Multi-Atlas Based Methods in Brain MR Image Segmentation

Brain region-of-interesting (ROI) segmentation is an important prerequisite step for many computer-aid brain disease analyses. However, the human brain has the complicated anatomical structure. Meanwhile, the brain MR images often suffer from the low intensity contrast around the boundary of ROIs, l...

Full description

Saved in:
Bibliographic Details
Published inChinese medical sciences journal Vol. 34; no. 2; pp. 110 - 119
Main Authors Sun, Liang, Zhang, Li, Zhang, Daoqiang
Format Journal Article
LanguageEnglish
Published China Elsevier B.V 30.06.2019
College of Computer Science and Technology, Nanjing University of Aeronautics and Astronau-tics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China%Department of Geriatrics, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Brain region-of-interesting (ROI) segmentation is an important prerequisite step for many computer-aid brain disease analyses. However, the human brain has the complicated anatomical structure. Meanwhile, the brain MR images often suffer from the low intensity contrast around the boundary of ROIs, large inter-subject variance and large inner-subject variance. To address these issues, many multi-atlas based segmentation methods are proposed for brain ROI segmentation in the last decade. In this paper, multi-atlas based methods for brain MR image segmentation were reviewed regarding several registration toolboxes which are widely used in the multi-atlas methods, conventional methods for label fusion, datasets that have been used for evaluating the multi-atlas methods, as well as the applications of multi-atlas based segmentation in clinical researches. We propose that incorporating the anatomical prior into the end-to-end deep learning architectures for brain ROI segmentation is an important direction in the future.
AbstractList Brain region-of-interesting (ROI) segmentation is an important prerequisite step for many computer-aid brain disease analyses. However, the human brain has the complicated anatomical structure. Meanwhile, the brain MR images often suffer from the low intensity contrast around the boundary of ROIs, large inter-subject variance and large inner-subject variance. To address these issues, many multi-atlas based segmentation methods are proposed for brain ROI segmentation in the last decade. In this paper, multi-atlas based methods for brain MR image segmentation were reviewed regarding several registration toolboxes which are widely used in the multi-atlas methods, conventional methods for label fusion, datasets that have been used for evaluating the multi-atlas methods, as well as the applications of multi-atlas based segmentation in clinical researches. We propose that incorporating the anatomical prior into the end-to-end deep learning architectures for brain ROI segmentation is an important direction in the future.Brain region-of-interesting (ROI) segmentation is an important prerequisite step for many computer-aid brain disease analyses. However, the human brain has the complicated anatomical structure. Meanwhile, the brain MR images often suffer from the low intensity contrast around the boundary of ROIs, large inter-subject variance and large inner-subject variance. To address these issues, many multi-atlas based segmentation methods are proposed for brain ROI segmentation in the last decade. In this paper, multi-atlas based methods for brain MR image segmentation were reviewed regarding several registration toolboxes which are widely used in the multi-atlas methods, conventional methods for label fusion, datasets that have been used for evaluating the multi-atlas methods, as well as the applications of multi-atlas based segmentation in clinical researches. We propose that incorporating the anatomical prior into the end-to-end deep learning architectures for brain ROI segmentation is an important direction in the future.
Brain region-of-interesting (ROI) segmentation is an important prerequisite step for many computer-aid brain disease analyses. However, the human brain has the complicated anatomical structure. Meanwhile, the brain MR images often suffer from the low intensity contrast around the boundary of ROIs, large inter-subject variance and large inner-subject variance.To address these issues, many multi-atlas based segmentation methods are proposed for brain ROI segmentation in the last decade. In this paper, multi-atlas based methods for brain MR image segmentation were reviewed regarding several registration toolboxes which are widely used in the multi-atlas methods, conventional methods for label fusion, datasets that have been used for evaluating the multi-atlas methods, as well as the applications of multi-atlas based segmentation in clinical researches.We propose that incorporating the anatomical prior into the end-to-end deep learning architectures for brain ROI segmentation is an important direction in the future.
Author Sun, Liang
Zhang, Daoqiang
Zhang, Li
AuthorAffiliation College of Computer Science and Technology, Nanjing University of Aeronautics and Astronau-tics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China%Department of Geriatrics, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
AuthorAffiliation_xml – name: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronau-tics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China%Department of Geriatrics, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
Author_xml – sequence: 1
  givenname: Liang
  surname: Sun
  fullname: Sun, Liang
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China
– sequence: 2
  givenname: Li
  surname: Zhang
  fullname: Zhang, Li
  organization: Department of Geriatrics, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
– sequence: 3
  givenname: Daoqiang
  surname: Zhang
  fullname: Zhang, Daoqiang
  email: dqzhang@nuaa.edu.cn
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31315752$$D View this record in MEDLINE/PubMed
BookMark eNpt0EtP3DAQwHEfQCyPqt-gyg0uKR4_4vi4iwpdiRVSH2fLa0-2XiUO2EkR356ooUUqXGYuP3uk_wk5iH1EQj4C_cyEZvSSUi5VdUCOgVIoNdNiQU5y3lNKK6jFEVlw4CCVZMek3oztEMrl0NpcrGxGX2xw-NX7XIRYrJKd5uZbse7sDovvuOswDnYIfTwjh41tM3542afk5_WXH1dfy9u7m_XV8rZ0nPK6bLhwCgCUA6y00A2TSnDR-KYC5aVrPHdcKSG3qlbaernltQMrBWN-C7bip-R8_vfRxsbGndn3Y4rTReO6vDfIKGjKKK0neTHL-9Q_jJgH04XssG1txH7MhjGpNQCv5UQ_vdBx26E39yl0Nj2Zv11er7rU55yw-UeAmj-VzVx5kuV_0oW50DDFa9_xMHucov0OmEx2AaNDHxK6wfg-vHnzDMyJivU
CitedBy_id crossref_primary_10_1109_JBHI_2024_3516012
crossref_primary_10_3934_mbe_2022089
crossref_primary_10_1007_s11042_023_17259_9
crossref_primary_10_1088_1361_6560_abfbf4
ContentType Journal Article
Copyright 2019 Chinese Academy Medical Sciences
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2019 Chinese Academy Medical Sciences
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
CorporateAuthor 南京医科大学附属脑科医院 老年医学科,南京 210029 Department of Geriatrics, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
南京航空航天大学 计算机科学与技术学院 模式分析与机器智能工业和信息化部重点实验室,南京 211106 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China
CorporateAuthor_xml – name: 南京航空航天大学 计算机科学与技术学院 模式分析与机器智能工业和信息化部重点实验室,南京 211106 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China
– name: 南京医科大学附属脑科医院 老年医学科,南京 210029 Department of Geriatrics, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.24920/003576
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Pharmacy, Therapeutics, & Pharmacology
EndPage 119
ExternalDocumentID cmsj_e201902008
31315752
10_24920_003576
S1001929419300331
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61876082; 61861130366; 61703301
– fundername: the National Natural Science Foundation of China; the Jiangsu Provincial 333 High-level Talent Cultivation Projects
  funderid: (. 61876082, 61861130366, 61703301); the Jiangsu Provincial 333 High-level Talent Cultivation Projects
GroupedDBID ---
--K
-05
-0E
-SE
-S~
.~1
0R~
1B1
1~.
1~5
29B
2B.
2C~
4.4
457
4G.
53G
5GY
5VR
5VS
5XA
5XF
5XL
7-5
71M
92F
92I
92M
93N
93R
9D9
9DE
AAEDT
AALRI
AAQFI
AAXUO
ABBQC
ABKZE
ADMUD
AEKER
AFTJW
AFUIB
AGYEJ
AITUG
AJRQY
ALMA_UNASSIGNED_HOLDINGS
CAJEE
CAJUS
CCEZO
CHBEP
CIEJG
CW9
DU5
EBS
EJD
EP2
EP3
FA0
FDB
FNPLU
GBLVA
HZ~
J1W
JUIAU
M41
MO0
N9A
O-L
O9-
OZT
P-8
P-9
PC.
Q--
Q-4
Q38
R-E
RIG
ROL
RT5
S..
SDF
SES
T8U
TCJ
TGQ
U1F
U1G
U5E
U5O
WFFXF
AAYXX
ABWVN
ACRPL
ADNMO
AIGII
CITATION
AAXDM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
4A8
PSX
ID FETCH-LOGICAL-c3038-f34c71117c1e6949f257434fdf617d5cfd3c37745b7879ad5b38c1a5422db1a63
IEDL.DBID .~1
ISSN 1001-9294
IngestDate Thu May 29 04:10:08 EDT 2025
Thu Jul 10 20:50:49 EDT 2025
Thu Jan 02 23:00:37 EST 2025
Thu Apr 24 22:51:08 EDT 2025
Tue Jul 01 01:55:47 EDT 2025
Fri Feb 23 02:29:42 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords segmentation
magnetic resonance
multi-atlas
brain
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3038-f34c71117c1e6949f257434fdf617d5cfd3c37745b7879ad5b38c1a5422db1a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://cmsj.cams.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=2850
PMID 31315752
PQID 2259911385
PQPubID 23479
PageCount 10
ParticipantIDs wanfang_journals_cmsj_e201902008
proquest_miscellaneous_2259911385
pubmed_primary_31315752
crossref_primary_10_24920_003576
crossref_citationtrail_10_24920_003576
elsevier_sciencedirect_doi_10_24920_003576
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-Jun-30
PublicationDateYYYYMMDD 2019-06-30
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-Jun-30
  day: 30
PublicationDecade 2010
PublicationPlace China
PublicationPlace_xml – name: China
PublicationTitle Chinese medical sciences journal
PublicationTitleAlternate Chin Med Sci J
PublicationTitle_FL Chinese Medical Sciences Journal
PublicationYear 2019
Publisher Elsevier B.V
College of Computer Science and Technology, Nanjing University of Aeronautics and Astronau-tics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China%Department of Geriatrics, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
Publisher_xml – name: Elsevier B.V
– name: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronau-tics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China%Department of Geriatrics, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
References Makropoulos, Gousias, Ledig (bib50) 2014; 33
Warfield, Zou, Wells (bib12) 2004; 23
Smith, Jenkinson, Woolrich (bib8) 2004; 23
Thirion (bib11) 1998; 2
Lötjönen, Wolz, Koikkalainen (bib19) 2010; 49
Ronneberger, Fischer, Brox (bib54) 2015
Wang, Yushkevich (bib42) 2013; 7
Jie, Liu, Zhang (bib4) 2018; 27
Wang, Yushkevich (bib27) 2013
Lotjonen, Wolz, Koikkalainen (bib16) 2010; 49
Wu, Wang, Zhang (bib30) 2014; 18
Sanroma, Benkarim, Piella (bib38) 2018; 44
Tong, Wolz, Coupe (bib28) 2013; 76
Liu, Zhang, Shen (bib3) 2016; 35
Avants, Epstein, Grossman (bib9) 2008; 12
Evans, Collins, Mills (bib49) 1993
Wang, Suh, Das (bib25) 2013; 35
Aljabar, Rueckert, Crum (bib51) 2008; 43
Huo, Wu, Cao (bib39) 2018; 175
Jack, Bernstein, Fox (bib46) 2008; 27
(bib24) 2012
Heckemann, Hajnal, Aljabar (bib13) 2006; 33
Zhang, Li (bib43) 2010
Liu, Zhang, Adeli (bib5) 2018; 43
Pipitone, Park, Winterburn (bib52) 2014; 101
Langerak, van der Heide, Kotte (bib7) 2015; 130
Langerak, van der Heide, Kotte (bib20) 2010; 29
Song, Wu, Sun (bib33) 2015
Zu, Wang, Zhang (bib36) 2017; 63
Devanand, Pradhaban, Liu (bib1) 2007; 68
Benkarim, Piella, Ballester (bib34) 2017; 42
Wu, Kim, Sanroma (bib32) 2015; 106
Ranzato, Hinton (bib45) 2010
Cardoso, Leung, Modat (bib29) 2013; 17
Song, Wu, Bahrami (bib35) 2017; 36
Sun, Zu, Shao (bib40) 2019; 96
Yang, Zhang, Feng (bib44) 2011
Coupé, Manjon, Fonov (bib22) 2011; 54
Vercauteren, Pennec, Perchant (bib10) 2009; 45
Sun, Zu, Zhang (bib31) 2015
Zhang, Wang, Zhou (bib2) 2011; 55
Shelhamer, Long, Darrell (bib55) 2017; 39
Christensen, Geng, Kuhl (bib47) 2006; 30
Shattuck, Mirza, Adisetiyo (bib48) 2008; 39
Jenkinson, Smith (bib6) 2001; 5
Artaechevarria, Munoz-Barrutia, Ortiz-de-Solorzano (bib14) 2009; 28
Kittler (bib41) 1998; 1
(bib37) 2017
Rousseau, Habas, Studholme (bib23) 2011; 30
Wang, Yushkevich (bib26) 2013
Sabuncu, Yeo, Van Leemput (bib17) 2010; 29
Langerak, van der Heide, Kotte (bib18) 2010; 29
Chen, Gao, Cai (bib53) 2018
Aljabar, Heckemann, Hammers (bib15) 2009; 46
Zhang, Wu, Jia (bib21) 2011
References_xml – volume: 35
  start-page: 611
  year: 2013
  end-page: 623
  ident: bib25
  article-title: Multi-atlas segmentation with joint label fusion
  publication-title: IEEE Trans Pattern Anal Machine Intell
– volume: 39
  start-page: 640
  year: 2017
  end-page: 651
  ident: bib55
  article-title: Fully Convolutional Networks for Semantic Segmentation
  publication-title: IEEE Trans Pattern Anal Machine Intell
– start-page: 1226
  year: 2018
  end-page: 1234
  ident: bib53
  article-title: Voxel Deconvolutional Networks for 3D Brain Image Labeling
  publication-title: Kdd'18: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
– volume: 130
  start-page: 71
  year: 2015
  end-page: 79
  ident: bib7
  article-title: Improving label fusion in multi-atlas based segmentation by locally combining atlas selection and performance estimation
  publication-title: Comput Vision Image Understand
– volume: 101
  start-page: 494
  year: 2014
  end-page: 512
  ident: bib52
  article-title: Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates
  publication-title: Neuroimage
– volume: 33
  start-page: 1818
  year: 2014
  end-page: 1831
  ident: bib50
  article-title: Automatic whole brain MRI segmentation of the developing neonatal brain
  publication-title: IEEE Trans Med Imaging
– volume: 42
  start-page: 274
  year: 2017
  end-page: 287
  ident: bib34
  article-title: Discriminative confidence estimation for probabilistic multi-atlas label fusion
  publication-title: Med Image Anal
– start-page: 643
  year: 2011
  end-page: 650
  ident: bib21
  article-title: Confidence-guided sequential label Fusion for multi-atlas based segmentation
  publication-title: Int Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 35
  start-page: 1463
  year: 2016
  end-page: 1474
  ident: bib3
  article-title: Relationship induced multi-template learning for diagnosis of Alzheimer's disease and mild cognitive impairment
  publication-title: IEEE Trans Med Imaging
– volume: 5
  start-page: 143
  year: 2001
  end-page: 156
  ident: bib6
  article-title: A global optimisation method for robust affine registration of brain images
  publication-title: Med Image Anal
– volume: 29
  start-page: 1714
  year: 2010
  end-page: 1729
  ident: bib17
  article-title: A Generative model for image segmentation based on label fusion
  publication-title: IEEE Trans Med Imaging
– start-page: 543
  year: 2011
  end-page: 550
  ident: bib44
  article-title: Fisher discrimination dictionary learning for sparse representation
  publication-title: International Conference on Computer Vision
– volume: 44
  start-page: 143
  year: 2018
  end-page: 155
  ident: bib38
  article-title: Learning non-linear patch embeddings with neural networks for label fusion
  publication-title: Med Image Anal
– start-page: 2691
  year: 2010
  end-page: 2698
  ident: bib43
  article-title: Discriminative K-SVD for Dictionary Learning in Face Recognition
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 23
  start-page: 903
  year: 2004
  end-page: 921
  ident: bib12
  article-title: Simultaneous truth and performance level estimation (STAPLE): An algorithm for the validation of image segmentation
  publication-title: IEEE Trans Med Imaging
– volume: 17
  start-page: 671
  year: 2013
  end-page: 684
  ident: bib29
  article-title: STEPS: Similarity and Truth Estimation for Propagated Segmentations and its application to hippocampal segmentation and brain parcelation
  publication-title: Med Image Anal
– start-page: 711
  year: 2013
  end-page: 718
  ident: bib26
  article-title: Groupwise segmentation with multi-atlas joint label fusion
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 55
  start-page: 856
  year: 2011
  end-page: 867
  ident: bib2
  article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment
  publication-title: Neuroimage
– volume: 27
  start-page: 685
  year: 2008
  end-page: 691
  ident: bib46
  article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J Magnet Resonan Imaging
– volume: 49
  start-page: 2352
  year: 2010
  end-page: 2365
  ident: bib16
  article-title: Fast and robust multi-atlas segmentation of brain magnetic resonance images
  publication-title: Neuroimage
– volume: 7
  start-page: 27
  year: 2013
  ident: bib42
  article-title: Multi-atlas segmentation with joint label fusion and corrective learning—an open source implementation
  publication-title: Front Neuroinform
– volume: 36
  start-page: 162
  year: 2017
  end-page: 171
  ident: bib35
  article-title: Progressive multi-atlas label fusion by dictionary evolution
  publication-title: Med Image Anal
– volume: 45
  start-page: S61
  year: 2009
  end-page: S72
  ident: bib10
  article-title: Diffeomorphic demons: Efficient non-parametric image registration
  publication-title: Neuroimage
– volume: 63
  start-page: 511
  year: 2017
  end-page: 517
  ident: bib36
  article-title: Robust multi-atlas label propagation by deep sparse representation
  publication-title: Pattern Recognition
– volume: 43
  start-page: 157
  year: 2018
  end-page: 168
  ident: bib5
  article-title: Landmark-based deep multi-instance learning for brain disease diagnosis
  publication-title: Med Image Anal
– volume: 68
  start-page: 828
  year: 2007
  end-page: 836
  ident: bib1
  article-title: Hippocampal and entorhinal atrophy in mild cognitive impairment – Prediction of Alzheimer disease
  publication-title: Neurology
– volume: 33
  start-page: 115
  year: 2006
  end-page: 126
  ident: bib13
  article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion
  publication-title: Neuroimage
– volume: 46
  start-page: 726
  year: 2009
  end-page: 738
  ident: bib15
  article-title: Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy
  publication-title: Neuroimage
– volume: 30
  start-page: 1852
  year: 2011
  end-page: 1862
  ident: bib23
  article-title: A supervised patch-based approach for human brain labeling
  publication-title: IEEE Trans Med Imaging
– volume: 96
  start-page: 12
  year: 2019
  end-page: 24
  ident: bib40
  article-title: Reliability-based robust multi-atlas label fusion for brain MRI segmentation
  publication-title: Artif Intell Med
– start-page: 190
  year: 2015
  end-page: 197
  ident: bib33
  article-title: Progressive Label Fusion Framework for Multi-atlas Segmentation by Dictionary Evolution
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib54
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 27
  start-page: 2340
  year: 2018
  end-page: 2353
  ident: bib4
  article-title: Sub-network kernels for measuring similarity of brain connectivity networks in disease diagnosis
  publication-title: IEEE Trans Image Process
– start-page: 94
  year: 2012
  end-page: 102
  ident: bib24
  article-title: Sparse patch-based label fusion for multi-atlas segmentation
  publication-title: International Workshop on Multimodal Brain Image Analysis
– start-page: 128
  year: 2015
  end-page: 136
  ident: bib31
  article-title: Reliability guided forward and backward patch-based method for multi-atlas segmentation
  publication-title: International Workshop on Patch-based Techniques in Medical Imaging
– volume: 23
  start-page: S208
  year: 2004
  end-page: SS19
  ident: bib8
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: Neuroimage
– volume: 29
  start-page: 2000
  year: 2010
  end-page: 2008
  ident: bib18
  article-title: Label fusion in atlas-based segmentation using a selective and iterative method for performance level estimation (SIMPLE)
  publication-title: IEEE Trans Med Imaging
– volume: 76
  start-page: 11
  year: 2013
  end-page: 23
  ident: bib28
  article-title: Segmentation of MR images
  publication-title: Neuroimage
– volume: 30
  start-page: 2972
  year: 2006
  end-page: 2975
  ident: bib47
  article-title: Introduction to the non-rigid image registration evaluation project (NIREP)
  publication-title: IEEE Trans Magnet
– start-page: 2551
  year: 2010
  end-page: 2558
  ident: bib45
  article-title: Modeling pixel means and covariances using factorized third-order boltzmann machines
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 1
  start-page: 18
  year: 1998
  end-page: 27
  ident: bib41
  article-title: Combining classifiers: A theoretical framework
  publication-title: Pattern Anal App
– volume: 106
  start-page: 34
  year: 2015
  end-page: 46
  ident: bib32
  article-title: Hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition
  publication-title: Neuroimage
– volume: 39
  start-page: 1064
  year: 2008
  end-page: 1080
  ident: bib48
  article-title: Construction of a 3D probabilistic atlas of human cortical structures
  publication-title: Neuroimage
– start-page: 1813
  year: 1993
  end-page: 1817
  ident: bib49
  article-title: 3D Statistical Neuroanatomical Models from 305 MRI Volumes
  publication-title: IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference
– volume: 28
  start-page: 1266
  year: 2009
  end-page: 1277
  ident: bib14
  article-title: Combination strategies in multi-atlas image segmentation: application to brain MR data
  publication-title: IEEE Trans Med Imaging
– start-page: 7
  year: 2013
  ident: bib27
  article-title: Multi-atlas segmentation with joint label fusion and corrective learning — an open source implementation
  publication-title: Front Neuroinform
– volume: 18
  start-page: 881
  year: 2014
  end-page: 890
  ident: bib30
  article-title: A generative probability model of joint label fusion for multi-atlas based brain segmentation
  publication-title: Med Image Anal
– volume: 54
  start-page: 940
  year: 2011
  end-page: 954
  ident: bib22
  article-title: Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation
  publication-title: Neuroimage
– volume: 2
  start-page: 243
  year: 1998
  end-page: 260
  ident: bib11
  article-title: Image matching as a diffusion process: an analogy with Maxwell's demons
  publication-title: Med Image Anal
– volume: 43
  start-page: 225
  year: 2008
  end-page: 235
  ident: bib51
  article-title: Automated morphological analysis of magnetic resonance brain imaging using spectral analysis
  publication-title: NeuroImage
– volume: 175
  start-page: 201
  year: 2018
  end-page: 214
  ident: bib39
  article-title: Supervoxel based method for multi-atlas segmentation of brain MR images
  publication-title: Neuroimage
– volume: 49
  start-page: 2352
  year: 2010
  end-page: 2365
  ident: bib19
  article-title: Fast and robust multi-atlas segmentation of brain magnetic resonance images
  publication-title: Neuroimage
– volume: 29
  start-page: 2000
  year: 2010
  end-page: 2008
  ident: bib20
  article-title: Label fusion in atlas-based segmentation using a selective and iterative method for performance level estimation (SIMPLE)
  publication-title: IEEE Trans Med Imaging
– volume: 12
  start-page: 26
  year: 2008
  end-page: 41
  ident: bib9
  article-title: Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Med Image Anal
– start-page: 507
  year: 2017
  end-page: 510
  ident: bib37
  article-title: High-order boltzmann machine-based unsupervised feature learning for multi-atlas segmentation
  publication-title: IEEE International Symposium on Biomedical Imaging
SSID ssj0006184
Score 2.2076125
SecondaryResourceType review_article
Snippet Brain region-of-interesting (ROI) segmentation is an important prerequisite step for many computer-aid brain disease analyses. However, the human brain has the...
SourceID wanfang
proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 110
SubjectTerms brain
Brain - diagnostic imaging
Brain Mapping - methods
Humans
magnetic resonance
Magnetic Resonance Imaging - methods
multi-atlas
segmentation
Title Multi-Atlas Based Methods in Brain MR Image Segmentation
URI https://dx.doi.org/10.24920/003576
https://www.ncbi.nlm.nih.gov/pubmed/31315752
https://www.proquest.com/docview/2259911385
https://d.wanfangdata.com.cn/periodical/cmsj-e201902008
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fSxtBEB6CoPhSbKxttJYVJA_iNe6v3N2jSiUVIqEq-Lbs7e2GlOYULz7kxb_d2b1NUklf-hYuc9wyszPzLTvfDMCx1VTQtGB4LKEmEaYQSSYymwiXnkld4k_uucPDm_7gXlw_yIcWXC64ML6sMsb-JqaHaB2f9KI2e0-TSe-WBniSC4QgfiJZYLCL1O_y76-rMg8_0CTceOKx2UtH4qzI2ZkfZCZ9s5F_Z6R1xBmIPZXT1fivHHS1Ax8ieCTnzfo-QstWbdhsxknO27A1jBflbeiOmpbU81Nyt2JY1aekS0arZtXzXcgCAzc5nyGKJheY0koyDEOlazKpyIUfIEGGv8jPKcYdcmvH08hVqj7B_dWPu8tBEqcpJAbTVJY4LkyKkS011PZzkTt0VsGFKx2CmFIaV3LDEQzKAn0416UseGaoloKxsqC6z_dgo3qs7BcgjgltmcY_fTcymWltNacmNzbnTjPXge5Co8rEVuN-4sUfhUeOoHrVqL4DZCn41HTXWBc5WZhEvdsYCmP-uvDRwmgK3cTffejKPr7UCsMWImHKM9mBz401l1_klFNErQxXE82roiPXykzr38oyz7j3lSL7_7OaA9j2LzbVhV9hY_b8Yg8RwsyKb2GPvgFw0-nf
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9tAEB2hVAUuVZsWCNCySFUOVUzYr8Q-AioKLUYIgsRttV7voiBiEA6HXPjtzNobQpVeuFn2yF7NeGbeamfmAfy0mgrazxhuS6iJhMlEFIvYRsL196XO8ZL73uH0rDe4En-u5fUSHM16YXxZZYj9dUyvonW40w3a7D6MRt1LWsGTRCAE8YxkuAX6INB9vXfuPc_rPDyjSXXkiftmLx46Z0XC9j2TmfTTRv6fkhYhZ9XZUzhd3LxJQsef4VNAj-SgXuAXWLJFEz7WfJLTJiyn4aS8Ce3zeib1tEOG8xarskPa5Hw-rXr6FeKqBTc6mCCMJoeY03KSVqzSJRkV5NAzSJD0gpyMMfCQS3szDs1KxTe4Ov49PBpEgU4hMpin4shxYfoY2vqG2l4iEofeKrhwuUMUk0vjcm44okGZoRMnOpcZjw3VUjCWZ1T3-Bo0ivvCbgBxTGjLND7048hkrLXVnJrE2IQ7zVwL2jONKhNmjXvKizuFe45K9apWfQvIq-BDPV5jUeTXzCTqnz9DYdBfFN6dGU2hn_jDD13Y-6dSYdxCKEx5LFuwXlvz9YuccoqwleFqgnlV8ORSmXF5qyzzLfe-VGTzPavZgZXBMD1Vpydnf7dg1b-kLjXchsbk8cl-RzwzyX5U_-sLMXns-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Atlas+Based+Methods+in+Brain+MR+Image+Segmentation&rft.jtitle=Chinese+medical+sciences+journal&rft.au=Liang%2C+Sun&rft.au=Li%2C+Zhang&rft.au=Daoqiang%2C+Zhang&rft.date=2019-06-30&rft.issn=1001-9294&rft.volume=34&rft.issue=2&rft.spage=110&rft.epage=119&rft_id=info:doi/10.24920%2F003576&rft.externalDBID=n%2Fa&rft.externalDocID=10_24920_003576
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fcmsj-e%2Fcmsj-e.jpg