Protein disulfide isomerase redox-dependent association with p47phox: evidence for an organizer role in leukocyte NADPH oxidase activation

Leukocyte NADPH oxidase activity is regulated by associated protein disulfide isomerase via redox mechanisms involving p47phox. Mechanisms of leukocyte NADPH oxidase regulation remain actively investigated. We showed previously that vascular and macrophage oxidase complexes are regulated by the asso...

Full description

Saved in:
Bibliographic Details
Published inJournal of leukocyte biology Vol. 90; no. 4; pp. 799 - 810
Main Authors de A. Paes, Antonio Marcus, Veríssimo-Filho, Sidney, Guimarães, Luciana Lopes, Silva, Ana Carolina B, Takiuti, Júlia T, Santos, Célio X C, Janiszewski, Mariano, Laurindo, Francisco R M, Lopes, Lucia R
Format Journal Article
LanguageEnglish
Published Society for Leukocyte Biology 01.10.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Leukocyte NADPH oxidase activity is regulated by associated protein disulfide isomerase via redox mechanisms involving p47phox. Mechanisms of leukocyte NADPH oxidase regulation remain actively investigated. We showed previously that vascular and macrophage oxidase complexes are regulated by the associated redox chaperone PDI. Here, we investigated the occurrence and possible underlying mechanisms of PDI‐mediated regulation of neutrophil NADPH oxidase. In a semirecombinant cell‐free system, PDI inhibitors scrRNase (100 μg/mL) or bacitracin (1 mM) near totally suppressed superoxide generation. Exogenously incubated, oxidized PDI increased (by ∼40%), whereas PDIred diminished (by ∼60%) superoxide generation. No change occurred after incubation with PDI serine‐mutated in all four redox cysteines. Moreover, a mimetic CxxC PDI inhibited superoxide production by ∼70%. Thus, oxidized PDI supports, whereas reduced PDI down‐regulates, intrinsic membrane NADPH oxidase complex activity. In whole neutrophils, immunoprecipitation and colocalization experiments demonstrated PDI association with membrane complex subunits and prominent thiol‐mediated interaction with p47phox in the cytosol fraction. Upon PMA stimulation, PDI was mobilized from azurophilic granules to cytosol but did not further accumulate in membranes, contrarily to p47phox. PDI‐p47phox association in cytosol increased concomitantly to opposite redox switches of both proteins; there was marked reductive shift of cytosol PDI and maintainance of predominantly oxidized PDI in the membrane. Pulldown assays further indicated predominant association between PDIred and p47phox in cytosol. Incubation of purified PDI (>80% reduced) and p47phox in vitro promoted their arachidonate‐dependent association. Such PDI behavior is consistent with a novel cytosolic regulatory loop for oxidase complex (re)cycling. Altogether, PDI seems to exhibit a supportive effect on NADPH oxidase activity by acting as a redox‐dependent enzyme complex organizer.
AbstractList ABSTRACT Mechanisms of leukocyte NADPH oxidase regulation remain actively investigated. We showed previously that vascular and macrophage oxidase complexes are regulated by the associated redox chaperone PDI. Here, we investigated the occurrence and possible underlying mechanisms of PDI-mediated regulation of neutrophil NADPH oxidase. In a semirecombinant cell-free system, PDI inhibitors scrRNase (100 μg/mL) or bacitracin (1 mM) near totally suppressed superoxide generation. Exogenously incubated, oxidized PDI increased (by ∼40%), whereas PDIred diminished (by ∼60%) superoxide generation. No change occurred after incubation with PDI serine-mutated in all four redox cysteines. Moreover, a mimetic CxxC PDI inhibited superoxide production by ∼70%. Thus, oxidized PDI supports, whereas reduced PDI down-regulates, intrinsic membrane NADPH oxidase complex activity. In whole neutrophils, immunoprecipitation and colocalization experiments demonstrated PDI association with membrane complex subunits and prominent thiol-mediated interaction with p47phox in the cytosol fraction. Upon PMA stimulation, PDI was mobilized from azurophilic granules to cytosol but did not further accumulate in membranes, contrarily to p47phox. PDI-p47phox association in cytosol increased concomitantly to opposite redox switches of both proteins; there was marked reductive shift of cytosol PDI and maintainance of predominantly oxidized PDI in the membrane. Pulldown assays further indicated predominant association between PDIred and p47phox in cytosol. Incubation of purified PDI (>80% reduced) and p47phox in vitro promoted their arachidonate-dependent association. Such PDI behavior is consistent with a novel cytosolic regulatory loop for oxidase complex (re)cycling. Altogether, PDI seems to exhibit a supportive effect on NADPH oxidase activity by acting as a redox-dependent enzyme complex organizer.
Mechanisms of leukocyte NADPH oxidase regulation remain actively investigated. We showed previously that vascular and macrophage oxidase complexes are regulated by the associated redox chaperone PDI. Here, we investigated the occurrence and possible underlying mechanisms of PDI-mediated regulation of neutrophil NADPH oxidase. In a semirecombinant cell-free system, PDI inhibitors scrRNase (100 mu g/mL) or bacitracin (1 mM) near totally suppressed superoxide generation. Exogenously incubated, oxidized PDI increased (by similar to 40%), whereas PDIred diminished (by similar to 60%) superoxide generation. No change occurred after incubation with PDI serine-mutated in all four redox cysteines. Moreover, a mimetic CxxC PDI inhibited superoxide production by similar to 70%. Thus, oxidized PDI supports, whereas reduced PDI down-regulates, intrinsic membrane NADPH oxidase complex activity. In whole neutrophils, immunoprecipitation and colocalization experiments demonstrated PDI association with membrane complex subunits and prominent thiol-mediated interaction with p47phox in the cytosol fraction. Upon PMA stimulation, PDI was mobilized from azurophilic granules to cytosol but did not further accumulate in membranes, contrarily to p47phox. PDI-p47phox association in cytosol increased concomitantly to opposite redox switches of both proteins; there was marked reductive shift of cytosol PDI and maintainance of predominantly oxidized PDI in the membrane. Pulldown assays further indicated predominant association between PDIred and p47phox in cytosol. Incubation of purified PDI (>80% reduced) and p47phox in vitro promoted their arachidonate-dependent association. Such PDI behavior is consistent with a novel cytosolic regulatory loop for oxidase complex (re)cycling. Altogether, PDI seems to exhibit a supportive effect on NADPH oxidase activity by acting as a redox-dependent enzyme complex organizer.
Leukocyte NADPH oxidase activity is regulated by associated protein disulfide isomerase via redox mechanisms involving p47phox. Mechanisms of leukocyte NADPH oxidase regulation remain actively investigated. We showed previously that vascular and macrophage oxidase complexes are regulated by the associated redox chaperone PDI. Here, we investigated the occurrence and possible underlying mechanisms of PDI‐mediated regulation of neutrophil NADPH oxidase. In a semirecombinant cell‐free system, PDI inhibitors scrRNase (100 μg/mL) or bacitracin (1 mM) near totally suppressed superoxide generation. Exogenously incubated, oxidized PDI increased (by ∼40%), whereas PDIred diminished (by ∼60%) superoxide generation. No change occurred after incubation with PDI serine‐mutated in all four redox cysteines. Moreover, a mimetic CxxC PDI inhibited superoxide production by ∼70%. Thus, oxidized PDI supports, whereas reduced PDI down‐regulates, intrinsic membrane NADPH oxidase complex activity. In whole neutrophils, immunoprecipitation and colocalization experiments demonstrated PDI association with membrane complex subunits and prominent thiol‐mediated interaction with p47phox in the cytosol fraction. Upon PMA stimulation, PDI was mobilized from azurophilic granules to cytosol but did not further accumulate in membranes, contrarily to p47phox. PDI‐p47phox association in cytosol increased concomitantly to opposite redox switches of both proteins; there was marked reductive shift of cytosol PDI and maintainance of predominantly oxidized PDI in the membrane. Pulldown assays further indicated predominant association between PDIred and p47phox in cytosol. Incubation of purified PDI (>80% reduced) and p47phox in vitro promoted their arachidonate‐dependent association. Such PDI behavior is consistent with a novel cytosolic regulatory loop for oxidase complex (re)cycling. Altogether, PDI seems to exhibit a supportive effect on NADPH oxidase activity by acting as a redox‐dependent enzyme complex organizer.
Author Célio X. C. Santos
Francisco R. M. Laurindo
Júlia T. Takiuti
Mariano Janiszewski
Antonio Marcus de A. Paes
Luciana Lopes Guimarães
Sidney Veríssimo-Filho
Ana Carolina B. Silva
Lucia R. Lopes
Author_xml – sequence: 1
  givenname: Antonio Marcus
  surname: de A. Paes
  fullname: de A. Paes, Antonio Marcus
– sequence: 2
  givenname: Sidney
  surname: Veríssimo-Filho
  fullname: Veríssimo-Filho, Sidney
– sequence: 3
  givenname: Luciana Lopes
  surname: Guimarães
  fullname: Guimarães, Luciana Lopes
– sequence: 4
  givenname: Ana Carolina B
  surname: Silva
  fullname: Silva, Ana Carolina B
– sequence: 5
  givenname: Júlia T
  surname: Takiuti
  fullname: Takiuti, Júlia T
– sequence: 6
  givenname: Célio X C
  surname: Santos
  fullname: Santos, Célio X C
– sequence: 7
  givenname: Mariano
  surname: Janiszewski
  fullname: Janiszewski, Mariano
– sequence: 8
  givenname: Francisco R M
  surname: Laurindo
  fullname: Laurindo, Francisco R M
– sequence: 9
  givenname: Lucia R
  surname: Lopes
  fullname: Lopes, Lucia R
BookMark eNp9kMFy0zAURTVMGZoGVvyANgwLxuXJkuyIXSmUwmSgC1hrZPm5UVEkV7LrhE_gq-uQrlndzbn3zTtn5CTEgIS8ZnDO2Eq9v_PNOVQMeCmekQVTfFXwquYnZAG1YIUUAKfkLOc7gJmp4AU5LVmtmFSrBfl7k-KALtDW5dF3rkXqctxiMhlpwjbuihZ7DC2GgZqco3VmcDHQyQ0b2ou638TdB4oPczNYpF1M1AQa060J7g8mmqKfJwP1OP6Odj8g_X7x6eaaxp1rDzeMHdzDv8mX5HlnfMZXT7kkv64-_7y8LtY_vny9vFgXlgNXBW-ULW2LlewEb6VSnT28zsEwU3FAw7GTDBtZzqBhAiSbs2yEBcFASr4kb4-7fYr3I-ZBb1226L0JGMesFZS8XslZ4ZK8O5I2xZwTdrpPbmvSXjPQB_d6dq-f3M80HOnJedz_D9Xf1h-hVmquvDlWNu52M7mEOm-N9_3YlHqaJgVa6AP3CGjllWQ
CitedBy_id crossref_primary_10_3389_fchem_2015_00024
crossref_primary_10_1007_s12192_020_01176_z
crossref_primary_10_1007_s00125_018_4560_z
crossref_primary_10_1038_s41419_019_1402_y
crossref_primary_10_1074_jbc_M117_802629
crossref_primary_10_1089_ars_2021_0086
crossref_primary_10_1016_j_imlet_2020_02_009
crossref_primary_10_1016_j_bbagen_2017_02_013
crossref_primary_10_1016_j_pharmthera_2020_107525
crossref_primary_10_1038_s41598_017_16947_5
crossref_primary_10_1016_j_celrep_2018_05_054
crossref_primary_10_1074_jbc_M115_651620
crossref_primary_10_1002_JLB_4A0418_173R
crossref_primary_10_1074_jbc_M112_365239
crossref_primary_10_1016_j_rbc_2024_100027
crossref_primary_10_1080_08958378_2018_1558316
crossref_primary_10_1089_ars_2013_5605
crossref_primary_10_1016_j_freeradbiomed_2020_11_020
crossref_primary_10_1042_CS20150404
crossref_primary_10_1016_j_freeradbiomed_2013_09_028
crossref_primary_10_1016_j_prostaglandins_2019_106382
crossref_primary_10_1089_ars_2012_4609
crossref_primary_10_7845_kjm_2015_5056
crossref_primary_10_1038_s41598_017_13418_9
crossref_primary_10_1177_1074248419861437
crossref_primary_10_1016_j_abb_2016_11_007
crossref_primary_10_1016_j_freeradbiomed_2017_03_005
crossref_primary_10_1016_j_atherosclerosis_2023_117283
crossref_primary_10_1089_ars_2018_7523
crossref_primary_10_1089_ars_2018_7525
crossref_primary_10_1100_2011_289182
crossref_primary_10_1111_jth_12413
crossref_primary_10_1152_physrev_00036_2017
crossref_primary_10_1016_j_redox_2022_102479
crossref_primary_10_1074_jbc_M113_543702
crossref_primary_10_1016_j_abb_2016_10_003
crossref_primary_10_1016_j_redox_2014_01_010
crossref_primary_10_1186_2050_6511_14_S1_O21
crossref_primary_10_3389_fchem_2014_00070
crossref_primary_10_1016_j_freeradbiomed_2012_02_037
crossref_primary_10_3390_antiox10030497
crossref_primary_10_1038_s12276_020_0401_5
crossref_primary_10_3389_fmicb_2017_00960
crossref_primary_10_3389_fchem_2015_00003
crossref_primary_10_3389_fchem_2014_00073
crossref_primary_10_1155_2021_8830880
crossref_primary_10_1155_2016_2423547
crossref_primary_10_1074_jbc_M113_479477
crossref_primary_10_1111_jth_13916
crossref_primary_10_1371_journal_pone_0143523
crossref_primary_10_1089_ars_2024_0566
crossref_primary_10_1161_CIRCRESAHA_114_301808
crossref_primary_10_1111_jth_13633
crossref_primary_10_1016_j_freeradbiomed_2014_07_046
crossref_primary_10_1111_jth_13634
crossref_primary_10_1016_j_celrep_2022_110625
crossref_primary_10_3389_fcell_2015_00080
crossref_primary_10_3390_biom13050848
crossref_primary_10_1074_jbc_M112_394551
crossref_primary_10_3390_molecules26010171
crossref_primary_10_1016_j_lfs_2020_118253
crossref_primary_10_1074_jbc_M114_597245
crossref_primary_10_1089_ars_2013_5262
crossref_primary_10_1089_ars_2019_8012
crossref_primary_10_1186_s12950_022_00309_8
crossref_primary_10_1016_j_jhepr_2021_100297
crossref_primary_10_1042_BJ20130298
crossref_primary_10_1161_ATVBAHA_118_311038
crossref_primary_10_3389_fcell_2015_00030
Cites_doi 10.1016/j.cardiores.2004.08.007
10.1089/152308602753625852
10.1016/S0021-9258(17)31534-X
10.1016/j.coi.2003.12.001
10.1038/nature04782
10.4049/jimmunol.0902925
10.1073/pnas.90.9.4112
10.1016/S0021-9258(18)47373-5
10.1016/0003-9861(59)90090-6
10.1074/jbc.270.35.20410
10.1021/bi035636s
10.1016/S0022-1759(99)00171-4
10.4049/jimmunol.164.8.4120
10.1038/nri1053
10.1016/j.molcel.2010.11.010
10.1016/S0021-9258(19)36501-9
10.1074/jbc.270.29.17078
10.1186/1471-2172-7-28
10.1046/j.1365-2141.1999.01197.x
10.1172/JCI115860
10.1021/bi9700936
10.1021/bi00051a027
10.1007/978-1-59745-467-4_4
10.1006/bbrc.1996.5881
10.1126/science.1523409
10.1189/jlb.1104630
10.1152/ajpcell.00188.2006
10.1042/BJ20041835
10.1016/j.bbabio.2004.03.008
10.1089/ars.2007.1837
10.1161/ATVBAHA.108.181610
10.1016/S1097-2765(00)80198-7
10.1189/jlb.0608354
10.1096/fj.04-2377fje
10.1089/ars.2007.2011
10.1189/jlb.1005553
10.1182/blood.V72.1.322.322
10.1089/ars.2009.2637
10.1016/j.cell.2005.10.044
10.1074/jbc.M411409200
10.1172/JCI118187
10.1016/0891-5849(90)90147-B
10.1074/jbc.M312193200
10.1074/jbc.R700045200
10.1016/j.abb.2009.01.022
10.1074/jbc.274.22.15533
10.1074/jbc.M509255200
10.1089/ars.2007.1579
10.1046/j.1432-1327.1998.2510649.x
10.1016/S0891-5849(97)00115-9
10.1006/abbi.1997.0484
10.1189/jlb.0404216
10.1111/j.1356-9597.2004.00733.x
10.1074/jbc.M109.005496
10.1016/S0891-5849(00)00393-2
ContentType Journal Article
Copyright 2011 Society for Leukocyte Biology
Copyright_xml – notice: 2011 Society for Leukocyte Biology
DBID AAYXX
CITATION
7T5
H94
DOI 10.1189/jlb.0610324
DatabaseName CrossRef
Immunology Abstracts
AIDS and Cancer Research Abstracts
DatabaseTitle CrossRef
AIDS and Cancer Research Abstracts
Immunology Abstracts
DatabaseTitleList CrossRef
AIDS and Cancer Research Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1938-3673
EndPage 810
ExternalDocumentID 10_1189_jlb_0610324
JLB0799
www90_4_799
Genre article
GrantInformation_xml – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
– fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
– fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
GroupedDBID -
0VX
1OC
29K
2WC
4.4
53G
5GY
5RE
AAZKR
ABCUV
ABFLS
ACGFS
ACPOU
ACPRK
ACXQS
ADACO
ADBBV
ADDAD
ADXAS
ADZMN
AENEX
AEUQT
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ALUQN
BFHJK
BQCPF
CS3
D-I
DCZOG
DRFUL
DRSTM
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HZ
K-O
L7B
LATKE
LEEKS
LUTES
LYRES
MEWTI
MSJOP
MXJOP
OK1
P2P
P2W
RHF
RHI
ROL
SJN
SUPJJ
TSL
VH1
WOHZO
WOQ
ZA5
ZZTAW
---
.GJ
0R~
18M
1OB
33P
5WD
AABZA
AACZT
AAHHS
AAPGJ
AAPXW
AARHZ
AASGY
AAUAY
AAVAP
AAWDT
AAXRX
ABEFU
ABJNI
ABLJU
ABMNT
ABNHQ
ABPQP
ABPTD
ABWST
ABXVV
ACAHQ
ACCFJ
ACCZN
ACFRR
ACGFO
ACUTJ
ACXBN
ACZBC
ADIPN
ADKYN
ADOZA
ADQBN
ADVEK
AEEZP
AEQDE
AFFNX
AFGWE
AFYAG
AGMDO
AGQXC
AI.
AIURR
AIWBW
AJAOE
AJBDE
AJEEA
AMYDB
ANFBD
APJGH
ATGXG
AVNTJ
BCRHZ
C45
EMOBN
F9R
HZ~
KOP
O9-
OBOKY
OCZFY
OJZSN
OPAEJ
OVD
OWPYF
RJQFR
ROX
TCN
TEORI
TMA
TR2
W8F
YHG
ZGI
ZXP
AAYXX
CITATION
7T5
H94
ID FETCH-LOGICAL-c3039-3b9c2cde65f43d599fc032430a1a630ea3ef51eb52b9ca140519ca2b4c0410553
ISSN 0741-5400
IngestDate Fri Oct 25 07:02:36 EDT 2024
Fri Aug 23 01:59:58 EDT 2024
Sat Aug 24 00:56:45 EDT 2024
Tue Jan 05 20:17:10 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3039-3b9c2cde65f43d599fc032430a1a630ea3ef51eb52b9ca140519ca2b4c0410553
Notes These authors contributed equally to this work.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1189/jlb.0610324
PMID 21791598
PQID 902378567
PQPubID 23462
PageCount 12
ParticipantIDs proquest_miscellaneous_902378567
crossref_primary_10_1189_jlb_0610324
wiley_primary_10_1189_jlb_0610324_JLB0799
highwire_smallpub2_www90_4_799
ProviderPackageCode RHF
RHI
PublicationCentury 2000
PublicationDate October 2011
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: October 2011
PublicationDecade 2010
PublicationTitle Journal of leukocyte biology
PublicationYear 2011
Publisher Society for Leukocyte Biology
Publisher_xml – name: Society for Leukocyte Biology
References 2009; 86
2006; 79
1997; 230
1995; 34
2004; 9
2005; 65
1988; 72
2010; 184
1998; 350
2004; 76
2009; 11
2007; 412
1992; 90
1994; 269
2005; 386
2007; 292
2009; 484
2007; 9
2003; 3
2000; 164
2009; 284
2010; 30
2005; 77
2006; 441
2004; 1657
2006; 124
2004; 43
1995; 96
2000; 29
1959; 82
1997; 23
2006; 7
2002; 4
2008; 10
1999; 4
1993; 90
1993; 268
1999; 104
2008; 283
1995; 270
2010; 40
1998; 251
2005; 280
2005; 19
2004; 279
2004; 16
1997; 36
1992; 257
1999; 274
1999; 232
1990; 8
Quinn (2023033004531280100_) 2004; 76
Yuan (2023033004531280100_) 2009; 284
Morimatsu (2023033004531280100_) 1997; 230
Wang (2023033004531280100_) 2010; 184
Cross (2023033004531280100_) 2004; 1657
Janiszewski (2023033004531280100_) 2005; 280
Akard (2023033004531280100_) 1988; 72
Fernandes (2023033004531280100_) 2007; 292
Mandel (2023033004531280100_) 1993; 90
Jessop (2023033004531280100_) 2004; 279
Ogino (2023033004531280100_) 1997; 23
Santos (2023033004531280100_) 2009; 86
Uehara (2023033004531280100_) 2006; 441
Karlsson (2023033004531280100_) 2002; 4
Pirneskoski (2023033004531280100_) 2004; 279
Harraz (2023033004531280100_) 2007; 9
Inanami (2023033004531280100_) 1998; 350
Lyles (2023033004531280100_) 1994; 269
Frand (2023033004531280100_) 1999; 4
Noiva (2023033004531280100_) 1993; 268
Kerkhoff (2023033004531280100_) 2005; 19
Lassegue (2023033004531280100_) 2010; 30
Groemping (2023033004531280100_) 2005; 386
Park (2023033004531280100_) 1997; 36
Nauseef (2023033004531280100_) 2008; 283
Tian (2023033004531280100_) 2006; 124
Appenzeller-Herzog (2023033004531280100_) 2008; 10
Laurindo (2023033004531280100_) 2008; 10
Kjeldsen (2023033004531280100_) 1999; 232
Fernandes (2023033004531280100_) 2009; 484
Cross (2023033004531280100_) 1990; 8
Quan (2023033004531280100_) 1995; 270
Zito (2023033004531280100_) 2010; 40
Johnson (2023033004531280100_) 2006; 7
Leto (2023033004531280100_) 2009; 11
Babior (2023033004531280100_) 2004; 16
Janiszewski (2023033004531280100_) 2000; 29
Darby (2023033004531280100_) 1995; 34
Bennett (2023033004531280100_) 2000; 164
Hwang (2023033004531280100_) 1992; 257
Mizrahi (2023033004531280100_) 2006; 79
Ellman (2023033004531280100_) 1959; 82
Desjardins (2023033004531280100_) 2003; 3
Lopes (2023033004531280100_) 1999; 274
Brandes (2023033004531280100_) 2005; 65
Faust (2023033004531280100_) 1995; 96
Udby (2023033004531280100_) 2007; 412
Essex (2023033004531280100_) 1999; 104
Touret (2023033004531280100_) 2005; 77
Lopes (2023033004531280100_) 2004; 43
el Benna (2023033004531280100_) 1994; 269
Yuzawa (2023033004531280100_) 2004; 9
Babior (2023033004531280100_) 2002; 4
Terada (2023033004531280100_) 1995; 270
Borregaard (2023033004531280100_) 1992; 90
Doussiere (2023033004531280100_) 1998; 251
References_xml – volume: 86
  start-page: 989
  year: 2009
  end-page: 998
  article-title: Protein disulfide isomerase (PDI) associates with NADPH oxidase and is required for phagocytosis of promastigotes by macrophages
  publication-title: J. Leukoc. Biol.
– volume: 23
  start-page: 445
  year: 1997
  end-page: 452
  article-title: Neutrophil antioxidant capacity during the respiratory burst: loss of glutathione induced by chloramines
  publication-title: Free Radic. Biol. Med.
– volume: 90
  start-page: 4112
  year: 1993
  end-page: 4116
  article-title: Inhibition of a reductive function of the plasma membrane by bacitracin and antibodies against protein disulfide‐isomerase
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 19
  start-page: 467
  year: 2005
  end-page: 469
  article-title: The arachidonic acid‐binding protein S100A8/A9 promotes NADPH oxidase activation by interaction with p67phox and Rac‐2
  publication-title: FASEB J.
– volume: 4
  start-page: 1023
  year: 2002
  end-page: 1024
  article-title: The leukocyte NADPH oxidase
  publication-title: Isr. Med. Assoc. J.
– volume: 76
  start-page: 760
  year: 2004
  end-page: 781
  article-title: Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases
  publication-title: J. Leukoc. Biol.
– volume: 8
  start-page: 71
  year: 1990
  end-page: 93
  article-title: Inhibitors of the leukocyte superoxide generating oxidase: mechanisms of action and methods for their elucidation
  publication-title: Free Radic. Biol. Med.
– volume: 29
  start-page: 889
  year: 2000
  end-page: 899
  article-title: Inhibition of vascular NADH/NADPH oxidase activity by thiol reagents: lack of correlation with cellular glutathione redox status
  publication-title: Free Radic. Biol. Med.
– volume: 9
  start-page: 1803
  year: 2007
  end-page: 1813
  article-title: MKK6 phosphorylation regulates production of superoxide by enhancing Rac GTPase activity
  publication-title: Antioxid. Redox Signal.
– volume: 251
  start-page: 649
  year: 1998
  end-page: 658
  article-title: Phenylarsine oxide as an inhibitor of the activation of the neutrophil NADPH oxidase—identification of the β subunit of the flavocytochrome b component of the NADPH oxidase as a target site for phenylarsine oxide by photoaffinity labeling and photoinactivation
  publication-title: Eur. J. Biochem.
– volume: 279
  start-page: 10374
  year: 2004
  end-page: 10381
  article-title: Molecular characterization of the principal substrate binding site of the ubiquitous folding catalyst protein disulfide isomerase
  publication-title: J. Biol. Chem.
– volume: 230
  start-page: 206
  year: 1997
  end-page: 210
  article-title: Actin enhances the activation of human neutrophil NADPH oxidase in a cell‐free system
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 4
  start-page: 49
  year: 2002
  end-page: 60
  article-title: Assembly and activation of the neutrophil NADPH oxidase in granule membranes
  publication-title: Antioxid. Redox Signal.
– volume: 274
  start-page: 15533
  year: 1999
  end-page: 15537
  article-title: Activation of the leukocyte NADPH oxidase by protein kinase C in a partially recombinant cell‐free system
  publication-title: J. Biol. Chem.
– volume: 232
  start-page: 131
  year: 1999
  end-page: 143
  article-title: Subcellular fractionation of human neutrophils on Percoll density gradients
  publication-title: J. Immunol. Methods
– volume: 412
  start-page: 35
  year: 2007
  end-page: 56
  article-title: Subcellular fractionation of human neutrophils and analysis of subcellular markers
  publication-title: Methods Mol. Biol.
– volume: 270
  start-page: 17078
  year: 1995
  end-page: 17080
  article-title: Independence of the chaperone activity of protein disulfide isomerase from its thioredoxin‐like active site
  publication-title: J. Biol. Chem.
– volume: 257
  start-page: 1496
  year: 1992
  end-page: 1502
  article-title: Oxidized redox state of glutathione in the endoplasmic reticulum
  publication-title: Science
– volume: 82
  start-page: 70
  year: 1959
  end-page: 77
  article-title: Tissue sulfhydryl groups
  publication-title: Arch. Biochem. Biophys.
– volume: 1657
  start-page: 1
  year: 2004
  end-page: 22
  article-title: The NADPH oxidase of professional phagocytes—prototype of the NOX electron transport chain systems
  publication-title: Biochim. Biophys. Acta
– volume: 280
  start-page: 40813
  year: 2005
  end-page: 40819
  article-title: Regulation of NAD(P)H oxidase by associated protein disulfide isomerase in vascular smooth muscle cells
  publication-title: J. Biol. Chem.
– volume: 268
  start-page: 19210
  year: 1993
  end-page: 19217
  article-title: Peptide binding to protein disulfide isomerase occurs at a site distinct from the active sites
  publication-title: J. Biol. Chem.
– volume: 43
  start-page: 3723
  year: 2004
  end-page: 3730
  article-title: Phosphorylated p40PH0X as a negative regulator of NADPH oxidase
  publication-title: Biochemistry
– volume: 7
  start-page: 28
  year: 2006
  article-title: Gene transfer and expression in human neutrophils. The phox homology domain of p47phox translocates to the plasma membrane but not to the membrane of mature phagosomes
  publication-title: BMC Immunol.
– volume: 11
  start-page: 2607
  year: 2009
  end-page: 2619
  article-title: Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases
  publication-title: Antioxid. Redox Signal.
– volume: 124
  start-page: 61
  year: 2006
  end-page: 73
  article-title: The crystal structure of yeast protein disulfide isomerase suggests cooperativity between its active sites
  publication-title: Cell
– volume: 10
  start-page: 1101
  year: 2008
  end-page: 1113
  article-title: Novel role of protein disulfide isomerase in the regulation of NADPH oxidase activity: pathophysiological implications in vascular diseases
  publication-title: Antioxid. Redox Signal.
– volume: 270
  start-page: 20410
  year: 1995
  end-page: 20416
  article-title: Secretion, surface localization, turnover, and steady state expression of protein disulfide isomerase in rat hepatocytes
  publication-title: J. Biol. Chem.
– volume: 284
  start-page: 26908
  year: 2009
  end-page: 26917
  article-title: Hypochlorous acid converts the γ‐glutamyl group of glutathione disulfide to 5‐hydroxybuty‐rolactam, a potential marker for neutrophil activation
  publication-title: J. Biol. Chem.
– volume: 279
  start-page: 55341
  year: 2004
  end-page: 55347
  article-title: Glutathione directly reduces an oxidoreductase in the endoplasmic reticulum of mammalian cells
  publication-title: J. Biol. Chem.
– volume: 164
  start-page: 4120
  year: 2000
  end-page: 4129
  article-title: Sulfhydryl regulation of L‐selectin shedding: phenylarsine oxide promotes activation‐independent L‐selectin shedding from leukocytes
  publication-title: J. Immunol.
– volume: 96
  start-page: 1499
  year: 1995
  end-page: 1505
  article-title: The phosphorylation targets of p47phox, a subunit of the respiratory burst oxidase. Functions of the individual target serines as evaluated by site‐directed mutagenesis
  publication-title: J. Clin. Invest.
– volume: 184
  start-page: 4447
  year: 2010
  end-page: 4454
  article-title: ADAM17 activity and other mechanisms of soluble L‐selectin production during death receptor‐induced leukocyte apoptosis
  publication-title: J. Immunol.
– volume: 484
  start-page: 197
  year: 2009
  end-page: 204
  article-title: Protein disulfide isomerase overexpression in vascular smooth muscle cells induces spontaneous preemptive NADPH oxidase activation and Nox1 mRNA expression: effects of nitrosothiol exposure
  publication-title: Arch. Biochem. Biophys.
– volume: 269
  start-page: 30946
  year: 1994
  end-page: 30952
  article-title: Mutations in the thioredoxin sites of protein disulfide isomerase reveal functional nonequivalence of the N‐ and C‐terminal domains
  publication-title: J. Biol. Chem.
– volume: 90
  start-page: 86
  year: 1992
  end-page: 96
  article-title: Stimulus‐dependent secretion of plasma proteins from human neutrophils
  publication-title: J. Clin. Invest.
– volume: 283
  start-page: 16961
  year: 2008
  end-page: 16965
  article-title: Biological roles for the NOX family NADPH oxidases
  publication-title: J. Biol. Chem.
– volume: 79
  start-page: 881
  year: 2006
  end-page: 895
  article-title: Assembly of the phagocyte NADPH oxidase complex: chimeric constructs derived from the cytosolic components as tools for exploring structure‐function relationships
  publication-title: J. Leukoc. Biol.
– volume: 30
  start-page: 653
  year: 2010
  end-page: 661
  article-title: NADPH oxidases: functions and pathologies in the vasculature
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 9
  start-page: 443
  year: 2004
  end-page: 456
  article-title: A molecular mechanism for autoinhibition of the tandem SH3 domains of p47phox, the regulatory subunit of the phagocyte NADPH oxidase
  publication-title: Genes Cells
– volume: 65
  start-page: 16
  year: 2005
  end-page: 27
  article-title: Vascular NADPH oxidases: molecular mechanisms of activation
  publication-title: Cardiovasc. Res.
– volume: 10
  start-page: 55
  year: 2008
  end-page: 64
  article-title: In vivo reduction‐oxidation state of protein disulfide isomerase: the two active sites independently occur in the reduced and oxidized forms
  publication-title: Antioxid. Redox Signal.
– volume: 16
  start-page: 42
  year: 2004
  end-page: 47
  article-title: NADPH oxidase
  publication-title: Curr. Opin. Immunol.
– volume: 34
  start-page: 16770
  year: 1995
  end-page: 16780
  article-title: Characterization of the active site cysteine residues of the thioredoxin‐like domains of protein disulfide isomerase
  publication-title: Biochemistry
– volume: 3
  start-page: 280
  year: 2003
  end-page: 291
  article-title: ER‐mediated phagocytosis: a new membrane for new functions
  publication-title: Nat. Rev. Immunol.
– volume: 72
  start-page: 322
  year: 1988
  end-page: 327
  article-title: Rapid deactivation of NADPH oxidase in neutrophils: continuous replacement by newly activated enzyme sustains the respiratory burst
  publication-title: Blood
– volume: 36
  start-page: 7474
  year: 1997
  end-page: 7480
  article-title: Activation of the leukocyte NADPH oxidase subunit p47phox by protein kinase C. A phosphorylation‐dependent change in the conformation of the C‐terminal end of p47phox
  publication-title: Biochemistry
– volume: 292
  year: 2007
  article-title: Analysis of DHE‐derived oxidation products by HPLC in the assessment of superoxide production and NADPH oxidase activity in vascular systems
  publication-title: Am. J. Physiol. Cell Physiol.
– volume: 104
  start-page: 448
  year: 1999
  end-page: 454
  article-title: Protein disulphide isomerase mediates platelet aggregation and secretion
  publication-title: Br. J. Haematol.
– volume: 269
  start-page: 23431
  year: 1994
  end-page: 23436
  article-title: The phosphorylation of the respiratory burst oxidase component p47phox during neutrophil activation. Phosphorylation of sites recognized by protein kinase C and by proline‐directed kinases
  publication-title: J. Biol. Chem.
– volume: 441
  start-page: 513
  year: 2006
  end-page: 517
  article-title: S‐nitrosylated protein‐disulphide isomerase links protein misfolding to neurodegeneration
  publication-title: Nature
– volume: 40
  start-page: 787
  year: 2010
  end-page: 797
  article-title: Oxidative protein folding by an endoplasmic reticulum‐localized peroxiredoxin
  publication-title: Mol. Cell
– volume: 386
  start-page: 401
  year: 2005
  end-page: 416
  article-title: Activation and assembly of the NADPH oxidase: a structural perspective
  publication-title: Biochem. J.
– volume: 350
  start-page: 36
  year: 1998
  end-page: 40
  article-title: The leukocyte NADPH oxidase subunit p47PHOX: the role of the cysteine residues
  publication-title: Arch. Biochem. Biophys.
– volume: 77
  start-page: 878
  year: 2005
  end-page: 885
  article-title: The nature of the phagosomal membrane: endoplasmic reticulum versus plasmalemma
  publication-title: J. Leukoc. Biol.
– volume: 4
  start-page: 469
  year: 1999
  end-page: 477
  article-title: Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum
  publication-title: Mol. Cell
– volume: 65
  start-page: 16
  year: 2005
  ident: 2023033004531280100_
  article-title: Vascular NADPH oxidases: molecular mechanisms of activation
  publication-title: Cardiovasc. Res.
  doi: 10.1016/j.cardiores.2004.08.007
  contributor:
    fullname: Brandes
– volume: 4
  start-page: 49
  year: 2002
  ident: 2023033004531280100_
  article-title: Assembly and activation of the neutrophil NADPH oxidase in granule membranes
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/152308602753625852
  contributor:
    fullname: Karlsson
– volume: 4
  start-page: 1023
  year: 2002
  ident: 2023033004531280100_
  article-title: The leukocyte NADPH oxidase
  publication-title: Isr. Med. Assoc. J.
  contributor:
    fullname: Babior
– volume: 269
  start-page: 23431
  year: 1994
  ident: 2023033004531280100_
  article-title: The phosphorylation of the respiratory burst oxidase component p47phox during neutrophil activation. Phosphorylation of sites recognized by protein kinase C and by proline-directed kinases
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)31534-X
  contributor:
    fullname: el Benna
– volume: 16
  start-page: 42
  year: 2004
  ident: 2023033004531280100_
  article-title: NADPH oxidase
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2003.12.001
  contributor:
    fullname: Babior
– volume: 441
  start-page: 513
  year: 2006
  ident: 2023033004531280100_
  article-title: S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration
  publication-title: Nature
  doi: 10.1038/nature04782
  contributor:
    fullname: Uehara
– volume: 184
  start-page: 4447
  year: 2010
  ident: 2023033004531280100_
  article-title: ADAM17 activity and other mechanisms of soluble L-selectin production during death receptor-induced leukocyte apoptosis
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0902925
  contributor:
    fullname: Wang
– volume: 90
  start-page: 4112
  year: 1993
  ident: 2023033004531280100_
  article-title: Inhibition of a reductive function of the plasma membrane by bacitracin and antibodies against protein disulfide-isomerase
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.90.9.4112
  contributor:
    fullname: Mandel
– volume: 269
  start-page: 30946
  year: 1994
  ident: 2023033004531280100_
  article-title: Mutations in the thioredoxin sites of protein disulfide isomerase reveal functional nonequivalence of the N- and C-terminal domains
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)47373-5
  contributor:
    fullname: Lyles
– volume: 82
  start-page: 70
  year: 1959
  ident: 2023033004531280100_
  article-title: Tissue sulfhydryl groups
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(59)90090-6
  contributor:
    fullname: Ellman
– volume: 270
  start-page: 20410
  year: 1995
  ident: 2023033004531280100_
  article-title: Secretion, surface localization, turnover, and steady state expression of protein disulfide isomerase in rat hepatocytes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.35.20410
  contributor:
    fullname: Terada
– volume: 43
  start-page: 3723
  year: 2004
  ident: 2023033004531280100_
  article-title: Phosphorylated p40PH0X as a negative regulator of NADPH oxidase
  publication-title: Biochemistry
  doi: 10.1021/bi035636s
  contributor:
    fullname: Lopes
– volume: 232
  start-page: 131
  year: 1999
  ident: 2023033004531280100_
  article-title: Subcellular fractionation of human neutrophils on Percoll density gradients
  publication-title: J. Immunol. Methods
  doi: 10.1016/S0022-1759(99)00171-4
  contributor:
    fullname: Kjeldsen
– volume: 164
  start-page: 4120
  year: 2000
  ident: 2023033004531280100_
  article-title: Sulfhydryl regulation of L-selectin shedding: phenylarsine oxide promotes activation-independent L-selectin shedding from leukocytes
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.164.8.4120
  contributor:
    fullname: Bennett
– volume: 3
  start-page: 280
  year: 2003
  ident: 2023033004531280100_
  article-title: ER-mediated phagocytosis: a new membrane for new functions
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri1053
  contributor:
    fullname: Desjardins
– volume: 40
  start-page: 787
  year: 2010
  ident: 2023033004531280100_
  article-title: Oxidative protein folding by an endoplasmic reticulum-localized peroxiredoxin
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.11.010
  contributor:
    fullname: Zito
– volume: 268
  start-page: 19210
  year: 1993
  ident: 2023033004531280100_
  article-title: Peptide binding to protein disulfide isomerase occurs at a site distinct from the active sites
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)36501-9
  contributor:
    fullname: Noiva
– volume: 270
  start-page: 17078
  year: 1995
  ident: 2023033004531280100_
  article-title: Independence of the chaperone activity of protein disulfide isomerase from its thioredoxin-like active site
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.29.17078
  contributor:
    fullname: Quan
– volume: 7
  start-page: 28
  year: 2006
  ident: 2023033004531280100_
  article-title: Gene transfer and expression in human neutrophils. The phox homology domain of p47phox translocates to the plasma membrane but not to the membrane of mature phagosomes
  publication-title: BMC Immunol.
  doi: 10.1186/1471-2172-7-28
  contributor:
    fullname: Johnson
– volume: 104
  start-page: 448
  year: 1999
  ident: 2023033004531280100_
  article-title: Protein disulphide isomerase mediates platelet aggregation and secretion
  publication-title: Br. J. Haematol.
  doi: 10.1046/j.1365-2141.1999.01197.x
  contributor:
    fullname: Essex
– volume: 90
  start-page: 86
  year: 1992
  ident: 2023033004531280100_
  article-title: Stimulus-dependent secretion of plasma proteins from human neutrophils
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI115860
  contributor:
    fullname: Borregaard
– volume: 36
  start-page: 7474
  year: 1997
  ident: 2023033004531280100_
  article-title: Activation of the leukocyte NADPH oxidase subunit p47phox by protein kinase C. A phosphorylation-dependent change in the conformation of the C-terminal end of p47phox
  publication-title: Biochemistry
  doi: 10.1021/bi9700936
  contributor:
    fullname: Park
– volume: 34
  start-page: 16770
  year: 1995
  ident: 2023033004531280100_
  article-title: Characterization of the active site cysteine residues of the thioredoxin-like domains of protein disulfide isomerase
  publication-title: Biochemistry
  doi: 10.1021/bi00051a027
  contributor:
    fullname: Darby
– volume: 412
  start-page: 35
  year: 2007
  ident: 2023033004531280100_
  article-title: Subcellular fractionation of human neutrophils and analysis of subcellular markers
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-59745-467-4_4
  contributor:
    fullname: Udby
– volume: 230
  start-page: 206
  year: 1997
  ident: 2023033004531280100_
  article-title: Actin enhances the activation of human neutrophil NADPH oxidase in a cell-free system
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1996.5881
  contributor:
    fullname: Morimatsu
– volume: 257
  start-page: 1496
  year: 1992
  ident: 2023033004531280100_
  article-title: Oxidized redox state of glutathione in the endoplasmic reticulum
  publication-title: Science
  doi: 10.1126/science.1523409
  contributor:
    fullname: Hwang
– volume: 77
  start-page: 878
  year: 2005
  ident: 2023033004531280100_
  article-title: The nature of the phagosomal membrane: endoplasmic reticulum versus plasmalemma
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.1104630
  contributor:
    fullname: Touret
– volume: 292
  year: 2007
  ident: 2023033004531280100_
  article-title: Analysis of DHE-derived oxidation products by HPLC in the assessment of superoxide production and NADPH oxidase activity in vascular systems
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00188.2006
  contributor:
    fullname: Fernandes
– volume: 386
  start-page: 401
  year: 2005
  ident: 2023033004531280100_
  article-title: Activation and assembly of the NADPH oxidase: a structural perspective
  publication-title: Biochem. J.
  doi: 10.1042/BJ20041835
  contributor:
    fullname: Groemping
– volume: 1657
  start-page: 1
  year: 2004
  ident: 2023033004531280100_
  article-title: The NADPH oxidase of professional phagocytes—prototype of the NOX electron transport chain systems
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2004.03.008
  contributor:
    fullname: Cross
– volume: 10
  start-page: 55
  year: 2008
  ident: 2023033004531280100_
  article-title: In vivo reduction-oxidation state of protein disulfide isomerase: the two active sites independently occur in the reduced and oxidized forms
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2007.1837
  contributor:
    fullname: Appenzeller-Herzog
– volume: 30
  start-page: 653
  year: 2010
  ident: 2023033004531280100_
  article-title: NADPH oxidases: functions and pathologies in the vasculature
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.108.181610
  contributor:
    fullname: Lassegue
– volume: 4
  start-page: 469
  year: 1999
  ident: 2023033004531280100_
  article-title: Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80198-7
  contributor:
    fullname: Frand
– volume: 86
  start-page: 989
  year: 2009
  ident: 2023033004531280100_
  article-title: Protein disulfide isomerase (PDI) associates with NADPH oxidase and is required for phagocytosis of Leishmania chagasi promastigotes by macrophages
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.0608354
  contributor:
    fullname: Santos
– volume: 19
  start-page: 467
  year: 2005
  ident: 2023033004531280100_
  article-title: The arachidonic acid-binding protein S100A8/A9 promotes NADPH oxidase activation by interaction with p67phox and Rac-2
  publication-title: FASEB J.
  doi: 10.1096/fj.04-2377fje
  contributor:
    fullname: Kerkhoff
– volume: 10
  start-page: 1101
  year: 2008
  ident: 2023033004531280100_
  article-title: Novel role of protein disulfide isomerase in the regulation of NADPH oxidase activity: pathophysiological implications in vascular diseases
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2007.2011
  contributor:
    fullname: Laurindo
– volume: 79
  start-page: 881
  year: 2006
  ident: 2023033004531280100_
  article-title: Assembly of the phagocyte NADPH oxidase complex: chimeric constructs derived from the cytosolic components as tools for exploring structure-function relationships
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.1005553
  contributor:
    fullname: Mizrahi
– volume: 72
  start-page: 322
  year: 1988
  ident: 2023033004531280100_
  article-title: Rapid deactivation of NADPH oxidase in neutrophils: continuous replacement by newly activated enzyme sustains the respiratory burst
  publication-title: Blood
  doi: 10.1182/blood.V72.1.322.322
  contributor:
    fullname: Akard
– volume: 11
  start-page: 2607
  year: 2009
  ident: 2023033004531280100_
  article-title: Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2009.2637
  contributor:
    fullname: Leto
– volume: 124
  start-page: 61
  year: 2006
  ident: 2023033004531280100_
  article-title: The crystal structure of yeast protein disulfide isomerase suggests cooperativity between its active sites
  publication-title: Cell
  doi: 10.1016/j.cell.2005.10.044
  contributor:
    fullname: Tian
– volume: 279
  start-page: 55341
  year: 2004
  ident: 2023033004531280100_
  article-title: Glutathione directly reduces an oxidoreductase in the endoplasmic reticulum of mammalian cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M411409200
  contributor:
    fullname: Jessop
– volume: 96
  start-page: 1499
  year: 1995
  ident: 2023033004531280100_
  article-title: The phosphorylation targets of p47phox, a subunit of the respiratory burst oxidase. Functions of the individual target serines as evaluated by site-directed mutagenesis
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI118187
  contributor:
    fullname: Faust
– volume: 8
  start-page: 71
  year: 1990
  ident: 2023033004531280100_
  article-title: Inhibitors of the leukocyte superoxide generating oxidase: mechanisms of action and methods for their elucidation
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/0891-5849(90)90147-B
  contributor:
    fullname: Cross
– volume: 279
  start-page: 10374
  year: 2004
  ident: 2023033004531280100_
  article-title: Molecular characterization of the principal substrate binding site of the ubiquitous folding catalyst protein disulfide isomerase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M312193200
  contributor:
    fullname: Pirneskoski
– volume: 283
  start-page: 16961
  year: 2008
  ident: 2023033004531280100_
  article-title: Biological roles for the NOX family NADPH oxidases
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R700045200
  contributor:
    fullname: Nauseef
– volume: 484
  start-page: 197
  year: 2009
  ident: 2023033004531280100_
  article-title: Protein disulfide isomerase overexpression in vascular smooth muscle cells induces spontaneous preemptive NADPH oxidase activation and Nox1 mRNA expression: effects of nitrosothiol exposure
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2009.01.022
  contributor:
    fullname: Fernandes
– volume: 274
  start-page: 15533
  year: 1999
  ident: 2023033004531280100_
  article-title: Activation of the leukocyte NADPH oxidase by protein kinase C in a partially recombinant cell-free system
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.22.15533
  contributor:
    fullname: Lopes
– volume: 280
  start-page: 40813
  year: 2005
  ident: 2023033004531280100_
  article-title: Regulation of NAD(P)H oxidase by associated protein disulfide isomerase in vascular smooth muscle cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M509255200
  contributor:
    fullname: Janiszewski
– volume: 9
  start-page: 1803
  year: 2007
  ident: 2023033004531280100_
  article-title: MKK6 phosphorylation regulates production of superoxide by enhancing Rac GTPase activity
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2007.1579
  contributor:
    fullname: Harraz
– volume: 251
  start-page: 649
  year: 1998
  ident: 2023033004531280100_
  article-title: Phenylarsine oxide as an inhibitor of the activation of the neutrophil NADPH oxidase—identification of the β subunit of the flavocytochrome b component of the NADPH oxidase as a target site for phenylarsine oxide by photoaffinity labeling and photoinactivation
  publication-title: Eur. J. Biochem.
  doi: 10.1046/j.1432-1327.1998.2510649.x
  contributor:
    fullname: Doussiere
– volume: 23
  start-page: 445
  year: 1997
  ident: 2023033004531280100_
  article-title: Neutrophil antioxidant capacity during the respiratory burst: loss of glutathione induced by chloramines
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/S0891-5849(97)00115-9
  contributor:
    fullname: Ogino
– volume: 350
  start-page: 36
  year: 1998
  ident: 2023033004531280100_
  article-title: The leukocyte NADPH oxidase subunit p47PHOX: the role of the cysteine residues
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.1997.0484
  contributor:
    fullname: Inanami
– volume: 76
  start-page: 760
  year: 2004
  ident: 2023033004531280100_
  article-title: Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.0404216
  contributor:
    fullname: Quinn
– volume: 9
  start-page: 443
  year: 2004
  ident: 2023033004531280100_
  article-title: A molecular mechanism for autoinhibition of the tandem SH3 domains of p47phox, the regulatory subunit of the phagocyte NADPH oxidase
  publication-title: Genes Cells
  doi: 10.1111/j.1356-9597.2004.00733.x
  contributor:
    fullname: Yuzawa
– volume: 284
  start-page: 26908
  year: 2009
  ident: 2023033004531280100_
  article-title: Hypochlorous acid converts the γ-glutamyl group of glutathione disulfide to 5-hydroxybuty-rolactam, a potential marker for neutrophil activation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.005496
  contributor:
    fullname: Yuan
– volume: 29
  start-page: 889
  year: 2000
  ident: 2023033004531280100_
  article-title: Inhibition of vascular NADH/NADPH oxidase activity by thiol reagents: lack of correlation with cellular glutathione redox status
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/S0891-5849(00)00393-2
  contributor:
    fullname: Janiszewski
SSID ssj0003260
Score 2.3539467
Snippet Leukocyte NADPH oxidase activity is regulated by associated protein disulfide isomerase via redox mechanisms involving p47phox. Mechanisms of leukocyte NADPH...
ABSTRACT Mechanisms of leukocyte NADPH oxidase regulation remain actively investigated. We showed previously that vascular and macrophage oxidase complexes are...
Mechanisms of leukocyte NADPH oxidase regulation remain actively investigated. We showed previously that vascular and macrophage oxidase complexes are...
SourceID proquest
crossref
wiley
highwire
SourceType Aggregation Database
Publisher
StartPage 799
SubjectTerms neutrophil
PMA
superoxide generation
Title Protein disulfide isomerase redox-dependent association with p47phox: evidence for an organizer role in leukocyte NADPH oxidase activation
URI http://www.jleukbio.org/content/90/4/799.abstract
https://onlinelibrary.wiley.com/doi/abs/10.1189%2Fjlb.0610324
https://search.proquest.com/docview/902378567
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLaAaRIvE4NN6y7ID2jSFKVL4yRteGthrEIdQgKmvkVO4ohsaVyRhhZ-wn71ji-5FKbdXqIoSW3X35eTY_vzOQgd9JI-fKVoaPq2m5gOgbOBWOTtsSRxKbOSSE7mfDnzxlfO6dSdbmxut1RL5SLsRve_3FfyP6jCNcBV7JL9B2TrQuECnAO-cASE4fhXGJ-LIAtCzpoWZZakMTPSgotZpkIkQ4n5yqxy3Ip8MjUOavJ17vTn13wlU_Po1KJaUqlTPd2zGyU-hBoyVn7n0d2CGWfD4_OxwVdpLGoR2yJuG3Afe7nND3W4p2beAbzOlIvNQlFZGND2YRf82UbSeJHGORisr3ox_xhe3hk3T9LsmtcqolLMyVBjwuesALaLwBnyYdIUM4T7Rzo3kTHqGhdpdkvbcx1abNfMdbSFrJO6-aNW85XhBC9JCD7Ueg9Tht0Hw048lTalsvwqUalmuNMy432VtOnx52UgorN-y8IuuEEWUbu_W0SbzyTTbBHz1VXZtddDfD_49NaCyOVy6VuBE0DFm-iJDUZTWOvP00auBG62pULKqv-m95pCiz622iNjW6vK1x2tKvj12kCqPRyT_tTlDnqmKYKHitXP0QbLd9EeoLXgszv8HktpsuzyXfRUd_4e-qEpj2vK45ry-AHlcYvyWFAea8of4orwGDDGNMc14bEgPIbya95iSXisCY8bwr9AVyefLo_Gpk4nYkZE6B1I6Ed2FDPPTRwSu76fRKLLiEV71CMWo4Qlbo-Frg0P0p4jBjcRtUMnsoQW2iUv0VbOc_YKYZvENvES6sbg0cMYNRzEDgHDFhMontpJBx1UfR_MVdSYQI62B34AaAUarQ7ar3AJihnNMiC5HbS40EG4QisAsy_W8mjOeFkEPvja_YHr9Tvog0Txd_UEp5ORBcW9_lN9b9B289q9RVuLm5K9A6d7Ee5LNv4EdqLdXw
link.rule.ids 315,783,787,27936,27937
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protein+disulfide+isomerase+redox-dependent+association+with+p47phox%3A+evidence+for+an+organizer+role+in+leukocyte+NADPH+oxidase+activation&rft.jtitle=Journal+of+leukocyte+biology&rft.au=Antonio+Marcus+de+A.+Paes&rft.au=Sidney+Ver%C3%ADssimo-Filho&rft.au=Luciana+Lopes+Guimar%C3%A3es&rft.au=Ana+Carolina+B.+Silva&rft.date=2011-10-01&rft.pub=Society+for+Leukocyte+Biology&rft.issn=0741-5400&rft.eissn=1938-3673&rft.volume=90&rft.issue=4&rft.spage=799&rft_id=info:doi/10.1189%2Fjlb.0610324&rft_id=info%3Apmid%2F21791598&rft.externalDBID=n%2Fa&rft.externalDocID=www90_4_799
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-5400&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-5400&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-5400&client=summon