Multi-Atlas Based Methods in Brain MR Image Segmentation
Brain region-of-interesting (ROI) segmentation is an important prerequisite step for many computer-aid brain disease analyses. However, the human brain has the complicated anatomical structure. Meanwhile, the brain MR images often suffer from the low intensity contrast around the boundary of ROIs, l...
Saved in:
Published in | Chinese medical sciences journal Vol. 34; no. 2; pp. 110 - 119 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
China
Elsevier B.V
30.06.2019
College of Computer Science and Technology, Nanjing University of Aeronautics and Astronau-tics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China%Department of Geriatrics, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Brain region-of-interesting (ROI) segmentation is an important prerequisite step for many computer-aid brain disease analyses. However, the human brain has the complicated anatomical structure. Meanwhile, the brain MR images often suffer from the low intensity contrast around the boundary of ROIs, large inter-subject variance and large inner-subject variance. To address these issues, many multi-atlas based segmentation methods are proposed for brain ROI segmentation in the last decade. In this paper, multi-atlas based methods for brain MR image segmentation were reviewed regarding several registration toolboxes which are widely used in the multi-atlas methods, conventional methods for label fusion, datasets that have been used for evaluating the multi-atlas methods, as well as the applications of multi-atlas based segmentation in clinical researches. We propose that incorporating the anatomical prior into the end-to-end deep learning architectures for brain ROI segmentation is an important direction in the future. |
---|---|
AbstractList | Brain region-of-interesting (ROI) segmentation is an important prerequisite step for many computer-aid brain disease analyses. However, the human brain has the complicated anatomical structure. Meanwhile, the brain MR images often suffer from the low intensity contrast around the boundary of ROIs, large inter-subject variance and large inner-subject variance. To address these issues, many multi-atlas based segmentation methods are proposed for brain ROI segmentation in the last decade. In this paper, multi-atlas based methods for brain MR image segmentation were reviewed regarding several registration toolboxes which are widely used in the multi-atlas methods, conventional methods for label fusion, datasets that have been used for evaluating the multi-atlas methods, as well as the applications of multi-atlas based segmentation in clinical researches. We propose that incorporating the anatomical prior into the end-to-end deep learning architectures for brain ROI segmentation is an important direction in the future.Brain region-of-interesting (ROI) segmentation is an important prerequisite step for many computer-aid brain disease analyses. However, the human brain has the complicated anatomical structure. Meanwhile, the brain MR images often suffer from the low intensity contrast around the boundary of ROIs, large inter-subject variance and large inner-subject variance. To address these issues, many multi-atlas based segmentation methods are proposed for brain ROI segmentation in the last decade. In this paper, multi-atlas based methods for brain MR image segmentation were reviewed regarding several registration toolboxes which are widely used in the multi-atlas methods, conventional methods for label fusion, datasets that have been used for evaluating the multi-atlas methods, as well as the applications of multi-atlas based segmentation in clinical researches. We propose that incorporating the anatomical prior into the end-to-end deep learning architectures for brain ROI segmentation is an important direction in the future. Brain region-of-interesting (ROI) segmentation is an important prerequisite step for many computer-aid brain disease analyses. However, the human brain has the complicated anatomical structure. Meanwhile, the brain MR images often suffer from the low intensity contrast around the boundary of ROIs, large inter-subject variance and large inner-subject variance.To address these issues, many multi-atlas based segmentation methods are proposed for brain ROI segmentation in the last decade. In this paper, multi-atlas based methods for brain MR image segmentation were reviewed regarding several registration toolboxes which are widely used in the multi-atlas methods, conventional methods for label fusion, datasets that have been used for evaluating the multi-atlas methods, as well as the applications of multi-atlas based segmentation in clinical researches.We propose that incorporating the anatomical prior into the end-to-end deep learning architectures for brain ROI segmentation is an important direction in the future. |
Author | Sun, Liang Zhang, Daoqiang Zhang, Li |
AuthorAffiliation | College of Computer Science and Technology, Nanjing University of Aeronautics and Astronau-tics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China%Department of Geriatrics, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China |
AuthorAffiliation_xml | – name: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronau-tics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China%Department of Geriatrics, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China |
Author_xml | – sequence: 1 givenname: Liang surname: Sun fullname: Sun, Liang organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China – sequence: 2 givenname: Li surname: Zhang fullname: Zhang, Li organization: Department of Geriatrics, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China – sequence: 3 givenname: Daoqiang surname: Zhang fullname: Zhang, Daoqiang email: dqzhang@nuaa.edu.cn organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31315752$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0EtP3DAQwHEfQCyPqt-gyg0uKR4_4vi4iwpdiRVSH2fLa0-2XiUO2EkR356ooUUqXGYuP3uk_wk5iH1EQj4C_cyEZvSSUi5VdUCOgVIoNdNiQU5y3lNKK6jFEVlw4CCVZMek3oztEMrl0NpcrGxGX2xw-NX7XIRYrJKd5uZbse7sDovvuOswDnYIfTwjh41tM3542afk5_WXH1dfy9u7m_XV8rZ0nPK6bLhwCgCUA6y00A2TSnDR-KYC5aVrPHdcKSG3qlbaernltQMrBWN-C7bip-R8_vfRxsbGndn3Y4rTReO6vDfIKGjKKK0neTHL-9Q_jJgH04XssG1txH7MhjGpNQCv5UQ_vdBx26E39yl0Nj2Zv11er7rU55yw-UeAmj-VzVx5kuV_0oW50DDFa9_xMHucov0OmEx2AaNDHxK6wfg-vHnzDMyJivU |
CitedBy_id | crossref_primary_10_1109_JBHI_2024_3516012 crossref_primary_10_3934_mbe_2022089 crossref_primary_10_1007_s11042_023_17259_9 crossref_primary_10_1088_1361_6560_abfbf4 |
ContentType | Journal Article |
Copyright | 2019 Chinese Academy Medical Sciences Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2019 Chinese Academy Medical Sciences – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
CorporateAuthor | 南京医科大学附属脑科医院 老年医学科,南京 210029 Department of Geriatrics, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China 南京航空航天大学 计算机科学与技术学院 模式分析与机器智能工业和信息化部重点实验室,南京 211106 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China |
CorporateAuthor_xml | – name: 南京航空航天大学 计算机科学与技术学院 模式分析与机器智能工业和信息化部重点实验室,南京 211106 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China – name: 南京医科大学附属脑科医院 老年医学科,南京 210029 Department of Geriatrics, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.24920/003576 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology Pharmacy, Therapeutics, & Pharmacology |
EndPage | 119 |
ExternalDocumentID | cmsj_e201902008 31315752 10_24920_003576 S1001929419300331 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61876082; 61861130366; 61703301 – fundername: the National Natural Science Foundation of China; the Jiangsu Provincial 333 High-level Talent Cultivation Projects funderid: (. 61876082, 61861130366, 61703301); the Jiangsu Provincial 333 High-level Talent Cultivation Projects |
GroupedDBID | --- --K -05 -0E -SE -S~ .~1 0R~ 1B1 1~. 1~5 29B 2B. 2C~ 4.4 457 4G. 53G 5GY 5VR 5VS 5XA 5XF 5XL 7-5 71M 92F 92I 92M 93N 93R 9D9 9DE AAEDT AALRI AAQFI AAXUO ABBQC ABKZE ADMUD AEKER AFTJW AFUIB AGYEJ AITUG AJRQY ALMA_UNASSIGNED_HOLDINGS CAJEE CAJUS CCEZO CHBEP CIEJG CW9 DU5 EBS EJD EP2 EP3 FA0 FDB FNPLU GBLVA HZ~ J1W JUIAU M41 MO0 N9A O-L O9- OZT P-8 P-9 PC. Q-- Q-4 Q38 R-E RIG ROL RT5 S.. SDF SES T8U TCJ TGQ U1F U1G U5E U5O WFFXF AAYXX ABWVN ACRPL ADNMO AIGII CITATION AAXDM CGR CUY CVF ECM EIF NPM 7X8 4A8 PSX |
ID | FETCH-LOGICAL-c3038-f34c71117c1e6949f257434fdf617d5cfd3c37745b7879ad5b38c1a5422db1a63 |
IEDL.DBID | .~1 |
ISSN | 1001-9294 |
IngestDate | Thu May 29 04:10:08 EDT 2025 Thu Jul 10 20:50:49 EDT 2025 Thu Jan 02 23:00:37 EST 2025 Thu Apr 24 22:51:08 EDT 2025 Tue Jul 01 01:55:47 EDT 2025 Fri Feb 23 02:29:42 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | segmentation magnetic resonance multi-atlas brain |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3038-f34c71117c1e6949f257434fdf617d5cfd3c37745b7879ad5b38c1a5422db1a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://cmsj.cams.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=2850 |
PMID | 31315752 |
PQID | 2259911385 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | wanfang_journals_cmsj_e201902008 proquest_miscellaneous_2259911385 pubmed_primary_31315752 crossref_primary_10_24920_003576 crossref_citationtrail_10_24920_003576 elsevier_sciencedirect_doi_10_24920_003576 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-Jun-30 |
PublicationDateYYYYMMDD | 2019-06-30 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-Jun-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | China |
PublicationPlace_xml | – name: China |
PublicationTitle | Chinese medical sciences journal |
PublicationTitleAlternate | Chin Med Sci J |
PublicationTitle_FL | Chinese Medical Sciences Journal |
PublicationYear | 2019 |
Publisher | Elsevier B.V College of Computer Science and Technology, Nanjing University of Aeronautics and Astronau-tics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China%Department of Geriatrics, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China |
Publisher_xml | – name: Elsevier B.V – name: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronau-tics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China%Department of Geriatrics, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China |
References | Makropoulos, Gousias, Ledig (bib50) 2014; 33 Warfield, Zou, Wells (bib12) 2004; 23 Smith, Jenkinson, Woolrich (bib8) 2004; 23 Thirion (bib11) 1998; 2 Lötjönen, Wolz, Koikkalainen (bib19) 2010; 49 Ronneberger, Fischer, Brox (bib54) 2015 Wang, Yushkevich (bib42) 2013; 7 Jie, Liu, Zhang (bib4) 2018; 27 Wang, Yushkevich (bib27) 2013 Lotjonen, Wolz, Koikkalainen (bib16) 2010; 49 Wu, Wang, Zhang (bib30) 2014; 18 Sanroma, Benkarim, Piella (bib38) 2018; 44 Tong, Wolz, Coupe (bib28) 2013; 76 Liu, Zhang, Shen (bib3) 2016; 35 Avants, Epstein, Grossman (bib9) 2008; 12 Evans, Collins, Mills (bib49) 1993 Wang, Suh, Das (bib25) 2013; 35 Aljabar, Rueckert, Crum (bib51) 2008; 43 Huo, Wu, Cao (bib39) 2018; 175 Jack, Bernstein, Fox (bib46) 2008; 27 (bib24) 2012 Heckemann, Hajnal, Aljabar (bib13) 2006; 33 Zhang, Li (bib43) 2010 Liu, Zhang, Adeli (bib5) 2018; 43 Pipitone, Park, Winterburn (bib52) 2014; 101 Langerak, van der Heide, Kotte (bib7) 2015; 130 Langerak, van der Heide, Kotte (bib20) 2010; 29 Song, Wu, Sun (bib33) 2015 Zu, Wang, Zhang (bib36) 2017; 63 Devanand, Pradhaban, Liu (bib1) 2007; 68 Benkarim, Piella, Ballester (bib34) 2017; 42 Wu, Kim, Sanroma (bib32) 2015; 106 Ranzato, Hinton (bib45) 2010 Cardoso, Leung, Modat (bib29) 2013; 17 Song, Wu, Bahrami (bib35) 2017; 36 Sun, Zu, Shao (bib40) 2019; 96 Yang, Zhang, Feng (bib44) 2011 Coupé, Manjon, Fonov (bib22) 2011; 54 Vercauteren, Pennec, Perchant (bib10) 2009; 45 Sun, Zu, Zhang (bib31) 2015 Zhang, Wang, Zhou (bib2) 2011; 55 Shelhamer, Long, Darrell (bib55) 2017; 39 Christensen, Geng, Kuhl (bib47) 2006; 30 Shattuck, Mirza, Adisetiyo (bib48) 2008; 39 Jenkinson, Smith (bib6) 2001; 5 Artaechevarria, Munoz-Barrutia, Ortiz-de-Solorzano (bib14) 2009; 28 Kittler (bib41) 1998; 1 (bib37) 2017 Rousseau, Habas, Studholme (bib23) 2011; 30 Wang, Yushkevich (bib26) 2013 Sabuncu, Yeo, Van Leemput (bib17) 2010; 29 Langerak, van der Heide, Kotte (bib18) 2010; 29 Chen, Gao, Cai (bib53) 2018 Aljabar, Heckemann, Hammers (bib15) 2009; 46 Zhang, Wu, Jia (bib21) 2011 |
References_xml | – volume: 35 start-page: 611 year: 2013 end-page: 623 ident: bib25 article-title: Multi-atlas segmentation with joint label fusion publication-title: IEEE Trans Pattern Anal Machine Intell – volume: 39 start-page: 640 year: 2017 end-page: 651 ident: bib55 article-title: Fully Convolutional Networks for Semantic Segmentation publication-title: IEEE Trans Pattern Anal Machine Intell – start-page: 1226 year: 2018 end-page: 1234 ident: bib53 article-title: Voxel Deconvolutional Networks for 3D Brain Image Labeling publication-title: Kdd'18: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining – volume: 130 start-page: 71 year: 2015 end-page: 79 ident: bib7 article-title: Improving label fusion in multi-atlas based segmentation by locally combining atlas selection and performance estimation publication-title: Comput Vision Image Understand – volume: 101 start-page: 494 year: 2014 end-page: 512 ident: bib52 article-title: Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates publication-title: Neuroimage – volume: 33 start-page: 1818 year: 2014 end-page: 1831 ident: bib50 article-title: Automatic whole brain MRI segmentation of the developing neonatal brain publication-title: IEEE Trans Med Imaging – volume: 42 start-page: 274 year: 2017 end-page: 287 ident: bib34 article-title: Discriminative confidence estimation for probabilistic multi-atlas label fusion publication-title: Med Image Anal – start-page: 643 year: 2011 end-page: 650 ident: bib21 article-title: Confidence-guided sequential label Fusion for multi-atlas based segmentation publication-title: Int Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 35 start-page: 1463 year: 2016 end-page: 1474 ident: bib3 article-title: Relationship induced multi-template learning for diagnosis of Alzheimer's disease and mild cognitive impairment publication-title: IEEE Trans Med Imaging – volume: 5 start-page: 143 year: 2001 end-page: 156 ident: bib6 article-title: A global optimisation method for robust affine registration of brain images publication-title: Med Image Anal – volume: 29 start-page: 1714 year: 2010 end-page: 1729 ident: bib17 article-title: A Generative model for image segmentation based on label fusion publication-title: IEEE Trans Med Imaging – start-page: 543 year: 2011 end-page: 550 ident: bib44 article-title: Fisher discrimination dictionary learning for sparse representation publication-title: International Conference on Computer Vision – volume: 44 start-page: 143 year: 2018 end-page: 155 ident: bib38 article-title: Learning non-linear patch embeddings with neural networks for label fusion publication-title: Med Image Anal – start-page: 2691 year: 2010 end-page: 2698 ident: bib43 article-title: Discriminative K-SVD for Dictionary Learning in Face Recognition publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 23 start-page: 903 year: 2004 end-page: 921 ident: bib12 article-title: Simultaneous truth and performance level estimation (STAPLE): An algorithm for the validation of image segmentation publication-title: IEEE Trans Med Imaging – volume: 17 start-page: 671 year: 2013 end-page: 684 ident: bib29 article-title: STEPS: Similarity and Truth Estimation for Propagated Segmentations and its application to hippocampal segmentation and brain parcelation publication-title: Med Image Anal – start-page: 711 year: 2013 end-page: 718 ident: bib26 article-title: Groupwise segmentation with multi-atlas joint label fusion publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 55 start-page: 856 year: 2011 end-page: 867 ident: bib2 article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment publication-title: Neuroimage – volume: 27 start-page: 685 year: 2008 end-page: 691 ident: bib46 article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods publication-title: J Magnet Resonan Imaging – volume: 49 start-page: 2352 year: 2010 end-page: 2365 ident: bib16 article-title: Fast and robust multi-atlas segmentation of brain magnetic resonance images publication-title: Neuroimage – volume: 7 start-page: 27 year: 2013 ident: bib42 article-title: Multi-atlas segmentation with joint label fusion and corrective learning—an open source implementation publication-title: Front Neuroinform – volume: 36 start-page: 162 year: 2017 end-page: 171 ident: bib35 article-title: Progressive multi-atlas label fusion by dictionary evolution publication-title: Med Image Anal – volume: 45 start-page: S61 year: 2009 end-page: S72 ident: bib10 article-title: Diffeomorphic demons: Efficient non-parametric image registration publication-title: Neuroimage – volume: 63 start-page: 511 year: 2017 end-page: 517 ident: bib36 article-title: Robust multi-atlas label propagation by deep sparse representation publication-title: Pattern Recognition – volume: 43 start-page: 157 year: 2018 end-page: 168 ident: bib5 article-title: Landmark-based deep multi-instance learning for brain disease diagnosis publication-title: Med Image Anal – volume: 68 start-page: 828 year: 2007 end-page: 836 ident: bib1 article-title: Hippocampal and entorhinal atrophy in mild cognitive impairment – Prediction of Alzheimer disease publication-title: Neurology – volume: 33 start-page: 115 year: 2006 end-page: 126 ident: bib13 article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion publication-title: Neuroimage – volume: 46 start-page: 726 year: 2009 end-page: 738 ident: bib15 article-title: Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy publication-title: Neuroimage – volume: 30 start-page: 1852 year: 2011 end-page: 1862 ident: bib23 article-title: A supervised patch-based approach for human brain labeling publication-title: IEEE Trans Med Imaging – volume: 96 start-page: 12 year: 2019 end-page: 24 ident: bib40 article-title: Reliability-based robust multi-atlas label fusion for brain MRI segmentation publication-title: Artif Intell Med – start-page: 190 year: 2015 end-page: 197 ident: bib33 article-title: Progressive Label Fusion Framework for Multi-atlas Segmentation by Dictionary Evolution publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 234 year: 2015 end-page: 241 ident: bib54 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 27 start-page: 2340 year: 2018 end-page: 2353 ident: bib4 article-title: Sub-network kernels for measuring similarity of brain connectivity networks in disease diagnosis publication-title: IEEE Trans Image Process – start-page: 94 year: 2012 end-page: 102 ident: bib24 article-title: Sparse patch-based label fusion for multi-atlas segmentation publication-title: International Workshop on Multimodal Brain Image Analysis – start-page: 128 year: 2015 end-page: 136 ident: bib31 article-title: Reliability guided forward and backward patch-based method for multi-atlas segmentation publication-title: International Workshop on Patch-based Techniques in Medical Imaging – volume: 23 start-page: S208 year: 2004 end-page: SS19 ident: bib8 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: Neuroimage – volume: 29 start-page: 2000 year: 2010 end-page: 2008 ident: bib18 article-title: Label fusion in atlas-based segmentation using a selective and iterative method for performance level estimation (SIMPLE) publication-title: IEEE Trans Med Imaging – volume: 76 start-page: 11 year: 2013 end-page: 23 ident: bib28 article-title: Segmentation of MR images publication-title: Neuroimage – volume: 30 start-page: 2972 year: 2006 end-page: 2975 ident: bib47 article-title: Introduction to the non-rigid image registration evaluation project (NIREP) publication-title: IEEE Trans Magnet – start-page: 2551 year: 2010 end-page: 2558 ident: bib45 article-title: Modeling pixel means and covariances using factorized third-order boltzmann machines publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 1 start-page: 18 year: 1998 end-page: 27 ident: bib41 article-title: Combining classifiers: A theoretical framework publication-title: Pattern Anal App – volume: 106 start-page: 34 year: 2015 end-page: 46 ident: bib32 article-title: Hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition publication-title: Neuroimage – volume: 39 start-page: 1064 year: 2008 end-page: 1080 ident: bib48 article-title: Construction of a 3D probabilistic atlas of human cortical structures publication-title: Neuroimage – start-page: 1813 year: 1993 end-page: 1817 ident: bib49 article-title: 3D Statistical Neuroanatomical Models from 305 MRI Volumes publication-title: IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference – volume: 28 start-page: 1266 year: 2009 end-page: 1277 ident: bib14 article-title: Combination strategies in multi-atlas image segmentation: application to brain MR data publication-title: IEEE Trans Med Imaging – start-page: 7 year: 2013 ident: bib27 article-title: Multi-atlas segmentation with joint label fusion and corrective learning — an open source implementation publication-title: Front Neuroinform – volume: 18 start-page: 881 year: 2014 end-page: 890 ident: bib30 article-title: A generative probability model of joint label fusion for multi-atlas based brain segmentation publication-title: Med Image Anal – volume: 54 start-page: 940 year: 2011 end-page: 954 ident: bib22 article-title: Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation publication-title: Neuroimage – volume: 2 start-page: 243 year: 1998 end-page: 260 ident: bib11 article-title: Image matching as a diffusion process: an analogy with Maxwell's demons publication-title: Med Image Anal – volume: 43 start-page: 225 year: 2008 end-page: 235 ident: bib51 article-title: Automated morphological analysis of magnetic resonance brain imaging using spectral analysis publication-title: NeuroImage – volume: 175 start-page: 201 year: 2018 end-page: 214 ident: bib39 article-title: Supervoxel based method for multi-atlas segmentation of brain MR images publication-title: Neuroimage – volume: 49 start-page: 2352 year: 2010 end-page: 2365 ident: bib19 article-title: Fast and robust multi-atlas segmentation of brain magnetic resonance images publication-title: Neuroimage – volume: 29 start-page: 2000 year: 2010 end-page: 2008 ident: bib20 article-title: Label fusion in atlas-based segmentation using a selective and iterative method for performance level estimation (SIMPLE) publication-title: IEEE Trans Med Imaging – volume: 12 start-page: 26 year: 2008 end-page: 41 ident: bib9 article-title: Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain publication-title: Med Image Anal – start-page: 507 year: 2017 end-page: 510 ident: bib37 article-title: High-order boltzmann machine-based unsupervised feature learning for multi-atlas segmentation publication-title: IEEE International Symposium on Biomedical Imaging |
SSID | ssj0006184 |
Score | 2.2076125 |
SecondaryResourceType | review_article |
Snippet | Brain region-of-interesting (ROI) segmentation is an important prerequisite step for many computer-aid brain disease analyses. However, the human brain has the... |
SourceID | wanfang proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 110 |
SubjectTerms | brain Brain - diagnostic imaging Brain Mapping - methods Humans magnetic resonance Magnetic Resonance Imaging - methods multi-atlas segmentation |
Title | Multi-Atlas Based Methods in Brain MR Image Segmentation |
URI | https://dx.doi.org/10.24920/003576 https://www.ncbi.nlm.nih.gov/pubmed/31315752 https://www.proquest.com/docview/2259911385 https://d.wanfangdata.com.cn/periodical/cmsj-e201902008 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fSxtBEB6CoPhSbKxttJYVJA_iNe6v3N2jSiUVIqEq-Lbs7e2GlOYULz7kxb_d2b1NUklf-hYuc9wyszPzLTvfDMCx1VTQtGB4LKEmEaYQSSYymwiXnkld4k_uucPDm_7gXlw_yIcWXC64ML6sMsb-JqaHaB2f9KI2e0-TSe-WBniSC4QgfiJZYLCL1O_y76-rMg8_0CTceOKx2UtH4qzI2ZkfZCZ9s5F_Z6R1xBmIPZXT1fivHHS1Ax8ieCTnzfo-QstWbdhsxknO27A1jBflbeiOmpbU81Nyt2JY1aekS0arZtXzXcgCAzc5nyGKJheY0koyDEOlazKpyIUfIEGGv8jPKcYdcmvH08hVqj7B_dWPu8tBEqcpJAbTVJY4LkyKkS011PZzkTt0VsGFKx2CmFIaV3LDEQzKAn0416UseGaoloKxsqC6z_dgo3qs7BcgjgltmcY_fTcymWltNacmNzbnTjPXge5Co8rEVuN-4sUfhUeOoHrVqL4DZCn41HTXWBc5WZhEvdsYCmP-uvDRwmgK3cTffejKPr7UCsMWImHKM9mBz401l1_klFNErQxXE82roiPXykzr38oyz7j3lSL7_7OaA9j2LzbVhV9hY_b8Yg8RwsyKb2GPvgFw0-nf |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9tAEB2hVAUuVZsWCNCySFUOVUzYr8Q-AioKLUYIgsRttV7voiBiEA6HXPjtzNobQpVeuFn2yF7NeGbeamfmAfy0mgrazxhuS6iJhMlEFIvYRsL196XO8ZL73uH0rDe4En-u5fUSHM16YXxZZYj9dUyvonW40w3a7D6MRt1LWsGTRCAE8YxkuAX6INB9vXfuPc_rPDyjSXXkiftmLx46Z0XC9j2TmfTTRv6fkhYhZ9XZUzhd3LxJQsef4VNAj-SgXuAXWLJFEz7WfJLTJiyn4aS8Ce3zeib1tEOG8xarskPa5Hw-rXr6FeKqBTc6mCCMJoeY03KSVqzSJRkV5NAzSJD0gpyMMfCQS3szDs1KxTe4Ov49PBpEgU4hMpin4shxYfoY2vqG2l4iEofeKrhwuUMUk0vjcm44okGZoRMnOpcZjw3VUjCWZ1T3-Bo0ivvCbgBxTGjLND7048hkrLXVnJrE2IQ7zVwL2jONKhNmjXvKizuFe45K9apWfQvIq-BDPV5jUeTXzCTqnz9DYdBfFN6dGU2hn_jDD13Y-6dSYdxCKEx5LFuwXlvz9YuccoqwleFqgnlV8ORSmXF5qyzzLfe-VGTzPavZgZXBMD1Vpydnf7dg1b-kLjXchsbk8cl-RzwzyX5U_-sLMXns-g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Atlas+Based+Methods+in+Brain+MR+Image+Segmentation&rft.jtitle=Chinese+medical+sciences+journal&rft.au=Liang%2C+Sun&rft.au=Li%2C+Zhang&rft.au=Daoqiang%2C+Zhang&rft.date=2019-06-30&rft.issn=1001-9294&rft.volume=34&rft.issue=2&rft.spage=110&rft.epage=119&rft_id=info:doi/10.24920%2F003576&rft.externalDBID=n%2Fa&rft.externalDocID=10_24920_003576 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fcmsj-e%2Fcmsj-e.jpg |