Discrete wavelet-based trend identification in hydrologic time series

Trend identification is a substantial issue in hydrologic series analysis, but it is also a difficult task in practice due to the confusing concept of trend and disadvantages of methods. In this article, an improved definition of trend was given as follows: ‘a trend is the deterministic component in...

Full description

Saved in:
Bibliographic Details
Published inHydrological processes Vol. 27; no. 14; pp. 2021 - 2031
Main Authors Sang, Yan-Fang, Wang, Zhonggen, Liu, Changming
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 01.07.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Trend identification is a substantial issue in hydrologic series analysis, but it is also a difficult task in practice due to the confusing concept of trend and disadvantages of methods. In this article, an improved definition of trend was given as follows: ‘a trend is the deterministic component in the analysed data and corresponds to the biggest temporal scale on the condition of giving the concerned temporal scale’. It emphasizes the intrinsic and deterministic properties of trend, can clearly distinguish trend from periodicities and points out the prerequisite of the concerned temporal scale only by giving which the trend has its specific meaning. Correspondingly, the discrete wavelet‐based method for trend identification was improved. Differing from those methods used presently, the improved method is to identify trend by comparing the energy difference between hydrologic data and noise, and it can simultaneously separate periodicities and noise. Furthermore, the improved method can quantitatively estimate the statistical significance of the identified trend by using proper confidence interval. Analyses of both synthetic and observed series indicated the identical power of the improved method as the Mann–Kendall test in assessing the statistical significance of the trend in hydrologic data, and by using the former, the identified trend can adaptively reflect the nonlinear and nonstationary variability of hydrologic data. Besides, the results also showed the influences of three key factors (wavelet choice, decomposition level choice and noise content) on discrete wavelet‐based trend identification; hence, they should be carefully considered in practice. Copyright © 2012 John Wiley & Sons, Ltd.
AbstractList Trend identification is a substantial issue in hydrologic series analysis, but it is also a difficult task in practice due to the confusing concept of trend and disadvantages of methods. In this article, an improved definition of trend was given as follows: ‘a trend is the deterministic component in the analysed data and corresponds to the biggest temporal scale on the condition of giving the concerned temporal scale’. It emphasizes the intrinsic and deterministic properties of trend, can clearly distinguish trend from periodicities and points out the prerequisite of the concerned temporal scale only by giving which the trend has its specific meaning. Correspondingly, the discrete wavelet‐based method for trend identification was improved. Differing from those methods used presently, the improved method is to identify trend by comparing the energy difference between hydrologic data and noise, and it can simultaneously separate periodicities and noise. Furthermore, the improved method can quantitatively estimate the statistical significance of the identified trend by using proper confidence interval. Analyses of both synthetic and observed series indicated the identical power of the improved method as the Mann–Kendall test in assessing the statistical significance of the trend in hydrologic data, and by using the former, the identified trend can adaptively reflect the nonlinear and nonstationary variability of hydrologic data. Besides, the results also showed the influences of three key factors (wavelet choice, decomposition level choice and noise content) on discrete wavelet‐based trend identification; hence, they should be carefully considered in practice. Copyright © 2012 John Wiley & Sons, Ltd.
Author Wang, Zhonggen
Liu, Changming
Sang, Yan-Fang
Author_xml – sequence: 1
  givenname: Yan-Fang
  surname: Sang
  fullname: Sang, Yan-Fang
  email: Correspondence to: Yan-Fang Sang, Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. , (Yan-Fang Sang); (Zhonggen Wang), sangyf@igsnrr.ac.cnsunsangyf@gmail.comwangzg@igsnrr.ac.cn
  organization: Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China
– sequence: 2
  givenname: Zhonggen
  surname: Wang
  fullname: Wang, Zhonggen
  organization: Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China
– sequence: 3
  givenname: Changming
  surname: Liu
  fullname: Liu, Changming
  organization: Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China
BookMark eNp1j11LwzAUhoNMcJuCP6GX3nSetEubXcqcmzB0Az_wKqTJiYt27UiCs__ezomg6NXhhed9OU-PdKq6QkJOKQwoQHK-ajaDUcqyA9KlMBrFFDjrkC5wzuIMeH5Eet6_AMAQOHTJ5NJ65TBgtJVvWGKIC-lRR8FhpSOrsQrWWCWDravIVtGq0a4u62eromDXGHl0Fv0xOTSy9Hjydfvk_mpyN57F89vp9fhiHqsU0iw2iUmYoVzKkZHUgNJDDTJPkWd5knOdcFBtkO2bTKlMFwiAiQFT5IoZWaR9crbfVa723qERG2fX0jWCgtjpi1Zf7PRbdPALVTZ8agQnbflXId4XtrbE5t9hMXta_OStD_j-zUv3KrI8zZl4vJkK9jBc0CVdiln6AW5Pfmg
CitedBy_id crossref_primary_10_1016_j_atmosres_2017_10_012
crossref_primary_10_1016_j_jhydrol_2019_124503
crossref_primary_10_1155_2020_7345676
crossref_primary_10_1007_s10661_021_08907_4
crossref_primary_10_1007_s40808_017_0325_9
crossref_primary_10_1016_j_jhydrol_2016_07_006
crossref_primary_10_1371_journal_pone_0104663
crossref_primary_10_1002_hyp_13934
crossref_primary_10_1002_joc_6314
crossref_primary_10_5194_hess_22_4213_2018
crossref_primary_10_1007_s00704_024_05137_9
crossref_primary_10_1016_j_ejrh_2022_101157
crossref_primary_10_5194_hess_22_757_2018
crossref_primary_10_1051_e3sconf_20171700051
crossref_primary_10_2139_ssrn_3353075
crossref_primary_10_1007_s12040_016_0701_2
crossref_primary_10_1080_02626667_2012_742194
crossref_primary_10_1175_JHM_D_14_0210_1
crossref_primary_10_1016_j_atmosres_2016_07_030
crossref_primary_10_3390_en12081416
crossref_primary_10_1029_2022GL100550
crossref_primary_10_1002_joc_4042
crossref_primary_10_1016_j_jhydrol_2014_06_050
crossref_primary_10_3390_e14071274
crossref_primary_10_3390_w10040388
crossref_primary_10_1007_s00703_018_0592_7
crossref_primary_10_1016_j_jhydrol_2019_03_046
crossref_primary_10_1016_j_scitotenv_2019_06_025
crossref_primary_10_1016_j_gloplacha_2022_103868
crossref_primary_10_1016_j_jhydrol_2013_09_025
crossref_primary_10_1016_j_measurement_2017_07_047
crossref_primary_10_1029_2020WR028511
crossref_primary_10_1175_JCLI_D_12_00523_1
crossref_primary_10_1016_j_gloplacha_2016_10_019
crossref_primary_10_2166_aqua_2020_138
crossref_primary_10_2166_nh_2018_187
crossref_primary_10_1016_j_jher_2021_01_005
crossref_primary_10_1007_s11600_019_00380_5
crossref_primary_10_1016_j_jhydrol_2013_12_039
Cites_doi 10.1142/9789812703347_0003
10.1016/j.jhydrol.2009.01.040
10.1016/j.scitotenv.2004.12.059
10.1080/02664760701835011
10.1016/j.jhydrol.2009.01.035
10.1016/j.jhydrol.2011.12.044
10.1073/pnas.0701020104
10.1016/j.jhydrol.2003.11.006
10.1016/j.pce.2006.04.043
10.1002/hyp.6405
10.1257/jep.2.3.147
10.1002/env.642
10.1016/j.jhydrol.2007.11.009
10.3390/e11041123
10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
10.1175/2007JCLI1535.1
10.1623/hysj.2005.50.5.797
10.1016/j.jhydrol.2009.01.042
10.3390/e12061499
10.1002/hyp.7370
10.1002/joc.883
10.1002/joc.1095
10.1002/hyp.7260
10.1016/j.jhydrol.2010.10.040
10.1029/2006JD008010
10.1016/j.jhydrol.2005.04.003
10.1002/joc.797
10.1029/91WR02269
10.1017/CBO9780511841040
10.2307/1907187
10.1016/j.pce.2005.03.009
10.1109/18.382009
10.5194/npg-12-201-2005
10.1007/BF01543907
10.1002/hyp.1095
ContentType Journal Article
Copyright Copyright © 2012 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2012 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/hyp.9356
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1099-1085
EndPage 2031
ExternalDocumentID 10_1002_hyp_9356
HYP9356
ark_67375_WNG_5V4P1Q1Q_H
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  funderid: 40971023
– fundername: National Key Basic Research Development Program of China
  funderid: 2009CB421305
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWD
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
31~
AAYXX
ABEML
ACSCC
AEYWJ
AGHNM
AGQPQ
AGYGG
AI.
CITATION
DDYGU
FEDTE
HF~
HVGLF
M62
RIWAO
RJQFR
SAMSI
VH1
ZY4
ID FETCH-LOGICAL-c3036-f2f25f18aa9fa1f0cd4d0a73e867278d280c3e8a0875cc6dbe00e2f0fb7c5fab3
IEDL.DBID DR2
ISSN 0885-6087
IngestDate Tue Jul 01 01:46:29 EDT 2025
Thu Apr 24 23:12:47 EDT 2025
Wed Jan 22 16:54:03 EST 2025
Wed Oct 30 09:50:20 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3036-f2f25f18aa9fa1f0cd4d0a73e867278d280c3e8a0875cc6dbe00e2f0fb7c5fab3
Notes istex:6A7011E22A9B3C844B51622B88F21E404CD60CF7
ark:/67375/WNG-5V4P1Q1Q-H
National Natural Science Foundation of China (NSFC) - No. 40971023
National Key Basic Research Development Program of China - No. 2009CB421305
ArticleID:HYP9356
PageCount 11
ParticipantIDs crossref_primary_10_1002_hyp_9356
crossref_citationtrail_10_1002_hyp_9356
wiley_primary_10_1002_hyp_9356_HYP9356
istex_primary_ark_67375_WNG_5V4P1Q1Q_H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-07-01
1 July 2013
2013-07-00
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Hydrological processes
PublicationTitleAlternate Hydrol. Process
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Adam JC, Lettenmaier DP. 2008. Application of new precipitation and reconstructed streamflow products to streamflow trend attribution in northern Eurasia. Journal of Climate 21: 1807-1828.
Partal T, Kucuk M. 2006. Long term trend analysis using discrete wavelet components of annual precipitation measurements in Marmara region (Turkey). Physics and Chemistry of the Earth 31: 1189-1200.
Ding J, Deng YR. 1988. Stochastic Hydrology. The Publisher of the Science and Technology University of Chengdu: Chengdu, China (in Chinese).
Kallache M, Rust HW, Kropp J. 2005. Trend assessment: applications for hydrology and climate research. Nonlinear Processes in Geophysics 12: 2001-2210.
Sang YF, Wang D, Wu JC, Zhu QP, Wang L. 2009a. Entropy-based wavelet de-noising method for time series analysis. Entropy 11: 1123-1147.
Adamowski K, Prokoph A, Adamowski J. 2009. Development of a new method of wavelet aided trend detection and estimation. Hydrological Processes 23: 2686-2696.
Donoho DH. 1995. De-noising by soft-thresholding. IEEE Transactions on Information Theory 41: 613-617.
Khaliq MN, Ouarda TBMJ, Gachon P, Sushama L, St-Hilaire A. 2009. Identification of hydrological trends in the presence of serial and cross correlations: A review of selected methods and their application to annual flow regimes of Canadian rivers. Journal of Hydrology 368: 117-130.
Rivard C, Vigneault H. 2009. Trend detection in hydrological series: when series are negatively correlated. Hydrological Processes 23: 2737-2743.
Almasri A, Locking H, Shukar G. 2008. Testing for climate warming in Sweden during 1850-1999 using wavelet analysis. Journal of Applied Statistics 35: 431-443.
Yevjevich V. 1972. Stochastic Process in Hydrology. Water Resources Publications: Colorado, USA.
Schreiber T. 1993. Extremely simple nonlinear noise-reduction method. Physics Review E47: 2401-2404.
Craigmile PF, Guttorp P, Percival DB. 2004. Trend assessment in a long memory dependence model using the discrete wavelet transform. Environmentrics 15: 313-335.
Yue S, Pilon P, Phinney B, Cavadias G. 2002. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrological Processes 16: 1807-1829.
Sang YF, Wang D, Wu JC. 2010. Entropy-Based Method of Choosing the Decomposition Level in Wavelet Threshold De-noising. Entropy 12: 1499-1513.
Hamed KH. 2008. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. Journal of Hydrology 349: 350-363.
Sang YF, Wang D, Wu JC, Zhu QP, Wang L. 2009b. The relation between periods' identification and noises in hydrologic series data. Journal of Hydrology 368: 165-177.
Gao G, Chen DL, Xu CY, Simelton E. 2007. Trend of estimated actual evapotranspiration over China during 1960-2002. Journal of Geophysical Research-Atmospheres 112: D11120.
Wu ZH, Huang NE, Long SR, Peng CK. 2007. On the trend, detrending, and variability of nonlinear and nonstationary time series. Proceedings of the National Academy of Sciences 104: 14889-14894.
Sang YF, Wang Z, Liu C. 2012. Period identification in hydrologic time series using empirical mode decomposition and maximum entropy spectral analysis. Journal of Hydrology 424: 154-164.
Labat D. 2005. Recent advances in wavelet analyses: Part 1. A review of concepts. Journal of Hydrology 314: 275-288.
Kahya E, Kalayci S. 2004. Trend analysis of streamflow in Turkey. Journal of Hydrology 289: 128-144.
Kuczera G. 1992. Uncorrelated measurement error in flood frequency inference. Water Resources Research 28: 183-188.
Xu ZX, Li JY, Liu CM. 2007. Long-term trend analysis for major climate variables in the Yellow River basin. Hydrological Processes 21: 1935-1948.
Kendall M. 1975. Rank Correlation Methods. Charles Griffin: London.
Mann H. 1945. Non-parametric tests against trend. Econometrica 13: 245-259.
Sang YF, Wang D, Wu JC. 2011. Comparison of the Wavelet Characters of Various Noises by Discrete Wavelet Transform. Hydrological Cycle and Water Resources Sustainability in Changing Environments. IAHS Publication 350: 622-626.
Yevjevich V. 1987. Stochastic models in hydrology. Stochastic Hydrology and Hydraulics 1: 17-36.
Flandrin P, Goncalves P, Rilling G. 2005. In Hilbert-Huang Transform: Introduction and Applications, Huang NE, Shen SS-P (eds). World Scientific: Teaneck, NJ; 57-74.
Stock JH, Watson MW. 1988. Variable trends in economic time-series. Journal of Economic Perspectives 2: 147-174.
Torrence C, Compo GP. 1998. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society 79: 61-78.
Pisoft P, Kalvova J, Brazdil R. 2004. Cycles and trends in the Czech temperatures series using wavelet transform. International Journal of Climatology 24: 1661-1670.
Macdonald RW, Harner T, Fyfe J. 2005. Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data. Science of the Total Environment 342: 5-86.
Taleb EH, Druyan LM. 2003. Relationship between rainfall and West African wave disturbances in station observation. International Journal of Climatology 23: 305-313.
Hamed KH. 2009. Enhancing the effectiveness of prewhitening in trend analysis of hydrologic data. Journal of Hydrology 368: 143-155.
Shao QX, Li M. 2011. A new trend analysis for seasonal time series with consideration of data dependence. Journal of Hydrology 396: 104-112.
de Artigas M, Elias A, de Campra P. 2006. Discrete wavelet analysis to assess long-term trends in geomagnetic activity. Physics and Chemistry of the Earth 31: 77-80.
Kundzewicz ZW, Graczyk D, Maurer T, Pinskwar I, Radziejewski M, Svensson C, Szwed M. 2005. Trend detection in river flow series: 1. Annual maximum flow. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques 50: 797-810.
Jung HY, Choi Y, Oh JH, Lim GH. 2002. Recent trends in temperature and precipitation over South Korea. International Journal of Climatology 22: 1327-1337.
Percival DB, Walden AT. 2000. Wavelet Methods for Time Series Analysis. Cambridge University Press: Cambridge, UK.
2009; 23
2010; 12
2002; 16
2007; 104
1987; 1
2006; 31
2004; 289
2009b; 368
2005; 314
1945; 13
2004; 24
1975
2008; 349
2008; 35
2005
1972
2011; 350
2012; 424
2011; 396
1988; 2
1995; 41
2007; 112
2009a; 11
2005; 342
2000
2004; 15
2002; 22
1992; 28
2008; 21
1993; E47
2005; 50
2007; 21
2009; 368
2005; 12
1988
2003; 23
1998; 79
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
Gao G (e_1_2_7_10_1) 2007; 112
e_1_2_7_9_1
e_1_2_7_8_1
Ding J (e_1_2_7_7_1) 1988
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
Kendall M (e_1_2_7_16_1) 1975
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Sang YF (e_1_2_7_30_1) 2011; 350
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
Schreiber T (e_1_2_7_32_1) 1993; 47
e_1_2_7_37_1
e_1_2_7_38_1
Yevjevich V (e_1_2_7_39_1) 1972
References_xml – reference: Sang YF, Wang D, Wu JC. 2010. Entropy-Based Method of Choosing the Decomposition Level in Wavelet Threshold De-noising. Entropy 12: 1499-1513.
– reference: Kahya E, Kalayci S. 2004. Trend analysis of streamflow in Turkey. Journal of Hydrology 289: 128-144.
– reference: Shao QX, Li M. 2011. A new trend analysis for seasonal time series with consideration of data dependence. Journal of Hydrology 396: 104-112.
– reference: Macdonald RW, Harner T, Fyfe J. 2005. Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data. Science of the Total Environment 342: 5-86.
– reference: Adam JC, Lettenmaier DP. 2008. Application of new precipitation and reconstructed streamflow products to streamflow trend attribution in northern Eurasia. Journal of Climate 21: 1807-1828.
– reference: Mann H. 1945. Non-parametric tests against trend. Econometrica 13: 245-259.
– reference: Schreiber T. 1993. Extremely simple nonlinear noise-reduction method. Physics Review E47: 2401-2404.
– reference: Hamed KH. 2009. Enhancing the effectiveness of prewhitening in trend analysis of hydrologic data. Journal of Hydrology 368: 143-155.
– reference: Torrence C, Compo GP. 1998. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society 79: 61-78.
– reference: Yevjevich V. 1987. Stochastic models in hydrology. Stochastic Hydrology and Hydraulics 1: 17-36.
– reference: Jung HY, Choi Y, Oh JH, Lim GH. 2002. Recent trends in temperature and precipitation over South Korea. International Journal of Climatology 22: 1327-1337.
– reference: Adamowski K, Prokoph A, Adamowski J. 2009. Development of a new method of wavelet aided trend detection and estimation. Hydrological Processes 23: 2686-2696.
– reference: Kundzewicz ZW, Graczyk D, Maurer T, Pinskwar I, Radziejewski M, Svensson C, Szwed M. 2005. Trend detection in river flow series: 1. Annual maximum flow. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques 50: 797-810.
– reference: Flandrin P, Goncalves P, Rilling G. 2005. In Hilbert-Huang Transform: Introduction and Applications, Huang NE, Shen SS-P (eds). World Scientific: Teaneck, NJ; 57-74.
– reference: Yevjevich V. 1972. Stochastic Process in Hydrology. Water Resources Publications: Colorado, USA.
– reference: Percival DB, Walden AT. 2000. Wavelet Methods for Time Series Analysis. Cambridge University Press: Cambridge, UK.
– reference: Hamed KH. 2008. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. Journal of Hydrology 349: 350-363.
– reference: Rivard C, Vigneault H. 2009. Trend detection in hydrological series: when series are negatively correlated. Hydrological Processes 23: 2737-2743.
– reference: Sang YF, Wang D, Wu JC, Zhu QP, Wang L. 2009b. The relation between periods' identification and noises in hydrologic series data. Journal of Hydrology 368: 165-177.
– reference: Partal T, Kucuk M. 2006. Long term trend analysis using discrete wavelet components of annual precipitation measurements in Marmara region (Turkey). Physics and Chemistry of the Earth 31: 1189-1200.
– reference: Kendall M. 1975. Rank Correlation Methods. Charles Griffin: London.
– reference: Pisoft P, Kalvova J, Brazdil R. 2004. Cycles and trends in the Czech temperatures series using wavelet transform. International Journal of Climatology 24: 1661-1670.
– reference: Craigmile PF, Guttorp P, Percival DB. 2004. Trend assessment in a long memory dependence model using the discrete wavelet transform. Environmentrics 15: 313-335.
– reference: Donoho DH. 1995. De-noising by soft-thresholding. IEEE Transactions on Information Theory 41: 613-617.
– reference: Khaliq MN, Ouarda TBMJ, Gachon P, Sushama L, St-Hilaire A. 2009. Identification of hydrological trends in the presence of serial and cross correlations: A review of selected methods and their application to annual flow regimes of Canadian rivers. Journal of Hydrology 368: 117-130.
– reference: Taleb EH, Druyan LM. 2003. Relationship between rainfall and West African wave disturbances in station observation. International Journal of Climatology 23: 305-313.
– reference: Kuczera G. 1992. Uncorrelated measurement error in flood frequency inference. Water Resources Research 28: 183-188.
– reference: Sang YF, Wang D, Wu JC. 2011. Comparison of the Wavelet Characters of Various Noises by Discrete Wavelet Transform. Hydrological Cycle and Water Resources Sustainability in Changing Environments. IAHS Publication 350: 622-626.
– reference: Xu ZX, Li JY, Liu CM. 2007. Long-term trend analysis for major climate variables in the Yellow River basin. Hydrological Processes 21: 1935-1948.
– reference: Almasri A, Locking H, Shukar G. 2008. Testing for climate warming in Sweden during 1850-1999 using wavelet analysis. Journal of Applied Statistics 35: 431-443.
– reference: de Artigas M, Elias A, de Campra P. 2006. Discrete wavelet analysis to assess long-term trends in geomagnetic activity. Physics and Chemistry of the Earth 31: 77-80.
– reference: Gao G, Chen DL, Xu CY, Simelton E. 2007. Trend of estimated actual evapotranspiration over China during 1960-2002. Journal of Geophysical Research-Atmospheres 112: D11120.
– reference: Yue S, Pilon P, Phinney B, Cavadias G. 2002. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrological Processes 16: 1807-1829.
– reference: Kallache M, Rust HW, Kropp J. 2005. Trend assessment: applications for hydrology and climate research. Nonlinear Processes in Geophysics 12: 2001-2210.
– reference: Sang YF, Wang D, Wu JC, Zhu QP, Wang L. 2009a. Entropy-based wavelet de-noising method for time series analysis. Entropy 11: 1123-1147.
– reference: Sang YF, Wang Z, Liu C. 2012. Period identification in hydrologic time series using empirical mode decomposition and maximum entropy spectral analysis. Journal of Hydrology 424: 154-164.
– reference: Stock JH, Watson MW. 1988. Variable trends in economic time-series. Journal of Economic Perspectives 2: 147-174.
– reference: Ding J, Deng YR. 1988. Stochastic Hydrology. The Publisher of the Science and Technology University of Chengdu: Chengdu, China (in Chinese).
– reference: Labat D. 2005. Recent advances in wavelet analyses: Part 1. A review of concepts. Journal of Hydrology 314: 275-288.
– reference: Wu ZH, Huang NE, Long SR, Peng CK. 2007. On the trend, detrending, and variability of nonlinear and nonstationary time series. Proceedings of the National Academy of Sciences 104: 14889-14894.
– volume: 35
  start-page: 431
  year: 2008
  end-page: 443
  article-title: Testing for climate warming in Sweden during 1850–1999 using wavelet analysis
  publication-title: Journal of Applied Statistics
– volume: 342
  start-page: 5
  year: 2005
  end-page: 86
  article-title: Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data
  publication-title: Science of the Total Environment
– volume: 41
  start-page: 613
  year: 1995
  end-page: 617
  article-title: De‐noising by soft‐thresholding
  publication-title: IEEE Transactions on Information Theory
– volume: 23
  start-page: 2686
  year: 2009
  end-page: 2696
  article-title: Development of a new method of wavelet aided trend detection and estimation
  publication-title: Hydrological Processes
– volume: 289
  start-page: 128
  year: 2004
  end-page: 144
  article-title: Trend analysis of streamflow in Turkey
  publication-title: Journal of Hydrology
– volume: 349
  start-page: 350
  year: 2008
  end-page: 363
  article-title: Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis
  publication-title: Journal of Hydrology
– volume: 13
  start-page: 245
  year: 1945
  end-page: 259
  article-title: Non‐parametric tests against trend
  publication-title: Econometrica
– year: 2000
– volume: 21
  start-page: 1935
  year: 2007
  end-page: 1948
  article-title: Long‐term trend analysis for major climate variables in the Yellow River basin
  publication-title: Hydrological Processes
– year: 1975
– volume: 50
  start-page: 797
  year: 2005
  end-page: 810
  article-title: Trend detection in river flow series: 1. Annual maximum flow
  publication-title: Hydrological Sciences Journal‐Journal Des Sciences Hydrologiques
– volume: 368
  start-page: 165
  year: 2009b
  end-page: 177
  article-title: The relation between periods' identification and noises in hydrologic series data
  publication-title: Journal of Hydrology
– volume: 24
  start-page: 1661
  year: 2004
  end-page: 1670
  article-title: Cycles and trends in the Czech temperatures series using wavelet transform
  publication-title: International Journal of Climatology
– volume: 11
  start-page: 1123
  year: 2009a
  end-page: 1147
  article-title: Entropy‐based wavelet de‐noising method for time series analysis
  publication-title: Entropy
– volume: 22
  start-page: 1327
  year: 2002
  end-page: 1337
  article-title: Recent trends in temperature and precipitation over South Korea
  publication-title: International Journal of Climatology
– volume: 79
  start-page: 61
  year: 1998
  end-page: 78
  article-title: A practical guide to wavelet analysis
  publication-title: Bulletin of the American Meteorological Society
– volume: 31
  start-page: 77
  year: 2006
  end-page: 80
  article-title: Discrete wavelet analysis to assess long‐term trends in geomagnetic activity
  publication-title: Physics and Chemistry of the Earth
– volume: 15
  start-page: 313
  year: 2004
  end-page: 335
  article-title: Trend assessment in a long memory dependence model using the discrete wavelet transform
  publication-title: Environmentrics
– volume: 350
  start-page: 622
  year: 2011
  end-page: 626
  article-title: Comparison of the Wavelet Characters of Various Noises by Discrete Wavelet Transform. Hydrological Cycle and Water Resources Sustainability in Changing Environments
  publication-title: IAHS Publication
– volume: E47
  start-page: 2401
  year: 1993
  end-page: 2404
  article-title: Extremely simple nonlinear noise‐reduction method
  publication-title: Physics Review
– start-page: 57
  year: 2005
  end-page: 74
– volume: 12
  start-page: 1499
  year: 2010
  end-page: 1513
  article-title: Entropy‐Based Method of Choosing the Decomposition Level in Wavelet Threshold De‐noising
  publication-title: Entropy
– volume: 112
  start-page: D11120
  year: 2007
  article-title: Trend of estimated actual evapotranspiration over China during 1960–2002
  publication-title: Journal of Geophysical Research‐Atmospheres
– volume: 104
  start-page: 14889
  year: 2007
  end-page: 14894
  article-title: On the trend, detrending, and variability of nonlinear and nonstationary time series
  publication-title: Proceedings of the National Academy of Sciences
– volume: 396
  start-page: 104
  year: 2011
  end-page: 112
  article-title: A new trend analysis for seasonal time series with consideration of data dependence
  publication-title: Journal of Hydrology
– volume: 368
  start-page: 143
  year: 2009
  end-page: 155
  article-title: Enhancing the effectiveness of prewhitening in trend analysis of hydrologic data
  publication-title: Journal of Hydrology
– volume: 424
  start-page: 154
  year: 2012
  end-page: 164
  article-title: Period identification in hydrologic time series using empirical mode decomposition and maximum entropy spectral analysis
  publication-title: Journal of Hydrology
– volume: 28
  start-page: 183
  year: 1992
  end-page: 188
  article-title: Uncorrelated measurement error in flood frequency inference
  publication-title: Water Resources Research
– volume: 23
  start-page: 305
  year: 2003
  end-page: 313
  article-title: Relationship between rainfall and West African wave disturbances in station observation
  publication-title: International Journal of Climatology
– volume: 21
  start-page: 1807
  year: 2008
  end-page: 1828
  article-title: Application of new precipitation and reconstructed streamflow products to streamflow trend attribution in northern Eurasia
  publication-title: Journal of Climate
– year: 1988
– volume: 12
  start-page: 2001
  year: 2005
  end-page: 2210
  article-title: Trend assessment: applications for hydrology and climate research
  publication-title: Nonlinear Processes in Geophysics
– year: 1972
– volume: 368
  start-page: 117
  year: 2009
  end-page: 130
  article-title: Identification of hydrological trends in the presence of serial and cross correlations: A review of selected methods and their application to annual flow regimes of Canadian rivers
  publication-title: Journal of Hydrology
– volume: 314
  start-page: 275
  year: 2005
  end-page: 288
  article-title: Recent advances in wavelet analyses: Part 1. A review of concepts
  publication-title: Journal of Hydrology
– volume: 31
  start-page: 1189
  year: 2006
  end-page: 1200
  article-title: Long term trend analysis using discrete wavelet components of annual precipitation measurements in Marmara region (Turkey)
  publication-title: Physics and Chemistry of the Earth
– volume: 1
  start-page: 17
  year: 1987
  end-page: 36
  article-title: Stochastic models in hydrology
  publication-title: Stochastic Hydrology and Hydraulics
– volume: 23
  start-page: 2737
  year: 2009
  end-page: 2743
  article-title: Trend detection in hydrological series: when series are negatively correlated
  publication-title: Hydrological Processes
– volume: 16
  start-page: 1807
  year: 2002
  end-page: 1829
  article-title: The influence of autocorrelation on the ability to detect trend in hydrological series
  publication-title: Hydrological Processes
– volume: 2
  start-page: 147
  year: 1988
  end-page: 174
  article-title: Variable trends in economic time‐series
  publication-title: Journal of Economic Perspectives
– ident: e_1_2_7_9_1
  doi: 10.1142/9789812703347_0003
– ident: e_1_2_7_12_1
  doi: 10.1016/j.jhydrol.2009.01.040
– ident: e_1_2_7_21_1
  doi: 10.1016/j.scitotenv.2004.12.059
– ident: e_1_2_7_4_1
  doi: 10.1080/02664760701835011
– ident: e_1_2_7_17_1
  doi: 10.1016/j.jhydrol.2009.01.035
– ident: e_1_2_7_31_1
  doi: 10.1016/j.jhydrol.2011.12.044
– ident: e_1_2_7_37_1
  doi: 10.1073/pnas.0701020104
– ident: e_1_2_7_14_1
  doi: 10.1016/j.jhydrol.2003.11.006
– ident: e_1_2_7_23_1
  doi: 10.1016/j.pce.2006.04.043
– ident: e_1_2_7_38_1
  doi: 10.1002/hyp.6405
– volume: 47
  start-page: 2401
  year: 1993
  ident: e_1_2_7_32_1
  article-title: Extremely simple nonlinear noise‐reduction method
  publication-title: Physics Review
– volume-title: Stochastic Process in Hydrology
  year: 1972
  ident: e_1_2_7_39_1
– ident: e_1_2_7_34_1
  doi: 10.1257/jep.2.3.147
– ident: e_1_2_7_5_1
  doi: 10.1002/env.642
– ident: e_1_2_7_11_1
  doi: 10.1016/j.jhydrol.2007.11.009
– ident: e_1_2_7_27_1
  doi: 10.3390/e11041123
– ident: e_1_2_7_36_1
  doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
– volume: 350
  start-page: 622
  year: 2011
  ident: e_1_2_7_30_1
  article-title: Comparison of the Wavelet Characters of Various Noises by Discrete Wavelet Transform. Hydrological Cycle and Water Resources Sustainability in Changing Environments
  publication-title: IAHS Publication
– ident: e_1_2_7_2_1
  doi: 10.1175/2007JCLI1535.1
– ident: e_1_2_7_19_1
  doi: 10.1623/hysj.2005.50.5.797
– ident: e_1_2_7_28_1
  doi: 10.1016/j.jhydrol.2009.01.042
– ident: e_1_2_7_29_1
  doi: 10.3390/e12061499
– ident: e_1_2_7_26_1
  doi: 10.1002/hyp.7370
– volume-title: Stochastic Hydrology
  year: 1988
  ident: e_1_2_7_7_1
– ident: e_1_2_7_35_1
  doi: 10.1002/joc.883
– ident: e_1_2_7_25_1
  doi: 10.1002/joc.1095
– ident: e_1_2_7_3_1
  doi: 10.1002/hyp.7260
– ident: e_1_2_7_33_1
  doi: 10.1016/j.jhydrol.2010.10.040
– volume: 112
  start-page: D11120
  year: 2007
  ident: e_1_2_7_10_1
  article-title: Trend of estimated actual evapotranspiration over China during 1960–2002
  publication-title: Journal of Geophysical Research‐Atmospheres
  doi: 10.1029/2006JD008010
– ident: e_1_2_7_20_1
  doi: 10.1016/j.jhydrol.2005.04.003
– ident: e_1_2_7_13_1
  doi: 10.1002/joc.797
– ident: e_1_2_7_18_1
  doi: 10.1029/91WR02269
– ident: e_1_2_7_24_1
  doi: 10.1017/CBO9780511841040
– ident: e_1_2_7_22_1
  doi: 10.2307/1907187
– volume-title: Rank Correlation Methods
  year: 1975
  ident: e_1_2_7_16_1
– ident: e_1_2_7_6_1
  doi: 10.1016/j.pce.2005.03.009
– ident: e_1_2_7_8_1
  doi: 10.1109/18.382009
– ident: e_1_2_7_15_1
  doi: 10.5194/npg-12-201-2005
– ident: e_1_2_7_40_1
  doi: 10.1007/BF01543907
– ident: e_1_2_7_41_1
  doi: 10.1002/hyp.1095
SSID ssj0004080
Score 2.2925968
Snippet Trend identification is a substantial issue in hydrologic series analysis, but it is also a difficult task in practice due to the confusing concept of trend...
SourceID crossref
wiley
istex
SourceType Enrichment Source
Index Database
Publisher
StartPage 2021
SubjectTerms Mann-Kendall test
periodicity
statistical significance
time series analysis
trend identification
wavelet
Title Discrete wavelet-based trend identification in hydrologic time series
URI https://api.istex.fr/ark:/67375/WNG-5V4P1Q1Q-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.9356
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFA2iC934FuuLCKKrqZnMI-lSfBUXYsUnLoY8aanUUke0rvwEv9EvMTczrVQUxNUwcGcI9ya5h5mTcxDa4kqqWBMWSC6iIDYRC2oi0UHKYhLriMvUeLbFaVq_jE9ukpuSVQlnYQp9iOEHN1gZfr-GBS7k4-6XaGiz363WogTUtoGqBXjo_Es5KibeNM2toSRICWcD3VlCdwcPjnSiCUjqyyhC9S3maAbdDQZXMEva1adcVtXrN93G_41-Fk2XyBPvFVNlDo2ZzjyaLE3Qm_0FdHzQcnuIA9H4WYAdRf7x9g5NTuMciLO4pUtmkS8mbnVws697xeaJwaMew3Q2j4vo8ujwYr8elD4LgYIGFlhqaWJDLkTNitASpV31BIsMh9-0XFNOlLsRIH6vVKqlIcRQS6xkKrFCRktovPPQMcsIp0yGKbHWhMLGaUSFQyTGIUrDmSBU2QraGeQ8U6UIOXhh3GeFfDLNXGIySEwFbQ4ju4Xwxg8x275swwDRawNRjSXZ9elxllzFZ2EjbGR1F-iL8eubsvrtGVxX_hq4iqaoN8YA4u4aGs97T2bdwZNcbviJ-AnF3eQW
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7U9qG-1Dut1xFEn7KdTJKZWXwStY1al1ZarSAMc2WXylrWFF2f-hP6G_0lzpkkWyoK4lMInITh3DNz8n0Aj6Q1tnRUZEbqIit9IbKhrlzGRUlLV0jDfZq2GPH6oHx9WB0uwdP-X5gWH2Kx4YaRkfI1BjhuSG-eo4aO58eDYVHxS7CChN7pe-rdOXZUSRNtWoyiKuNUih55lrLN_skLtWgF1fr9Yo-aiszWFfjUL6-dLTkanDRmYH_8htz4n-u_Cmtd80metd5yDZb89Dqsdjzo4_kN2H4xiWkk9tHkm0ZGiubn6RnWOUcanJ0lE9cNFyV7ksmUjOdu1uZPgjT1BD3af70JB1sv95_XWUe1kFmsYVlggVUhl1oPg84DtS4aUIvCSzyplY5JauONRvx7a7kznlLPAg1G2CpoU9yC5emXqV8HwoXJOQ3B5zqUvGA6NiU-NpVeCk2ZDRvwpFe6sh0OOdJhfFYtgjJTUTEKFbMBDxeSxy32xh9kHie7LQT07Ahn1USlPoy2VfW-3M338j1VR8Fkjb--SdUfd_F6-18FH8Bqvf92R-28Gr25A5dZ4snAOd67sNzMTvy92K005n7yyl_-fegx
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbYJjFeGBtDjHEx0gRP6RzHsd1HtNIVhqoOsTHEg-WrWg2VqmRi5YmfsN-4X4KPk3baBBLaUxTlJLLOxeco-fJ9CO1IayxzRGRG6iJjvhBZW5cu44IR5gppuE9oiz7vHbH3J-VJg6qEf2FqfojFCzeojLRfQ4FPXNi9Ig0dziatdlHyJbTCOJGQ0Z2PV9RRjCTVtFhEZRYviznxLKG78zuvtaIV8Or59RE19ZjuGvo6X10NLTltnVWmZX_dIG683fIfoPvN6Inf1Lmyju748QZabVTQh7OHaL8ziptInKLxTw16FNXl7wvocg5XgJzFI9dAi1I08WiMhzM3rXdPDCL1GPLZ_9hER923n_Z6WSO0kFnoYFmggZYhl1q3g84DsS6GT4vCS_hOKx2VxMYTDez31nJnPCGeBhKMsGXQpniElsffx_4xwlyYnJMQfK4D4wXVcSTxcaT0UmhCbdhCr-c-V7ZhIQcxjG-q5k-mKjpGgWO20MuF5aRm3viLzasUtoWBnp4CUk2U6nN_X5XHbJAf5oeqFw1TMP75JNX7MoDjk_81fIHuDjpd9eFd_2Ab3aNJJANAvE_RcjU988_iqFKZ5ykn_wB_oObp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete+wavelet%E2%80%90based+trend+identification+in+hydrologic+time+series&rft.jtitle=Hydrological+processes&rft.au=Sang%2C+Yan%E2%80%90Fang&rft.au=Wang%2C+Zhonggen&rft.au=Liu%2C+Changming&rft.date=2013-07-01&rft.issn=0885-6087&rft.eissn=1099-1085&rft.volume=27&rft.issue=14&rft.spage=2021&rft.epage=2031&rft_id=info:doi/10.1002%2Fhyp.9356&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hyp_9356
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon