Bilinearization of the generalized coupled nonlinear Schrödinger equation with variable coefficients and gain and dark-bright pair soliton solutions
We investigate coupled nonlinear Schrödinger equations (NLSEs) with variable coefficients and gain. The coupled NLSE is a model equation for optical soliton propagation and their interaction in a multimode fiber medium or in a fiber array. By using Hirota's bilinear method, we obtain the bright...
Saved in:
Published in | Physical review. E, Statistical, nonlinear, and soft matter physics Vol. 91; no. 2; p. 023210 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
01.02.2015
|
Online Access | Get more information |
ISSN | 1550-2376 |
DOI | 10.1103/PhysRevE.91.023210 |
Cover
Abstract | We investigate coupled nonlinear Schrödinger equations (NLSEs) with variable coefficients and gain. The coupled NLSE is a model equation for optical soliton propagation and their interaction in a multimode fiber medium or in a fiber array. By using Hirota's bilinear method, we obtain the bright-bright, dark-bright combinations of a one-soliton solution (1SS) and two-soliton solutions (2SS) for an n-coupled NLSE with variable coefficients and gain. Crucial properties of two-soliton (dark-bright pair) interactions, such as elastic and inelastic interactions and the dynamics of soliton bound states, are studied using asymptotic analysis and graphical analysis. We show that a bright 2-soliton, in addition to elastic interactions, also exhibits multiple inelastic interactions. A dark 2-soliton, on the other hand, exhibits only elastic interactions. We also observe a breatherlike structure of a bright 2-soliton, a feature that become prominent with gain and disappears as the amplitude acquires a minimum value, and after that the solitons remain parallel. The dark 2-soliton, however, remains parallel irrespective of the gain. The results found by us might be useful for applications in soliton control, a fiber amplifier, all optical switching, and optical computing. |
---|---|
AbstractList | We investigate coupled nonlinear Schrödinger equations (NLSEs) with variable coefficients and gain. The coupled NLSE is a model equation for optical soliton propagation and their interaction in a multimode fiber medium or in a fiber array. By using Hirota's bilinear method, we obtain the bright-bright, dark-bright combinations of a one-soliton solution (1SS) and two-soliton solutions (2SS) for an n-coupled NLSE with variable coefficients and gain. Crucial properties of two-soliton (dark-bright pair) interactions, such as elastic and inelastic interactions and the dynamics of soliton bound states, are studied using asymptotic analysis and graphical analysis. We show that a bright 2-soliton, in addition to elastic interactions, also exhibits multiple inelastic interactions. A dark 2-soliton, on the other hand, exhibits only elastic interactions. We also observe a breatherlike structure of a bright 2-soliton, a feature that become prominent with gain and disappears as the amplitude acquires a minimum value, and after that the solitons remain parallel. The dark 2-soliton, however, remains parallel irrespective of the gain. The results found by us might be useful for applications in soliton control, a fiber amplifier, all optical switching, and optical computing. |
Author | Chakraborty, Sushmita Barthakur, Abhijit Nandy, Sudipta |
Author_xml | – sequence: 1 givenname: Sushmita surname: Chakraborty fullname: Chakraborty, Sushmita organization: Department of Physics, Cotton College Guwahati, Guwahati-781001, India – sequence: 2 givenname: Sudipta surname: Nandy fullname: Nandy, Sudipta organization: Department of Physics, Cotton College Guwahati, Guwahati-781001, India – sequence: 3 givenname: Abhijit surname: Barthakur fullname: Barthakur, Abhijit organization: Department of Physics, Cotton College Guwahati, Guwahati-781001, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25768629$$D View this record in MEDLINE/PubMed |
BookMark | eNo1kFtOwzAQRS0Eog_YAB_IG0jxo3l9QtUCUiUQj-_KjseJIXWC4xS1-2ArbICNYSh8nRnp3jPSjNChbSwgdEbJhFLCL-6rbfcAm_kkpxPCOKPkAA1pHJOI8TQZoFHXvRDCGc-mx2jA4jTJEpYP0ceVqY0F4cxOeNNY3GjsK8AlWHCiNjtQuGj6tg4MJ_dZ_FhU7utTGVuCw_DW76vvxld4E1RC1hBaoLUpDFjfYWEVLoWxv4MS7jWSzpSVx60wDndNbXwQBPY_pu4EHWlRd3D6xzF6XsyfZjfR8u76dna5jApOuI8oVYnSNOMUtNKM8EyzoiA65SIDPU0lj2mu40JAGnYmKZlylos0FiATIjkbo_O9t-3lGtSqdWYt3Hb1_x_2DQbybsw |
CitedBy_id | crossref_primary_10_1016_j_chaos_2020_110560 crossref_primary_10_1007_s11071_020_06166_5 crossref_primary_10_1007_s11071_024_09508_9 crossref_primary_10_1016_j_cnsns_2015_06_031 crossref_primary_10_1515_zna_2017_0148 crossref_primary_10_3390_math12172694 crossref_primary_10_1007_s11071_018_4609_z crossref_primary_10_1007_s11082_024_07094_z crossref_primary_10_1016_j_chaos_2016_10_015 crossref_primary_10_1063_5_0218438 crossref_primary_10_1016_j_chaos_2021_111393 crossref_primary_10_1007_s11071_018_4569_3 crossref_primary_10_1016_j_chaos_2021_111719 crossref_primary_10_1063_1_5020829 crossref_primary_10_1007_s11071_023_08531_6 crossref_primary_10_1007_s12596_024_02397_6 crossref_primary_10_1098_rspa_2019_0122 crossref_primary_10_1117_1_OE_56_12_126106 crossref_primary_10_1016_j_cjph_2019_02_020 crossref_primary_10_1007_s12596_024_01831_z crossref_primary_10_1016_j_ijleo_2023_171035 crossref_primary_10_1088_1555_6611_aa6be7 crossref_primary_10_1016_j_aml_2019_106110 crossref_primary_10_1140_epjp_i2019_12836_2 crossref_primary_10_1142_S0217984918502524 crossref_primary_10_1103_PhysRevE_100_012213 crossref_primary_10_1016_j_rinp_2019_102263 crossref_primary_10_1063_1_4976514 crossref_primary_10_1103_PhysRevE_93_062217 crossref_primary_10_1016_j_cnsns_2016_10_004 crossref_primary_10_1016_j_infrared_2023_104898 crossref_primary_10_1080_17455030_2021_1921880 crossref_primary_10_1142_S0217979222501776 crossref_primary_10_1142_S0218863522500035 crossref_primary_10_1016_j_ijleo_2021_168418 crossref_primary_10_1140_epjp_i2017_11302_7 crossref_primary_10_1142_S0217984919503093 crossref_primary_10_1007_s11071_023_08719_w crossref_primary_10_1016_j_cnsns_2018_10_011 crossref_primary_10_1016_j_cjph_2019_09_022 crossref_primary_10_1515_phys_2022_0014 crossref_primary_10_1016_j_cnsns_2016_04_016 crossref_primary_10_1016_j_physd_2024_134284 crossref_primary_10_1007_s11082_023_05460_x |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1103/PhysRevE.91.023210 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1550-2376 |
ExternalDocumentID | 25768629 |
Genre | Journal Article |
GroupedDBID | --- -~X 123 2-P 29O 3MX 6TJ 8NH ACGFO ADXHL AENEX AEQTI AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS AUAIK CS3 DU5 EBS EJD F5P MVM NPBMV NPM OHT P2P RNS S7W TN5 WH7 XJT YNT ZPR |
ID | FETCH-LOGICAL-c303t-11d6df1831efdf2038f2cc0f73a8ef47b3519f5cae78ef2b104329a75aeb60b32 |
IngestDate | Mon Jul 21 05:55:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c303t-11d6df1831efdf2038f2cc0f73a8ef47b3519f5cae78ef2b104329a75aeb60b32 |
PMID | 25768629 |
ParticipantIDs | pubmed_primary_25768629 |
PublicationCentury | 2000 |
PublicationDate | 2015-Feb |
PublicationDateYYYYMMDD | 2015-02-01 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-Feb |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Physical review. E, Statistical, nonlinear, and soft matter physics |
PublicationTitleAlternate | Phys Rev E Stat Nonlin Soft Matter Phys |
PublicationYear | 2015 |
SSID | ssj0032384 |
Score | 2.3780088 |
Snippet | We investigate coupled nonlinear Schrödinger equations (NLSEs) with variable coefficients and gain. The coupled NLSE is a model equation for optical soliton... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 023210 |
Title | Bilinearization of the generalized coupled nonlinear Schrödinger equation with variable coefficients and gain and dark-bright pair soliton solutions |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25768629 |
Volume | 91 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF2lRUi8VOVebtoH3iIH39Z2HikKqpCoEGqlvlV7bU0JDYlTifwHv8IP9GP6G8zsrF0rBQS8RLY3Xtk7RztnxzNnGXtpY2WT3KaRHGcqyo2II-lyHSkjixxuEcZLKb3fL_YO83dH4mgwuOplLS0bNdKrX9aV_I9V4RrYFatk_8GyXadwAY7BvvALFobfv7Lxbo0kEVa7q474IY88ISnpemWxZG05-4yf-EkSQ85Rd9N_Ht8tDIkQ2q8k900x2QvozpdT6XPr5SV8CRyG109kTZnLRs7PIuWX9cOZrOfDBSbRQQfd2_Yp74cWCVQlMxpOKLsMyyp8IB1Pu8drs0kX4B6GUy_-GaIvHfkPmQiwbvgW8opOp3XTuRfwFyY0GJgQrwMOMIBw55J271an9ae66cc8EtGmSaPLCvM0gAoTevoTOW37FQCb9mZl4CUpJc_edBgxClfgSHy0F5PRGBVc1_8MRp9NPYT86qygEM2fW9dEvNumDbZRlug_9jGoRIQhA9aUt_Vccfbq5sOgYnXoYG3141nQwTbbCssX_pqweJcN7Jd77DaZeHGffV9DJD93HBDJe4jkAZG8MzlHRF7-IDTyFo0c0chbNPI-GjlYmCMa_UEPjRzRyAMaeYfGB-zw7eTgzV4UNv6INDCqJkoSUxgHziaxzrg0ziqXah27MpOVdXmpcFdJJ7S0JZynKkFdybEshbSqiFWWPmSb8BL2MeOVtYln6eMqyXWpqqR0QlWFsKKyWaF32CMaz-MZqbsctyP95LctT9mda1A-Y7ccTCf2OXDTRr3wlv0J6jCbFA |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bilinearization+of+the+generalized+coupled+nonlinear+Schr%C3%B6dinger+equation+with+variable+coefficients+and+gain+and+dark-bright+pair+soliton+solutions&rft.jtitle=Physical+review.+E%2C+Statistical%2C+nonlinear%2C+and+soft+matter+physics&rft.au=Chakraborty%2C+Sushmita&rft.au=Nandy%2C+Sudipta&rft.au=Barthakur%2C+Abhijit&rft.date=2015-02-01&rft.eissn=1550-2376&rft.volume=91&rft.issue=2&rft.spage=023210&rft_id=info:doi/10.1103%2FPhysRevE.91.023210&rft_id=info%3Apmid%2F25768629&rft_id=info%3Apmid%2F25768629&rft.externalDocID=25768629 |