An interface-contact regulation renders thermally safe lithium metal batteries
The reactions among lithium metal anode, cathode, and electrolyte contribute to the origin of thermal runaway of Li metal batteries (LMBs). In this contribution, polyethylene glycol (PEG) is adopted as an effective thermal safety modifier to reduce the reactions between cell components. The heat rel...
Saved in:
Published in | eTransportation (Amsterdam) Vol. 15; p. 100211 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The reactions among lithium metal anode, cathode, and electrolyte contribute to the origin of thermal runaway of Li metal batteries (LMBs). In this contribution, polyethylene glycol (PEG) is adopted as an effective thermal safety modifier to reduce the reactions between cell components. The heat release and the initial exothermic peak for cell components mixture can be changed from 26.44 to 10.15 W g−1 and 144 to187 °C with the addition of PEG. The highly viscous PEG leads to the poor contact and reduces reactions between electrolyte and electrodes, thus enhancing the thermal stability of Li metal batteries. Therefore, regulating the contact and reaction interface between electrodes and electrolyte during thermal runaway can be an efficient strategy to design a thermally safe LMBs. This work elucidates the design principles for the interface exothermic reactions during thermal runaway.
The contact variation between the electrolytes and electrodes can be regulated by the introduction of polyethylene glycol, which renders to the reduced interfacial exothermic reactions and the improvement in thermal stability of high-energy-density lithium metal batteries. [Display omitted]
•Exothermic reactions during LMB thermal runaway are quantitatively investigated.•Functions of PEG on thermal safety of LMBs are explicitly analyzed.•Methods to regulate contact behave between electrode and electrolyte are proposed. |
---|---|
AbstractList | The reactions among lithium metal anode, cathode, and electrolyte contribute to the origin of thermal runaway of Li metal batteries (LMBs). In this contribution, polyethylene glycol (PEG) is adopted as an effective thermal safety modifier to reduce the reactions between cell components. The heat release and the initial exothermic peak for cell components mixture can be changed from 26.44 to 10.15 W g−1 and 144 to187 °C with the addition of PEG. The highly viscous PEG leads to the poor contact and reduces reactions between electrolyte and electrodes, thus enhancing the thermal stability of Li metal batteries. Therefore, regulating the contact and reaction interface between electrodes and electrolyte during thermal runaway can be an efficient strategy to design a thermally safe LMBs. This work elucidates the design principles for the interface exothermic reactions during thermal runaway.
The contact variation between the electrolytes and electrodes can be regulated by the introduction of polyethylene glycol, which renders to the reduced interfacial exothermic reactions and the improvement in thermal stability of high-energy-density lithium metal batteries. [Display omitted]
•Exothermic reactions during LMB thermal runaway are quantitatively investigated.•Functions of PEG on thermal safety of LMBs are explicitly analyzed.•Methods to regulate contact behave between electrode and electrolyte are proposed. |
ArticleNumber | 100211 |
Author | Yuan, Hong Zhang, Qiang Yang, Shi-Jie Huang, Jia-Qi Cheng, Xin-Bing Liu, Lei Jiang, Feng-Ni |
Author_xml | – sequence: 1 givenname: Feng-Ni surname: Jiang fullname: Jiang, Feng-Ni organization: College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China – sequence: 2 givenname: Shi-Jie surname: Yang fullname: Yang, Shi-Jie organization: Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China – sequence: 3 givenname: Xin-Bing orcidid: 0000-0001-7567-1210 surname: Cheng fullname: Cheng, Xin-Bing email: chengxb@seu.edu.cn organization: Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 211189, Jiangsu, China – sequence: 4 givenname: Hong surname: Yuan fullname: Yuan, Hong organization: Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China – sequence: 5 givenname: Lei surname: Liu fullname: Liu, Lei organization: College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China – sequence: 6 givenname: Jia-Qi surname: Huang fullname: Huang, Jia-Qi organization: Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China – sequence: 7 givenname: Qiang surname: Zhang fullname: Zhang, Qiang email: zhang-qiang@mails.tsinghua.edu.cn organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China |
BookMark | eNqFkM1OwzAQhC1UJErpE3DJCyT4J3HcA4eq4k-q4AJny7E31JXjINtF6tvjthwQBzjtaDXfaHcu0cSPHhC6JrgimPCbbQUpKF9RTGneYErIGZrSZoFLQriY_NAXaB7jFmfPgjMhmil6XvrC-gShVxpKPfqkdCoCvO-cSnb0WXoDIRZpA2FQzu2LqHoonE0buxuKAZJyRadSjrAQr9B5r1yE-fecobf7u9fVY7l-eXhaLdelZpilfEurBQeoa9N2nRDYEFObjrBWac6UodDXvG8aTrTAHdRU96KhtWgMaTtjKJshdsrVYYwxQC8_gh1U2EuC5aEVuZXHVuShFXlqJVOLX5S26fhmtlr3D3t7YiG_9WkhyKgteA3GBtBJmtH-yX8BOJiCEw |
CitedBy_id | crossref_primary_10_1016_j_etran_2023_100279 crossref_primary_10_1016_j_partic_2022_11_009 crossref_primary_10_34133_energymatadv_0084 crossref_primary_10_1007_s12274_024_6463_2 crossref_primary_10_1021_acsenergylett_4c00621 crossref_primary_10_1002_elt2_8 crossref_primary_10_1002_aenm_202303850 |
Cites_doi | 10.1002/sus2.4 10.1021/acsomega.7b01950 10.1002/ange.202108397 10.1038/nnano.2017.16 10.1016/j.etran.2020.100098 10.1002/sus2.37 10.1016/j.molliq.2018.06.104 10.1007/s11426-021-1011-9 10.1016/j.joule.2022.02.015 10.1002/eom2.12019 10.1021/acsami.1c20643 10.1002/adfm.202108790 10.1016/j.partic.2021.04.002 10.1016/j.etran.2021.100140 10.1016/j.joule.2020.03.012 10.1016/j.ensm.2021.04.035 10.1016/j.carbpol.2021.118278 10.1016/j.jechem.2020.03.029 10.1016/j.etran.2020.100097 10.1016/j.etran.2020.100100 10.1002/inf2.12190 10.1002/aenm.202003416 10.1016/S0021-9673(98)00596-2 10.1021/am506712c 10.1016/j.jechem.2021.03.025 10.1016/j.nanoen.2021.105878 10.1016/j.ensm.2020.06.004 10.1039/C6NR00465B 10.1016/j.joule.2022.02.007 10.1016/j.mtener.2018.08.006 10.1002/anie.202102593 10.1016/j.cjche.2021.03.021 10.1016/j.ensm.2020.10.018 10.1016/j.ensm.2021.09.007 10.1002/adma.202106335 10.1016/j.etran.2021.100142 10.1021/ja02193a004 10.1002/advs.202103796 10.1016/j.etran.2022.100190 10.1016/j.electacta.2016.07.016 10.1016/j.egypro.2019.01.736 10.1002/anie.202111199 10.1016/j.jechem.2020.10.017 10.1016/j.jechem.2022.01.019 10.1016/j.ensm.2020.06.042 10.1016/j.jechem.2021.05.027 10.1021/acs.nanolett.5b01167 10.1002/inf2.12046 10.1016/j.ensm.2022.01.007 10.1016/j.jechem.2021.04.045 10.1021/acsami.5b02690 10.1002/smll.201907163 10.1149/1945-7111/ababd2 10.1021/acs.energyfuels.1c00488 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.etran.2022.100211 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2590-1168 |
ExternalDocumentID | 10_1016_j_etran_2022_100211 S259011682200056X |
GroupedDBID | AABXZ AAEDW AAHCO AAIAV AAKOC AALRI AAXUO ACDAQ ACRLP AEBSH AEZYN AFKWA AFRZQ AHJVU AIEXJ AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AXJTR BELTK BJAXD BKOJK EBS EFJIC EFLBG EJD FDB FYGXN KOM M41 M~E ROL SPC SPCBC SSM SSR SST T5K ~G- 0R~ AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c303t-117c86ee44d7bb880d1d4db137ac63ad2ef46f5561c80be42cf852485d17bdd23 |
IEDL.DBID | AIKHN |
ISSN | 2590-1168 |
IngestDate | Thu Apr 24 23:09:16 EDT 2025 Tue Jul 01 03:42:25 EDT 2025 Fri Feb 23 02:37:54 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Keywords | Safety Lithium metal battery Pouch cell Polyethylene glycol Thermal runaway Dendrite |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-117c86ee44d7bb880d1d4db137ac63ad2ef46f5561c80be42cf852485d17bdd23 |
ORCID | 0000-0001-7567-1210 |
ParticipantIDs | crossref_primary_10_1016_j_etran_2022_100211 crossref_citationtrail_10_1016_j_etran_2022_100211 elsevier_sciencedirect_doi_10_1016_j_etran_2022_100211 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationTitle | eTransportation (Amsterdam) |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bates, Preger, Torres-Castro, Harrison, Harris, Hewson (bib52) 2022; 6 Yin, Ma, Li, Wen, Santhanagopalan, Zhang (bib13) 2021; 7 Yuan, Kong, Zhang, Dong, Zhang, Dong, Wang, Xia (bib25) 2021; 133 Chen, Kang, Zhao, Wang, Liu, Li, Liang, He, Li, Tavajohi, Li (bib23) 2021; 59 Shen, Zhang, Shi, Chen, Zhang (bib44) 2021; 11 Lee, Shin, Kannan, Koo, Kim (bib51) 2015; 7 Bak, Hu, Zhou, Yu, Senanayake, Cho, Kim, Chung, Yang, Nam (bib34) 2014; 6 Jiang, Yang, Liu, Cheng, Liu, Xiang, Zhang, Kaskel, Huang (bib3) 2021; 1 Lee, Muhammad, Kim, Kim, Lee, Yoon (bib55) 2020; 7 Xu, Huang, Lu, Zhou, Cui (bib17) 2020; 31 Xu, Jiang, Yang, Xiao, Liu, Liu, Liu, Cheng (bib39) 2022; 69 Lyu, Liu, Qu, Zhao, Huo, Qu, Rao (bib16) 2020; 31 Xu, Cheng, Jiang, Yang, Ren, Shi, Hsu, Yuan, J Huang, Ouyang, Zhang (bib47) 2022; 2 Rafati, Ebadi, Bavafa, Nowroozi (bib49) 2018; 266 Liu, Feng, Rahe, Li, Lu, He, Sauer, Ouyang (bib30) 2021; 61 Hu, Huang, Bai, Wang, Qi (bib14) 2021; 10 Song, Liu, Ren, Liang, Wang, Hu, Cui, Xu, Wang, Zhao, Zuo, Xu, Amine, He (bib28) 2022; 34 Ren, Ding, Fu, Huang (bib26) 2021; 34 Jung, Kim, Song, Lee, Kim, Kang (bib54) 2021; 32 Wang, Xu, Zhang, Wang, Jin, Wu, Xu, Hao, Sun, Du, Li, Sun, Feng (bib21) 2022; 13 Liu, Yuan, Tao, Liang, Yang, Huang, Yuan, Titirici, Zhang (bib4) 2020; 2 Qin, Sun, Yang, Wang (bib22) 2021; 7 Yang, Yao, Xu, Jiang, Chen, Liu, Yuan, Huang, Cheng (bib24) 2021; 9 Zu, Yu, Li (bib6) 2021; 3 Puthusseri, Parmananda, Mukherjee, Pol (bib12) 2020; 167 Wu, Feng, Liu, Wang, Ren, Wang, Yang, Wang, Zhang, Li, Zheng, Lu, Han, Xu, Ren, Chen, Chen, He, Amine, Ouyang (bib36) 2021; 43 Long, Wang, Duan, Gao, Wang, Wu, Wang (bib19) 2022; 65 Lin, Liu, Cui (bib9) 2017; 12 Huang, Lu, Xu, Zhang, Jiang, Zhang, Wang, Han, Cui, Chen (bib2) 2022; 6 Yao, Zhang, Li, Yan, Chen, Huang, Zhang (bib41) 2019; 2 Zhang, Zhou, Liu, Fan (bib57) 2016; 8 Gao, Rao, Zhang, Gao, Xiao, Shali, Wang, Zheng, Chen, Zong, Li, Chen (bib58) 2022; 9 Shen, Zhang, Ding, Huang, Xu, Chen, Yan, Su, Chen, Liu, Zhang (bib45) 2021; 1 Meng, Li, Fu, Chen, Duan, Wang (bib20) 2022; 11 Kirmic Cosgun, Ceylan Tuncaboylu (bib48) 2021; 269 Deng, Song, Zhen, Zhang, Shu, Nan (bib46) 2016; 212 Li, Liu, Wang, Feng, Ren, Wu, Xu, Lu, Hou, Zhang, Wang, Xu, Ren, Wang, Huang, Meng, Han, Wang, He, Chen, Amine, Ouyang (bib56) 2021; 85 Liu, Ma, Wei, Bai, Liu, Xu, Shan, Wang (bib33) 2021; 52 Chen, Nolan, Lu, Wang, Yu, Mo, Chen, Huang, Li (bib32) 2020; 4 Yim, Park, Woo, Kwon, Yoo, Jung, Kim, Yu, Kim (bib60) 2015; 15 Cai, Valecha, Tran, Engle, Stefanopoulou, Siegel (bib29) 2021; 7 Liu, Li, Xu, Shi, Zhang, Xu (bib42) 2021; 37 Borenstein, Strauss, Yoonessi, Kaner (bib11) 2018; 10 Shi, Liu, Zhang, Chen, Yao, Xie, Jin, Zhan, Ye, Huang, Ifan, Maria-Magdalena, Zhang (bib40) 2022; 64 Gao, Yang, Wang, Ye, Cao, Guo (bib1) 2021; 60 Cai, Yan, Yao, Xu, Chen, Huang, Zhang (bib27) 2021; 60 Hu, Qiu, Zhang, Wang, Du, Ma, Wu, Lu, Zhou, Cui (bib38) 2020; 16 Su, Huang, Wang, Wang, Wang (bib31) 2021; 64 Cheng, Liu, Yuan, Peng, Tang, Huang, Zhang (bib10) 2021; 1 Rajendran, Tang, George, Cannon, Neumann, Sawas, Ryan, Turchanin, Arava (bib43) 2021; 11 Yukihiro, Yoshimura, Goto, Kano (bib50) 1998; 822 Baginska, Sottos, White (bib59) 2018; 3 Fu, Chen, Zhao, Yuan, Zhang, Shen, Ma, Lu, Liu, Fan, Zhang (bib18) 2021; 35 Komagata, Itou, Kondo (bib35) 2022; 14 Hou, Feng, Wang, Liu, Ohma, Lu, Ren, Huang, Li, Yi, Wang, Ren, Meng, Chu, Xu, Amine, He, Wang, Nitta, Ouyang (bib15) 2021; 39 Li, Hua, Kong, Yang, Dai, Zeng, Zhao (bib37) 2022; 46 Feng, Zheng, Ren, He, Wang, Liu, Li, Ouyang (bib7) 2019; 158 Lewis, Keyes (bib8) 1913; 35 Zhang, Zhao, Qin, Wang, He, Qian, Han, Yang, Kang, Li (bib53) 2021; 17 Meng, Zhu, Lian (bib5) 2022; 60 Zhang (10.1016/j.etran.2022.100211_bib57) 2016; 8 Liu (10.1016/j.etran.2022.100211_bib4) 2020; 2 Hu (10.1016/j.etran.2022.100211_bib38) 2020; 16 Yim (10.1016/j.etran.2022.100211_bib60) 2015; 15 Rajendran (10.1016/j.etran.2022.100211_bib43) 2021; 11 Qin (10.1016/j.etran.2022.100211_bib22) 2021; 7 Deng (10.1016/j.etran.2022.100211_bib46) 2016; 212 Yukihiro (10.1016/j.etran.2022.100211_bib50) 1998; 822 Xu (10.1016/j.etran.2022.100211_bib17) 2020; 31 Kirmic Cosgun (10.1016/j.etran.2022.100211_bib48) 2021; 269 Komagata (10.1016/j.etran.2022.100211_bib35) 2022; 14 Shi (10.1016/j.etran.2022.100211_bib40) 2022; 64 Lee (10.1016/j.etran.2022.100211_bib51) 2015; 7 Su (10.1016/j.etran.2022.100211_bib31) 2021; 64 Baginska (10.1016/j.etran.2022.100211_bib59) 2018; 3 Song (10.1016/j.etran.2022.100211_bib28) 2022; 34 Xu (10.1016/j.etran.2022.100211_bib47) 2022; 2 Hu (10.1016/j.etran.2022.100211_bib14) 2021; 10 Yang (10.1016/j.etran.2022.100211_bib24) 2021; 9 Gao (10.1016/j.etran.2022.100211_bib58) 2022; 9 Cheng (10.1016/j.etran.2022.100211_bib10) 2021; 1 Jiang (10.1016/j.etran.2022.100211_bib3) 2021; 1 Liu (10.1016/j.etran.2022.100211_bib33) 2021; 52 Zu (10.1016/j.etran.2022.100211_bib6) 2021; 3 Shen (10.1016/j.etran.2022.100211_bib45) 2021; 1 Bak (10.1016/j.etran.2022.100211_bib34) 2014; 6 Huang (10.1016/j.etran.2022.100211_bib2) 2022; 6 Wu (10.1016/j.etran.2022.100211_bib36) 2021; 43 Yao (10.1016/j.etran.2022.100211_bib41) 2019; 2 Jung (10.1016/j.etran.2022.100211_bib54) 2021; 32 Meng (10.1016/j.etran.2022.100211_bib5) 2022; 60 Yin (10.1016/j.etran.2022.100211_bib13) 2021; 7 Ren (10.1016/j.etran.2022.100211_bib26) 2021; 34 Lyu (10.1016/j.etran.2022.100211_bib16) 2020; 31 Li (10.1016/j.etran.2022.100211_bib56) 2021; 85 Rafati (10.1016/j.etran.2022.100211_bib49) 2018; 266 Hou (10.1016/j.etran.2022.100211_bib15) 2021; 39 Fu (10.1016/j.etran.2022.100211_bib18) 2021; 35 Lin (10.1016/j.etran.2022.100211_bib9) 2017; 12 Li (10.1016/j.etran.2022.100211_bib37) 2022; 46 Wang (10.1016/j.etran.2022.100211_bib21) 2022; 13 Borenstein (10.1016/j.etran.2022.100211_bib11) 2018; 10 Cai (10.1016/j.etran.2022.100211_bib29) 2021; 7 Meng (10.1016/j.etran.2022.100211_bib20) 2022; 11 Zhang (10.1016/j.etran.2022.100211_bib53) 2021; 17 Puthusseri (10.1016/j.etran.2022.100211_bib12) 2020; 167 Liu (10.1016/j.etran.2022.100211_bib30) 2021; 61 Shen (10.1016/j.etran.2022.100211_bib44) 2021; 11 Yuan (10.1016/j.etran.2022.100211_bib25) 2021; 133 Liu (10.1016/j.etran.2022.100211_bib42) 2021; 37 Feng (10.1016/j.etran.2022.100211_bib7) 2019; 158 Chen (10.1016/j.etran.2022.100211_bib32) 2020; 4 Bates (10.1016/j.etran.2022.100211_bib52) 2022; 6 Lee (10.1016/j.etran.2022.100211_bib55) 2020; 7 Long (10.1016/j.etran.2022.100211_bib19) 2022; 65 Chen (10.1016/j.etran.2022.100211_bib23) 2021; 59 Xu (10.1016/j.etran.2022.100211_bib39) 2022; 69 Gao (10.1016/j.etran.2022.100211_bib1) 2021; 60 Lewis (10.1016/j.etran.2022.100211_bib8) 1913; 35 Cai (10.1016/j.etran.2022.100211_bib27) 2021; 60 |
References_xml | – volume: 1 start-page: 506 year: 2021 end-page: 536 ident: bib3 article-title: Mechanism understanding for stripping electrochemistry of Li metal anode publication-title: SusMat – volume: 37 start-page: 152 year: 2021 end-page: 158 ident: bib42 article-title: Stable interfaces constructed by concentrated ether electrolytes to render robust lithium metal batteries publication-title: Chin J Chem Eng – volume: 266 start-page: 733 year: 2018 end-page: 742 ident: bib49 article-title: Kinetic study, structural analysis and computational investigation of novel xerogel based on drug-PEG/SiO publication-title: J Mol Liq – volume: 13 year: 2022 ident: bib21 article-title: Fire and explosion characteristics of vent gas from lithium-ion batteries after thermal runaway: a comparative study publication-title: eTransportation – volume: 61 start-page: 269 year: 2021 end-page: 280 ident: bib30 article-title: Internal short circuit evaluation and corresponding failure mode analysis for lithium-ion batteries publication-title: J Energy Chem – volume: 31 start-page: 72 year: 2020 end-page: 86 ident: bib17 article-title: Revealing the multilevel thermal safety of lithium batteries publication-title: Energy Storage Mater – volume: 6 start-page: 1 year: 2022 end-page: 17 ident: bib2 article-title: Thermal runaway routes of large-format lithium-sulfur pouch cell batteries publication-title: Joule – volume: 2 year: 2020 ident: bib4 article-title: Recent progress on biomass‐derived ecomaterials toward advanced rechargeable lithium batteries publication-title: EcoMat – volume: 7 year: 2021 ident: bib13 article-title: Modeling strategy for progressive failure prediction in lithium-ion batteries under mechanical abuse publication-title: eTransportation – volume: 31 start-page: 195 year: 2020 end-page: 220 ident: bib16 article-title: Recent advances of thermal safety of lithium ion battery for energy storage publication-title: Energy Storage Mater – volume: 64 start-page: 172 year: 2022 end-page: 178 ident: bib40 article-title: Polar interaction of polymer host–solvent enables stable solid electrolyte interphase in composite lithium metal anodes publication-title: J Energy Chem – volume: 167 year: 2020 ident: bib12 article-title: Probing the thermal safety of Li metal batteries publication-title: J Electrochem Soc – volume: 1 year: 2021 ident: bib45 article-title: Advanced electrode materials in lithium batteries: retrospect and prospect publication-title: Energy Mater Adv – volume: 269 year: 2021 ident: bib48 article-title: Cyclodextrin-linked PVP/PEG supramolecular hydrogels publication-title: Carbohydr Polym – volume: 43 start-page: 248 year: 2021 end-page: 257 ident: bib36 article-title: In-built ultraconformal interphases enable high-safety practical lithium batteries publication-title: Energy Storage Mater – volume: 8 start-page: 11161 year: 2016 end-page: 11167 ident: bib57 article-title: The effect of the carbon nanotube buffer layer on the performance of a Li metal battery publication-title: Nanoscale – volume: 7 start-page: 13944 year: 2015 end-page: 13951 ident: bib51 article-title: Improvement of the cycling performance and thermal stability of lithium-ion cells by double-layer coating of cathode materials with Al publication-title: ACS Appl Mater Interfaces – volume: 212 start-page: 416 year: 2016 end-page: 425 ident: bib46 article-title: Al publication-title: Electrochim Acta – volume: 11 year: 2022 ident: bib20 article-title: Experimental study of intermittent spray cooling on suppression for lithium iron phosphate battery fires publication-title: eTransportation – volume: 3 start-page: 648 year: 2021 end-page: 661 ident: bib6 article-title: Enabling the thermal stability of solid electrolyte interphase in Li‐ion battery publication-title: InfoMat – volume: 7 year: 2020 ident: bib55 article-title: Tracking the influence of thermal expansion and oxygen vacancies on the thermal stability of Ni-rich layered cathode materials publication-title: Adv Sci – volume: 11 year: 2021 ident: bib44 article-title: How does external pressure shape Li dendrites in Li metal batteries? publication-title: Adv Energy Mater – volume: 6 start-page: 22594 year: 2014 end-page: 22601 ident: bib34 article-title: Structural changes and thermal stability of charged LiNi publication-title: ACS Appl Mater Interfaces – volume: 34 year: 2022 ident: bib28 article-title: Simultaneously blocking chemical crosstalk and internal short circuit via gel-stretching derived nanoporous non-shrinkage separator for safe lithium-ion batteries publication-title: Adv Mater – volume: 6 start-page: 1 year: 2022 end-page: 14 ident: bib52 article-title: Are solid-state batteries safer than lithium-ion batteries? publication-title: Joule – volume: 133 start-page: 2 year: 2021 end-page: 17 ident: bib25 article-title: Advanced electrolyte design for high-energy-density Li-metal batteries under practical conditions publication-title: Angew Chem Int Ed – volume: 32 year: 2021 ident: bib54 article-title: Unveiling the role of transition‐metal ions in the thermal degradation of layered Ni–Co–Mn cathodes for lithium rechargeable batteries publication-title: Adv Funct Mater – volume: 2 start-page: 379 year: 2019 end-page: 388 ident: bib41 article-title: A compact inorganic layer for robust anode protection in lithium‐sulfur batteries publication-title: InfoMat – volume: 16 year: 2020 ident: bib38 article-title: A polymer-reinforced SEI layer induced by a cyclic carbonate-based polymer electrolyte boosting 4.45 V LiCoO publication-title: Small – volume: 59 start-page: 83 year: 2021 end-page: 99 ident: bib23 article-title: A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards publication-title: J Energy Chem – volume: 64 start-page: 1131 year: 2021 end-page: 1156 ident: bib31 article-title: High safety separators for rechargeable lithium batteries publication-title: Sci China Chem – volume: 7 year: 2021 ident: bib22 article-title: Battery thermal management system based on the forced-air convection: a review publication-title: eTransportation – volume: 69 start-page: 205 year: 2022 end-page: 210 ident: bib39 article-title: Dual-layer vermiculite nanosheet based hybrid film to suppress dendrite growth in lithium metal batteries publication-title: J Energy Chem – volume: 822 start-page: 107 year: 1998 end-page: 115 ident: bib50 article-title: Non-aqueous capillary zone electrophoresis using polyethylene glycol as a matrix agent publication-title: J Chromatogr A – volume: 60 start-page: 13007 year: 2021 end-page: 13012 ident: bib27 article-title: The boundary of lithium plating in graphite electrode for safe lithium-ion batteries publication-title: Angew Chem Int Ed – volume: 14 start-page: 8931 year: 2022 end-page: 8937 ident: bib35 article-title: Impact of surface layer formation during cycling on the thermal stability of the LiNi publication-title: ACS Appl Mater Interfaces – volume: 15 start-page: 5059 year: 2015 end-page: 5067 ident: bib60 article-title: Self-extinguishing lithium ion batteries based on internally embedded fire-extinguishing microcapsules with temperature-responsiveness publication-title: Nano Lett – volume: 60 start-page: 14 year: 2022 end-page: 36 ident: bib5 article-title: Particles in composite polymer electrolyte for solid-state lithium batteries: a review publication-title: Particuology – volume: 4 start-page: 812 year: 2020 end-page: 821 ident: bib32 article-title: The thermal stability of lithium solid electrolytes with metallic lithium publication-title: Joule – volume: 52 start-page: 20 year: 2021 end-page: 27 ident: bib33 article-title: Study about thermal runaway behavior of high specific energy density Li-ion batteries in a low state of charge publication-title: J Energy Chem – volume: 2 start-page: 1 year: 2022 end-page: 10 ident: bib47 article-title: Dendrite-accelerated thermal runaway mechanisms of lithium metal pouch batteries publication-title: SusMat – volume: 10 start-page: 89 year: 2018 end-page: 97 ident: bib11 article-title: Silicon expansion at the service of safety – a reversible potential-dependent switch for safer batteries publication-title: Mater Today Energy – volume: 65 start-page: 9 year: 2022 end-page: 18 ident: bib19 article-title: Thermotolerant and fireproof gel polymer electrolyte toward high-performance and safe lithium-ion battery publication-title: J Energy Chem – volume: 12 start-page: 194 year: 2017 end-page: 206 ident: bib9 article-title: Reviving the lithium metal anode for high-energy batteries publication-title: Nat Nanotechnol – volume: 9 year: 2022 ident: bib58 article-title: Bioinspired thermal runaway retardant capsules for improved safety and electrochemical performance in lithium-ion batteries publication-title: Adv Sci – volume: 158 start-page: 4684 year: 2019 end-page: 4689 ident: bib7 article-title: Key characteristics for thermal runaway of Li-ion batteries key characteristics for thermal runaway of Li-ion batteries publication-title: Energy Proc – volume: 10 year: 2021 ident: bib14 article-title: Comprehensively analysis the failure evolution and safety evaluation of automotive lithium ion battery publication-title: eTransportation – volume: 9 year: 2021 ident: bib24 article-title: Formation mechanism of the solid electrolyte interphase in different ester electrolytes publication-title: J Mater Chem – volume: 46 start-page: 90 year: 2022 end-page: 99 ident: bib37 article-title: In-situ probing the near-surface structural thermal stability of high-nickel layered cathode materials publication-title: Energy Storage Mater – volume: 11 year: 2021 ident: bib43 article-title: Inhibition of lithium dendrite formation in lithium metal batteries via regulated cation transport through ultrathin sub‐nanometer porous carbon nanomembranes publication-title: Adv Energy Mater – volume: 39 start-page: 395 year: 2021 end-page: 402 ident: bib15 article-title: Unlocking the self-supported thermal runaway of high-energy lithium-ion batteries publication-title: Energy Storage Mater – volume: 35 start-page: 10210 year: 2021 end-page: 10218 ident: bib18 article-title: Stress regulation on atomic bonding and ionic diffusivity: mechanochemical effects in sulfide solid electrolytes publication-title: Energy Fuel – volume: 17 year: 2021 ident: bib53 article-title: Heterogeneous degradation in thick nickel-rich cathodes during high-temperature storage and mitigation of thermal instability by regulating cationic disordering publication-title: Small – volume: 35 start-page: 340 year: 1913 end-page: 344 ident: bib8 article-title: The potential of the lithium electrode publication-title: J Am Chem Soc – volume: 34 start-page: 515 year: 2021 end-page: 535 ident: bib26 article-title: Advanced gel polymer electrolytes for safe and durable lithium metal batteries: challenges, strategies, and perspectives publication-title: Energy Storage Mater – volume: 85 year: 2021 ident: bib56 article-title: Thermal runaway mechanism of lithium-ion battery with LiNi publication-title: Nano Energy – volume: 60 start-page: 25508 year: 2021 end-page: 25513 ident: bib1 article-title: Fatigue-resistant interfacial layer for safe lithium metal batteries publication-title: Angew Chem Int Ed – volume: 7 year: 2021 ident: bib29 article-title: Detection of Li-ion battery failure and venting with carbon dioxide sensors publication-title: eTransportation – volume: 3 start-page: 1609 year: 2018 end-page: 1613 ident: bib59 article-title: Core-shell microcapsules containing flame retardant tris(2-chloroethyl phosphate) for lithium-ion battery applications publication-title: ACS Omega – volume: 1 start-page: 38 year: 2021 end-page: 50 ident: bib10 article-title: A perspective on sustainable energy materials for lithium batteries publication-title: SusMat – volume: 1 start-page: 38 issue: 1 year: 2021 ident: 10.1016/j.etran.2022.100211_bib10 article-title: A perspective on sustainable energy materials for lithium batteries publication-title: SusMat doi: 10.1002/sus2.4 – volume: 3 start-page: 1609 issue: 2 year: 2018 ident: 10.1016/j.etran.2022.100211_bib59 article-title: Core-shell microcapsules containing flame retardant tris(2-chloroethyl phosphate) for lithium-ion battery applications publication-title: ACS Omega doi: 10.1021/acsomega.7b01950 – volume: 133 start-page: 2 year: 2021 ident: 10.1016/j.etran.2022.100211_bib25 article-title: Advanced electrolyte design for high-energy-density Li-metal batteries under practical conditions publication-title: Angew Chem Int Ed doi: 10.1002/ange.202108397 – volume: 1 issue: 1 year: 2021 ident: 10.1016/j.etran.2022.100211_bib45 article-title: Advanced electrode materials in lithium batteries: retrospect and prospect publication-title: Energy Mater Adv – volume: 12 start-page: 194 issue: 3 year: 2017 ident: 10.1016/j.etran.2022.100211_bib9 article-title: Reviving the lithium metal anode for high-energy batteries publication-title: Nat Nanotechnol doi: 10.1038/nnano.2017.16 – volume: 7 year: 2021 ident: 10.1016/j.etran.2022.100211_bib13 article-title: Modeling strategy for progressive failure prediction in lithium-ion batteries under mechanical abuse publication-title: eTransportation doi: 10.1016/j.etran.2020.100098 – volume: 9 year: 2021 ident: 10.1016/j.etran.2022.100211_bib24 article-title: Formation mechanism of the solid electrolyte interphase in different ester electrolytes publication-title: J Mater Chem – volume: 1 start-page: 506 issue: 4 year: 2021 ident: 10.1016/j.etran.2022.100211_bib3 article-title: Mechanism understanding for stripping electrochemistry of Li metal anode publication-title: SusMat doi: 10.1002/sus2.37 – volume: 266 start-page: 733 year: 2018 ident: 10.1016/j.etran.2022.100211_bib49 article-title: Kinetic study, structural analysis and computational investigation of novel xerogel based on drug-PEG/SiO2 for controlled release of enrofloxacin publication-title: J Mol Liq doi: 10.1016/j.molliq.2018.06.104 – volume: 64 start-page: 1131 issue: 7 year: 2021 ident: 10.1016/j.etran.2022.100211_bib31 article-title: High safety separators for rechargeable lithium batteries publication-title: Sci China Chem doi: 10.1007/s11426-021-1011-9 – volume: 7 issue: 12 year: 2020 ident: 10.1016/j.etran.2022.100211_bib55 article-title: Tracking the influence of thermal expansion and oxygen vacancies on the thermal stability of Ni-rich layered cathode materials publication-title: Adv Sci – volume: 6 start-page: 1 year: 2022 ident: 10.1016/j.etran.2022.100211_bib2 article-title: Thermal runaway routes of large-format lithium-sulfur pouch cell batteries publication-title: Joule doi: 10.1016/j.joule.2022.02.015 – volume: 2 issue: 1 year: 2020 ident: 10.1016/j.etran.2022.100211_bib4 article-title: Recent progress on biomass‐derived ecomaterials toward advanced rechargeable lithium batteries publication-title: EcoMat doi: 10.1002/eom2.12019 – volume: 14 start-page: 8931 issue: 7 year: 2022 ident: 10.1016/j.etran.2022.100211_bib35 article-title: Impact of surface layer formation during cycling on the thermal stability of the LiNi0.8Co0.1Mn0.1O2 cathode publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.1c20643 – volume: 32 issue: 13 year: 2021 ident: 10.1016/j.etran.2022.100211_bib54 article-title: Unveiling the role of transition‐metal ions in the thermal degradation of layered Ni–Co–Mn cathodes for lithium rechargeable batteries publication-title: Adv Funct Mater doi: 10.1002/adfm.202108790 – volume: 60 start-page: 14 year: 2022 ident: 10.1016/j.etran.2022.100211_bib5 article-title: Particles in composite polymer electrolyte for solid-state lithium batteries: a review publication-title: Particuology doi: 10.1016/j.partic.2021.04.002 – volume: 10 year: 2021 ident: 10.1016/j.etran.2022.100211_bib14 article-title: Comprehensively analysis the failure evolution and safety evaluation of automotive lithium ion battery publication-title: eTransportation doi: 10.1016/j.etran.2021.100140 – volume: 4 start-page: 812 issue: 4 year: 2020 ident: 10.1016/j.etran.2022.100211_bib32 article-title: The thermal stability of lithium solid electrolytes with metallic lithium publication-title: Joule doi: 10.1016/j.joule.2020.03.012 – volume: 39 start-page: 395 year: 2021 ident: 10.1016/j.etran.2022.100211_bib15 article-title: Unlocking the self-supported thermal runaway of high-energy lithium-ion batteries publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2021.04.035 – volume: 269 year: 2021 ident: 10.1016/j.etran.2022.100211_bib48 article-title: Cyclodextrin-linked PVP/PEG supramolecular hydrogels publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2021.118278 – volume: 52 start-page: 20 year: 2021 ident: 10.1016/j.etran.2022.100211_bib33 article-title: Study about thermal runaway behavior of high specific energy density Li-ion batteries in a low state of charge publication-title: J Energy Chem doi: 10.1016/j.jechem.2020.03.029 – volume: 7 year: 2021 ident: 10.1016/j.etran.2022.100211_bib22 article-title: Battery thermal management system based on the forced-air convection: a review publication-title: eTransportation doi: 10.1016/j.etran.2020.100097 – volume: 7 year: 2021 ident: 10.1016/j.etran.2022.100211_bib29 article-title: Detection of Li-ion battery failure and venting with carbon dioxide sensors publication-title: eTransportation doi: 10.1016/j.etran.2020.100100 – volume: 3 start-page: 648 issue: 6 year: 2021 ident: 10.1016/j.etran.2022.100211_bib6 article-title: Enabling the thermal stability of solid electrolyte interphase in Li‐ion battery publication-title: InfoMat doi: 10.1002/inf2.12190 – volume: 11 issue: 10 year: 2021 ident: 10.1016/j.etran.2022.100211_bib44 article-title: How does external pressure shape Li dendrites in Li metal batteries? publication-title: Adv Energy Mater doi: 10.1002/aenm.202003416 – volume: 822 start-page: 107 year: 1998 ident: 10.1016/j.etran.2022.100211_bib50 article-title: Non-aqueous capillary zone electrophoresis using polyethylene glycol as a matrix agent publication-title: J Chromatogr A doi: 10.1016/S0021-9673(98)00596-2 – volume: 6 start-page: 22594 issue: 24 year: 2014 ident: 10.1016/j.etran.2022.100211_bib34 article-title: Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy publication-title: ACS Appl Mater Interfaces doi: 10.1021/am506712c – volume: 17 issue: 34 year: 2021 ident: 10.1016/j.etran.2022.100211_bib53 article-title: Heterogeneous degradation in thick nickel-rich cathodes during high-temperature storage and mitigation of thermal instability by regulating cationic disordering publication-title: Small – volume: 2 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.etran.2022.100211_bib47 article-title: Dendrite-accelerated thermal runaway mechanisms of lithium metal pouch batteries publication-title: SusMat – volume: 61 start-page: 269 year: 2021 ident: 10.1016/j.etran.2022.100211_bib30 article-title: Internal short circuit evaluation and corresponding failure mode analysis for lithium-ion batteries publication-title: J Energy Chem doi: 10.1016/j.jechem.2021.03.025 – volume: 85 year: 2021 ident: 10.1016/j.etran.2022.100211_bib56 article-title: Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105878 – volume: 31 start-page: 72 year: 2020 ident: 10.1016/j.etran.2022.100211_bib17 article-title: Revealing the multilevel thermal safety of lithium batteries publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2020.06.004 – volume: 8 start-page: 11161 issue: 21 year: 2016 ident: 10.1016/j.etran.2022.100211_bib57 article-title: The effect of the carbon nanotube buffer layer on the performance of a Li metal battery publication-title: Nanoscale doi: 10.1039/C6NR00465B – volume: 6 start-page: 1 year: 2022 ident: 10.1016/j.etran.2022.100211_bib52 article-title: Are solid-state batteries safer than lithium-ion batteries? publication-title: Joule doi: 10.1016/j.joule.2022.02.007 – volume: 10 start-page: 89 year: 2018 ident: 10.1016/j.etran.2022.100211_bib11 article-title: Silicon expansion at the service of safety – a reversible potential-dependent switch for safer batteries publication-title: Mater Today Energy doi: 10.1016/j.mtener.2018.08.006 – volume: 60 start-page: 13007 issue: 23 year: 2021 ident: 10.1016/j.etran.2022.100211_bib27 article-title: The boundary of lithium plating in graphite electrode for safe lithium-ion batteries publication-title: Angew Chem Int Ed doi: 10.1002/anie.202102593 – volume: 37 start-page: 152 year: 2021 ident: 10.1016/j.etran.2022.100211_bib42 article-title: Stable interfaces constructed by concentrated ether electrolytes to render robust lithium metal batteries publication-title: Chin J Chem Eng doi: 10.1016/j.cjche.2021.03.021 – volume: 34 start-page: 515 year: 2021 ident: 10.1016/j.etran.2022.100211_bib26 article-title: Advanced gel polymer electrolytes for safe and durable lithium metal batteries: challenges, strategies, and perspectives publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2020.10.018 – volume: 43 start-page: 248 year: 2021 ident: 10.1016/j.etran.2022.100211_bib36 article-title: In-built ultraconformal interphases enable high-safety practical lithium batteries publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2021.09.007 – volume: 34 issue: 2 year: 2022 ident: 10.1016/j.etran.2022.100211_bib28 article-title: Simultaneously blocking chemical crosstalk and internal short circuit via gel-stretching derived nanoporous non-shrinkage separator for safe lithium-ion batteries publication-title: Adv Mater doi: 10.1002/adma.202106335 – volume: 11 year: 2022 ident: 10.1016/j.etran.2022.100211_bib20 article-title: Experimental study of intermittent spray cooling on suppression for lithium iron phosphate battery fires publication-title: eTransportation doi: 10.1016/j.etran.2021.100142 – volume: 35 start-page: 340 year: 1913 ident: 10.1016/j.etran.2022.100211_bib8 article-title: The potential of the lithium electrode publication-title: J Am Chem Soc doi: 10.1021/ja02193a004 – volume: 9 issue: 5 year: 2022 ident: 10.1016/j.etran.2022.100211_bib58 article-title: Bioinspired thermal runaway retardant capsules for improved safety and electrochemical performance in lithium-ion batteries publication-title: Adv Sci doi: 10.1002/advs.202103796 – volume: 13 year: 2022 ident: 10.1016/j.etran.2022.100211_bib21 article-title: Fire and explosion characteristics of vent gas from lithium-ion batteries after thermal runaway: a comparative study publication-title: eTransportation doi: 10.1016/j.etran.2022.100190 – volume: 212 start-page: 416 year: 2016 ident: 10.1016/j.etran.2022.100211_bib46 article-title: Al2O3/PVdF-HFP-CMC/PE separator prepared using aqueous slurry and post-hot-pressing method for polymer lithium-ion batteries with enhanced safety publication-title: Electrochim Acta doi: 10.1016/j.electacta.2016.07.016 – volume: 158 start-page: 4684 year: 2019 ident: 10.1016/j.etran.2022.100211_bib7 article-title: Key characteristics for thermal runaway of Li-ion batteries key characteristics for thermal runaway of Li-ion batteries publication-title: Energy Proc doi: 10.1016/j.egypro.2019.01.736 – volume: 60 start-page: 25508 issue: 48 year: 2021 ident: 10.1016/j.etran.2022.100211_bib1 article-title: Fatigue-resistant interfacial layer for safe lithium metal batteries publication-title: Angew Chem Int Ed doi: 10.1002/anie.202111199 – volume: 59 start-page: 83 year: 2021 ident: 10.1016/j.etran.2022.100211_bib23 article-title: A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards publication-title: J Energy Chem doi: 10.1016/j.jechem.2020.10.017 – volume: 69 start-page: 205 year: 2022 ident: 10.1016/j.etran.2022.100211_bib39 article-title: Dual-layer vermiculite nanosheet based hybrid film to suppress dendrite growth in lithium metal batteries publication-title: J Energy Chem doi: 10.1016/j.jechem.2022.01.019 – volume: 31 start-page: 195 year: 2020 ident: 10.1016/j.etran.2022.100211_bib16 article-title: Recent advances of thermal safety of lithium ion battery for energy storage publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2020.06.042 – volume: 65 start-page: 9 year: 2022 ident: 10.1016/j.etran.2022.100211_bib19 article-title: Thermotolerant and fireproof gel polymer electrolyte toward high-performance and safe lithium-ion battery publication-title: J Energy Chem doi: 10.1016/j.jechem.2021.05.027 – volume: 15 start-page: 5059 issue: 8 year: 2015 ident: 10.1016/j.etran.2022.100211_bib60 article-title: Self-extinguishing lithium ion batteries based on internally embedded fire-extinguishing microcapsules with temperature-responsiveness publication-title: Nano Lett doi: 10.1021/acs.nanolett.5b01167 – volume: 2 start-page: 379 issue: 2 year: 2019 ident: 10.1016/j.etran.2022.100211_bib41 article-title: A compact inorganic layer for robust anode protection in lithium‐sulfur batteries publication-title: InfoMat doi: 10.1002/inf2.12046 – volume: 46 start-page: 90 year: 2022 ident: 10.1016/j.etran.2022.100211_bib37 article-title: In-situ probing the near-surface structural thermal stability of high-nickel layered cathode materials publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2022.01.007 – volume: 64 start-page: 172 year: 2022 ident: 10.1016/j.etran.2022.100211_bib40 article-title: Polar interaction of polymer host–solvent enables stable solid electrolyte interphase in composite lithium metal anodes publication-title: J Energy Chem doi: 10.1016/j.jechem.2021.04.045 – volume: 7 start-page: 13944 issue: 25 year: 2015 ident: 10.1016/j.etran.2022.100211_bib51 article-title: Improvement of the cycling performance and thermal stability of lithium-ion cells by double-layer coating of cathode materials with Al2O3 nanoparticles and conductive polymer publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.5b02690 – volume: 16 issue: 13 year: 2020 ident: 10.1016/j.etran.2022.100211_bib38 article-title: A polymer-reinforced SEI layer induced by a cyclic carbonate-based polymer electrolyte boosting 4.45 V LiCoO2/Li metal batteries publication-title: Small doi: 10.1002/smll.201907163 – volume: 11 issue: 29 year: 2021 ident: 10.1016/j.etran.2022.100211_bib43 article-title: Inhibition of lithium dendrite formation in lithium metal batteries via regulated cation transport through ultrathin sub‐nanometer porous carbon nanomembranes publication-title: Adv Energy Mater – volume: 167 issue: 12 year: 2020 ident: 10.1016/j.etran.2022.100211_bib12 article-title: Probing the thermal safety of Li metal batteries publication-title: J Electrochem Soc doi: 10.1149/1945-7111/ababd2 – volume: 35 start-page: 10210 issue: 12 year: 2021 ident: 10.1016/j.etran.2022.100211_bib18 article-title: Stress regulation on atomic bonding and ionic diffusivity: mechanochemical effects in sulfide solid electrolytes publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.1c00488 |
SSID | ssj0002963885 |
Score | 2.2794378 |
Snippet | The reactions among lithium metal anode, cathode, and electrolyte contribute to the origin of thermal runaway of Li metal batteries (LMBs). In this... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 100211 |
SubjectTerms | Dendrite Lithium metal battery Polyethylene glycol Pouch cell Safety Thermal runaway |
Title | An interface-contact regulation renders thermally safe lithium metal batteries |
URI | https://dx.doi.org/10.1016/j.etran.2022.100211 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEBVpcmkPpStNl6BDjxWxZFl2jiE0pAuhtA3kZrTSlMQNjnPo31eS7ZBCyaFX4wH7MZp5EqP3ALhNmHI65wpRmz6IcsqQYKFAGmNjgjjGUvgB2TEbTejjNJo2wKC-C-PGKqvaX9Z0X62rJ90Kze5yNuu-EX9tktkO54gHm-6BFrHdNWiCVv_haTTeHLUQl2TenNOFIBdT6w_5SS9d2LZgt4qEeEFSjP_uUVt9Z3gEDivCCPvlNx2Dhs5OwMGWjOApGPcz6GQfcsOlRm74nMsC5qXLvMUd5t4vbgUd2Vvw-fwbrrjR0DLwj9l6ARfaMnAovNKm3Tifgcnw_n0wQpVPApK2ARX2h2KZMK0pVbEQdkEqrKgSOIy5ZCFXRBvKjPPBlEkgNCXSJJGTMlM4FkqR8Bw0s69MXwDYC2moOaEx5xFVxIieMgYniehpGakgaANSI5PKSkTceVnM03pa7DP1cKYOzrSEsw3uNkHLUkNj9-ushjz9lQqprfK7Ai__G3gF9p2LfHmycg2aRb7WN5ZrFKJjc2nw-vzSqXLqB8WN0_A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LSgMxFA1iF-pCfOLbLHRnaJNJM9OFi6KW1tZubKG7MU-stKNMR8Tv8gdNMjOlgnQhuB3mQji5uY9wcw4AFxFTjudcIWrdB1FOGRIsEEhjbEwtDLEUfkC2z9pDej-qj1bAV_kWxo1VFrE_j-k-WhdfqgWa1bfxuPpI_LNJZjOcKzzYqJis7OrPD9u3za47t3aTLwlp3Q1u2qiQFkDSxuwMYRzKiGlNqQqFsD6ssKJK4CDkkgVcEW0oM046UkY1oSmRJqo79i-FQ6GUYzuwcb_i2LDssao0O912f361Q5xTezFQt0Tk1ljyHfnJMp3ZNGRbU0I8ASrGv-fEhTzX2gKbRYEKmzkG22BFJztgY4G2cBf0mwl0NBOp4VIjN-zOZQbTXNXe7jNMvT7dDLricsonk08440ZDW_E_j9-ncKptxQ-FZ_a0jfoeGP4LePtgNXlN9AGAjYAGmhMacl6nihjRUMbgKBINLeuqVjsEpEQmlgVpudPOmMTldNpL7OGMHZxxDuchuJobveWcHct_ZyXk8Q_Xi21WWWZ49FfDc7DWHjz04l6n3z0G607BPr_VOQGrWfquT22dk4mzwq8gePpvV_4GGQsP3w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+interface-contact+regulation+renders+thermally+safe+lithium+metal+batteries&rft.jtitle=eTransportation+%28Amsterdam%29&rft.au=Jiang%2C+Feng-Ni&rft.au=Yang%2C+Shi-Jie&rft.au=Cheng%2C+Xin-Bing&rft.au=Yuan%2C+Hong&rft.date=2023-01-01&rft.pub=Elsevier+B.V&rft.issn=2590-1168&rft.eissn=2590-1168&rft.volume=15&rft_id=info:doi/10.1016%2Fj.etran.2022.100211&rft.externalDocID=S259011682200056X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1168&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1168&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1168&client=summon |