40) 2019; 8
Chapra, Canale (b53) 2010
Tariq, Younis, Rezazadeh, Rizvi, Osman (b31) 2018; 32
Qureshi, Yusuf, Shaikh, Inc, Baleanu (b22) 2019; 29
Abdel-Gawad, Elazab, Osman (b42) 2013; 82
Liu, Wang, Gan, Yang, Chen (b2) 2009; 47
Qureshi, Yusuf (b27) 2019; 134
Arqub, El-Ajou, Momani (b16) 2015; 293
Li, Zeng (b54) 2015
Abu Arqub, Al-Smadi (b15) 2018; 117
Jarad, Abdeljawad, Hammouch (b30) 2018; 117
Podlubny (b45) 1998
Ding, Osman, Wazwaz (b32) 2019; 181
Hethcote (b7) 2000; 42
Jajarmi, Baleanu (b55) 2018; 113
Abu Arqub (b17) 2018; 34
Gómez-Aguilar, Atangana, Morales-Delgado (b14) 2017; 45
Osman, Ghanbari (b33) 2018; 175
Qureshi, Yusuf (b10) 2019; 122
Abu Arqub, AlSmadi (b19) 2018; 34
Zeidler (b51) 1986
Atangana (b12) 2015; 26
Singh, Kumar, Hammouch, Atangana (b29) 2018; 316
Qureshi, Rangaig, Baleanu (b39) 2019; 7
Abu Arqub (b24) 2017; 73
Qureshi, Atangana (b20) 2019; 526
Atangana, Baleanu (b48) 2016; 20
Ya-ni (b6) 2006; 7
Losada, Nieto (b47) 2015; 1
Almeida, da Cruz, Martins, Monteiro (b44) 2018
Ullah, Khan, Farooq, Hammouch, Baleanu (b25) 2019; 1
Khan, Hammouch, Baleanu (b26) 2019; 14
Yusuf, Qureshi, Inc, Aliyu, Baleanu, Shaikh (b18) 2018; 28
El-Ajou, Arqub, Momani (b13) 2015; 293
Sun, Zhang, Baleanu, Chen, Chen (b11) 2018
Aula (b1) 1963; 49
Diethelm (b43) 2013; 71
Atangana (10.1016/j.physa.2019.122149_b12) 2015; 26
Osman (10.1016/j.physa.2019.122149_b38) 2019; 134
Diethelm (10.1016/j.physa.2019.122149_b43) 2013; 71
Arqub (10.1016/j.physa.2019.122149_b16) 2015; 293
Tariq (10.1016/j.physa.2019.122149_b31) 2018; 32
Qureshi (10.1016/j.physa.2019.122149_b27) 2019; 134
Nardone (10.1016/j.physa.2019.122149_b5) 2007; 25
Arqub (10.1016/j.physa.2019.122149_b34) 2013; 25
El-Ajou (10.1016/j.physa.2019.122149_b13) 2015; 293
Qureshi (10.1016/j.physa.2019.122149_b39) 2019; 7
Abdel-Gawad (10.1016/j.physa.2019.122149_b42) 2013; 82
Tang (10.1016/j.physa.2019.122149_b8) 2017; 12
Zeidler (10.1016/j.physa.2019.122149_b51) 1986
Almeida (10.1016/j.physa.2019.122149_b44) 2018
Vigo-Aguiar (10.1016/j.physa.2019.122149_b59) 2017; 318
Hethcote (10.1016/j.physa.2019.122149_b7) 2000; 42
Osman (10.1016/j.physa.2019.122149_b37) 2018; 32
Liu (10.1016/j.physa.2019.122149_b2) 2009; 47
Taylor (10.1016/j.physa.2019.122149_b52) 1980
Abu Arqub (10.1016/j.physa.2019.122149_b15) 2018; 117
Osman (10.1016/j.physa.2019.122149_b33) 2018; 175
Abu Arqub (10.1016/j.physa.2019.122149_b24) 2017; 73
Abu Arqub (10.1016/j.physa.2019.122149_b17) 2018; 34
Qureshi (10.1016/j.physa.2019.122149_b22) 2019; 29
Rezazadeh (10.1016/j.physa.2019.122149_b40) 2019; 8
Uçar (10.1016/j.physa.2019.122149_b28) 2019; 118
Abu Arqub (10.1016/j.physa.2019.122149_b21) 2018; 28
Atangana (10.1016/j.physa.2019.122149_b9) 2013
Yusuf (10.1016/j.physa.2019.122149_b18) 2018; 28
Jarad (10.1016/j.physa.2019.122149_b30) 2018; 117
Baleanu (10.1016/j.physa.2019.122149_b56) 2018
Podlubny (10.1016/j.physa.2019.122149_b45) 1998
Qureshi (10.1016/j.physa.2019.122149_b10) 2019; 122
Arqub (10.1016/j.physa.2019.122149_b35) 2018; 29
Losada (10.1016/j.physa.2019.122149_b47) 2015; 1
Qureshi (10.1016/j.physa.2019.122149_b20) 2019; 526
Khan (10.1016/j.physa.2019.122149_b26) 2019; 14
Atangana (10.1016/j.physa.2019.122149_b23) 2019; 123
Ullah (10.1016/j.physa.2019.122149_b25) 2019; 1
Sun (10.1016/j.physa.2019.122149_b11) 2018
Atangana (10.1016/j.physa.2019.122149_b48) 2016; 20
Petráš (10.1016/j.physa.2019.122149_b49) 2011
Li (10.1016/j.physa.2019.122149_b54) 2015
Caputo (10.1016/j.physa.2019.122149_b46) 2015; 1
Aula (10.1016/j.physa.2019.122149_b1) 1963; 49
Xu (10.1016/j.physa.2019.122149_b4) 2005; 3
Aliya (10.1016/j.physa.2019.122149_b58) 2018; 19
Ding (10.1016/j.physa.2019.122149_b32) 2019; 181
Gómez-Aguilar (10.1016/j.physa.2019.122149_b14) 2017; 45
Osman (10.1016/j.physa.2019.122149_b41) 2019
Diethelm (10.1016/j.physa.2019.122149_b50) 2010
Ya-ni (10.1016/j.physa.2019.122149_b6) 2006; 7
Fu (10.1016/j.physa.2019.122149_b3) 2010; 29
Singh (10.1016/j.physa.2019.122149_b29) 2018; 316
Qureshi (10.1016/j.physa.2019.122149_b57) 2018; 19
Abu Arqub (10.1016/j.physa.2019.122149_b19) 2018; 34
Chapra (10.1016/j.physa.2019.122149_b53) 2010
Osman (10.1016/j.physa.2019.122149_b36) 2018; 8
Jajarmi (10.1016/j.physa.2019.122149_b55) 2018; 113
References_xml – year: 2011
  ident: b49
  article-title: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation
– volume: 1
  start-page: 87
  year: 2015
  end-page: 92
  ident: b47
  article-title: Properties of a new fractional derivative without singular kernel
  publication-title: Progr. Fract. Differ. Appl.
– volume: 293
  start-page: 81
  year: 2015
  end-page: 95
  ident: b13
  article-title: Approximate analytical solution of the nonlinear fractional KdV–Burgers equation: a new iterative algorithm
  publication-title: J. Comput. Phys.
– volume: 42
  start-page: 599
  year: 2000
  end-page: 653
  ident: b7
  article-title: The mathematics of infectious diseases
  publication-title: SIAM Rev.
– volume: 3
  start-page: 034
  year: 2005
  ident: b4
  article-title: Strategy on varicella vaccine and its immunization
  publication-title: Chin. J. Vaccines Immunization
– volume: 113
  start-page: 221
  year: 2018
  end-page: 229
  ident: b55
  article-title: A new fractional analysis on the interaction of HIV with CD4+ T-cells
  publication-title: Chaos Solitons Fractals
– volume: 49
  start-page: 451
  year: 1963
  end-page: 453
  ident: b1
  article-title: Chromosome breaks in leukocytes of chickenpox patients. Preliminary communication
  publication-title: Hereditas
– volume: 14
  start-page: 311
  year: 2019
  ident: b26
  article-title: Modeling the dynamics of hepatitis E via the Caputo–Fabrizio derivative
  publication-title: Math. Model. Nat. Phenom.
– volume: 117
  start-page: 16
  year: 2018
  end-page: 20
  ident: b30
  article-title: On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative
  publication-title: Chaos Solitons Fractals
– volume: 28
  start-page: 828
  year: 2018
  end-page: 856
  ident: b21
  article-title: Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm
  publication-title: Internat. J. Numer. Methods Heat Fluid Flow
– volume: 8
  start-page: 224
  year: 2019
  end-page: 230
  ident: b40
  article-title: Hyperbolic rational solutions to a variety of conformable fractional Boussinesq-Like equations
  publication-title: Nonlinear Eng.
– start-page: 1
  year: 2018
  end-page: 18
  ident: b56
  article-title: On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag–Leffler kernel
  publication-title: Nonlinear Dynam.
– volume: 1
  start-page: 73
  year: 2015
  end-page: 85
  ident: b46
  article-title: A new definition of fractional derivative without singular kernel
  publication-title: Prog. Fract. Differ. Appl.
– volume: 293
  start-page: 385
  year: 2015
  end-page: 399
  ident: b16
  article-title: Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations
  publication-title: J. Comput. Phys.
– volume: 45
  start-page: 1514
  year: 2017
  end-page: 1533
  ident: b14
  article-title: Electrical circuits RC, LC, and RL described by Atangana–Baleanu fractional derivatives
  publication-title: Int. J. Circuit Theory Appl.
– volume: 123
  start-page: 320
  year: 2019
  end-page: 337
  ident: b23
  article-title: Modeling attractors of chaotic dynamical systems with fractal–fractional operators
  publication-title: Chaos Solitons Fractals
– volume: 29
  year: 2019
  ident: b22
  article-title: Fractional modeling of blood ethanol concentration system with real data application
  publication-title: Chaos
– volume: 25
  start-page: 73
  year: 2013
  end-page: 81
  ident: b34
  article-title: Solution of the fractional epidemic model by homotopy analysis method
  publication-title: J. King Saud Univ.-Sci.
– volume: 7
  start-page: 374
  year: 2019
  ident: b39
  article-title: New numerical aspects of Caputo-Fabrizio fractional derivative operator
  publication-title: Mathematics
– volume: 20
  start-page: 763
  year: 2016
  end-page: 769
  ident: b48
  article-title: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model
  publication-title: Therm. Sci.
– volume: 8
  start-page: 1054
  year: 2018
  end-page: 1060
  ident: b36
  article-title: Two-layer-atmospheric blocking in a medium with high nonlinearity and lateral dispersion
  publication-title: Results Phys.
– volume: 318
  start-page: 599
  year: 2017
  end-page: 603
  ident: b59
  article-title: A first approach in solving initial-value problems in ODEs by elliptic fitting methods
  publication-title: J. Comput. Appl. Math.
– volume: 28
  year: 2018
  ident: b18
  article-title: Two-strain epidemic model involving fractional derivative with Mittag-Leffler kernel
  publication-title: Chaos
– volume: 1
  start-page: 1
  year: 2019
  end-page: 27
  ident: b25
  article-title: A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative
  publication-title: Discrete Contin. Dyn. Syst. S
– volume: 71
  start-page: 613
  year: 2013
  end-page: 619
  ident: b43
  article-title: A fractional calculus based model for the simulation of an outbreak of dengue fever
  publication-title: Nonlinear Dynam.
– year: 2013
  ident: b9
  article-title: Approximate solution of tuberculosis disease population dynamics model
  publication-title: Abstract and Applied Analysis (Vol. 2013)
– year: 2015
  ident: b54
  article-title: Numerical Methods for Fractional Calculus
– volume: 117
  start-page: 161
  year: 2018
  end-page: 167
  ident: b15
  article-title: Atangana–Baleanu fractional approach to the solutions of Bagley–Torvik and Painlevé equations in Hilbert space
  publication-title: Chaos Solitons Fractals
– volume: 47
  start-page: 1418
  year: 2009
  end-page: 1423
  ident: b2
  article-title: Genotyping of clinical varicella-zoster virus isolates collected in China
  publication-title: J. Clin. Microbiol.
– year: 2018
  ident: b11
  article-title: A new collection of real world applications of fractional calculus in science and engineering
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 34
  start-page: 1577
  year: 2018
  end-page: 1597
  ident: b19
  article-title: Numerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions
  publication-title: Numer. Methods Partial Differential Equations
– volume: 12
  start-page: 1
  year: 2017
  end-page: 17
  ident: b8
  article-title: Modelling the transmission and control strategies of varicella among school children in Shenzhen, China
  publication-title: PLoS One
– start-page: 1
  year: 2018
  end-page: 9
  ident: b44
  article-title: An epidemiological MSEIR model described by the Caputo fractional derivative
  publication-title: Int. J. Dyn. Control
– volume: 32
  start-page: 1457
  year: 2018
  end-page: 1464
  ident: b37
  article-title: The dynamical behavior of mixed-type soliton solutions described by (2+ 1)-dimensional Bogoyavlensky–Konopelchenko equation with variable coefficients
  publication-title: J. Electromagn. Waves Appl.
– year: 2010
  ident: b50
  article-title: The Analysis of Fractional Differential Equation
– volume: 175
  start-page: 328
  year: 2018
  end-page: 333
  ident: b33
  article-title: New optical solitary wave solutions of Fokas-Lenells equation in presence of perturbation terms by a novel approach
  publication-title: Optik
– year: 1986
  ident: b51
  article-title: Non-Linear Functional Analysis and Its Application
– volume: 32
  year: 2018
  ident: b31
  article-title: Optical solitons with quadratic–cubic nonlinearity and fractional temporal evolution
  publication-title: Modern Phys. Lett. B
– volume: 526
  year: 2019
  ident: b20
  article-title: Mathematical analysis of dengue fever outbreak by novel fractional operators with field data
  publication-title: Physica A
– volume: 7
  start-page: 022
  year: 2006
  ident: b6
  article-title: Seroepidemiological survey of prevalence of varicella-zoster virus in healthy population in Shenzhen City
  publication-title: China Tropical Med.
– volume: 73
  start-page: 1243
  year: 2017
  end-page: 1261
  ident: b24
  article-title: Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and neumann boundary conditions
  publication-title: Comput. Math. Appl.
– volume: 19
  start-page: 275
  year: 2018
  end-page: 285
  ident: b58
  article-title: Development of a nonlinear hybrid numerical method
  publication-title: Adv. Differential Equations Control Process.
– volume: 122
  start-page: 111
  year: 2019
  end-page: 118
  ident: b10
  article-title: Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu
  publication-title: Chaos Solitons Fractals
– volume: 26
  start-page: 1895
  year: 2015
  end-page: 1903
  ident: b12
  article-title: A novel model for the lassa hemorrhagic fever: deathly disease for pregnant women
  publication-title: Neural Comput. Appl.
– volume: 316
  start-page: 504
  year: 2018
  end-page: 515
  ident: b29
  article-title: A fractional epidemiological model for computer viruses pertaining to a new fractional derivative
  publication-title: Appl. Math. Comput.
– volume: 25
  start-page: 7866
  year: 2007
  end-page: 7872
  ident: b5
  article-title: The comparative sero-epidemiology of varicella zoster virus in 11 countries in the European region
  publication-title: Vaccine
– volume: 19
  start-page: 741
  year: 2018
  end-page: 751
  ident: b57
  article-title: L-stable explicit nonlinear method with constant and variable step-size formulation for solving initial value problems
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
– volume: 29
  start-page: 690
  year: 2010
  end-page: 693
  ident: b3
  article-title: The effectiveness of varicella vaccine in China
  publication-title: Pediatric Infec. Dis. J.
– volume: 181
  start-page: 503
  year: 2019
  end-page: 513
  ident: b32
  article-title: Abundant complex wave solutions for the nonautonomous Fokas–Lenells equation in presence of perturbation terms
  publication-title: Optik
– volume: 82
  year: 2013
  ident: b42
  article-title: Exact solutions of space dependent Korteweg–de Vries equation by the extended unified method
  publication-title: J. Phys. Soc. Japan
– volume: 34
  start-page: 1759
  year: 2018
  end-page: 1780
  ident: b17
  article-title: Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space
  publication-title: Numer. Methods Partial Differential Equations
– year: 1980
  ident: b52
  article-title: Introduction to Functional Analysis
– year: 2010
  ident: b53
  article-title: Numerical Methods for Engineers
– start-page: 1
  year: 2019
  end-page: 6
  ident: b41
  article-title: One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada–Kotera equation
  publication-title: Nonlinear Dynam.
– volume: 118
  start-page: 300
  year: 2019
  end-page: 306
  ident: b28
  article-title: Mathematical analysis and numerical simulation for a smoking model with Atangana–Baleanu derivative
  publication-title: Chaos Solitons Fractals
– year: 1998
  ident: b45
  article-title: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications (Vol. 198)
– volume: 29
  start-page: 1465
  year: 2018
  end-page: 1479
  ident: b35
  article-title: Solutions of Bagley–Torvik and Painlevé Equations of fractional order using iterative reproducing kernel algorithm with error estimates
  publication-title: Neural Comput. Appl.
– volume: 134
  start-page: 20
  year: 2019
  ident: b38
  article-title: New complex waves in nonlinear optics based on the complex Ginzburg-Landau equation with Kerr law nonlinearity
  publication-title: Eur. Phys. J. Plus
– volume: 134
  start-page: 171
  year: 2019
  ident: b27
  article-title: Fractional derivatives applied to MSEIR problems: Comparative study with real world data
  publication-title: Eur. Phys. J. Plus
– volume: 1
  start-page: 1
  year: 2019
  ident: 10.1016/j.physa.2019.122149_b25
  article-title: A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative
  publication-title: Discrete Contin. Dyn. Syst. S
– volume: 25
  start-page: 73
  issue: 1
  year: 2013
  ident: 10.1016/j.physa.2019.122149_b34
  article-title: Solution of the fractional epidemic model by homotopy analysis method
  publication-title: J. King Saud Univ.-Sci.
  doi: 10.1016/j.jksus.2012.01.003
– volume: 28
  issue: 12
  year: 2018
  ident: 10.1016/j.physa.2019.122149_b18
  article-title: Two-strain epidemic model involving fractional derivative with Mittag-Leffler kernel
  publication-title: Chaos
  doi: 10.1063/1.5074084
– volume: 8
  start-page: 1054
  year: 2018
  ident: 10.1016/j.physa.2019.122149_b36
  article-title: Two-layer-atmospheric blocking in a medium with high nonlinearity and lateral dispersion
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2018.01.040
– year: 1998
  ident: 10.1016/j.physa.2019.122149_b45
– volume: 26
  start-page: 1895
  issue: 8
  year: 2015
  ident: 10.1016/j.physa.2019.122149_b12
  article-title: A novel model for the lassa hemorrhagic fever: deathly disease for pregnant women
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1860-9
– volume: 73
  start-page: 1243
  year: 2017
  ident: 10.1016/j.physa.2019.122149_b24
  article-title: Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and neumann boundary conditions
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2016.11.032
– volume: 32
  start-page: 1457
  issue: 11
  year: 2018
  ident: 10.1016/j.physa.2019.122149_b37
  article-title: The dynamical behavior of mixed-type soliton solutions described by (2+ 1)-dimensional Bogoyavlensky–Konopelchenko equation with variable coefficients
  publication-title: J. Electromagn. Waves Appl.
  doi: 10.1080/09205071.2018.1445039
– volume: 28
  start-page: 828
  issue: 4
  year: 2018
  ident: 10.1016/j.physa.2019.122149_b21
  article-title: Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm
  publication-title: Internat. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-07-2016-0278
– volume: 123
  start-page: 320
  year: 2019
  ident: 10.1016/j.physa.2019.122149_b23
  article-title: Modeling attractors of chaotic dynamical systems with fractal–fractional operators
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2019.04.020
– volume: 71
  start-page: 613
  issue: 4
  year: 2013
  ident: 10.1016/j.physa.2019.122149_b43
  article-title: A fractional calculus based model for the simulation of an outbreak of dengue fever
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-012-0475-2
– volume: 117
  start-page: 16
  year: 2018
  ident: 10.1016/j.physa.2019.122149_b30
  article-title: On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2018.10.006
– volume: 318
  start-page: 599
  year: 2017
  ident: 10.1016/j.physa.2019.122149_b59
  article-title: A first approach in solving initial-value problems in ODEs by elliptic fitting methods
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2015.12.005
– volume: 316
  start-page: 504
  year: 2018
  ident: 10.1016/j.physa.2019.122149_b29
  article-title: A fractional epidemiological model for computer viruses pertaining to a new fractional derivative
  publication-title: Appl. Math. Comput.
– volume: 82
  issue: 4
  year: 2013
  ident: 10.1016/j.physa.2019.122149_b42
  article-title: Exact solutions of space dependent Korteweg–de Vries equation by the extended unified method
  publication-title: J. Phys. Soc. Japan
  doi: 10.7566/JPSJ.82.044004
– year: 1980
  ident: 10.1016/j.physa.2019.122149_b52
– volume: 7
  start-page: 374
  issue: 4
  year: 2019
  ident: 10.1016/j.physa.2019.122149_b39
  article-title: New numerical aspects of Caputo-Fabrizio fractional derivative operator
  publication-title: Mathematics
  doi: 10.3390/math7040374
– volume: 1
  start-page: 73
  issue: 2
  year: 2015
  ident: 10.1016/j.physa.2019.122149_b46
  article-title: A new definition of fractional derivative without singular kernel
  publication-title: Prog. Fract. Differ. Appl.
– year: 2010
  ident: 10.1016/j.physa.2019.122149_b53
– year: 2015
  ident: 10.1016/j.physa.2019.122149_b54
– start-page: 1
  year: 2019
  ident: 10.1016/j.physa.2019.122149_b41
  article-title: One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada–Kotera equation
  publication-title: Nonlinear Dynam.
– volume: 45
  start-page: 1514
  issue: 11
  year: 2017
  ident: 10.1016/j.physa.2019.122149_b14
  article-title: Electrical circuits RC, LC, and RL described by Atangana–Baleanu fractional derivatives
  publication-title: Int. J. Circuit Theory Appl.
  doi: 10.1002/cta.2348
– volume: 113
  start-page: 221
  year: 2018
  ident: 10.1016/j.physa.2019.122149_b55
  article-title: A new fractional analysis on the interaction of HIV with CD4+ T-cells
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2018.06.009
– volume: 117
  start-page: 161
  year: 2018
  ident: 10.1016/j.physa.2019.122149_b15
  article-title: Atangana–Baleanu fractional approach to the solutions of Bagley–Torvik and Painlevé equations in Hilbert space
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2018.10.013
– volume: 19
  start-page: 275
  issue: 3
  year: 2018
  ident: 10.1016/j.physa.2019.122149_b58
  article-title: Development of a nonlinear hybrid numerical method
  publication-title: Adv. Differential Equations Control Process.
  doi: 10.17654/DE019030275
– volume: 25
  start-page: 7866
  issue: 45
  year: 2007
  ident: 10.1016/j.physa.2019.122149_b5
  article-title: The comparative sero-epidemiology of varicella zoster virus in 11 countries in the European region
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2007.07.036
– volume: 1
  start-page: 87
  issue: 2
  year: 2015
  ident: 10.1016/j.physa.2019.122149_b47
  article-title: Properties of a new fractional derivative without singular kernel
  publication-title: Progr. Fract. Differ. Appl.
– volume: 181
  start-page: 503
  year: 2019
  ident: 10.1016/j.physa.2019.122149_b32
  article-title: Abundant complex wave solutions for the nonautonomous Fokas–Lenells equation in presence of perturbation terms
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.12.064
– volume: 20
  start-page: 763
  issue: 2
  year: 2016
  ident: 10.1016/j.physa.2019.122149_b48
  article-title: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI160111018A
– volume: 19
  start-page: 741
  issue: 7–8
  year: 2018
  ident: 10.1016/j.physa.2019.122149_b57
  article-title: L-stable explicit nonlinear method with constant and variable step-size formulation for solving initial value problems
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
  doi: 10.1515/ijnsns-2017-0267
– volume: 3
  start-page: 034
  year: 2005
  ident: 10.1016/j.physa.2019.122149_b4
  article-title: Strategy on varicella vaccine and its immunization
  publication-title: Chin. J. Vaccines Immunization
– volume: 34
  start-page: 1577
  issue: 5
  year: 2018
  ident: 10.1016/j.physa.2019.122149_b19
  article-title: Numerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions
  publication-title: Numer. Methods Partial Differential Equations
  doi: 10.1002/num.22209
– volume: 122
  start-page: 111
  year: 2019
  ident: 10.1016/j.physa.2019.122149_b10
  article-title: Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2019.03.020
– volume: 293
  start-page: 385
  year: 2015
  ident: 10.1016/j.physa.2019.122149_b16
  article-title: Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.09.034
– volume: 118
  start-page: 300
  year: 2019
  ident: 10.1016/j.physa.2019.122149_b28
  article-title: Mathematical analysis and numerical simulation for a smoking model with Atangana–Baleanu derivative
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2018.12.003
– volume: 293
  start-page: 81
  year: 2015
  ident: 10.1016/j.physa.2019.122149_b13
  article-title: Approximate analytical solution of the nonlinear fractional KdV–Burgers equation: a new iterative algorithm
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.08.004
– volume: 134
  start-page: 171
  issue: 4
  year: 2019
  ident: 10.1016/j.physa.2019.122149_b27
  article-title: Fractional derivatives applied to MSEIR problems: Comparative study with real world data
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2019-12661-7
– volume: 14
  start-page: 311
  issue: 3
  year: 2019
  ident: 10.1016/j.physa.2019.122149_b26
  article-title: Modeling the dynamics of hepatitis E via the Caputo–Fabrizio derivative
  publication-title: Math. Model. Nat. Phenom.
  doi: 10.1051/mmnp/2018074
– volume: 47
  start-page: 1418
  issue: 5
  year: 2009
  ident: 10.1016/j.physa.2019.122149_b2
  article-title: Genotyping of clinical varicella-zoster virus isolates collected in China
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.01806-08
– year: 2011
  ident: 10.1016/j.physa.2019.122149_b49
– volume: 42
  start-page: 599
  issue: 4
  year: 2000
  ident: 10.1016/j.physa.2019.122149_b7
  article-title: The mathematics of infectious diseases
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144500371907
– year: 2018
  ident: 10.1016/j.physa.2019.122149_b11
  article-title: A new collection of real world applications of fractional calculus in science and engineering
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2018.04.019
– volume: 134
  start-page: 20
  issue: 1
  year: 2019
  ident: 10.1016/j.physa.2019.122149_b38
  article-title: New complex waves in nonlinear optics based on the complex Ginzburg-Landau equation with Kerr law nonlinearity
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2019-12442-4
– volume: 175
  start-page: 328
  year: 2018
  ident: 10.1016/j.physa.2019.122149_b33
  article-title: New optical solitary wave solutions of Fokas-Lenells equation in presence of perturbation terms by a novel approach
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.08.007
– volume: 12
  start-page: 1
  issue: 5
  year: 2017
  ident: 10.1016/j.physa.2019.122149_b8
  article-title: Modelling the transmission and control strategies of varicella among school children in Shenzhen, China
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0177514
– year: 2010
  ident: 10.1016/j.physa.2019.122149_b50
– volume: 526
  year: 2019
  ident: 10.1016/j.physa.2019.122149_b20
  article-title: Mathematical analysis of dengue fever outbreak by novel fractional operators with field data
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.121127
– volume: 29
  issue: 1
  year: 2019
  ident: 10.1016/j.physa.2019.122149_b22
  article-title: Fractional modeling of blood ethanol concentration system with real data application
  publication-title: Chaos
  doi: 10.1063/1.5082907
– volume: 7
  start-page: 022
  year: 2006
  ident: 10.1016/j.physa.2019.122149_b6
  article-title: Seroepidemiological survey of prevalence of varicella-zoster virus in healthy population in Shenzhen City
  publication-title: China Tropical Med.
– start-page: 1
  year: 2018
  ident: 10.1016/j.physa.2019.122149_b44
  article-title: An epidemiological MSEIR model described by the Caputo fractional derivative
  publication-title: Int. J. Dyn. Control
– volume: 34
  start-page: 1759
  year: 2018
  ident: 10.1016/j.physa.2019.122149_b17
  article-title: Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space
  publication-title: Numer. Methods Partial Differential Equations
  doi: 10.1002/num.22236
– volume: 29
  start-page: 690
  issue: 8
  year: 2010
  ident: 10.1016/j.physa.2019.122149_b3
  article-title: The effectiveness of varicella vaccine in China
  publication-title: Pediatric Infec. Dis. J.
  doi: 10.1097/INF.0b013e3181d7380e
– volume: 32
  issue: 26
  year: 2018
  ident: 10.1016/j.physa.2019.122149_b31
  article-title: Optical solitons with quadratic–cubic nonlinearity and fractional temporal evolution
  publication-title: Modern Phys. Lett. B
  doi: 10.1142/S0217984918503177
– volume: 29
  start-page: 1465
  issue: 5
  year: 2018
  ident: 10.1016/j.physa.2019.122149_b35
  article-title: Solutions of Bagley–Torvik and Painlevé Equations of fractional order using iterative reproducing kernel algorithm with error estimates
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2484-4
– year: 1986
  ident: 10.1016/j.physa.2019.122149_b51
– volume: 8
  start-page: 224
  issue: 1
  year: 2019
  ident: 10.1016/j.physa.2019.122149_b40
  article-title: Hyperbolic rational solutions to a variety of conformable fractional Boussinesq-Like equations
  publication-title: Nonlinear Eng.
  doi: 10.1515/nleng-2018-0033
– start-page: 1
  year: 2018
  ident: 10.1016/j.physa.2019.122149_b56
  article-title: On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag–Leffler kernel
  publication-title: Nonlinear Dynam.
– volume: 49
  start-page: 451
  issue: 3
  year: 1963
  ident: 10.1016/j.physa.2019.122149_b1
  article-title: Chromosome breaks in leukocytes of chickenpox patients. Preliminary communication
  publication-title: Hereditas
  doi: 10.1111/j.1601-5223.1963.tb01891.x
– year: 2013
  ident: 10.1016/j.physa.2019.122149_b9
  article-title: Approximate solution of tuberculosis disease population dynamics model
SSID ssj0001732
Score 2.5286236
Snippet This study proposes a new epidemiological fractional order mathematical model called MSEIR (Maternally-derived immunity, Susceptible, Exposed, Infectious, and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 122149
SubjectTerms Caputo
Numerical simulations
Positivity
Reproductive number
Steady states
Title Transmission dynamics of varicella zoster virus modeled by classical and novel fractional operators using real statistical data
URI https://dx.doi.org/10.1016/j.physa.2019.122149
Volume 534
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iCF7EJz6XHDza3eaxTXuURVkVvaiwt5LmIStLd2nXBT3oX3emDx8gHqSXNCQlzKSZL8nMN4ScZNYoHesw6IeZD2Ss4ZeSmQy85sLKCPMdY4DzzW00fJBXo_5oiQzaWBh0q2zW_npNr1brpqbXSLM3G497d6FQsRSKAQSBL8YY8Culwlneffty82BK1DcJsFvC1i3zUOXjhacHSD7Eki7jnCGh5m_W6ZvFudgg6w1UpGf1aDbJksu3yGrlsmnKbfJemRlQE553UVtnli_p1NOFRqYg0C99xRCOgi7GxXNJ66Q3lmYv1CBmRvVQnVuaTxduQn1RxzhA5XTmqtv3kqJb_CMFYDmhGHpUsTpDGf1Kd8jDxfn9YBg06RQCA3ZqHjDlkkQZHgnPY2N1wpHZh9kQHkwGnjguhI6EtcIwB0VALhGgRy2dch5w1S5Zzqe52yM0yyQY-iSOkDxfKw_q9T7mhlsZw8422ye8FWNqGq5xTHkxSVunsqe0kn2Ksk9r2e-T089Os5pq4-_mUauf9MeMScEY_NXx4L8dD8kavmEkIusfkeV58eyOAZLMs0415zpk5ezyenj7AXqv4ok
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FIEQuiFUkbHWAG85ML2O3DxwiIJqQ5UIi5WbavaCJRp7ReDJROMBH8YOp8sIioRyQIl9abXfLri5XvbarXgG8Lr3LrLHDZDQsY6KNpVdKlzqJViqvU653zAnOh0fp-ER_Oh2drsHPPheGwyo729_a9MZadz2DTpqD-WQy-DxUmdEqEwRBaEZjusjK_XB5Qfu2-t3eB1rkN1Lufjx-P0660gKJI5u9TEQW8jxzMlVRGudtLpnlRvghHVwYOw9SKZsq75UTgZrkxVNCUlaHLETCGDTvLbityVxw2YTt77_jSkSm2l8XtD3j2-upjpqgMv5cwWxHIt8WUgpm8PyXO_zDxe3eh3sdNsWd9vEfwFqoHsKdJkbU1Y_gR-PXSC_4Axv6tpR9jbOIK8vURKRQ-I1zRha4mizOa2yr7HgsL9ExSGd9QFt5rGarMMW4aJMqqHM2D83v_ho5Dv8rEpKdIuc6NTTS1OZA1sdwciNCfgLr1awKTwHLUhOyyE3KbP02i6RPMRrppNeGttLlJshejIXryM25xsa06KPYzopG9gXLvmhlvwlvfw2at9we11-e9utT_KWiBXmf6wZu_e_AV3B3fHx4UBzsHe0_gw0-w2mQYvQc1peL8_CC8NCyfNnoH8KXm1b4K6lCHGY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transmission+dynamics+of+varicella+zoster+virus+modeled+by+classical+and+novel+fractional+operators+using+real+statistical+data&rft.jtitle=Physica+A&rft.au=Qureshi%2C+Sania&rft.au=Yusuf%2C+Abdullahi&rft.au=Shaikh%2C+Asif+Ali&rft.au=Inc%2C+Mustafa&rft.date=2019-11-15&rft.issn=0378-4371&rft.volume=534&rft.spage=122149&rft_id=info:doi/10.1016%2Fj.physa.2019.122149&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physa_2019_122149
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon