Protein disulfide isomerase redox-dependent association with p47phox: evidence for an organizer role in leukocyte NADPH oxidase activation
Leukocyte NADPH oxidase activity is regulated by associated protein disulfide isomerase via redox mechanisms involving p47phox. Mechanisms of leukocyte NADPH oxidase regulation remain actively investigated. We showed previously that vascular and macrophage oxidase complexes are regulated by the asso...
Saved in:
Published in | Journal of leukocyte biology Vol. 90; no. 4; pp. 799 - 810 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Society for Leukocyte Biology
01.10.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Leukocyte NADPH oxidase activity is regulated by associated protein disulfide isomerase via redox mechanisms involving p47phox.
Mechanisms of leukocyte NADPH oxidase regulation remain actively investigated. We showed previously that vascular and macrophage oxidase complexes are regulated by the associated redox chaperone PDI. Here, we investigated the occurrence and possible underlying mechanisms of PDI‐mediated regulation of neutrophil NADPH oxidase. In a semirecombinant cell‐free system, PDI inhibitors scrRNase (100 μg/mL) or bacitracin (1 mM) near totally suppressed superoxide generation. Exogenously incubated, oxidized PDI increased (by ∼40%), whereas PDIred diminished (by ∼60%) superoxide generation. No change occurred after incubation with PDI serine‐mutated in all four redox cysteines. Moreover, a mimetic CxxC PDI inhibited superoxide production by ∼70%. Thus, oxidized PDI supports, whereas reduced PDI down‐regulates, intrinsic membrane NADPH oxidase complex activity. In whole neutrophils, immunoprecipitation and colocalization experiments demonstrated PDI association with membrane complex subunits and prominent thiol‐mediated interaction with p47phox in the cytosol fraction. Upon PMA stimulation, PDI was mobilized from azurophilic granules to cytosol but did not further accumulate in membranes, contrarily to p47phox. PDI‐p47phox association in cytosol increased concomitantly to opposite redox switches of both proteins; there was marked reductive shift of cytosol PDI and maintainance of predominantly oxidized PDI in the membrane. Pulldown assays further indicated predominant association between PDIred and p47phox in cytosol. Incubation of purified PDI (>80% reduced) and p47phox in vitro promoted their arachidonate‐dependent association. Such PDI behavior is consistent with a novel cytosolic regulatory loop for oxidase complex (re)cycling. Altogether, PDI seems to exhibit a supportive effect on NADPH oxidase activity by acting as a redox‐dependent enzyme complex organizer. |
---|---|
AbstractList | ABSTRACT
Mechanisms of leukocyte NADPH oxidase regulation remain actively investigated. We showed previously that vascular and macrophage oxidase complexes are regulated by the associated redox chaperone PDI. Here, we investigated the occurrence and possible underlying mechanisms of PDI-mediated regulation of neutrophil NADPH oxidase. In a semirecombinant cell-free system, PDI inhibitors scrRNase (100 μg/mL) or bacitracin (1 mM) near totally suppressed superoxide generation. Exogenously incubated, oxidized PDI increased (by ∼40%), whereas PDIred diminished (by ∼60%) superoxide generation. No change occurred after incubation with PDI serine-mutated in all four redox cysteines. Moreover, a mimetic CxxC PDI inhibited superoxide production by ∼70%. Thus, oxidized PDI supports, whereas reduced PDI down-regulates, intrinsic membrane NADPH oxidase complex activity. In whole neutrophils, immunoprecipitation and colocalization experiments demonstrated PDI association with membrane complex subunits and prominent thiol-mediated interaction with p47phox in the cytosol fraction. Upon PMA stimulation, PDI was mobilized from azurophilic granules to cytosol but did not further accumulate in membranes, contrarily to p47phox. PDI-p47phox association in cytosol increased concomitantly to opposite redox switches of both proteins; there was marked reductive shift of cytosol PDI and maintainance of predominantly oxidized PDI in the membrane. Pulldown assays further indicated predominant association between PDIred and p47phox in cytosol. Incubation of purified PDI (>80% reduced) and p47phox in vitro promoted their arachidonate-dependent association. Such PDI behavior is consistent with a novel cytosolic regulatory loop for oxidase complex (re)cycling. Altogether, PDI seems to exhibit a supportive effect on NADPH oxidase activity by acting as a redox-dependent enzyme complex organizer. Mechanisms of leukocyte NADPH oxidase regulation remain actively investigated. We showed previously that vascular and macrophage oxidase complexes are regulated by the associated redox chaperone PDI. Here, we investigated the occurrence and possible underlying mechanisms of PDI-mediated regulation of neutrophil NADPH oxidase. In a semirecombinant cell-free system, PDI inhibitors scrRNase (100 mu g/mL) or bacitracin (1 mM) near totally suppressed superoxide generation. Exogenously incubated, oxidized PDI increased (by similar to 40%), whereas PDIred diminished (by similar to 60%) superoxide generation. No change occurred after incubation with PDI serine-mutated in all four redox cysteines. Moreover, a mimetic CxxC PDI inhibited superoxide production by similar to 70%. Thus, oxidized PDI supports, whereas reduced PDI down-regulates, intrinsic membrane NADPH oxidase complex activity. In whole neutrophils, immunoprecipitation and colocalization experiments demonstrated PDI association with membrane complex subunits and prominent thiol-mediated interaction with p47phox in the cytosol fraction. Upon PMA stimulation, PDI was mobilized from azurophilic granules to cytosol but did not further accumulate in membranes, contrarily to p47phox. PDI-p47phox association in cytosol increased concomitantly to opposite redox switches of both proteins; there was marked reductive shift of cytosol PDI and maintainance of predominantly oxidized PDI in the membrane. Pulldown assays further indicated predominant association between PDIred and p47phox in cytosol. Incubation of purified PDI (>80% reduced) and p47phox in vitro promoted their arachidonate-dependent association. Such PDI behavior is consistent with a novel cytosolic regulatory loop for oxidase complex (re)cycling. Altogether, PDI seems to exhibit a supportive effect on NADPH oxidase activity by acting as a redox-dependent enzyme complex organizer. Leukocyte NADPH oxidase activity is regulated by associated protein disulfide isomerase via redox mechanisms involving p47phox. Mechanisms of leukocyte NADPH oxidase regulation remain actively investigated. We showed previously that vascular and macrophage oxidase complexes are regulated by the associated redox chaperone PDI. Here, we investigated the occurrence and possible underlying mechanisms of PDI‐mediated regulation of neutrophil NADPH oxidase. In a semirecombinant cell‐free system, PDI inhibitors scrRNase (100 μg/mL) or bacitracin (1 mM) near totally suppressed superoxide generation. Exogenously incubated, oxidized PDI increased (by ∼40%), whereas PDIred diminished (by ∼60%) superoxide generation. No change occurred after incubation with PDI serine‐mutated in all four redox cysteines. Moreover, a mimetic CxxC PDI inhibited superoxide production by ∼70%. Thus, oxidized PDI supports, whereas reduced PDI down‐regulates, intrinsic membrane NADPH oxidase complex activity. In whole neutrophils, immunoprecipitation and colocalization experiments demonstrated PDI association with membrane complex subunits and prominent thiol‐mediated interaction with p47phox in the cytosol fraction. Upon PMA stimulation, PDI was mobilized from azurophilic granules to cytosol but did not further accumulate in membranes, contrarily to p47phox. PDI‐p47phox association in cytosol increased concomitantly to opposite redox switches of both proteins; there was marked reductive shift of cytosol PDI and maintainance of predominantly oxidized PDI in the membrane. Pulldown assays further indicated predominant association between PDIred and p47phox in cytosol. Incubation of purified PDI (>80% reduced) and p47phox in vitro promoted their arachidonate‐dependent association. Such PDI behavior is consistent with a novel cytosolic regulatory loop for oxidase complex (re)cycling. Altogether, PDI seems to exhibit a supportive effect on NADPH oxidase activity by acting as a redox‐dependent enzyme complex organizer. |
Author | Célio X. C. Santos Francisco R. M. Laurindo Júlia T. Takiuti Mariano Janiszewski Antonio Marcus de A. Paes Luciana Lopes Guimarães Sidney Veríssimo-Filho Ana Carolina B. Silva Lucia R. Lopes |
Author_xml | – sequence: 1 givenname: Antonio Marcus surname: de A. Paes fullname: de A. Paes, Antonio Marcus – sequence: 2 givenname: Sidney surname: Veríssimo-Filho fullname: Veríssimo-Filho, Sidney – sequence: 3 givenname: Luciana Lopes surname: Guimarães fullname: Guimarães, Luciana Lopes – sequence: 4 givenname: Ana Carolina B surname: Silva fullname: Silva, Ana Carolina B – sequence: 5 givenname: Júlia T surname: Takiuti fullname: Takiuti, Júlia T – sequence: 6 givenname: Célio X C surname: Santos fullname: Santos, Célio X C – sequence: 7 givenname: Mariano surname: Janiszewski fullname: Janiszewski, Mariano – sequence: 8 givenname: Francisco R M surname: Laurindo fullname: Laurindo, Francisco R M – sequence: 9 givenname: Lucia R surname: Lopes fullname: Lopes, Lucia R |
BookMark | eNp9kMFy0zAURTVMGZoGVvyANgwLxuXJkuyIXSmUwmSgC1hrZPm5UVEkV7LrhE_gq-uQrlndzbn3zTtn5CTEgIS8ZnDO2Eq9v_PNOVQMeCmekQVTfFXwquYnZAG1YIUUAKfkLOc7gJmp4AU5LVmtmFSrBfl7k-KALtDW5dF3rkXqctxiMhlpwjbuihZ7DC2GgZqco3VmcDHQyQ0b2ou638TdB4oPczNYpF1M1AQa060J7g8mmqKfJwP1OP6Odj8g_X7x6eaaxp1rDzeMHdzDv8mX5HlnfMZXT7kkv64-_7y8LtY_vny9vFgXlgNXBW-ULW2LlewEb6VSnT28zsEwU3FAw7GTDBtZzqBhAiSbs2yEBcFASr4kb4-7fYr3I-ZBb1226L0JGMesFZS8XslZ4ZK8O5I2xZwTdrpPbmvSXjPQB_d6dq-f3M80HOnJedz_D9Xf1h-hVmquvDlWNu52M7mEOm-N9_3YlHqaJgVa6AP3CGjllWQ |
CitedBy_id | crossref_primary_10_3389_fchem_2015_00024 crossref_primary_10_1007_s12192_020_01176_z crossref_primary_10_1007_s00125_018_4560_z crossref_primary_10_1038_s41419_019_1402_y crossref_primary_10_1074_jbc_M117_802629 crossref_primary_10_1089_ars_2021_0086 crossref_primary_10_1016_j_imlet_2020_02_009 crossref_primary_10_1016_j_bbagen_2017_02_013 crossref_primary_10_1016_j_pharmthera_2020_107525 crossref_primary_10_1038_s41598_017_16947_5 crossref_primary_10_1016_j_celrep_2018_05_054 crossref_primary_10_1074_jbc_M115_651620 crossref_primary_10_1002_JLB_4A0418_173R crossref_primary_10_1074_jbc_M112_365239 crossref_primary_10_1016_j_rbc_2024_100027 crossref_primary_10_1080_08958378_2018_1558316 crossref_primary_10_1089_ars_2013_5605 crossref_primary_10_1016_j_freeradbiomed_2020_11_020 crossref_primary_10_1042_CS20150404 crossref_primary_10_1016_j_freeradbiomed_2013_09_028 crossref_primary_10_1016_j_prostaglandins_2019_106382 crossref_primary_10_1089_ars_2012_4609 crossref_primary_10_7845_kjm_2015_5056 crossref_primary_10_1038_s41598_017_13418_9 crossref_primary_10_1177_1074248419861437 crossref_primary_10_1016_j_abb_2016_11_007 crossref_primary_10_1016_j_freeradbiomed_2017_03_005 crossref_primary_10_1016_j_atherosclerosis_2023_117283 crossref_primary_10_1089_ars_2018_7523 crossref_primary_10_1089_ars_2018_7525 crossref_primary_10_1100_2011_289182 crossref_primary_10_1111_jth_12413 crossref_primary_10_1152_physrev_00036_2017 crossref_primary_10_1016_j_redox_2022_102479 crossref_primary_10_1074_jbc_M113_543702 crossref_primary_10_1016_j_abb_2016_10_003 crossref_primary_10_1016_j_redox_2014_01_010 crossref_primary_10_1186_2050_6511_14_S1_O21 crossref_primary_10_3389_fchem_2014_00070 crossref_primary_10_1016_j_freeradbiomed_2012_02_037 crossref_primary_10_3390_antiox10030497 crossref_primary_10_1038_s12276_020_0401_5 crossref_primary_10_3389_fmicb_2017_00960 crossref_primary_10_3389_fchem_2015_00003 crossref_primary_10_3389_fchem_2014_00073 crossref_primary_10_1155_2021_8830880 crossref_primary_10_1155_2016_2423547 crossref_primary_10_1074_jbc_M113_479477 crossref_primary_10_1111_jth_13916 crossref_primary_10_1371_journal_pone_0143523 crossref_primary_10_1089_ars_2024_0566 crossref_primary_10_1161_CIRCRESAHA_114_301808 crossref_primary_10_1111_jth_13633 crossref_primary_10_1016_j_freeradbiomed_2014_07_046 crossref_primary_10_1111_jth_13634 crossref_primary_10_1016_j_celrep_2022_110625 crossref_primary_10_3389_fcell_2015_00080 crossref_primary_10_3390_biom13050848 crossref_primary_10_1074_jbc_M112_394551 crossref_primary_10_3390_molecules26010171 crossref_primary_10_1016_j_lfs_2020_118253 crossref_primary_10_1074_jbc_M114_597245 crossref_primary_10_1089_ars_2013_5262 crossref_primary_10_1089_ars_2019_8012 crossref_primary_10_1186_s12950_022_00309_8 crossref_primary_10_1016_j_jhepr_2021_100297 crossref_primary_10_1042_BJ20130298 crossref_primary_10_1161_ATVBAHA_118_311038 crossref_primary_10_3389_fcell_2015_00030 |
Cites_doi | 10.1016/j.cardiores.2004.08.007 10.1089/152308602753625852 10.1016/S0021-9258(17)31534-X 10.1016/j.coi.2003.12.001 10.1038/nature04782 10.4049/jimmunol.0902925 10.1073/pnas.90.9.4112 10.1016/S0021-9258(18)47373-5 10.1016/0003-9861(59)90090-6 10.1074/jbc.270.35.20410 10.1021/bi035636s 10.1016/S0022-1759(99)00171-4 10.4049/jimmunol.164.8.4120 10.1038/nri1053 10.1016/j.molcel.2010.11.010 10.1016/S0021-9258(19)36501-9 10.1074/jbc.270.29.17078 10.1186/1471-2172-7-28 10.1046/j.1365-2141.1999.01197.x 10.1172/JCI115860 10.1021/bi9700936 10.1021/bi00051a027 10.1007/978-1-59745-467-4_4 10.1006/bbrc.1996.5881 10.1126/science.1523409 10.1189/jlb.1104630 10.1152/ajpcell.00188.2006 10.1042/BJ20041835 10.1016/j.bbabio.2004.03.008 10.1089/ars.2007.1837 10.1161/ATVBAHA.108.181610 10.1016/S1097-2765(00)80198-7 10.1189/jlb.0608354 10.1096/fj.04-2377fje 10.1089/ars.2007.2011 10.1189/jlb.1005553 10.1182/blood.V72.1.322.322 10.1089/ars.2009.2637 10.1016/j.cell.2005.10.044 10.1074/jbc.M411409200 10.1172/JCI118187 10.1016/0891-5849(90)90147-B 10.1074/jbc.M312193200 10.1074/jbc.R700045200 10.1016/j.abb.2009.01.022 10.1074/jbc.274.22.15533 10.1074/jbc.M509255200 10.1089/ars.2007.1579 10.1046/j.1432-1327.1998.2510649.x 10.1016/S0891-5849(97)00115-9 10.1006/abbi.1997.0484 10.1189/jlb.0404216 10.1111/j.1356-9597.2004.00733.x 10.1074/jbc.M109.005496 10.1016/S0891-5849(00)00393-2 |
ContentType | Journal Article |
Copyright | 2011 Society for Leukocyte Biology |
Copyright_xml | – notice: 2011 Society for Leukocyte Biology |
DBID | AAYXX CITATION 7T5 H94 |
DOI | 10.1189/jlb.0610324 |
DatabaseName | CrossRef Immunology Abstracts AIDS and Cancer Research Abstracts |
DatabaseTitle | CrossRef AIDS and Cancer Research Abstracts Immunology Abstracts |
DatabaseTitleList | CrossRef AIDS and Cancer Research Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1938-3673 |
EndPage | 810 |
ExternalDocumentID | 10_1189_jlb_0610324 JLB0799 www90_4_799 |
Genre | article |
GrantInformation_xml | – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) |
GroupedDBID | - 0VX 1OC 29K 2WC 4.4 53G 5GY 5RE AAZKR ABCUV ABFLS ACGFS ACPOU ACPRK ACXQS ADACO ADBBV ADDAD ADXAS ADZMN AENEX AEUQT AFRAH ALMA_UNASSIGNED_HOLDINGS ALUQN BFHJK BQCPF CS3 D-I DCZOG DRFUL DRSTM DU5 E3Z EBS EJD F5P GX1 H13 HZ K-O L7B LATKE LEEKS LUTES LYRES MEWTI MSJOP MXJOP OK1 P2P P2W RHF RHI ROL SJN SUPJJ TSL VH1 WOHZO WOQ ZA5 ZZTAW --- .GJ 0R~ 18M 1OB 33P 5WD AABZA AACZT AAHHS AAPGJ AAPXW AARHZ AASGY AAUAY AAVAP AAWDT AAXRX ABEFU ABJNI ABLJU ABMNT ABNHQ ABPQP ABPTD ABWST ABXVV ACAHQ ACCFJ ACCZN ACFRR ACGFO ACUTJ ACXBN ACZBC ADIPN ADKYN ADOZA ADQBN ADVEK AEEZP AEQDE AFFNX AFGWE AFYAG AGMDO AGQXC AI. AIURR AIWBW AJAOE AJBDE AJEEA AMYDB ANFBD APJGH ATGXG AVNTJ BCRHZ C45 EMOBN F9R HZ~ KOP O9- OBOKY OCZFY OJZSN OPAEJ OVD OWPYF RJQFR ROX TCN TEORI TMA TR2 W8F YHG ZGI ZXP AAYXX CITATION 7T5 H94 |
ID | FETCH-LOGICAL-c3039-3b9c2cde65f43d599fc032430a1a630ea3ef51eb52b9ca140519ca2b4c0410553 |
ISSN | 0741-5400 |
IngestDate | Fri Oct 25 07:02:36 EDT 2024 Fri Aug 23 01:59:58 EDT 2024 Sat Aug 24 00:56:45 EDT 2024 Tue Jan 05 20:17:10 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3039-3b9c2cde65f43d599fc032430a1a630ea3ef51eb52b9ca140519ca2b4c0410553 |
Notes | These authors contributed equally to this work. ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1189/jlb.0610324 |
PMID | 21791598 |
PQID | 902378567 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_902378567 crossref_primary_10_1189_jlb_0610324 wiley_primary_10_1189_jlb_0610324_JLB0799 highwire_smallpub2_www90_4_799 |
ProviderPackageCode | RHF RHI |
PublicationCentury | 2000 |
PublicationDate | October 2011 |
PublicationDateYYYYMMDD | 2011-10-01 |
PublicationDate_xml | – month: 10 year: 2011 text: October 2011 |
PublicationDecade | 2010 |
PublicationTitle | Journal of leukocyte biology |
PublicationYear | 2011 |
Publisher | Society for Leukocyte Biology |
Publisher_xml | – name: Society for Leukocyte Biology |
References | 2009; 86 2006; 79 1997; 230 1995; 34 2004; 9 2005; 65 1988; 72 2010; 184 1998; 350 2004; 76 2009; 11 2007; 412 1992; 90 1994; 269 2005; 386 2007; 292 2009; 484 2007; 9 2003; 3 2000; 164 2009; 284 2010; 30 2005; 77 2006; 441 2004; 1657 2006; 124 2004; 43 1995; 96 2000; 29 1959; 82 1997; 23 2006; 7 2002; 4 2008; 10 1999; 4 1993; 90 1993; 268 1999; 104 2008; 283 1995; 270 2010; 40 1998; 251 2005; 280 2005; 19 2004; 279 2004; 16 1997; 36 1992; 257 1999; 274 1999; 232 1990; 8 Quinn (2023033004531280100_) 2004; 76 Yuan (2023033004531280100_) 2009; 284 Morimatsu (2023033004531280100_) 1997; 230 Wang (2023033004531280100_) 2010; 184 Cross (2023033004531280100_) 2004; 1657 Janiszewski (2023033004531280100_) 2005; 280 Akard (2023033004531280100_) 1988; 72 Fernandes (2023033004531280100_) 2007; 292 Mandel (2023033004531280100_) 1993; 90 Jessop (2023033004531280100_) 2004; 279 Ogino (2023033004531280100_) 1997; 23 Santos (2023033004531280100_) 2009; 86 Uehara (2023033004531280100_) 2006; 441 Karlsson (2023033004531280100_) 2002; 4 Pirneskoski (2023033004531280100_) 2004; 279 Harraz (2023033004531280100_) 2007; 9 Inanami (2023033004531280100_) 1998; 350 Lyles (2023033004531280100_) 1994; 269 Frand (2023033004531280100_) 1999; 4 Noiva (2023033004531280100_) 1993; 268 Kerkhoff (2023033004531280100_) 2005; 19 Lassegue (2023033004531280100_) 2010; 30 Groemping (2023033004531280100_) 2005; 386 Park (2023033004531280100_) 1997; 36 Nauseef (2023033004531280100_) 2008; 283 Tian (2023033004531280100_) 2006; 124 Appenzeller-Herzog (2023033004531280100_) 2008; 10 Laurindo (2023033004531280100_) 2008; 10 Kjeldsen (2023033004531280100_) 1999; 232 Fernandes (2023033004531280100_) 2009; 484 Cross (2023033004531280100_) 1990; 8 Quan (2023033004531280100_) 1995; 270 Zito (2023033004531280100_) 2010; 40 Johnson (2023033004531280100_) 2006; 7 Leto (2023033004531280100_) 2009; 11 Babior (2023033004531280100_) 2004; 16 Janiszewski (2023033004531280100_) 2000; 29 Darby (2023033004531280100_) 1995; 34 Bennett (2023033004531280100_) 2000; 164 Hwang (2023033004531280100_) 1992; 257 Mizrahi (2023033004531280100_) 2006; 79 Ellman (2023033004531280100_) 1959; 82 Desjardins (2023033004531280100_) 2003; 3 Lopes (2023033004531280100_) 1999; 274 Brandes (2023033004531280100_) 2005; 65 Faust (2023033004531280100_) 1995; 96 Udby (2023033004531280100_) 2007; 412 Essex (2023033004531280100_) 1999; 104 Touret (2023033004531280100_) 2005; 77 Lopes (2023033004531280100_) 2004; 43 el Benna (2023033004531280100_) 1994; 269 Yuzawa (2023033004531280100_) 2004; 9 Babior (2023033004531280100_) 2002; 4 Terada (2023033004531280100_) 1995; 270 Borregaard (2023033004531280100_) 1992; 90 Doussiere (2023033004531280100_) 1998; 251 |
References_xml | – volume: 86 start-page: 989 year: 2009 end-page: 998 article-title: Protein disulfide isomerase (PDI) associates with NADPH oxidase and is required for phagocytosis of promastigotes by macrophages publication-title: J. Leukoc. Biol. – volume: 23 start-page: 445 year: 1997 end-page: 452 article-title: Neutrophil antioxidant capacity during the respiratory burst: loss of glutathione induced by chloramines publication-title: Free Radic. Biol. Med. – volume: 90 start-page: 4112 year: 1993 end-page: 4116 article-title: Inhibition of a reductive function of the plasma membrane by bacitracin and antibodies against protein disulfide‐isomerase publication-title: Proc. Natl. Acad. Sci. USA – volume: 19 start-page: 467 year: 2005 end-page: 469 article-title: The arachidonic acid‐binding protein S100A8/A9 promotes NADPH oxidase activation by interaction with p67phox and Rac‐2 publication-title: FASEB J. – volume: 4 start-page: 1023 year: 2002 end-page: 1024 article-title: The leukocyte NADPH oxidase publication-title: Isr. Med. Assoc. J. – volume: 76 start-page: 760 year: 2004 end-page: 781 article-title: Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases publication-title: J. Leukoc. Biol. – volume: 8 start-page: 71 year: 1990 end-page: 93 article-title: Inhibitors of the leukocyte superoxide generating oxidase: mechanisms of action and methods for their elucidation publication-title: Free Radic. Biol. Med. – volume: 29 start-page: 889 year: 2000 end-page: 899 article-title: Inhibition of vascular NADH/NADPH oxidase activity by thiol reagents: lack of correlation with cellular glutathione redox status publication-title: Free Radic. Biol. Med. – volume: 9 start-page: 1803 year: 2007 end-page: 1813 article-title: MKK6 phosphorylation regulates production of superoxide by enhancing Rac GTPase activity publication-title: Antioxid. Redox Signal. – volume: 251 start-page: 649 year: 1998 end-page: 658 article-title: Phenylarsine oxide as an inhibitor of the activation of the neutrophil NADPH oxidase—identification of the β subunit of the flavocytochrome b component of the NADPH oxidase as a target site for phenylarsine oxide by photoaffinity labeling and photoinactivation publication-title: Eur. J. Biochem. – volume: 279 start-page: 10374 year: 2004 end-page: 10381 article-title: Molecular characterization of the principal substrate binding site of the ubiquitous folding catalyst protein disulfide isomerase publication-title: J. Biol. Chem. – volume: 230 start-page: 206 year: 1997 end-page: 210 article-title: Actin enhances the activation of human neutrophil NADPH oxidase in a cell‐free system publication-title: Biochem. Biophys. Res. Commun. – volume: 4 start-page: 49 year: 2002 end-page: 60 article-title: Assembly and activation of the neutrophil NADPH oxidase in granule membranes publication-title: Antioxid. Redox Signal. – volume: 274 start-page: 15533 year: 1999 end-page: 15537 article-title: Activation of the leukocyte NADPH oxidase by protein kinase C in a partially recombinant cell‐free system publication-title: J. Biol. Chem. – volume: 232 start-page: 131 year: 1999 end-page: 143 article-title: Subcellular fractionation of human neutrophils on Percoll density gradients publication-title: J. Immunol. Methods – volume: 412 start-page: 35 year: 2007 end-page: 56 article-title: Subcellular fractionation of human neutrophils and analysis of subcellular markers publication-title: Methods Mol. Biol. – volume: 270 start-page: 17078 year: 1995 end-page: 17080 article-title: Independence of the chaperone activity of protein disulfide isomerase from its thioredoxin‐like active site publication-title: J. Biol. Chem. – volume: 257 start-page: 1496 year: 1992 end-page: 1502 article-title: Oxidized redox state of glutathione in the endoplasmic reticulum publication-title: Science – volume: 82 start-page: 70 year: 1959 end-page: 77 article-title: Tissue sulfhydryl groups publication-title: Arch. Biochem. Biophys. – volume: 1657 start-page: 1 year: 2004 end-page: 22 article-title: The NADPH oxidase of professional phagocytes—prototype of the NOX electron transport chain systems publication-title: Biochim. Biophys. Acta – volume: 280 start-page: 40813 year: 2005 end-page: 40819 article-title: Regulation of NAD(P)H oxidase by associated protein disulfide isomerase in vascular smooth muscle cells publication-title: J. Biol. Chem. – volume: 268 start-page: 19210 year: 1993 end-page: 19217 article-title: Peptide binding to protein disulfide isomerase occurs at a site distinct from the active sites publication-title: J. Biol. Chem. – volume: 43 start-page: 3723 year: 2004 end-page: 3730 article-title: Phosphorylated p40PH0X as a negative regulator of NADPH oxidase publication-title: Biochemistry – volume: 7 start-page: 28 year: 2006 article-title: Gene transfer and expression in human neutrophils. The phox homology domain of p47phox translocates to the plasma membrane but not to the membrane of mature phagosomes publication-title: BMC Immunol. – volume: 11 start-page: 2607 year: 2009 end-page: 2619 article-title: Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases publication-title: Antioxid. Redox Signal. – volume: 124 start-page: 61 year: 2006 end-page: 73 article-title: The crystal structure of yeast protein disulfide isomerase suggests cooperativity between its active sites publication-title: Cell – volume: 10 start-page: 1101 year: 2008 end-page: 1113 article-title: Novel role of protein disulfide isomerase in the regulation of NADPH oxidase activity: pathophysiological implications in vascular diseases publication-title: Antioxid. Redox Signal. – volume: 270 start-page: 20410 year: 1995 end-page: 20416 article-title: Secretion, surface localization, turnover, and steady state expression of protein disulfide isomerase in rat hepatocytes publication-title: J. Biol. Chem. – volume: 284 start-page: 26908 year: 2009 end-page: 26917 article-title: Hypochlorous acid converts the γ‐glutamyl group of glutathione disulfide to 5‐hydroxybuty‐rolactam, a potential marker for neutrophil activation publication-title: J. Biol. Chem. – volume: 279 start-page: 55341 year: 2004 end-page: 55347 article-title: Glutathione directly reduces an oxidoreductase in the endoplasmic reticulum of mammalian cells publication-title: J. Biol. Chem. – volume: 164 start-page: 4120 year: 2000 end-page: 4129 article-title: Sulfhydryl regulation of L‐selectin shedding: phenylarsine oxide promotes activation‐independent L‐selectin shedding from leukocytes publication-title: J. Immunol. – volume: 96 start-page: 1499 year: 1995 end-page: 1505 article-title: The phosphorylation targets of p47phox, a subunit of the respiratory burst oxidase. Functions of the individual target serines as evaluated by site‐directed mutagenesis publication-title: J. Clin. Invest. – volume: 184 start-page: 4447 year: 2010 end-page: 4454 article-title: ADAM17 activity and other mechanisms of soluble L‐selectin production during death receptor‐induced leukocyte apoptosis publication-title: J. Immunol. – volume: 484 start-page: 197 year: 2009 end-page: 204 article-title: Protein disulfide isomerase overexpression in vascular smooth muscle cells induces spontaneous preemptive NADPH oxidase activation and Nox1 mRNA expression: effects of nitrosothiol exposure publication-title: Arch. Biochem. Biophys. – volume: 269 start-page: 30946 year: 1994 end-page: 30952 article-title: Mutations in the thioredoxin sites of protein disulfide isomerase reveal functional nonequivalence of the N‐ and C‐terminal domains publication-title: J. Biol. Chem. – volume: 90 start-page: 86 year: 1992 end-page: 96 article-title: Stimulus‐dependent secretion of plasma proteins from human neutrophils publication-title: J. Clin. Invest. – volume: 283 start-page: 16961 year: 2008 end-page: 16965 article-title: Biological roles for the NOX family NADPH oxidases publication-title: J. Biol. Chem. – volume: 79 start-page: 881 year: 2006 end-page: 895 article-title: Assembly of the phagocyte NADPH oxidase complex: chimeric constructs derived from the cytosolic components as tools for exploring structure‐function relationships publication-title: J. Leukoc. Biol. – volume: 30 start-page: 653 year: 2010 end-page: 661 article-title: NADPH oxidases: functions and pathologies in the vasculature publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 9 start-page: 443 year: 2004 end-page: 456 article-title: A molecular mechanism for autoinhibition of the tandem SH3 domains of p47phox, the regulatory subunit of the phagocyte NADPH oxidase publication-title: Genes Cells – volume: 65 start-page: 16 year: 2005 end-page: 27 article-title: Vascular NADPH oxidases: molecular mechanisms of activation publication-title: Cardiovasc. Res. – volume: 10 start-page: 55 year: 2008 end-page: 64 article-title: In vivo reduction‐oxidation state of protein disulfide isomerase: the two active sites independently occur in the reduced and oxidized forms publication-title: Antioxid. Redox Signal. – volume: 16 start-page: 42 year: 2004 end-page: 47 article-title: NADPH oxidase publication-title: Curr. Opin. Immunol. – volume: 34 start-page: 16770 year: 1995 end-page: 16780 article-title: Characterization of the active site cysteine residues of the thioredoxin‐like domains of protein disulfide isomerase publication-title: Biochemistry – volume: 3 start-page: 280 year: 2003 end-page: 291 article-title: ER‐mediated phagocytosis: a new membrane for new functions publication-title: Nat. Rev. Immunol. – volume: 72 start-page: 322 year: 1988 end-page: 327 article-title: Rapid deactivation of NADPH oxidase in neutrophils: continuous replacement by newly activated enzyme sustains the respiratory burst publication-title: Blood – volume: 36 start-page: 7474 year: 1997 end-page: 7480 article-title: Activation of the leukocyte NADPH oxidase subunit p47phox by protein kinase C. A phosphorylation‐dependent change in the conformation of the C‐terminal end of p47phox publication-title: Biochemistry – volume: 292 year: 2007 article-title: Analysis of DHE‐derived oxidation products by HPLC in the assessment of superoxide production and NADPH oxidase activity in vascular systems publication-title: Am. J. Physiol. Cell Physiol. – volume: 104 start-page: 448 year: 1999 end-page: 454 article-title: Protein disulphide isomerase mediates platelet aggregation and secretion publication-title: Br. J. Haematol. – volume: 269 start-page: 23431 year: 1994 end-page: 23436 article-title: The phosphorylation of the respiratory burst oxidase component p47phox during neutrophil activation. Phosphorylation of sites recognized by protein kinase C and by proline‐directed kinases publication-title: J. Biol. Chem. – volume: 441 start-page: 513 year: 2006 end-page: 517 article-title: S‐nitrosylated protein‐disulphide isomerase links protein misfolding to neurodegeneration publication-title: Nature – volume: 40 start-page: 787 year: 2010 end-page: 797 article-title: Oxidative protein folding by an endoplasmic reticulum‐localized peroxiredoxin publication-title: Mol. Cell – volume: 386 start-page: 401 year: 2005 end-page: 416 article-title: Activation and assembly of the NADPH oxidase: a structural perspective publication-title: Biochem. J. – volume: 350 start-page: 36 year: 1998 end-page: 40 article-title: The leukocyte NADPH oxidase subunit p47PHOX: the role of the cysteine residues publication-title: Arch. Biochem. Biophys. – volume: 77 start-page: 878 year: 2005 end-page: 885 article-title: The nature of the phagosomal membrane: endoplasmic reticulum versus plasmalemma publication-title: J. Leukoc. Biol. – volume: 4 start-page: 469 year: 1999 end-page: 477 article-title: Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum publication-title: Mol. Cell – volume: 65 start-page: 16 year: 2005 ident: 2023033004531280100_ article-title: Vascular NADPH oxidases: molecular mechanisms of activation publication-title: Cardiovasc. Res. doi: 10.1016/j.cardiores.2004.08.007 contributor: fullname: Brandes – volume: 4 start-page: 49 year: 2002 ident: 2023033004531280100_ article-title: Assembly and activation of the neutrophil NADPH oxidase in granule membranes publication-title: Antioxid. Redox Signal. doi: 10.1089/152308602753625852 contributor: fullname: Karlsson – volume: 4 start-page: 1023 year: 2002 ident: 2023033004531280100_ article-title: The leukocyte NADPH oxidase publication-title: Isr. Med. Assoc. J. contributor: fullname: Babior – volume: 269 start-page: 23431 year: 1994 ident: 2023033004531280100_ article-title: The phosphorylation of the respiratory burst oxidase component p47phox during neutrophil activation. Phosphorylation of sites recognized by protein kinase C and by proline-directed kinases publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)31534-X contributor: fullname: el Benna – volume: 16 start-page: 42 year: 2004 ident: 2023033004531280100_ article-title: NADPH oxidase publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2003.12.001 contributor: fullname: Babior – volume: 441 start-page: 513 year: 2006 ident: 2023033004531280100_ article-title: S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration publication-title: Nature doi: 10.1038/nature04782 contributor: fullname: Uehara – volume: 184 start-page: 4447 year: 2010 ident: 2023033004531280100_ article-title: ADAM17 activity and other mechanisms of soluble L-selectin production during death receptor-induced leukocyte apoptosis publication-title: J. Immunol. doi: 10.4049/jimmunol.0902925 contributor: fullname: Wang – volume: 90 start-page: 4112 year: 1993 ident: 2023033004531280100_ article-title: Inhibition of a reductive function of the plasma membrane by bacitracin and antibodies against protein disulfide-isomerase publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.90.9.4112 contributor: fullname: Mandel – volume: 269 start-page: 30946 year: 1994 ident: 2023033004531280100_ article-title: Mutations in the thioredoxin sites of protein disulfide isomerase reveal functional nonequivalence of the N- and C-terminal domains publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)47373-5 contributor: fullname: Lyles – volume: 82 start-page: 70 year: 1959 ident: 2023033004531280100_ article-title: Tissue sulfhydryl groups publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(59)90090-6 contributor: fullname: Ellman – volume: 270 start-page: 20410 year: 1995 ident: 2023033004531280100_ article-title: Secretion, surface localization, turnover, and steady state expression of protein disulfide isomerase in rat hepatocytes publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.35.20410 contributor: fullname: Terada – volume: 43 start-page: 3723 year: 2004 ident: 2023033004531280100_ article-title: Phosphorylated p40PH0X as a negative regulator of NADPH oxidase publication-title: Biochemistry doi: 10.1021/bi035636s contributor: fullname: Lopes – volume: 232 start-page: 131 year: 1999 ident: 2023033004531280100_ article-title: Subcellular fractionation of human neutrophils on Percoll density gradients publication-title: J. Immunol. Methods doi: 10.1016/S0022-1759(99)00171-4 contributor: fullname: Kjeldsen – volume: 164 start-page: 4120 year: 2000 ident: 2023033004531280100_ article-title: Sulfhydryl regulation of L-selectin shedding: phenylarsine oxide promotes activation-independent L-selectin shedding from leukocytes publication-title: J. Immunol. doi: 10.4049/jimmunol.164.8.4120 contributor: fullname: Bennett – volume: 3 start-page: 280 year: 2003 ident: 2023033004531280100_ article-title: ER-mediated phagocytosis: a new membrane for new functions publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1053 contributor: fullname: Desjardins – volume: 40 start-page: 787 year: 2010 ident: 2023033004531280100_ article-title: Oxidative protein folding by an endoplasmic reticulum-localized peroxiredoxin publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.11.010 contributor: fullname: Zito – volume: 268 start-page: 19210 year: 1993 ident: 2023033004531280100_ article-title: Peptide binding to protein disulfide isomerase occurs at a site distinct from the active sites publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)36501-9 contributor: fullname: Noiva – volume: 270 start-page: 17078 year: 1995 ident: 2023033004531280100_ article-title: Independence of the chaperone activity of protein disulfide isomerase from its thioredoxin-like active site publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.29.17078 contributor: fullname: Quan – volume: 7 start-page: 28 year: 2006 ident: 2023033004531280100_ article-title: Gene transfer and expression in human neutrophils. The phox homology domain of p47phox translocates to the plasma membrane but not to the membrane of mature phagosomes publication-title: BMC Immunol. doi: 10.1186/1471-2172-7-28 contributor: fullname: Johnson – volume: 104 start-page: 448 year: 1999 ident: 2023033004531280100_ article-title: Protein disulphide isomerase mediates platelet aggregation and secretion publication-title: Br. J. Haematol. doi: 10.1046/j.1365-2141.1999.01197.x contributor: fullname: Essex – volume: 90 start-page: 86 year: 1992 ident: 2023033004531280100_ article-title: Stimulus-dependent secretion of plasma proteins from human neutrophils publication-title: J. Clin. Invest. doi: 10.1172/JCI115860 contributor: fullname: Borregaard – volume: 36 start-page: 7474 year: 1997 ident: 2023033004531280100_ article-title: Activation of the leukocyte NADPH oxidase subunit p47phox by protein kinase C. A phosphorylation-dependent change in the conformation of the C-terminal end of p47phox publication-title: Biochemistry doi: 10.1021/bi9700936 contributor: fullname: Park – volume: 34 start-page: 16770 year: 1995 ident: 2023033004531280100_ article-title: Characterization of the active site cysteine residues of the thioredoxin-like domains of protein disulfide isomerase publication-title: Biochemistry doi: 10.1021/bi00051a027 contributor: fullname: Darby – volume: 412 start-page: 35 year: 2007 ident: 2023033004531280100_ article-title: Subcellular fractionation of human neutrophils and analysis of subcellular markers publication-title: Methods Mol. Biol. doi: 10.1007/978-1-59745-467-4_4 contributor: fullname: Udby – volume: 230 start-page: 206 year: 1997 ident: 2023033004531280100_ article-title: Actin enhances the activation of human neutrophil NADPH oxidase in a cell-free system publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1996.5881 contributor: fullname: Morimatsu – volume: 257 start-page: 1496 year: 1992 ident: 2023033004531280100_ article-title: Oxidized redox state of glutathione in the endoplasmic reticulum publication-title: Science doi: 10.1126/science.1523409 contributor: fullname: Hwang – volume: 77 start-page: 878 year: 2005 ident: 2023033004531280100_ article-title: The nature of the phagosomal membrane: endoplasmic reticulum versus plasmalemma publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.1104630 contributor: fullname: Touret – volume: 292 year: 2007 ident: 2023033004531280100_ article-title: Analysis of DHE-derived oxidation products by HPLC in the assessment of superoxide production and NADPH oxidase activity in vascular systems publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00188.2006 contributor: fullname: Fernandes – volume: 386 start-page: 401 year: 2005 ident: 2023033004531280100_ article-title: Activation and assembly of the NADPH oxidase: a structural perspective publication-title: Biochem. J. doi: 10.1042/BJ20041835 contributor: fullname: Groemping – volume: 1657 start-page: 1 year: 2004 ident: 2023033004531280100_ article-title: The NADPH oxidase of professional phagocytes—prototype of the NOX electron transport chain systems publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2004.03.008 contributor: fullname: Cross – volume: 10 start-page: 55 year: 2008 ident: 2023033004531280100_ article-title: In vivo reduction-oxidation state of protein disulfide isomerase: the two active sites independently occur in the reduced and oxidized forms publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2007.1837 contributor: fullname: Appenzeller-Herzog – volume: 30 start-page: 653 year: 2010 ident: 2023033004531280100_ article-title: NADPH oxidases: functions and pathologies in the vasculature publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.108.181610 contributor: fullname: Lassegue – volume: 4 start-page: 469 year: 1999 ident: 2023033004531280100_ article-title: Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80198-7 contributor: fullname: Frand – volume: 86 start-page: 989 year: 2009 ident: 2023033004531280100_ article-title: Protein disulfide isomerase (PDI) associates with NADPH oxidase and is required for phagocytosis of Leishmania chagasi promastigotes by macrophages publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.0608354 contributor: fullname: Santos – volume: 19 start-page: 467 year: 2005 ident: 2023033004531280100_ article-title: The arachidonic acid-binding protein S100A8/A9 promotes NADPH oxidase activation by interaction with p67phox and Rac-2 publication-title: FASEB J. doi: 10.1096/fj.04-2377fje contributor: fullname: Kerkhoff – volume: 10 start-page: 1101 year: 2008 ident: 2023033004531280100_ article-title: Novel role of protein disulfide isomerase in the regulation of NADPH oxidase activity: pathophysiological implications in vascular diseases publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2007.2011 contributor: fullname: Laurindo – volume: 79 start-page: 881 year: 2006 ident: 2023033004531280100_ article-title: Assembly of the phagocyte NADPH oxidase complex: chimeric constructs derived from the cytosolic components as tools for exploring structure-function relationships publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.1005553 contributor: fullname: Mizrahi – volume: 72 start-page: 322 year: 1988 ident: 2023033004531280100_ article-title: Rapid deactivation of NADPH oxidase in neutrophils: continuous replacement by newly activated enzyme sustains the respiratory burst publication-title: Blood doi: 10.1182/blood.V72.1.322.322 contributor: fullname: Akard – volume: 11 start-page: 2607 year: 2009 ident: 2023033004531280100_ article-title: Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2009.2637 contributor: fullname: Leto – volume: 124 start-page: 61 year: 2006 ident: 2023033004531280100_ article-title: The crystal structure of yeast protein disulfide isomerase suggests cooperativity between its active sites publication-title: Cell doi: 10.1016/j.cell.2005.10.044 contributor: fullname: Tian – volume: 279 start-page: 55341 year: 2004 ident: 2023033004531280100_ article-title: Glutathione directly reduces an oxidoreductase in the endoplasmic reticulum of mammalian cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M411409200 contributor: fullname: Jessop – volume: 96 start-page: 1499 year: 1995 ident: 2023033004531280100_ article-title: The phosphorylation targets of p47phox, a subunit of the respiratory burst oxidase. Functions of the individual target serines as evaluated by site-directed mutagenesis publication-title: J. Clin. Invest. doi: 10.1172/JCI118187 contributor: fullname: Faust – volume: 8 start-page: 71 year: 1990 ident: 2023033004531280100_ article-title: Inhibitors of the leukocyte superoxide generating oxidase: mechanisms of action and methods for their elucidation publication-title: Free Radic. Biol. Med. doi: 10.1016/0891-5849(90)90147-B contributor: fullname: Cross – volume: 279 start-page: 10374 year: 2004 ident: 2023033004531280100_ article-title: Molecular characterization of the principal substrate binding site of the ubiquitous folding catalyst protein disulfide isomerase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M312193200 contributor: fullname: Pirneskoski – volume: 283 start-page: 16961 year: 2008 ident: 2023033004531280100_ article-title: Biological roles for the NOX family NADPH oxidases publication-title: J. Biol. Chem. doi: 10.1074/jbc.R700045200 contributor: fullname: Nauseef – volume: 484 start-page: 197 year: 2009 ident: 2023033004531280100_ article-title: Protein disulfide isomerase overexpression in vascular smooth muscle cells induces spontaneous preemptive NADPH oxidase activation and Nox1 mRNA expression: effects of nitrosothiol exposure publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2009.01.022 contributor: fullname: Fernandes – volume: 274 start-page: 15533 year: 1999 ident: 2023033004531280100_ article-title: Activation of the leukocyte NADPH oxidase by protein kinase C in a partially recombinant cell-free system publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.22.15533 contributor: fullname: Lopes – volume: 280 start-page: 40813 year: 2005 ident: 2023033004531280100_ article-title: Regulation of NAD(P)H oxidase by associated protein disulfide isomerase in vascular smooth muscle cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M509255200 contributor: fullname: Janiszewski – volume: 9 start-page: 1803 year: 2007 ident: 2023033004531280100_ article-title: MKK6 phosphorylation regulates production of superoxide by enhancing Rac GTPase activity publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2007.1579 contributor: fullname: Harraz – volume: 251 start-page: 649 year: 1998 ident: 2023033004531280100_ article-title: Phenylarsine oxide as an inhibitor of the activation of the neutrophil NADPH oxidase—identification of the β subunit of the flavocytochrome b component of the NADPH oxidase as a target site for phenylarsine oxide by photoaffinity labeling and photoinactivation publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1327.1998.2510649.x contributor: fullname: Doussiere – volume: 23 start-page: 445 year: 1997 ident: 2023033004531280100_ article-title: Neutrophil antioxidant capacity during the respiratory burst: loss of glutathione induced by chloramines publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(97)00115-9 contributor: fullname: Ogino – volume: 350 start-page: 36 year: 1998 ident: 2023033004531280100_ article-title: The leukocyte NADPH oxidase subunit p47PHOX: the role of the cysteine residues publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.1997.0484 contributor: fullname: Inanami – volume: 76 start-page: 760 year: 2004 ident: 2023033004531280100_ article-title: Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.0404216 contributor: fullname: Quinn – volume: 9 start-page: 443 year: 2004 ident: 2023033004531280100_ article-title: A molecular mechanism for autoinhibition of the tandem SH3 domains of p47phox, the regulatory subunit of the phagocyte NADPH oxidase publication-title: Genes Cells doi: 10.1111/j.1356-9597.2004.00733.x contributor: fullname: Yuzawa – volume: 284 start-page: 26908 year: 2009 ident: 2023033004531280100_ article-title: Hypochlorous acid converts the γ-glutamyl group of glutathione disulfide to 5-hydroxybuty-rolactam, a potential marker for neutrophil activation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.005496 contributor: fullname: Yuan – volume: 29 start-page: 889 year: 2000 ident: 2023033004531280100_ article-title: Inhibition of vascular NADH/NADPH oxidase activity by thiol reagents: lack of correlation with cellular glutathione redox status publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(00)00393-2 contributor: fullname: Janiszewski |
SSID | ssj0003260 |
Score | 2.3539467 |
Snippet | Leukocyte NADPH oxidase activity is regulated by associated protein disulfide isomerase via redox mechanisms involving p47phox.
Mechanisms of leukocyte NADPH... ABSTRACT Mechanisms of leukocyte NADPH oxidase regulation remain actively investigated. We showed previously that vascular and macrophage oxidase complexes are... Mechanisms of leukocyte NADPH oxidase regulation remain actively investigated. We showed previously that vascular and macrophage oxidase complexes are... |
SourceID | proquest crossref wiley highwire |
SourceType | Aggregation Database Publisher |
StartPage | 799 |
SubjectTerms | neutrophil PMA superoxide generation |
Title | Protein disulfide isomerase redox-dependent association with p47phox: evidence for an organizer role in leukocyte NADPH oxidase activation |
URI | http://www.jleukbio.org/content/90/4/799.abstract https://onlinelibrary.wiley.com/doi/abs/10.1189%2Fjlb.0610324 https://search.proquest.com/docview/902378567 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLaAaRIvE4NN6y7ID2jSFKVL4yRteGthrEIdQgKmvkVO4ohsaVyRhhZ-wn71ji-5FKbdXqIoSW3X35eTY_vzOQgd9JI-fKVoaPq2m5gOgbOBWOTtsSRxKbOSSE7mfDnzxlfO6dSdbmxut1RL5SLsRve_3FfyP6jCNcBV7JL9B2TrQuECnAO-cASE4fhXGJ-LIAtCzpoWZZakMTPSgotZpkIkQ4n5yqxy3Ip8MjUOavJ17vTn13wlU_Po1KJaUqlTPd2zGyU-hBoyVn7n0d2CGWfD4_OxwVdpLGoR2yJuG3Afe7nND3W4p2beAbzOlIvNQlFZGND2YRf82UbSeJHGORisr3ox_xhe3hk3T9LsmtcqolLMyVBjwuesALaLwBnyYdIUM4T7Rzo3kTHqGhdpdkvbcx1abNfMdbSFrJO6-aNW85XhBC9JCD7Ueg9Tht0Hw048lTalsvwqUalmuNMy432VtOnx52UgorN-y8IuuEEWUbu_W0SbzyTTbBHz1VXZtddDfD_49NaCyOVy6VuBE0DFm-iJDUZTWOvP00auBG62pULKqv-m95pCiz622iNjW6vK1x2tKvj12kCqPRyT_tTlDnqmKYKHitXP0QbLd9EeoLXgszv8HktpsuzyXfRUd_4e-qEpj2vK45ry-AHlcYvyWFAea8of4orwGDDGNMc14bEgPIbya95iSXisCY8bwr9AVyefLo_Gpk4nYkZE6B1I6Ed2FDPPTRwSu76fRKLLiEV71CMWo4Qlbo-Frg0P0p4jBjcRtUMnsoQW2iUv0VbOc_YKYZvENvES6sbg0cMYNRzEDgHDFhMontpJBx1UfR_MVdSYQI62B34AaAUarQ7ar3AJihnNMiC5HbS40EG4QisAsy_W8mjOeFkEPvja_YHr9Tvog0Txd_UEp5ORBcW9_lN9b9B289q9RVuLm5K9A6d7Ee5LNv4EdqLdXw |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protein+disulfide+isomerase+redox-dependent+association+with+p47phox%3A+evidence+for+an+organizer+role+in+leukocyte+NADPH+oxidase+activation&rft.jtitle=Journal+of+leukocyte+biology&rft.au=Antonio+Marcus+de+A.+Paes&rft.au=Sidney+Ver%C3%ADssimo-Filho&rft.au=Luciana+Lopes+Guimar%C3%A3es&rft.au=Ana+Carolina+B.+Silva&rft.date=2011-10-01&rft.pub=Society+for+Leukocyte+Biology&rft.issn=0741-5400&rft.eissn=1938-3673&rft.volume=90&rft.issue=4&rft.spage=799&rft_id=info:doi/10.1189%2Fjlb.0610324&rft_id=info%3Apmid%2F21791598&rft.externalDBID=n%2Fa&rft.externalDocID=www90_4_799 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-5400&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-5400&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-5400&client=summon |