Recent progress and prospects in solid acid-catalyzed CO2 desorption from amine-rich liquid
Saved in:
Published in | Gas Science and Engineering Vol. 120; p. 205152 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.12.2023
|
Online Access | Get full text |
ISSN | 2949-9089 2949-9089 |
DOI | 10.1016/j.jgsce.2023.205152 |
Cover
ArticleNumber | 205152 |
---|---|
Author | Liu, Jingwen An, Shanlong Dai, Qin Zhang, Rongzhe Yu, Guangfei Wang, Lidong Xu, Teng Aierken, Aizimaitijiang Xing, Lei |
Author_xml | – sequence: 1 givenname: Shanlong surname: An fullname: An, Shanlong – sequence: 2 givenname: Teng surname: Xu fullname: Xu, Teng – sequence: 3 givenname: Lei surname: Xing fullname: Xing, Lei – sequence: 4 givenname: Guangfei surname: Yu fullname: Yu, Guangfei – sequence: 5 givenname: Rongzhe surname: Zhang fullname: Zhang, Rongzhe – sequence: 6 givenname: Jingwen surname: Liu fullname: Liu, Jingwen – sequence: 7 givenname: Aizimaitijiang surname: Aierken fullname: Aierken, Aizimaitijiang – sequence: 8 givenname: Qin surname: Dai fullname: Dai, Qin – sequence: 9 givenname: Lidong orcidid: 0000-0002-0560-3455 surname: Wang fullname: Wang, Lidong |
BookMark | eNp9kLtOwzAUhi1UJErpE7D4BVJsn6SJR1RxkyohIZgYLF-Lo9QJthnK05NQBsTAci7Dd3T-7xzNQh8sQpeUrCih66t21e6StitGGIylohU7QXPGS15w0vDZr_kMLVNqCSHAgBNG5uj1yWobMh5iv4s2JSyDmZY0WJ0T9gGnvvMGS-1NoWWW3eHTGrx5ZNjY1Mch-z5gF_s9lnsfbBG9fsOdf__w5gKdOtklu_zpC_Rye_O8uS-2j3cPm-ttoYFALihoTm1T2WoNzihdq1ISBcBULd2YZ61s6WRVuroCYzQ1QEsGRDU1rU2jalggON7V498pWieG6PcyHgQlYlIkWvGtSEyKxFHRSPE_lPZZTnFylL77l_0C2clxTg |
CitedBy_id | crossref_primary_10_1016_j_seppur_2024_128420 crossref_primary_10_1016_j_seppur_2024_130434 crossref_primary_10_1016_j_seppur_2024_130577 crossref_primary_10_1016_j_seppur_2025_132094 crossref_primary_10_1016_j_jcou_2025_103052 crossref_primary_10_1016_j_seppur_2024_131230 crossref_primary_10_3390_catal14110779 crossref_primary_10_1016_j_cej_2024_149413 crossref_primary_10_1016_j_rineng_2024_103677 crossref_primary_10_1016_j_jece_2024_114382 crossref_primary_10_1002_adfm_202414293 |
Cites_doi | 10.1016/j.egyr.2022.11.023 10.1016/j.ijhydene.2018.02.074 10.1021/acscatal.0c04714 10.1016/j.apenergy.2021.116768 10.1016/j.seppur.2022.121144 10.1016/j.jngse.2016.06.002 10.3390/su14084750 10.1021/es504684x 10.1016/j.cej.2020.127476 10.1021/acs.energyfuels.9b00952 10.1016/j.micromeso.2021.111546 10.1007/s11356-016-6631-3 10.1016/j.cej.2019.123077 10.1016/j.apenergy.2019.114179 10.1021/acssuschemeng.0c07066 10.1016/j.jcat.2016.08.007 10.1016/j.apenergy.2018.02.087 10.1016/j.rser.2022.112536 10.1016/j.cej.2022.139801 10.1002/advs.202203899 10.1016/j.rechem.2022.100549 10.1021/acs.iecr.7b00778 10.1016/j.jcou.2017.06.012 10.1021/acs.est.1c01622 10.1016/j.gee.2020.10.014 10.1016/j.fuproc.2022.107476 10.1016/j.jtice.2018.05.029 10.1016/j.ijggc.2014.10.007 10.1021/jacs.7b10940 10.1016/j.fuproc.2022.107421 10.1016/j.clet.2022.100456 10.1016/j.egyr.2020.10.042 10.1007/s10563-020-09305-5 10.1016/j.inoche.2022.110011 10.1021/acs.est.2c05687 10.1016/j.ijhydene.2021.12.214 10.1021/acs.est.2c08326 10.1016/j.fuel.2011.02.005 10.1016/j.jclepro.2018.09.089 10.1021/acs.energyfuels.2c00640 10.1016/j.carbon.2018.03.043 10.1016/j.ijggc.2022.103647 10.1016/B978-0-12-803581-8.09262-6 10.1021/acs.est.0c04946 10.1016/j.jechem.2018.03.011 10.1016/j.cej.2022.136348 10.1016/j.carbon.2016.04.034 10.1021/acs.est.1c02452 10.1002/ghg.1839 10.1002/ghg.1851 10.1021/acs.energyfuels.9b02874 10.1016/j.ijggc.2013.10.001 10.1016/j.cclet.2022.02.065 10.1016/j.ijggc.2021.103307 10.1016/j.scitotenv.2020.138973 10.1016/j.apsusc.2017.04.018 10.1002/anie.201912348 10.1016/j.watres.2018.03.012 10.1016/j.apenergy.2018.07.035 10.1016/j.cjche.2018.08.020 10.1021/acs.iecr.2c01689 10.1016/j.pnucene.2021.104080 10.1021/acs.est.9b01901 10.1016/j.cattod.2020.02.033 10.1016/j.energy.2023.127329 10.1016/j.egypro.2011.01.042 10.1016/j.memsci.2016.03.051 10.1016/0021-9517(69)90370-4 10.1021/acs.iecr.6b00358 10.1016/j.watres.2023.120119 10.1016/j.seppur.2020.116795 10.1002/tcr.201300009 10.1021/es0480421 10.3390/w13020156 10.1016/j.apenergy.2017.05.135 10.1016/j.cej.2023.143871 10.1016/j.fuel.2022.126103 10.1016/j.seppur.2022.121676 10.1039/D0CS00025F 10.1016/j.seppur.2022.123092 10.1016/j.ijggc.2013.09.008 10.1016/j.apenergy.2019.01.242 10.1021/acs.iecr.2c03132 10.1002/aic.16380 10.1016/j.seppur.2017.11.024 10.1016/j.apenergy.2019.113518 10.1016/j.cej.2021.131334 10.1007/s10311-019-00940-7 10.1016/j.jes.2021.11.014 10.1016/j.desal.2006.03.445 10.1038/s41467-022-28869-6 10.1016/j.apsusc.2017.10.196 10.3390/catal10020237 10.1016/j.ces.2017.02.004 10.1016/j.clwas.2022.100041 10.1021/acs.iecr.1c03671 10.1016/j.apenergy.2018.10.007 10.1021/cs300103k 10.1016/j.ccst.2023.100131 10.1016/j.apenergy.2019.02.089 10.1016/j.ijggc.2014.04.007 10.1039/D0RA03754K 10.1021/acs.est.1c08666 10.1016/j.jeconom.2021.04.003 10.1021/acsami.0c16428 10.1021/acs.est.1c01849 10.1021/acs.iecr.1c02487 10.1016/j.apenergy.2019.113440 10.1016/j.cattod.2014.04.010 10.1021/acssuschemeng.8b02422 10.1016/j.apcata.2020.117952 10.1016/j.eti.2022.102998 10.1039/C9SE00821G 10.1021/acssuschemeng.0c02582 10.1016/j.seppur.2021.118700 10.1016/j.cej.2021.131264 10.1016/j.ijggc.2017.12.010 10.1021/acs.est.8b05654 10.1039/D0GC01887B 10.1021/acs.est.9b02787 10.1021/acs.est.2c06842 10.1016/j.ces.2017.01.049 10.1016/j.fuel.2022.126616 10.1016/j.cej.2019.123439 10.1021/es900806c 10.1016/j.rser.2022.112902 10.1016/j.scitotenv.2018.11.424 10.1016/j.apenergy.2016.03.043 10.1016/j.seppur.2022.121577 10.1016/j.rser.2020.110490 10.1021/acs.energyfuels.8b03580 10.1038/s41467-018-05145-0 10.1021/acs.est.0c07390 10.1016/j.jiec.2022.10.043 10.1016/j.cej.2016.12.033 10.1016/j.apenergy.2019.02.019 10.1021/acs.energyfuels.8b04395 10.1021/acssuschemeng.7b00604 10.1016/j.ijggc.2022.103715 10.1021/acs.iecr.0c03767 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jgsce.2023.205152 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2949-9089 |
ExternalDocumentID | 10_1016_j_jgsce_2023_205152 |
GroupedDBID | 0R~ AALRI AAXUO AAYWO AAYXX ABJNI ACRLP AEIPS AFJKZ AFXIZ AGRNS AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ATOGT BELTK BNPGV CITATION FDB M41 ROL SPC SSE SSH SSR |
ID | FETCH-LOGICAL-c303t-13c91e85e563fdbc7b4a0b332b7af2056be4fa54f753ddc1d314230b8717d8b73 |
ISSN | 2949-9089 |
IngestDate | Thu Apr 24 22:51:58 EDT 2025 Tue Jul 01 03:30:04 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c303t-13c91e85e563fdbc7b4a0b332b7af2056be4fa54f753ddc1d314230b8717d8b73 |
ORCID | 0000-0002-0560-3455 |
ParticipantIDs | crossref_primary_10_1016_j_jgsce_2023_205152 crossref_citationtrail_10_1016_j_jgsce_2023_205152 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-00 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-00 |
PublicationDecade | 2020 |
PublicationTitle | Gas Science and Engineering |
PublicationYear | 2023 |
References | Chowdhury (10.1016/j.jgsce.2023.205152_bib26) 2011; 4 Gao (10.1016/j.jgsce.2023.205152_bib37) 2023; 125 Dharmalingam (10.1016/j.jgsce.2023.205152_bib28) 2022; 20 Srisang (10.1016/j.jgsce.2023.205152_bib105) 2018; 69 Gao (10.1016/j.jgsce.2023.205152_bib35) 2020; 259 Heda (10.1016/j.jgsce.2023.205152_bib47) 2019; 33 Razi (10.1016/j.jgsce.2023.205152_bib98) 2013; 19 Guo (10.1016/j.jgsce.2023.205152_bib41) 2022; 33 Gurney (10.1016/j.jgsce.2023.205152_bib44) 2009; 43 Wang (10.1016/j.jgsce.2023.205152_bib120) 2023; 57 dos Santos (10.1016/j.jgsce.2023.205152_bib30) 2017 Meng (10.1016/j.jgsce.2023.205152_bib83) 2022; 168 Gautam (10.1016/j.jgsce.2023.205152_bib38) 2023; 334 Li (10.1016/j.jgsce.2023.205152_bib61) 2022; 329 Zhang (10.1016/j.jgsce.2023.205152_bib153) 2018; 218 Helei (10.1016/j.jgsce.2023.205152_bib48) 2021; 108 Xing (10.1016/j.jgsce.2023.205152_bib134) 2020; 54 Hughes (10.1016/j.jgsce.2023.205152_bib52) 1969; 13 Lu (10.1016/j.jgsce.2023.205152_bib77) 2022; 61 Pinto (10.1016/j.jgsce.2023.205152_bib94) 2014; 31 Chen (10.1016/j.jgsce.2023.205152_bib23) 2022; 230 Yu (10.1016/j.jgsce.2023.205152_bib141) 2022; 56 Bhatti (10.1016/j.jgsce.2023.205152_bib14) 2017; 5 Zhang (10.1016/j.jgsce.2023.205152_bib155) 2019; 53 Wai (10.1016/j.jgsce.2023.205152_bib118) 2018; 194 Ali (10.1016/j.jgsce.2023.205152_bib2) 2022; 145 Alivand (10.1016/j.jgsce.2023.205152_bib4) 2020; 8 Jing (10.1016/j.jgsce.2023.205152_bib55) 2019; 31 Mathew (10.1016/j.jgsce.2023.205152_bib82) 2022; 143 Guo (10.1016/j.jgsce.2023.205152_bib40) 2019; 239 Xu (10.1016/j.jgsce.2023.205152_bib137) 2018; 43 Tan (10.1016/j.jgsce.2023.205152_bib110) 2022; 298 Lu (10.1016/j.jgsce.2023.205152_bib76) 2021; 13 Shi (10.1016/j.jgsce.2023.205152_bib102) 2022; 116 Yaghmaeiyan (10.1016/j.jgsce.2023.205152_bib140) 2022; 4 Venkatraman (10.1016/j.jgsce.2023.205152_bib116) 2017; 21 Ali Saleh Bairq (10.1016/j.jgsce.2023.205152_bib3) 2019; 252 Pan (10.1016/j.jgsce.2023.205152_bib92) 2022; 237 Xing (10.1016/j.jgsce.2023.205152_bib132) 2022; 56 Thao (10.1016/j.jgsce.2023.205152_bib113) 2018; 3 Osei (10.1016/j.jgsce.2023.205152_bib91) 2017; 170 Xing (10.1016/j.jgsce.2023.205152_bib136) 2021; 55 Alivand (10.1016/j.jgsce.2023.205152_bib5) 2022; 13 Xing (10.1016/j.jgsce.2023.205152_bib133) 2020; 54 Tan (10.1016/j.jgsce.2023.205152_bib109) 2022; 298 Sirsam (10.1016/j.jgsce.2023.205152_bib103) 2016; 97 Hou (10.1016/j.jgsce.2023.205152_bib49) 2022; 36 Bhatti (10.1016/j.jgsce.2023.205152_bib9) 2023; 8 Wilberforce (10.1016/j.jgsce.2023.205152_bib129) 2019; 657 Shen (10.1016/j.jgsce.2023.205152_bib99) 2021; 270 de Meyer (10.1016/j.jgsce.2023.205152_bib27) 2022; 428 Ortega-Ruiz (10.1016/j.jgsce.2023.205152_bib90) 2022 Viscardi (10.1016/j.jgsce.2023.205152_bib117) 2020; 6 Chen (10.1016/j.jgsce.2023.205152_bib24) 2020; 5 Liu (10.1016/j.jgsce.2023.205152_bib70) 2019; 3 Sun (10.1016/j.jgsce.2023.205152_bib107) 2023; 469 Wei (10.1016/j.jgsce.2023.205152_bib127) 2022; 293 Dods (10.1016/j.jgsce.2023.205152_bib29) 2021; 55 Bhatti (10.1016/j.jgsce.2023.205152_bib13) 2020; 389 Li (10.1016/j.jgsce.2023.205152_bib67) 2022; 298 Prasongthum (10.1016/j.jgsce.2023.205152_bib95) 2019; 33 Zhang (10.1016/j.jgsce.2023.205152_bib147) 2020; 10 Zhong (10.1016/j.jgsce.2023.205152_bib159) 2021; 55 Wang (10.1016/j.jgsce.2023.205152_bib119) 2021; 611 Gecim (10.1016/j.jgsce.2023.205152_bib39) 2022 Zhang (10.1016/j.jgsce.2023.205152_bib146) 2019; 239 Li (10.1016/j.jgsce.2023.205152_bib64) 2023; 332 Wei (10.1016/j.jgsce.2023.205152_bib128) 2022; 293 Lin (10.1016/j.jgsce.2023.205152_bib68) 2016; 23 Bajpai (10.1016/j.jgsce.2023.205152_bib7) 2022; 8 Bhatti (10.1016/j.jgsce.2023.205152_bib11) 2020; 22 Li (10.1016/j.jgsce.2023.205152_bib65) 2019; 33 Qin (10.1016/j.jgsce.2023.205152_bib96) 2018; 137 Zhang (10.1016/j.jgsce.2023.205152_bib144) 2022; 12 Koonaphapdeelert (10.1016/j.jgsce.2023.205152_bib58) 2006; 200 Wang (10.1016/j.jgsce.2023.205152_bib121) 2017; 314 Zhang (10.1016/j.jgsce.2023.205152_bib156) 2022; 238 Hambali (10.1016/j.jgsce.2023.205152_bib45) 2022; 47 Aghel (10.1016/j.jgsce.2023.205152_bib1) 2022; 119 Zhao (10.1016/j.jgsce.2023.205152_bib157) 2021; 11 Zhang (10.1016/j.jgsce.2023.205152_bib150) 2020; 383 Bhatti (10.1016/j.jgsce.2023.205152_bib16) 2021; 413 Chen (10.1016/j.jgsce.2023.205152_bib21) 2020; 732 Long (10.1016/j.jgsce.2023.205152_bib75) 2018; 435 Mohd Rozaiddin (10.1016/j.jgsce.2023.205152_bib84) 2022; 14 Galindo (10.1016/j.jgsce.2023.205152_bib33) 2012; 101 Niwa (10.1016/j.jgsce.2023.205152_bib88) 2013; 13 Bairq (10.1016/j.jgsce.2023.205152_bib6) 2020; 8 Zhang (10.1016/j.jgsce.2023.205152_bib154) 2017; 202 Zhang (10.1016/j.jgsce.2023.205152_bib145) 2016; 105 Fu (10.1016/j.jgsce.2023.205152_bib32) 2021; 426 Bhatti (10.1016/j.jgsce.2023.205152_bib12) 2018; 6 Guo (10.1016/j.jgsce.2023.205152_bib42) 2023; 274 Li (10.1016/j.jgsce.2023.205152_bib66) 2022; 298 Tao (10.1016/j.jgsce.2023.205152_bib112) 2022; 164 Xu (10.1016/j.jgsce.2023.205152_bib138) 2018; 26 Nakajima (10.1016/j.jgsce.2023.205152_bib87) 2012; 2 Wang (10.1016/j.jgsce.2023.205152_bib122) 2019; 53 Bao (10.1016/j.jgsce.2023.205152_bib8) 2017; 414 Pei (10.1016/j.jgsce.2023.205152_bib93) 2018; 133 Idem (10.1016/j.jgsce.2023.205152_bib53) 2011 Liu (10.1016/j.jgsce.2023.205152_bib74) 2020; 24 Lai (10.1016/j.jgsce.2023.205152_bib59) 2018; 9 Liu (10.1016/j.jgsce.2023.205152_bib71) 2017; 56 Bond (10.1016/j.jgsce.2023.205152_bib18) 2005; 39 Li (10.1016/j.jgsce.2023.205152_bib62) 2018; 10 Sun (10.1016/j.jgsce.2023.205152_bib108) 2021; 60 Chao (10.1016/j.jgsce.2023.205152_bib20) 2021; 138 Zhang (10.1016/j.jgsce.2023.205152_bib148) 2018; 64 El Hadri (10.1016/j.jgsce.2023.205152_bib31) 2017; 185 Zhao (10.1016/j.jgsce.2023.205152_bib158) 2016; 511 Huang (10.1016/j.jgsce.2023.205152_bib51) 2021; 60 Hu (10.1016/j.jgsce.2023.205152_bib50) 2019; 33 Nwaoha (10.1016/j.jgsce.2023.205152_bib89) 2016; 33 Chen (10.1016/j.jgsce.2023.205152_bib25) 2022; 56 Monteiro (10.1016/j.jgsce.2023.205152_bib85) 2013; 19 Gao (10.1016/j.jgsce.2023.205152_bib36) 2020; 49 Liu (10.1016/j.jgsce.2023.205152_bib72) 2019; 9 Tan (10.1016/j.jgsce.2023.205152_bib111) 2023; 453 Bhatti (10.1016/j.jgsce.2023.205152_bib10) 2021; 60 Liu (10.1016/j.jgsce.2023.205152_bib69) 2019; 233–234 Kim (10.1016/j.jgsce.2023.205152_bib56) 2015; 49 Vaz (10.1016/j.jgsce.2023.205152_bib115) 2022; 8 Gao (10.1016/j.jgsce.2023.205152_bib34) 2020; 59 Wang (10.1016/j.jgsce.2023.205152_bib123) 2023; 240 Chen (10.1016/j.jgsce.2023.205152_bib22) 2017; 139 Shen (10.1016/j.jgsce.2023.205152_bib100) 2023; 309 Yurdakal (10.1016/j.jgsce.2023.205152_bib143) 2019 Zhang (10.1016/j.jgsce.2023.205152_bib151) 2020; 383 Xing (10.1016/j.jgsce.2023.205152_bib131) 2022; 56 Rashwan (10.1016/j.jgsce.2023.205152_bib97) 2022; 3 Bhatti (10.1016/j.jgsce.2023.205152_bib17) 2021; 413 He (10.1016/j.jgsce.2023.205152_bib46) 2021; 375 Wang (10.1016/j.jgsce.2023.205152_bib124) 2018; 52 Borhani (10.1016/j.jgsce.2023.205152_bib19) 2018; 204 Xing (10.1016/j.jgsce.2023.205152_bib135) 2021; 55 Zhang (10.1016/j.jgsce.2023.205152_bib149) 2019; 240 Mai (10.1016/j.jgsce.2023.205152_bib81) 2022; 9 Wang (10.1016/j.jgsce.2023.205152_bib125) 2021; 290 Ma (10.1016/j.jgsce.2023.205152_bib79) 2023; 117 Knaeble (10.1016/j.jgsce.2023.205152_bib57) 2016; 344 Liu (10.1016/j.jgsce.2023.205152_bib73) 2019; 253 Shi (10.1016/j.jgsce.2023.205152_bib101) 2014; 26 Wang (10.1016/j.jgsce.2023.205152_bib126) 2016; 55 Mahajan (10.1016/j.jgsce.2023.205152_bib80) 2020; 18 Vasić (10.1016/j.jgsce.2023.205152_bib114) 2020; 10 (10.1016/j.jgsce.2023.205152_bib54) 2022 Bhatti (10.1016/j.jgsce.2023.205152_bib15) 2018; 93 Zhang (10.1016/j.jgsce.2023.205152_bib152) 2018; 229 Murtaza (10.1016/j.jgsce.2023.205152_bib86) 2023; 29 Gupta (10.1016/j.jgsce.2023.205152_bib43) 2014; 236 Srisang (10.1016/j.jgsce.2023.205152_bib104) 2017; 170 Sun (10.1016/j.jgsce.2023.205152_bib106) 2022; 443 Wu (10.1016/j.jgsce.2023.205152_bib130) 2020; 12 Yuan (10.1016/j.jgsce.2023.205152_bib142) 2021; 55 Ma (10.1016/j.jgsce.2023.205152_bib78) 2020; 242 Zhou (10.1016/j.jgsce.2023.205152_bib160) 2021; 55 |
References_xml | – volume: 8 start-page: 15595 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib7 article-title: Opportunities, challenges and the way ahead for carbon capture, utilization and sequestration (CCUS) by the hydrocarbon industry: towards a sustainable future publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.11.023 – volume: 43 start-page: 6594 year: 2018 ident: 10.1016/j.jgsce.2023.205152_bib137 article-title: Efficient catalytic properties of SO42−/MxOy (M = Cu, Co, Fe) catalysts for hydrogen generation by methanolysis of sodium borohydride publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.02.074 – volume: 11 start-page: 2076 year: 2021 ident: 10.1016/j.jgsce.2023.205152_bib157 article-title: Carbon-based materials for electrochemical reduction of CO2 to C2+ oxygenates: recent progress and remaining challenges publication-title: ACS Catal. doi: 10.1021/acscatal.0c04714 – start-page: 162 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib90 article-title: CO2 emissions and causal relationships in the six largest world emitters publication-title: Renew. Sustain. Energy Rev. – volume: 290 year: 2021 ident: 10.1016/j.jgsce.2023.205152_bib125 article-title: Energy efficient diethylenetriamine-1-propanol biphasic solvent for CO2 capture: experimental and theoretical study publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116768 – volume: 293 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib127 article-title: Heteropolyacid modified Cerium-based MOFs catalyst for amine solution regeneration in CO2 capture publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.121144 – volume: 33 start-page: 742 year: 2016 ident: 10.1016/j.jgsce.2023.205152_bib89 article-title: Carbon dioxide (CO2) capture: absorption-desorption capabilities of 2-amino-2-methyl-1-propanol (AMP), piperazine (PZ) and monoethanolamine (MEA) tri-solvent blends publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2016.06.002 – volume: 97 start-page: 167 year: 2016 ident: 10.1016/j.jgsce.2023.205152_bib103 article-title: A mini-review on solid acid catalysts for esterification reactions publication-title: J. Inst. Eng.: Series E – volume: 14 start-page: 1 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib84 article-title: A review on enhancing solvent regeneration in CO2 absorption process using nanoparticles publication-title: Sustainability doi: 10.3390/su14084750 – volume: 49 start-page: 1478 year: 2015 ident: 10.1016/j.jgsce.2023.205152_bib56 article-title: Novel shortcut estimation method for regeneration energy of amine solvents in an absorption-based carbon capture process publication-title: Environ. Sci. Technol. doi: 10.1021/es504684x – volume: 413 year: 2021 ident: 10.1016/j.jgsce.2023.205152_bib17 article-title: Ion-exchanged montmorillonite as simple and effective catalysts for efficient CO2 capture publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127476 – volume: 33 start-page: 6577 year: 2019 ident: 10.1016/j.jgsce.2023.205152_bib65 article-title: Enhancement of CO2 desorption from reinforced 2-(2-aminoethylamine) ethanol aqueous solution by multi-walled carbon nanotubes publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.9b00952 – volume: 329 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib61 article-title: Synthesis of hollow HZSM-5 zeolite-based catalysts and catalytic performance in MTA reaction publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2021.111546 – volume: 23 start-page: 15294 year: 2016 ident: 10.1016/j.jgsce.2023.205152_bib68 article-title: Co and Fe-catalysts supported on sepiolite: effects of preparation conditions on their catalytic behaviors in high temperature gas flow treatment of dye publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-016-6631-3 – volume: 383 year: 2020 ident: 10.1016/j.jgsce.2023.205152_bib150 article-title: Amine-based CO2 capture aided by acid-basic bifunctional catalyst: advancement of amine regeneration using metal modified MCM-41 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123077 – volume: 259 year: 2020 ident: 10.1016/j.jgsce.2023.205152_bib35 article-title: Catalytic performance and mechanism of SO42−/ZrO2/SBA-15 catalyst for CO2 desorption in CO2-loaded monoethanolamine solution publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.114179 – volume: 8 start-page: 18755 year: 2020 ident: 10.1016/j.jgsce.2023.205152_bib4 article-title: Catalytic solvent regeneration for energy-efficient CO2 capture publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c07066 – volume: 344 start-page: 817 year: 2016 ident: 10.1016/j.jgsce.2023.205152_bib57 article-title: Acid strength and metal-acid proximity effects on methylcyclohexane ring contraction turnover rates and selectivities publication-title: J. Catal. doi: 10.1016/j.jcat.2016.08.007 – volume: 218 start-page: 417 year: 2018 ident: 10.1016/j.jgsce.2023.205152_bib153 article-title: Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.02.087 – volume: 164 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib112 article-title: Research progress of clay minerals in carbon dioxide capture publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2022.112536 – volume: 453 year: 2023 ident: 10.1016/j.jgsce.2023.205152_bib111 article-title: SnO2/ATP catalyst enabling energy-efficient and green amine-based CO2 capture publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.139801 – volume: 293 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib128 article-title: Heteropolyacid modified Cerium-based MOFs catalyst for amine solution regeneration in CO2 capture publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.121144 – volume: 9 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib81 article-title: Machine learning in the development of adsorbents for clean energy application and greenhouse gas capture publication-title: Adv. Sci. doi: 10.1002/advs.202203899 – volume: 4 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib140 article-title: Montmorillonite clay: introduction and evaluation of its applications in different organic syntheses as catalyst: a review publication-title: Results in Chemistry doi: 10.1016/j.rechem.2022.100549 – volume: 12 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib144 article-title: Evaluating CO2 desorption activity of tri-solvent MEA + EAE + AMP with various commercial solid acid catalysts publication-title: Catalysts – volume: 56 start-page: 7656 year: 2017 ident: 10.1016/j.jgsce.2023.205152_bib71 article-title: Investigation of CO2 regeneration in single and blended amine solvents with and without catalyst publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b00778 – volume: 21 start-page: 162 year: 2017 ident: 10.1016/j.jgsce.2023.205152_bib116 article-title: Predicting CO2 capture of ionic liquids using machine learning publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2017.06.012 – volume: 55 start-page: 15313 year: 2021 ident: 10.1016/j.jgsce.2023.205152_bib160 article-title: A novel dual-stage phase separation process for CO2 absorption into a biphasic solvent with low energy penalty publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c01622 – volume: 5 start-page: 394 year: 2020 ident: 10.1016/j.jgsce.2023.205152_bib24 article-title: Environmentally benign synthesis of crystalline nanosized molecular sieves publication-title: Green Energy Environ. doi: 10.1016/j.gee.2020.10.014 – volume: 238 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib156 article-title: Energy and CO2 emission analysis of a Bio-Energy with CCS system: biomass gasification-solid oxide fuel cell-mini gas turbine-CO2 capture publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2022.107476 – volume: 93 start-page: 150 year: 2018 ident: 10.1016/j.jgsce.2023.205152_bib15 article-title: Metal oxide catalyst-aided solvent regeneration: a promising method to economize post-combustion CO2 capture process publication-title: J Taiwan Inst Chem E doi: 10.1016/j.jtice.2018.05.029 – volume: 31 start-page: 153 year: 2014 ident: 10.1016/j.jgsce.2023.205152_bib94 article-title: CO2 post combustion capture with a phase change solvent. Pilot plant campaign publication-title: Int J Greenh Gas Con doi: 10.1016/j.ijggc.2014.10.007 – volume: 139 start-page: 18698 year: 2017 ident: 10.1016/j.jgsce.2023.205152_bib22 article-title: Direct detection of multiple acidic proton sites in zeolite HZSM-5 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10940 – volume: 237 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib92 article-title: Recent advances in biodiesel production using functional carbon materials as acid/base catalysts publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2022.107421 – volume: 8 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib115 article-title: Technologies for carbon dioxide capture: a review applied to energy sectors publication-title: Cleaner Engin. Technol. doi: 10.1016/j.clet.2022.100456 – volume: 6 start-page: 49 year: 2020 ident: 10.1016/j.jgsce.2023.205152_bib117 article-title: Effect of acidic MCM-41 mesoporous silica functionalized with sulfonic acid groups catalyst in conversion of methanol to dimethyl ether publication-title: Energy Rep. doi: 10.1016/j.egyr.2020.10.042 – volume: 24 start-page: 196 year: 2020 ident: 10.1016/j.jgsce.2023.205152_bib74 article-title: Research progress on stability of solid acid catalysts publication-title: Catal. Surv. Asia doi: 10.1007/s10563-020-09305-5 – volume: 145 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib2 article-title: Modification strategies of metal oxide photocatalysts for clean energy and environmental applications: a review publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2022.110011 – volume: 56 start-page: 13305 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib25 article-title: Energy-efficient biphasic solvents for industrial carbon capture: role of physical solvents on CO2 absorption and phase splitting publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c05687 – volume: 47 start-page: 30759 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib45 article-title: Zeolite and clay based catalysts for CO2 reforming of methane to syngas: a review publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.12.214 – volume: 57 start-page: 4061 year: 2023 ident: 10.1016/j.jgsce.2023.205152_bib120 article-title: The double dividend of international cooperation for climate mitigation cost effectiveness and public health cobenefits publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c08326 – volume: 101 start-page: 2 year: 2012 ident: 10.1016/j.jgsce.2023.205152_bib33 article-title: Experimental research on the performance of CO2-loaded solutions of MEA and DEA at regeneration conditions publication-title: Fuel doi: 10.1016/j.fuel.2011.02.005 – volume: 204 start-page: 1124 year: 2018 ident: 10.1016/j.jgsce.2023.205152_bib19 article-title: Process modelling and analysis of intensified CO2 capture using monoethanolamine (MEA) in rotating packed bed absorber publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.09.089 – volume: 413 year: 2021 ident: 10.1016/j.jgsce.2023.205152_bib16 article-title: Ion-exchanged montmorillonite as simple and effective catalysts for efficient CO2 capture publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127476 – volume: 36 start-page: 4871 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib49 article-title: Electrochemical acid-catalyzed desorption and regeneration of MDEA CO2-rich liquid by hydroquinone derivatives (tiron) publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.2c00640 – volume: 133 start-page: 260 year: 2018 ident: 10.1016/j.jgsce.2023.205152_bib93 article-title: N-doped graphitic carbon materials hybridized with transition metals (compounds) for hydrogen evolution reaction: understanding the synergistic effect from atomistic level publication-title: Carbon doi: 10.1016/j.carbon.2018.03.043 – volume: 116 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib102 article-title: The CO2 desorption analysis of tri-solvent MEA+BEA+DEEA with several commercial solid acid catalysts publication-title: Int J Greenh Gas Con doi: 10.1016/j.ijggc.2022.103647 – year: 2017 ident: 10.1016/j.jgsce.2023.205152_bib30 article-title: Carbon-based materials: recent advances, challenges, and perspectives publication-title: Reference Module in Materials Sci. Mater. Engin. doi: 10.1016/B978-0-12-803581-8.09262-6 – volume: 54 start-page: 13944 year: 2020 ident: 10.1016/j.jgsce.2023.205152_bib134 article-title: One-step synthesized SO42-/ZrO2-HZSM-5 solid acid catalyst for carbamate decomposition in CO2 capture publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c04946 – year: 2011 ident: 10.1016/j.jgsce.2023.205152_bib53 – volume: 31 start-page: 89 year: 2019 ident: 10.1016/j.jgsce.2023.205152_bib55 article-title: Multiple active components synergistically driven heteroatom-doped porous carbon as high-performance counter electrode in dye-sensitized solar cells publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2018.03.011 – volume: 443 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib106 article-title: A heterostructured WS2/WSe2 catalyst by heterojunction engineering towards boosting hydrogen evolution reaction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136348 – volume: 105 start-page: 183 year: 2016 ident: 10.1016/j.jgsce.2023.205152_bib145 article-title: Host–guest inclusion complexes derived heteroatom-doped porous carbon materials publication-title: Carbon doi: 10.1016/j.carbon.2016.04.034 – volume: 55 start-page: 11216 year: 2021 ident: 10.1016/j.jgsce.2023.205152_bib136 article-title: TiO2 coating strategy for robust catalysis of the metal–organic framework toward energy-efficient CO2 capture publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c02452 – volume: 10 start-page: 449 year: 2018 ident: 10.1016/j.jgsce.2023.205152_bib62 article-title: Catalytic solvent regeneration of a CO2-loaded MEA solution using an acidic catalyst from industrial rough metatitanic acid publication-title: Greenh Gase doi: 10.1002/ghg.1839 – volume: 9 start-page: 349 year: 2019 ident: 10.1016/j.jgsce.2023.205152_bib72 article-title: Promotion of CO2 capture performance using piperazine (PZ) and diethylenetriamine (DETA) bi-solvent blends publication-title: Greenh Gase doi: 10.1002/ghg.1851 – volume: 54 start-page: 13944 year: 2020 ident: 10.1016/j.jgsce.2023.205152_bib133 article-title: One-step synthesized SO42-/ZrO2-HZSM-5 solid acid catalyst for carbamate decomposition in CO2 capture publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c04946 – volume: 33 start-page: 11507 year: 2019 ident: 10.1016/j.jgsce.2023.205152_bib50 article-title: Toward solvent development for industrial CO2 capture by optimizing the catalyst-amine formulation for lower energy consumption in the solvent regeneration process publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.9b02874 – volume: 19 start-page: 432 year: 2013 ident: 10.1016/j.jgsce.2023.205152_bib85 article-title: VLE data and modelling of aqueous N,N-diethylethanolamine (DEEA) solutions publication-title: Int J Greenh Gas Con doi: 10.1016/j.ijggc.2013.10.001 – volume: 33 start-page: 2856 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib41 article-title: Progress in synthesis of highly crystalline covalent organic frameworks and their crystallinity enhancement strategies publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2022.02.065 – volume: 108 year: 2021 ident: 10.1016/j.jgsce.2023.205152_bib48 article-title: Technology development and applications of artificial intelligence for post-combustion carbon dioxide capture: critical literature review and perspectives publication-title: Int J Greenh Gas Con doi: 10.1016/j.ijggc.2021.103307 – volume: 732 year: 2020 ident: 10.1016/j.jgsce.2023.205152_bib21 article-title: Public health effect and its economics loss of PM2.5 pollution from coal consumption in China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.138973 – volume: 414 start-page: 131 year: 2017 ident: 10.1016/j.jgsce.2023.205152_bib8 article-title: Fe-doped CeO2 solid solutions: substituting-site doping versus interstitial-site doping, bulk doping versus surface doping publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.04.018 – volume: 59 start-page: 8706 year: 2020 ident: 10.1016/j.jgsce.2023.205152_bib34 article-title: High-curvature transition-metal chalcogenide nanostructures with a pronounced proximity effect enable fast and selective CO2 electroreduction publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201912348 – volume: 137 start-page: 130 year: 2018 ident: 10.1016/j.jgsce.2023.205152_bib96 article-title: Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: a critical review publication-title: Water Res. doi: 10.1016/j.watres.2018.03.012 – volume: 229 start-page: 562 year: 2018 ident: 10.1016/j.jgsce.2023.205152_bib152 article-title: Reducing energy consumption of CO2 desorption in CO2-loaded aqueous amine solution using Al2O3/HZSM-5 bifunctional catalysts publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.07.035 – volume: 26 start-page: 2280 year: 2018 ident: 10.1016/j.jgsce.2023.205152_bib138 article-title: Recent advances on the membrane processes for CO2 separation publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2018.08.020 – year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib39 article-title: Process intensification of CO2 desorption publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.2c01689 – volume: 143 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib82 article-title: Nuclear energy: a pathway towards mitigation of global warming publication-title: Prog. Nucl. Energy doi: 10.1016/j.pnucene.2021.104080 – volume: 53 start-page: 6094 year: 2019 ident: 10.1016/j.jgsce.2023.205152_bib155 article-title: Reducing energy penalty of CO2 capture using Fe promoted SO42-/ZrO2/MCM-41 catalyst publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b01901 – volume: 375 start-page: 10 year: 2021 ident: 10.1016/j.jgsce.2023.205152_bib46 article-title: Preparation of MOFs and MOFs derived materials and their catalytic application in air pollution: a review publication-title: Catal. Today doi: 10.1016/j.cattod.2020.02.033 – volume: 383 year: 2020 ident: 10.1016/j.jgsce.2023.205152_bib151 article-title: Amine-based CO2 capture aided by acid-basic bifunctional catalyst: advancement of amine regeneration using metal modified MCM-41 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123077 – volume: 274 year: 2023 ident: 10.1016/j.jgsce.2023.205152_bib42 article-title: Integration of solid acid catalyst and ceramic membrane to boost amine-based CO2 desorption publication-title: Energy doi: 10.1016/j.energy.2023.127329 – volume: 4 start-page: 201 year: 2011 ident: 10.1016/j.jgsce.2023.205152_bib26 article-title: Synthesis and selection of hindered new amine absorbents for CO2 capture publication-title: Energy Proc. doi: 10.1016/j.egypro.2011.01.042 – volume: 511 start-page: 180 year: 2016 ident: 10.1016/j.jgsce.2023.205152_bib158 article-title: Status and progress of membrane contactors in post-combustion carbon capture: a state-of-the-art review of new developments publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.03.051 – volume: 13 start-page: 58 year: 1969 ident: 10.1016/j.jgsce.2023.205152_bib52 article-title: Brönsted and Lewis acid site concentrations in fluorided alumina from the infrared spectra of adsorbed pyridine species publication-title: J. Catal. doi: 10.1016/0021-9517(69)90370-4 – volume: 3 start-page: 289 year: 2018 ident: 10.1016/j.jgsce.2023.205152_bib113 article-title: Evaluation of catalytic activity of MeOx/sepiolite in benzyl alcohol oxidation publication-title: J Sci-Adv Mater Dev – volume: 55 start-page: 7830 year: 2016 ident: 10.1016/j.jgsce.2023.205152_bib126 article-title: Enhanced CO2 absorption and desorption by monoethanolamine (MEA)-based nanoparticle suspensions publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.6b00358 – volume: 240 year: 2023 ident: 10.1016/j.jgsce.2023.205152_bib123 article-title: Proton transfer triggered in-situ construction of C=N active site to activate PMS for efficient autocatalytic degradation of low-carbon fatty amine publication-title: Water Res. doi: 10.1016/j.watres.2023.120119 – volume: 242 year: 2020 ident: 10.1016/j.jgsce.2023.205152_bib78 article-title: An effective hybrid solvent of MEA/DEEA for CO2 absorption and its mass transfer performance in microreactor publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.116795 – volume: 13 start-page: 432 year: 2013 ident: 10.1016/j.jgsce.2023.205152_bib88 article-title: New method for the temperature- programmed desorption (tpd) of ammonia experiment for characterization of zeolite acidity: a review publication-title: Chem. Rec. doi: 10.1002/tcr.201300009 – volume: 39 start-page: 5921 year: 2005 ident: 10.1016/j.jgsce.2023.205152_bib18 article-title: Can reducing black carbon emissions counteract global warming? publication-title: Environ. Sci. Technol. doi: 10.1021/es0480421 – volume: 13 year: 2021 ident: 10.1016/j.jgsce.2023.205152_bib76 article-title: Heterogeneous photo-fenton catalytic degradation of practical pharmaceutical wastewater by modified attapulgite supported multi-metal oxides publication-title: Water doi: 10.3390/w13020156 – volume: 202 start-page: 673 year: 2017 ident: 10.1016/j.jgsce.2023.205152_bib154 article-title: Reduction of energy requirement of CO2 desorption from a rich CO2-loaded MEA solution by using solid acid catalysts publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.05.135 – volume: 469 year: 2023 ident: 10.1016/j.jgsce.2023.205152_bib107 article-title: Enhanced CO2 desorption rate for rich amine solution regeneration over hierarchical HZSM-5 catalyst publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.143871 – volume: 332 year: 2023 ident: 10.1016/j.jgsce.2023.205152_bib64 article-title: Superior PbO-resistance of CeO2/ZrO2 catalyst promoted by solid superacid SO42−/ZrO2 for selective catalytic reduction of NO with NH3 publication-title: Fuel doi: 10.1016/j.fuel.2022.126103 – volume: 298 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib67 article-title: Inducing efficient proton transfer through Fe/Ni@COF to promote amine-based solvent regeneration for achieving low-cost capture of CO2 from industrial flue gas publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.121676 – volume: 49 start-page: 8584 year: 2020 ident: 10.1016/j.jgsce.2023.205152_bib36 article-title: Industrial carbon dioxide capture and utilization: state of the art and future challenges publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00025F – volume: 309 year: 2023 ident: 10.1016/j.jgsce.2023.205152_bib100 article-title: Machine learning-driven assessment of relationship between activator properties in phase change solvent and its absorption performance for CO2 capture publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.123092 – volume: 19 start-page: 331 year: 2013 ident: 10.1016/j.jgsce.2023.205152_bib98 article-title: Cost and energy sensitivity analysis of absorber design in CO2 capture with MEA publication-title: Int J Greenh Gas Con doi: 10.1016/j.ijggc.2013.09.008 – volume: 239 start-page: 876 year: 2019 ident: 10.1016/j.jgsce.2023.205152_bib146 article-title: Phase change solvents for post-combustion CO2 capture: principle, advances, and challenges publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.242 – volume: 61 start-page: 16393 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib77 article-title: Boosting liquid hydrocarbon synthesis from CO2 hydrogenation via tailoring acid properties of HZSM-5 zeolite publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.2c03132 – volume: 64 start-page: 3988 year: 2018 ident: 10.1016/j.jgsce.2023.205152_bib148 article-title: SO42−/ZrO2 supported on γ-Al2O3 as a catalyst for CO2 desorption from CO2-loaded monoethanolamine solutions publication-title: AIChE J. doi: 10.1002/aic.16380 – volume: 194 start-page: 89 year: 2018 ident: 10.1016/j.jgsce.2023.205152_bib118 article-title: Absorption heat, solubility, absorption and desorption rates, cyclic capacity, heat duty, and absorption kinetic modeling of AMP–DETA blend for post–combustion CO2 capture publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2017.11.024 – volume: 55 start-page: 11216 year: 2021 ident: 10.1016/j.jgsce.2023.205152_bib135 article-title: TiO2 coating strategy for robust catalysis of the metal-organic framework toward energy-efficient CO2 capture publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c02452 – volume: 253 year: 2019 ident: 10.1016/j.jgsce.2023.205152_bib73 article-title: The implications of coal consumption in the power sector for China's CO2 peaking target publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113518 – volume: 426 year: 2021 ident: 10.1016/j.jgsce.2023.205152_bib32 article-title: The water resistance enhanced strategy of Mn based SCR catalyst by construction of TiO2 shell and superhydrophobic coating publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131334 – volume: 18 start-page: 299 year: 2020 ident: 10.1016/j.jgsce.2023.205152_bib80 article-title: Carbon-based solid acids: a review publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-019-00940-7 – volume: 125 start-page: 112 year: 2023 ident: 10.1016/j.jgsce.2023.205152_bib37 article-title: Mesoporous molecular sieve-based materials for catalytic oxidation of VOC: a review publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2021.11.014 – volume: 200 start-page: 581 year: 2006 ident: 10.1016/j.jgsce.2023.205152_bib58 article-title: The development of ceramic hollow fibre membranes for a membrane contactor publication-title: Desalination doi: 10.1016/j.desal.2006.03.445 – volume: 13 start-page: 1249 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib5 article-title: Engineered assembly of water-dispersible nanocatalysts enables low-cost and green CO2 capture publication-title: Nat. Commun. doi: 10.1038/s41467-022-28869-6 – volume: 435 start-page: 1065 year: 2018 ident: 10.1016/j.jgsce.2023.205152_bib75 article-title: Tailoring the thermostability and hydrogen storage capacity of Li decorated carbon materials by heteroatom doping publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.10.196 – volume: 10 start-page: 237 year: 2020 ident: 10.1016/j.jgsce.2023.205152_bib114 article-title: Biodiesel production using solid acid catalysts based on metal oxides publication-title: Catalysts doi: 10.3390/catal10020237 – volume: 170 start-page: 508 year: 2017 ident: 10.1016/j.jgsce.2023.205152_bib91 article-title: Mass transfer studies on catalyst-aided CO2 desorption from CO2-loaded amine solution in a post-combustion CO2 capture plant publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2017.02.004 – volume: 3 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib97 article-title: Low-cost, highly-performance fired clay bodies incorporating natural stone sludge: microstructure and engineering properties publication-title: Cleaner Waste Systems doi: 10.1016/j.clwas.2022.100041 – volume: 60 start-page: 18304 year: 2021 ident: 10.1016/j.jgsce.2023.205152_bib108 article-title: Reducing heat duty of MEA regeneration using a sulfonic acid-functionalized mesoporous MCM-41 catalyst publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.1c03671 – volume: 233–234 start-page: 468 year: 2019 ident: 10.1016/j.jgsce.2023.205152_bib69 article-title: Carbon dioxide absorption in aqueous alkanolamine blends for biphasic solvents screening and evaluation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.10.007 – volume: 2 start-page: 1296 year: 2012 ident: 10.1016/j.jgsce.2023.205152_bib87 article-title: Amorphous carbon with SO3H groups as a solid brønsted acid catalyst publication-title: ACS Catal. doi: 10.1021/cs300103k – volume: 8 year: 2023 ident: 10.1016/j.jgsce.2023.205152_bib9 article-title: Acid-treated activated carbon as simple and inexpensive catalyst to accelerate CO2 desorption from aqueous amine solution publication-title: Carbon Capture Sci Technol doi: 10.1016/j.ccst.2023.100131 – volume: 240 start-page: 827 year: 2019 ident: 10.1016/j.jgsce.2023.205152_bib149 article-title: Zeolite catalyst-aided tri-solvent blend amine regeneration: an alternative pathway to reduce the energy consumption in amine-based CO2 capture process publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.02.089 – volume: 26 start-page: 39 year: 2014 ident: 10.1016/j.jgsce.2023.205152_bib101 article-title: Catalytic and non catalytic solvent regeneration during absorption-based CO2 capture with single and blended reactive amine solvents publication-title: Int J Greenh Gas Con doi: 10.1016/j.ijggc.2014.04.007 – volume: 10 start-page: 23431 year: 2020 ident: 10.1016/j.jgsce.2023.205152_bib147 article-title: CuO and CeO2 assisted Fe2O3/attapulgite catalyst for heterogeneous Fenton-like oxidation of methylene blue publication-title: RSC Adv. doi: 10.1039/D0RA03754K – volume: 56 start-page: 7853 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib141 article-title: Insights into the mechanism of ozone activation and singlet oxygen generation on N-doped defective nanocarbons: a DFT and machine learning study publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c08666 – volume: 230 start-page: 240 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib23 article-title: Global temperatures and greenhouse gases: a common features approach publication-title: J. Econom. doi: 10.1016/j.jeconom.2021.04.003 – volume: 12 start-page: 54285 year: 2020 ident: 10.1016/j.jgsce.2023.205152_bib130 article-title: Core-shell MOFs@MOFs: diverse designability and enhanced selectivity publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c16428 – volume: 55 start-page: 11925 year: 2021 ident: 10.1016/j.jgsce.2023.205152_bib142 article-title: Applied machine learning for prediction of CO2 adsorption on biomass waste-derived porous carbons publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c01849 – start-page: 87 year: 2019 ident: 10.1016/j.jgsce.2023.205152_bib143 article-title: Chapter 4 - (Photo)catalyst characterization techniques: adsorption isotherms and BET, SEM, FTIR, UV–vis, photoluminescence, and electrochemical characterizations – volume: 60 start-page: 13318 year: 2021 ident: 10.1016/j.jgsce.2023.205152_bib10 article-title: Facilely synthesized M-montmorillonite (M = Cr, Fe, and Co) as efficient catalysts for enhancing CO2 desorption from amine solution publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.1c02487 – volume: 252 year: 2019 ident: 10.1016/j.jgsce.2023.205152_bib3 article-title: Enhancing CO2 desorption performance in rich MEA solution by addition of SO42−/ZrO2/SiO2 bifunctional catalyst publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113440 – volume: 236 start-page: 153 year: 2014 ident: 10.1016/j.jgsce.2023.205152_bib43 article-title: Solid acids: green alternatives for acid catalysis publication-title: Catal. Today doi: 10.1016/j.cattod.2014.04.010 – volume: 298 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib66 article-title: Inducing efficient proton transfer through Fe/Ni@COF to promote amine-based solvent regeneration for achieving low-cost capture of CO2 from industrial flue gas publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.121676 – volume: 6 start-page: 12079 year: 2018 ident: 10.1016/j.jgsce.2023.205152_bib12 article-title: Performance and mechanism of metal oxide catalyst-aided amine solvent regeneration publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b02422 – volume: 611 year: 2021 ident: 10.1016/j.jgsce.2023.205152_bib119 article-title: Development on hydrophobic modification of aluminosilicate and titanosilicate zeolite molecular sieves publication-title: Appl Catal A-Gen doi: 10.1016/j.apcata.2020.117952 – volume: 29 year: 2023 ident: 10.1016/j.jgsce.2023.205152_bib86 article-title: Degradation of micropollutants by metal organic framework composite-based catalysts: a review publication-title: Environ. Technol. Innov. doi: 10.1016/j.eti.2022.102998 – volume: 3 start-page: 3594 year: 2019 ident: 10.1016/j.jgsce.2023.205152_bib70 article-title: Biphasic behaviors and regeneration energy of a 2-(diethylamino)-ethanol and 2-((2-aminoethyl)amino) ethanol blend for CO2 capture publication-title: Sustain. Energy Fuels doi: 10.1039/C9SE00821G – volume: 8 start-page: 9526 year: 2020 ident: 10.1016/j.jgsce.2023.205152_bib6 article-title: Modified heterogeneous catalyst-aided regeneration of CO2 capture amines: a promising perspective for a drastic reduction in energy consumption publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c02582 – volume: 270 year: 2021 ident: 10.1016/j.jgsce.2023.205152_bib99 article-title: Novel biphasic solvent of AEP/1-propanol/H2O for CO2 capture with efficient regeneration performance and low energy consumption publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.118700 – volume: 428 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib27 article-title: The use of catalysis for faster CO2 absorption and energy-efficient solvent regeneration: an industry-focused critical review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131264 – volume: 69 start-page: 52 year: 2018 ident: 10.1016/j.jgsce.2023.205152_bib105 article-title: CO2 capture efficiency and heat duty of solid acid catalyst-aided CO2 desorption using blends of primary-tertiary amines publication-title: Int J Greenh Gas Con doi: 10.1016/j.ijggc.2017.12.010 – volume: 52 start-page: 14556 year: 2018 ident: 10.1016/j.jgsce.2023.205152_bib124 article-title: Advanced monoethanolamine absorption using sulfolane as a phase splitter for CO2 capture publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b05654 – volume: 22 start-page: 6328 year: 2020 ident: 10.1016/j.jgsce.2023.205152_bib11 article-title: Practical and inexpensive acid-activated montmorillonite catalysts for energy-efficient CO2 capture publication-title: Green Chem. doi: 10.1039/D0GC01887B – volume: 53 start-page: 12873 year: 2019 ident: 10.1016/j.jgsce.2023.205152_bib122 article-title: Regulating phase separation behavior of a DEEA-TETA biphasic solvent using sulfolane for energy-saving CO2 capture publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b02787 – start-page: 1900 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib54 – volume: 56 start-page: 17936 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib132 article-title: MOF-derived robust and synergetic acid sites inducing C-N bond disruption for energy-efficient CO2 desorption publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c06842 – volume: 170 start-page: 48 year: 2017 ident: 10.1016/j.jgsce.2023.205152_bib104 article-title: Evaluation of the heat duty of catalyst-aided amine-based post combustion CO2 capture publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2017.01.049 – volume: 334 year: 2023 ident: 10.1016/j.jgsce.2023.205152_bib38 article-title: Review of recent trends and various techniques for CO2 capture: special emphasis on biphasic amine solvents publication-title: Fuel doi: 10.1016/j.fuel.2022.126616 – volume: 389 year: 2020 ident: 10.1016/j.jgsce.2023.205152_bib13 article-title: Catalytic activity of facilely synthesized mesoporous HZSM-5 catalysts for optimizing the CO2 desorption rate from CO2-rich amine solutions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123439 – volume: 43 start-page: 5535 year: 2009 ident: 10.1016/j.jgsce.2023.205152_bib44 article-title: High resolution fossil fuel combustion CO2 emission fluxes for the United States publication-title: Envirn Sci Technol doi: 10.1021/es900806c – volume: 168 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib83 article-title: Research progress of aqueous amine solution for CO2 capture: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2022.112902 – volume: 657 start-page: 56 year: 2019 ident: 10.1016/j.jgsce.2023.205152_bib129 article-title: Outlook of carbon capture technology and challenges publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.424 – volume: 56 start-page: 17936 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib131 article-title: MOF-derived robust and synergetic acid sites inducing C–N bond disruption for energy-efficient CO2 desorption publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c06842 – volume: 185 start-page: 1433 year: 2017 ident: 10.1016/j.jgsce.2023.205152_bib31 article-title: Aqueous amine solution characterization for post-combustion CO2 capture process publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.03.043 – volume: 298 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib109 article-title: Attapulgite as a cost-effective catalyst for low-energy consumption amine-based CO2 capture publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.121577 – volume: 138 year: 2021 ident: 10.1016/j.jgsce.2023.205152_bib20 article-title: Post-combustion carbon capture publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110490 – volume: 33 start-page: 1334 year: 2019 ident: 10.1016/j.jgsce.2023.205152_bib95 article-title: Solvent regeneration of a CO2-loaded BEA–AMP Bi-blend amine solvent with the aid of a solid Brønsted Ce(SO4)2/ZrO2 superacid catalyst publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.8b03580 – volume: 9 start-page: 2672 year: 2018 ident: 10.1016/j.jgsce.2023.205152_bib59 article-title: Catalyst-TiO(OH)2 could drastically reduce the energy consumption of CO2 capture publication-title: Nat. Commun. doi: 10.1038/s41467-018-05145-0 – volume: 20 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib28 article-title: Synthesis of metal oxides/sulfides-based nanocomposites and their environmental applications: a review publication-title: Mater Today Sustain – volume: 55 start-page: 8524 year: 2021 ident: 10.1016/j.jgsce.2023.205152_bib29 article-title: Deep CCS: moving beyond 90% carbon dioxide capture publication-title: Envirn Sci Technol doi: 10.1021/acs.est.0c07390 – volume: 117 start-page: 85 year: 2023 ident: 10.1016/j.jgsce.2023.205152_bib79 article-title: Recent developments in the field of dehydration of bio-renewable glycerol to acrolein over molecular sieve catalysts publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2022.10.043 – volume: 314 start-page: 681 year: 2017 ident: 10.1016/j.jgsce.2023.205152_bib121 article-title: Phase change behavior and kinetics of CO2 absorption into DMBA/DEEA solution in a wetted-wall column publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.12.033 – volume: 239 start-page: 725 year: 2019 ident: 10.1016/j.jgsce.2023.205152_bib40 article-title: Nonaqueous amine-based absorbents for energy efficient CO2 capture publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.02.019 – volume: 33 start-page: 2319 year: 2019 ident: 10.1016/j.jgsce.2023.205152_bib47 article-title: Efficient synergetic combination of H-usy and SnO2 for direct conversion of glucose into ethyl levulinate (biofuel additive) publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.8b04395 – volume: 55 start-page: 12741 year: 2021 ident: 10.1016/j.jgsce.2023.205152_bib159 article-title: Machine learning: new ideas and tools in environmental science and engineering publication-title: Environ. Sci. Technol. – volume: 5 start-page: 5862 year: 2017 ident: 10.1016/j.jgsce.2023.205152_bib14 article-title: Effects of transition metal oxide catalysts on MEA solvent regeneration for the post-combustion carbon capture process publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b00604 – volume: 298 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib110 article-title: Attapulgite as a cost-effective catalyst for low-energy consumption amine-based CO2 capture publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.121577 – volume: 119 year: 2022 ident: 10.1016/j.jgsce.2023.205152_bib1 article-title: Review on CO2 capture by blended amine solutions publication-title: Int J Green Gas Con doi: 10.1016/j.ijggc.2022.103715 – volume: 60 start-page: 2698 year: 2021 ident: 10.1016/j.jgsce.2023.205152_bib51 article-title: Catalytic performance and mechanism of meso–microporous material β-SBA-15-supported FeZr catalysts for CO2 desorption in CO2-loaded aqueous amine solution publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c03767 |
SSID | ssj0003239020 |
Score | 2.3494296 |
SecondaryResourceType | review_article |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 205152 |
Title | Recent progress and prospects in solid acid-catalyzed CO2 desorption from amine-rich liquid |
Volume | 120 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELZSuPRSgUpV-pIP3FJHu7b3dUQVBUFbJAQiUg8rvxY2SjeUJAf49YztfaVEqHBZrUZe7ybfp_F4PA-E9lKtYhNTRWB1KQjnKiBZBIDITMlAUC1DZXOHf_6Kjy748TgaDwY3vail5UKO1P3avJKXoAoywNVmyT4D2XZSEMA94AtXQBiu_4Ux2Hz2KN_FWFmN5ZP-Zy570sW5wutLPRSq1MT5ae7urUP3lA61mc9uvbZwCSbiD1ibBHTi9XBa_l2WK-07D8W81QH2Fb0ahp0XwblRr0U1nXXS8dLRwfQkdQuVH6Zs9Y0bBFStropaWnshKOtFdDhlRTOeEXuG6NeVNbJG29Kgry9tixm6VpV7r8JkNLmaK1vPlLJRN3q1cPY_C1obZthEsE1yN0luJ8n9JK_QJk0Se7C_uX9ydnnS-uUYZVngqnm2n98Uq3JhgY8-p2fQ9CyT8y30pt5S4H3Pj200MNVb9NtzAzfcwAAcbrmBywo7buBVbmDgBu64gS03cMcN7Lmxgy6-H5x_OyJ1Iw2iwEJZkJCpLDRpZKKYFVqqRHIRSMaoTEQBvyKWhhci4gXsXbVWoWYhWNmBhM10olOZsHdoo5pV5r2NhGMsSQVnXCmuTQAzqVhqI1OaRZKaXUSbfyNXdZV52-xkmj8Bxi762j5044usPDX8w_OGf0SvO8Z-QhuL26X5DJbkQn6pwX8ApdNz_Q |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+progress+and+prospects+in+solid+acid-catalyzed+CO2+desorption+from+amine-rich+liquid&rft.jtitle=Gas+Science+and+Engineering&rft.au=An%2C+Shanlong&rft.au=Xu%2C+Teng&rft.au=Xing%2C+Lei&rft.au=Yu%2C+Guangfei&rft.date=2023-12-01&rft.issn=2949-9089&rft.eissn=2949-9089&rft.volume=120&rft.spage=205152&rft_id=info:doi/10.1016%2Fj.jgsce.2023.205152&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jgsce_2023_205152 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2949-9089&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2949-9089&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2949-9089&client=summon |