Bilinearization of the generalized coupled nonlinear Schrödinger equation with variable coefficients and gain and dark-bright pair soliton solutions

We investigate coupled nonlinear Schrödinger equations (NLSEs) with variable coefficients and gain. The coupled NLSE is a model equation for optical soliton propagation and their interaction in a multimode fiber medium or in a fiber array. By using Hirota's bilinear method, we obtain the bright...

Full description

Saved in:
Bibliographic Details
Published inPhysical review. E, Statistical, nonlinear, and soft matter physics Vol. 91; no. 2; p. 023210
Main Authors Chakraborty, Sushmita, Nandy, Sudipta, Barthakur, Abhijit
Format Journal Article
LanguageEnglish
Published United States 01.02.2015
Online AccessGet more information
ISSN1550-2376
DOI10.1103/PhysRevE.91.023210

Cover

Abstract We investigate coupled nonlinear Schrödinger equations (NLSEs) with variable coefficients and gain. The coupled NLSE is a model equation for optical soliton propagation and their interaction in a multimode fiber medium or in a fiber array. By using Hirota's bilinear method, we obtain the bright-bright, dark-bright combinations of a one-soliton solution (1SS) and two-soliton solutions (2SS) for an n-coupled NLSE with variable coefficients and gain. Crucial properties of two-soliton (dark-bright pair) interactions, such as elastic and inelastic interactions and the dynamics of soliton bound states, are studied using asymptotic analysis and graphical analysis. We show that a bright 2-soliton, in addition to elastic interactions, also exhibits multiple inelastic interactions. A dark 2-soliton, on the other hand, exhibits only elastic interactions. We also observe a breatherlike structure of a bright 2-soliton, a feature that become prominent with gain and disappears as the amplitude acquires a minimum value, and after that the solitons remain parallel. The dark 2-soliton, however, remains parallel irrespective of the gain. The results found by us might be useful for applications in soliton control, a fiber amplifier, all optical switching, and optical computing.
AbstractList We investigate coupled nonlinear Schrödinger equations (NLSEs) with variable coefficients and gain. The coupled NLSE is a model equation for optical soliton propagation and their interaction in a multimode fiber medium or in a fiber array. By using Hirota's bilinear method, we obtain the bright-bright, dark-bright combinations of a one-soliton solution (1SS) and two-soliton solutions (2SS) for an n-coupled NLSE with variable coefficients and gain. Crucial properties of two-soliton (dark-bright pair) interactions, such as elastic and inelastic interactions and the dynamics of soliton bound states, are studied using asymptotic analysis and graphical analysis. We show that a bright 2-soliton, in addition to elastic interactions, also exhibits multiple inelastic interactions. A dark 2-soliton, on the other hand, exhibits only elastic interactions. We also observe a breatherlike structure of a bright 2-soliton, a feature that become prominent with gain and disappears as the amplitude acquires a minimum value, and after that the solitons remain parallel. The dark 2-soliton, however, remains parallel irrespective of the gain. The results found by us might be useful for applications in soliton control, a fiber amplifier, all optical switching, and optical computing.
Author Chakraborty, Sushmita
Barthakur, Abhijit
Nandy, Sudipta
Author_xml – sequence: 1
  givenname: Sushmita
  surname: Chakraborty
  fullname: Chakraborty, Sushmita
  organization: Department of Physics, Cotton College Guwahati, Guwahati-781001, India
– sequence: 2
  givenname: Sudipta
  surname: Nandy
  fullname: Nandy, Sudipta
  organization: Department of Physics, Cotton College Guwahati, Guwahati-781001, India
– sequence: 3
  givenname: Abhijit
  surname: Barthakur
  fullname: Barthakur, Abhijit
  organization: Department of Physics, Cotton College Guwahati, Guwahati-781001, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25768629$$D View this record in MEDLINE/PubMed
BookMark eNo1kFtOwzAQRS0Eog_YAB_IG0jxo3l9QtUCUiUQj-_KjseJIXWC4xS1-2ArbICNYSh8nRnp3jPSjNChbSwgdEbJhFLCL-6rbfcAm_kkpxPCOKPkAA1pHJOI8TQZoFHXvRDCGc-mx2jA4jTJEpYP0ceVqY0F4cxOeNNY3GjsK8AlWHCiNjtQuGj6tg4MJ_dZ_FhU7utTGVuCw_DW76vvxld4E1RC1hBaoLUpDFjfYWEVLoWxv4MS7jWSzpSVx60wDndNbXwQBPY_pu4EHWlRd3D6xzF6XsyfZjfR8u76dna5jApOuI8oVYnSNOMUtNKM8EyzoiA65SIDPU0lj2mu40JAGnYmKZlylos0FiATIjkbo_O9t-3lGtSqdWYt3Hb1_x_2DQbybsw
CitedBy_id crossref_primary_10_1016_j_chaos_2020_110560
crossref_primary_10_1007_s11071_020_06166_5
crossref_primary_10_1007_s11071_024_09508_9
crossref_primary_10_1016_j_cnsns_2015_06_031
crossref_primary_10_1515_zna_2017_0148
crossref_primary_10_3390_math12172694
crossref_primary_10_1007_s11071_018_4609_z
crossref_primary_10_1007_s11082_024_07094_z
crossref_primary_10_1016_j_chaos_2016_10_015
crossref_primary_10_1063_5_0218438
crossref_primary_10_1016_j_chaos_2021_111393
crossref_primary_10_1007_s11071_018_4569_3
crossref_primary_10_1016_j_chaos_2021_111719
crossref_primary_10_1063_1_5020829
crossref_primary_10_1007_s11071_023_08531_6
crossref_primary_10_1007_s12596_024_02397_6
crossref_primary_10_1098_rspa_2019_0122
crossref_primary_10_1117_1_OE_56_12_126106
crossref_primary_10_1016_j_cjph_2019_02_020
crossref_primary_10_1007_s12596_024_01831_z
crossref_primary_10_1016_j_ijleo_2023_171035
crossref_primary_10_1088_1555_6611_aa6be7
crossref_primary_10_1016_j_aml_2019_106110
crossref_primary_10_1140_epjp_i2019_12836_2
crossref_primary_10_1142_S0217984918502524
crossref_primary_10_1103_PhysRevE_100_012213
crossref_primary_10_1016_j_rinp_2019_102263
crossref_primary_10_1063_1_4976514
crossref_primary_10_1103_PhysRevE_93_062217
crossref_primary_10_1016_j_cnsns_2016_10_004
crossref_primary_10_1016_j_infrared_2023_104898
crossref_primary_10_1080_17455030_2021_1921880
crossref_primary_10_1142_S0217979222501776
crossref_primary_10_1142_S0218863522500035
crossref_primary_10_1016_j_ijleo_2021_168418
crossref_primary_10_1140_epjp_i2017_11302_7
crossref_primary_10_1142_S0217984919503093
crossref_primary_10_1007_s11071_023_08719_w
crossref_primary_10_1016_j_cnsns_2018_10_011
crossref_primary_10_1016_j_cjph_2019_09_022
crossref_primary_10_1515_phys_2022_0014
crossref_primary_10_1016_j_cnsns_2016_04_016
crossref_primary_10_1016_j_physd_2024_134284
crossref_primary_10_1007_s11082_023_05460_x
ContentType Journal Article
DBID NPM
DOI 10.1103/PhysRevE.91.023210
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 1550-2376
ExternalDocumentID 25768629
Genre Journal Article
GroupedDBID ---
-~X
123
2-P
29O
3MX
6TJ
8NH
ACGFO
ADXHL
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
AUAIK
CS3
DU5
EBS
EJD
F5P
MVM
NPBMV
NPM
OHT
P2P
RNS
S7W
TN5
WH7
XJT
YNT
ZPR
ID FETCH-LOGICAL-c303t-11d6df1831efdf2038f2cc0f73a8ef47b3519f5cae78ef2b104329a75aeb60b32
IngestDate Mon Jul 21 05:55:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-11d6df1831efdf2038f2cc0f73a8ef47b3519f5cae78ef2b104329a75aeb60b32
PMID 25768629
ParticipantIDs pubmed_primary_25768629
PublicationCentury 2000
PublicationDate 2015-Feb
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-Feb
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review. E, Statistical, nonlinear, and soft matter physics
PublicationTitleAlternate Phys Rev E Stat Nonlin Soft Matter Phys
PublicationYear 2015
SSID ssj0032384
Score 2.3780088
Snippet We investigate coupled nonlinear Schrödinger equations (NLSEs) with variable coefficients and gain. The coupled NLSE is a model equation for optical soliton...
SourceID pubmed
SourceType Index Database
StartPage 023210
Title Bilinearization of the generalized coupled nonlinear Schrödinger equation with variable coefficients and gain and dark-bright pair soliton solutions
URI https://www.ncbi.nlm.nih.gov/pubmed/25768629
Volume 91
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF2lRUi8VOVebtoH3iIH39Z2HikKqpCoEGqlvlV7bU0JDYlTifwHv8IP9GP6G8zsrF0rBQS8RLY3Xtk7RztnxzNnGXtpY2WT3KaRHGcqyo2II-lyHSkjixxuEcZLKb3fL_YO83dH4mgwuOplLS0bNdKrX9aV_I9V4RrYFatk_8GyXadwAY7BvvALFobfv7Lxbo0kEVa7q474IY88ISnpemWxZG05-4yf-EkSQ85Rd9N_Ht8tDIkQ2q8k900x2QvozpdT6XPr5SV8CRyG109kTZnLRs7PIuWX9cOZrOfDBSbRQQfd2_Yp74cWCVQlMxpOKLsMyyp8IB1Pu8drs0kX4B6GUy_-GaIvHfkPmQiwbvgW8opOp3XTuRfwFyY0GJgQrwMOMIBw55J271an9ae66cc8EtGmSaPLCvM0gAoTevoTOW37FQCb9mZl4CUpJc_edBgxClfgSHy0F5PRGBVc1_8MRp9NPYT86qygEM2fW9dEvNumDbZRlug_9jGoRIQhA9aUt_Vccfbq5sOgYnXoYG3141nQwTbbCssX_pqweJcN7Jd77DaZeHGffV9DJD93HBDJe4jkAZG8MzlHRF7-IDTyFo0c0chbNPI-GjlYmCMa_UEPjRzRyAMaeYfGB-zw7eTgzV4UNv6INDCqJkoSUxgHziaxzrg0ziqXah27MpOVdXmpcFdJJ7S0JZynKkFdybEshbSqiFWWPmSb8BL2MeOVtYln6eMqyXWpqqR0QlWFsKKyWaF32CMaz-MZqbsctyP95LctT9mda1A-Y7ccTCf2OXDTRr3wlv0J6jCbFA
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bilinearization+of+the+generalized+coupled+nonlinear+Schr%C3%B6dinger+equation+with+variable+coefficients+and+gain+and+dark-bright+pair+soliton+solutions&rft.jtitle=Physical+review.+E%2C+Statistical%2C+nonlinear%2C+and+soft+matter+physics&rft.au=Chakraborty%2C+Sushmita&rft.au=Nandy%2C+Sudipta&rft.au=Barthakur%2C+Abhijit&rft.date=2015-02-01&rft.eissn=1550-2376&rft.volume=91&rft.issue=2&rft.spage=023210&rft_id=info:doi/10.1103%2FPhysRevE.91.023210&rft_id=info%3Apmid%2F25768629&rft_id=info%3Apmid%2F25768629&rft.externalDocID=25768629