Discrete wavelet-based trend identification in hydrologic time series
Trend identification is a substantial issue in hydrologic series analysis, but it is also a difficult task in practice due to the confusing concept of trend and disadvantages of methods. In this article, an improved definition of trend was given as follows: ‘a trend is the deterministic component in...
Saved in:
Published in | Hydrological processes Vol. 27; no. 14; pp. 2021 - 2031 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
01.07.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Trend identification is a substantial issue in hydrologic series analysis, but it is also a difficult task in practice due to the confusing concept of trend and disadvantages of methods. In this article, an improved definition of trend was given as follows: ‘a trend is the deterministic component in the analysed data and corresponds to the biggest temporal scale on the condition of giving the concerned temporal scale’. It emphasizes the intrinsic and deterministic properties of trend, can clearly distinguish trend from periodicities and points out the prerequisite of the concerned temporal scale only by giving which the trend has its specific meaning. Correspondingly, the discrete wavelet‐based method for trend identification was improved. Differing from those methods used presently, the improved method is to identify trend by comparing the energy difference between hydrologic data and noise, and it can simultaneously separate periodicities and noise. Furthermore, the improved method can quantitatively estimate the statistical significance of the identified trend by using proper confidence interval. Analyses of both synthetic and observed series indicated the identical power of the improved method as the Mann–Kendall test in assessing the statistical significance of the trend in hydrologic data, and by using the former, the identified trend can adaptively reflect the nonlinear and nonstationary variability of hydrologic data. Besides, the results also showed the influences of three key factors (wavelet choice, decomposition level choice and noise content) on discrete wavelet‐based trend identification; hence, they should be carefully considered in practice. Copyright © 2012 John Wiley & Sons, Ltd. |
---|---|
AbstractList | Trend identification is a substantial issue in hydrologic series analysis, but it is also a difficult task in practice due to the confusing concept of trend and disadvantages of methods. In this article, an improved definition of trend was given as follows: ‘a trend is the deterministic component in the analysed data and corresponds to the biggest temporal scale on the condition of giving the concerned temporal scale’. It emphasizes the intrinsic and deterministic properties of trend, can clearly distinguish trend from periodicities and points out the prerequisite of the concerned temporal scale only by giving which the trend has its specific meaning. Correspondingly, the discrete wavelet‐based method for trend identification was improved. Differing from those methods used presently, the improved method is to identify trend by comparing the energy difference between hydrologic data and noise, and it can simultaneously separate periodicities and noise. Furthermore, the improved method can quantitatively estimate the statistical significance of the identified trend by using proper confidence interval. Analyses of both synthetic and observed series indicated the identical power of the improved method as the Mann–Kendall test in assessing the statistical significance of the trend in hydrologic data, and by using the former, the identified trend can adaptively reflect the nonlinear and nonstationary variability of hydrologic data. Besides, the results also showed the influences of three key factors (wavelet choice, decomposition level choice and noise content) on discrete wavelet‐based trend identification; hence, they should be carefully considered in practice. Copyright © 2012 John Wiley & Sons, Ltd. |
Author | Wang, Zhonggen Liu, Changming Sang, Yan-Fang |
Author_xml | – sequence: 1 givenname: Yan-Fang surname: Sang fullname: Sang, Yan-Fang email: Correspondence to: Yan-Fang Sang, Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. , (Yan-Fang Sang); (Zhonggen Wang), sangyf@igsnrr.ac.cnsunsangyf@gmail.comwangzg@igsnrr.ac.cn organization: Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China – sequence: 2 givenname: Zhonggen surname: Wang fullname: Wang, Zhonggen organization: Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China – sequence: 3 givenname: Changming surname: Liu fullname: Liu, Changming organization: Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China |
BookMark | eNp1j11LwzAUhoNMcJuCP6GX3nSetEubXcqcmzB0Az_wKqTJiYt27UiCs__ezomg6NXhhed9OU-PdKq6QkJOKQwoQHK-ajaDUcqyA9KlMBrFFDjrkC5wzuIMeH5Eet6_AMAQOHTJ5NJ65TBgtJVvWGKIC-lRR8FhpSOrsQrWWCWDravIVtGq0a4u62eromDXGHl0Fv0xOTSy9Hjydfvk_mpyN57F89vp9fhiHqsU0iw2iUmYoVzKkZHUgNJDDTJPkWd5knOdcFBtkO2bTKlMFwiAiQFT5IoZWaR9crbfVa723qERG2fX0jWCgtjpi1Zf7PRbdPALVTZ8agQnbflXId4XtrbE5t9hMXta_OStD_j-zUv3KrI8zZl4vJkK9jBc0CVdiln6AW5Pfmg |
CitedBy_id | crossref_primary_10_1016_j_atmosres_2017_10_012 crossref_primary_10_1016_j_jhydrol_2019_124503 crossref_primary_10_1155_2020_7345676 crossref_primary_10_1007_s10661_021_08907_4 crossref_primary_10_1007_s40808_017_0325_9 crossref_primary_10_1016_j_jhydrol_2016_07_006 crossref_primary_10_1371_journal_pone_0104663 crossref_primary_10_1002_hyp_13934 crossref_primary_10_1002_joc_6314 crossref_primary_10_5194_hess_22_4213_2018 crossref_primary_10_1007_s00704_024_05137_9 crossref_primary_10_1016_j_ejrh_2022_101157 crossref_primary_10_5194_hess_22_757_2018 crossref_primary_10_1051_e3sconf_20171700051 crossref_primary_10_2139_ssrn_3353075 crossref_primary_10_1007_s12040_016_0701_2 crossref_primary_10_1080_02626667_2012_742194 crossref_primary_10_1175_JHM_D_14_0210_1 crossref_primary_10_1016_j_atmosres_2016_07_030 crossref_primary_10_3390_en12081416 crossref_primary_10_1029_2022GL100550 crossref_primary_10_1002_joc_4042 crossref_primary_10_1016_j_jhydrol_2014_06_050 crossref_primary_10_3390_e14071274 crossref_primary_10_3390_w10040388 crossref_primary_10_1007_s00703_018_0592_7 crossref_primary_10_1016_j_jhydrol_2019_03_046 crossref_primary_10_1016_j_scitotenv_2019_06_025 crossref_primary_10_1016_j_gloplacha_2022_103868 crossref_primary_10_1016_j_jhydrol_2013_09_025 crossref_primary_10_1016_j_measurement_2017_07_047 crossref_primary_10_1029_2020WR028511 crossref_primary_10_1175_JCLI_D_12_00523_1 crossref_primary_10_1016_j_gloplacha_2016_10_019 crossref_primary_10_2166_aqua_2020_138 crossref_primary_10_2166_nh_2018_187 crossref_primary_10_1016_j_jher_2021_01_005 crossref_primary_10_1007_s11600_019_00380_5 crossref_primary_10_1016_j_jhydrol_2013_12_039 |
Cites_doi | 10.1142/9789812703347_0003 10.1016/j.jhydrol.2009.01.040 10.1016/j.scitotenv.2004.12.059 10.1080/02664760701835011 10.1016/j.jhydrol.2009.01.035 10.1016/j.jhydrol.2011.12.044 10.1073/pnas.0701020104 10.1016/j.jhydrol.2003.11.006 10.1016/j.pce.2006.04.043 10.1002/hyp.6405 10.1257/jep.2.3.147 10.1002/env.642 10.1016/j.jhydrol.2007.11.009 10.3390/e11041123 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 10.1175/2007JCLI1535.1 10.1623/hysj.2005.50.5.797 10.1016/j.jhydrol.2009.01.042 10.3390/e12061499 10.1002/hyp.7370 10.1002/joc.883 10.1002/joc.1095 10.1002/hyp.7260 10.1016/j.jhydrol.2010.10.040 10.1029/2006JD008010 10.1016/j.jhydrol.2005.04.003 10.1002/joc.797 10.1029/91WR02269 10.1017/CBO9780511841040 10.2307/1907187 10.1016/j.pce.2005.03.009 10.1109/18.382009 10.5194/npg-12-201-2005 10.1007/BF01543907 10.1002/hyp.1095 |
ContentType | Journal Article |
Copyright | Copyright © 2012 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2012 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION |
DOI | 10.1002/hyp.9356 |
DatabaseName | Istex CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1099-1085 |
EndPage | 2031 |
ExternalDocumentID | 10_1002_hyp_9356 HYP9356 ark_67375_WNG_5V4P1Q1Q_H |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (NSFC) funderid: 40971023 – fundername: National Key Basic Research Development Program of China funderid: 2009CB421305 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WWD WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ 31~ AAYXX ABEML ACSCC AEYWJ AGHNM AGQPQ AGYGG AI. CITATION DDYGU FEDTE HF~ HVGLF M62 RIWAO RJQFR SAMSI VH1 ZY4 |
ID | FETCH-LOGICAL-c3036-f2f25f18aa9fa1f0cd4d0a73e867278d280c3e8a0875cc6dbe00e2f0fb7c5fab3 |
IEDL.DBID | DR2 |
ISSN | 0885-6087 |
IngestDate | Tue Jul 01 01:46:29 EDT 2025 Thu Apr 24 23:12:47 EDT 2025 Wed Jan 22 16:54:03 EST 2025 Wed Oct 30 09:50:20 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3036-f2f25f18aa9fa1f0cd4d0a73e867278d280c3e8a0875cc6dbe00e2f0fb7c5fab3 |
Notes | istex:6A7011E22A9B3C844B51622B88F21E404CD60CF7 ark:/67375/WNG-5V4P1Q1Q-H National Natural Science Foundation of China (NSFC) - No. 40971023 National Key Basic Research Development Program of China - No. 2009CB421305 ArticleID:HYP9356 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1002_hyp_9356 crossref_citationtrail_10_1002_hyp_9356 wiley_primary_10_1002_hyp_9356_HYP9356 istex_primary_ark_67375_WNG_5V4P1Q1Q_H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-07-01 1 July 2013 2013-07-00 |
PublicationDateYYYYMMDD | 2013-07-01 |
PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Hydrological processes |
PublicationTitleAlternate | Hydrol. Process |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Adam JC, Lettenmaier DP. 2008. Application of new precipitation and reconstructed streamflow products to streamflow trend attribution in northern Eurasia. Journal of Climate 21: 1807-1828. Partal T, Kucuk M. 2006. Long term trend analysis using discrete wavelet components of annual precipitation measurements in Marmara region (Turkey). Physics and Chemistry of the Earth 31: 1189-1200. Ding J, Deng YR. 1988. Stochastic Hydrology. The Publisher of the Science and Technology University of Chengdu: Chengdu, China (in Chinese). Kallache M, Rust HW, Kropp J. 2005. Trend assessment: applications for hydrology and climate research. Nonlinear Processes in Geophysics 12: 2001-2210. Sang YF, Wang D, Wu JC, Zhu QP, Wang L. 2009a. Entropy-based wavelet de-noising method for time series analysis. Entropy 11: 1123-1147. Adamowski K, Prokoph A, Adamowski J. 2009. Development of a new method of wavelet aided trend detection and estimation. Hydrological Processes 23: 2686-2696. Donoho DH. 1995. De-noising by soft-thresholding. IEEE Transactions on Information Theory 41: 613-617. Khaliq MN, Ouarda TBMJ, Gachon P, Sushama L, St-Hilaire A. 2009. Identification of hydrological trends in the presence of serial and cross correlations: A review of selected methods and their application to annual flow regimes of Canadian rivers. Journal of Hydrology 368: 117-130. Rivard C, Vigneault H. 2009. Trend detection in hydrological series: when series are negatively correlated. Hydrological Processes 23: 2737-2743. Almasri A, Locking H, Shukar G. 2008. Testing for climate warming in Sweden during 1850-1999 using wavelet analysis. Journal of Applied Statistics 35: 431-443. Yevjevich V. 1972. Stochastic Process in Hydrology. Water Resources Publications: Colorado, USA. Schreiber T. 1993. Extremely simple nonlinear noise-reduction method. Physics Review E47: 2401-2404. Craigmile PF, Guttorp P, Percival DB. 2004. Trend assessment in a long memory dependence model using the discrete wavelet transform. Environmentrics 15: 313-335. Yue S, Pilon P, Phinney B, Cavadias G. 2002. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrological Processes 16: 1807-1829. Sang YF, Wang D, Wu JC. 2010. Entropy-Based Method of Choosing the Decomposition Level in Wavelet Threshold De-noising. Entropy 12: 1499-1513. Hamed KH. 2008. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. Journal of Hydrology 349: 350-363. Sang YF, Wang D, Wu JC, Zhu QP, Wang L. 2009b. The relation between periods' identification and noises in hydrologic series data. Journal of Hydrology 368: 165-177. Gao G, Chen DL, Xu CY, Simelton E. 2007. Trend of estimated actual evapotranspiration over China during 1960-2002. Journal of Geophysical Research-Atmospheres 112: D11120. Wu ZH, Huang NE, Long SR, Peng CK. 2007. On the trend, detrending, and variability of nonlinear and nonstationary time series. Proceedings of the National Academy of Sciences 104: 14889-14894. Sang YF, Wang Z, Liu C. 2012. Period identification in hydrologic time series using empirical mode decomposition and maximum entropy spectral analysis. Journal of Hydrology 424: 154-164. Labat D. 2005. Recent advances in wavelet analyses: Part 1. A review of concepts. Journal of Hydrology 314: 275-288. Kahya E, Kalayci S. 2004. Trend analysis of streamflow in Turkey. Journal of Hydrology 289: 128-144. Kuczera G. 1992. Uncorrelated measurement error in flood frequency inference. Water Resources Research 28: 183-188. Xu ZX, Li JY, Liu CM. 2007. Long-term trend analysis for major climate variables in the Yellow River basin. Hydrological Processes 21: 1935-1948. Kendall M. 1975. Rank Correlation Methods. Charles Griffin: London. Mann H. 1945. Non-parametric tests against trend. Econometrica 13: 245-259. Sang YF, Wang D, Wu JC. 2011. Comparison of the Wavelet Characters of Various Noises by Discrete Wavelet Transform. Hydrological Cycle and Water Resources Sustainability in Changing Environments. IAHS Publication 350: 622-626. Yevjevich V. 1987. Stochastic models in hydrology. Stochastic Hydrology and Hydraulics 1: 17-36. Flandrin P, Goncalves P, Rilling G. 2005. In Hilbert-Huang Transform: Introduction and Applications, Huang NE, Shen SS-P (eds). World Scientific: Teaneck, NJ; 57-74. Stock JH, Watson MW. 1988. Variable trends in economic time-series. Journal of Economic Perspectives 2: 147-174. Torrence C, Compo GP. 1998. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society 79: 61-78. Pisoft P, Kalvova J, Brazdil R. 2004. Cycles and trends in the Czech temperatures series using wavelet transform. International Journal of Climatology 24: 1661-1670. Macdonald RW, Harner T, Fyfe J. 2005. Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data. Science of the Total Environment 342: 5-86. Taleb EH, Druyan LM. 2003. Relationship between rainfall and West African wave disturbances in station observation. International Journal of Climatology 23: 305-313. Hamed KH. 2009. Enhancing the effectiveness of prewhitening in trend analysis of hydrologic data. Journal of Hydrology 368: 143-155. Shao QX, Li M. 2011. A new trend analysis for seasonal time series with consideration of data dependence. Journal of Hydrology 396: 104-112. de Artigas M, Elias A, de Campra P. 2006. Discrete wavelet analysis to assess long-term trends in geomagnetic activity. Physics and Chemistry of the Earth 31: 77-80. Kundzewicz ZW, Graczyk D, Maurer T, Pinskwar I, Radziejewski M, Svensson C, Szwed M. 2005. Trend detection in river flow series: 1. Annual maximum flow. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques 50: 797-810. Jung HY, Choi Y, Oh JH, Lim GH. 2002. Recent trends in temperature and precipitation over South Korea. International Journal of Climatology 22: 1327-1337. Percival DB, Walden AT. 2000. Wavelet Methods for Time Series Analysis. Cambridge University Press: Cambridge, UK. 2009; 23 2010; 12 2002; 16 2007; 104 1987; 1 2006; 31 2004; 289 2009b; 368 2005; 314 1945; 13 2004; 24 1975 2008; 349 2008; 35 2005 1972 2011; 350 2012; 424 2011; 396 1988; 2 1995; 41 2007; 112 2009a; 11 2005; 342 2000 2004; 15 2002; 22 1992; 28 2008; 21 1993; E47 2005; 50 2007; 21 2009; 368 2005; 12 1988 2003; 23 1998; 79 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 Gao G (e_1_2_7_10_1) 2007; 112 e_1_2_7_9_1 e_1_2_7_8_1 Ding J (e_1_2_7_7_1) 1988 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 Kendall M (e_1_2_7_16_1) 1975 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Sang YF (e_1_2_7_30_1) 2011; 350 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 Schreiber T (e_1_2_7_32_1) 1993; 47 e_1_2_7_37_1 e_1_2_7_38_1 Yevjevich V (e_1_2_7_39_1) 1972 |
References_xml | – reference: Sang YF, Wang D, Wu JC. 2010. Entropy-Based Method of Choosing the Decomposition Level in Wavelet Threshold De-noising. Entropy 12: 1499-1513. – reference: Kahya E, Kalayci S. 2004. Trend analysis of streamflow in Turkey. Journal of Hydrology 289: 128-144. – reference: Shao QX, Li M. 2011. A new trend analysis for seasonal time series with consideration of data dependence. Journal of Hydrology 396: 104-112. – reference: Macdonald RW, Harner T, Fyfe J. 2005. Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data. Science of the Total Environment 342: 5-86. – reference: Adam JC, Lettenmaier DP. 2008. Application of new precipitation and reconstructed streamflow products to streamflow trend attribution in northern Eurasia. Journal of Climate 21: 1807-1828. – reference: Mann H. 1945. Non-parametric tests against trend. Econometrica 13: 245-259. – reference: Schreiber T. 1993. Extremely simple nonlinear noise-reduction method. Physics Review E47: 2401-2404. – reference: Hamed KH. 2009. Enhancing the effectiveness of prewhitening in trend analysis of hydrologic data. Journal of Hydrology 368: 143-155. – reference: Torrence C, Compo GP. 1998. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society 79: 61-78. – reference: Yevjevich V. 1987. Stochastic models in hydrology. Stochastic Hydrology and Hydraulics 1: 17-36. – reference: Jung HY, Choi Y, Oh JH, Lim GH. 2002. Recent trends in temperature and precipitation over South Korea. International Journal of Climatology 22: 1327-1337. – reference: Adamowski K, Prokoph A, Adamowski J. 2009. Development of a new method of wavelet aided trend detection and estimation. Hydrological Processes 23: 2686-2696. – reference: Kundzewicz ZW, Graczyk D, Maurer T, Pinskwar I, Radziejewski M, Svensson C, Szwed M. 2005. Trend detection in river flow series: 1. Annual maximum flow. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques 50: 797-810. – reference: Flandrin P, Goncalves P, Rilling G. 2005. In Hilbert-Huang Transform: Introduction and Applications, Huang NE, Shen SS-P (eds). World Scientific: Teaneck, NJ; 57-74. – reference: Yevjevich V. 1972. Stochastic Process in Hydrology. Water Resources Publications: Colorado, USA. – reference: Percival DB, Walden AT. 2000. Wavelet Methods for Time Series Analysis. Cambridge University Press: Cambridge, UK. – reference: Hamed KH. 2008. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. Journal of Hydrology 349: 350-363. – reference: Rivard C, Vigneault H. 2009. Trend detection in hydrological series: when series are negatively correlated. Hydrological Processes 23: 2737-2743. – reference: Sang YF, Wang D, Wu JC, Zhu QP, Wang L. 2009b. The relation between periods' identification and noises in hydrologic series data. Journal of Hydrology 368: 165-177. – reference: Partal T, Kucuk M. 2006. Long term trend analysis using discrete wavelet components of annual precipitation measurements in Marmara region (Turkey). Physics and Chemistry of the Earth 31: 1189-1200. – reference: Kendall M. 1975. Rank Correlation Methods. Charles Griffin: London. – reference: Pisoft P, Kalvova J, Brazdil R. 2004. Cycles and trends in the Czech temperatures series using wavelet transform. International Journal of Climatology 24: 1661-1670. – reference: Craigmile PF, Guttorp P, Percival DB. 2004. Trend assessment in a long memory dependence model using the discrete wavelet transform. Environmentrics 15: 313-335. – reference: Donoho DH. 1995. De-noising by soft-thresholding. IEEE Transactions on Information Theory 41: 613-617. – reference: Khaliq MN, Ouarda TBMJ, Gachon P, Sushama L, St-Hilaire A. 2009. Identification of hydrological trends in the presence of serial and cross correlations: A review of selected methods and their application to annual flow regimes of Canadian rivers. Journal of Hydrology 368: 117-130. – reference: Taleb EH, Druyan LM. 2003. Relationship between rainfall and West African wave disturbances in station observation. International Journal of Climatology 23: 305-313. – reference: Kuczera G. 1992. Uncorrelated measurement error in flood frequency inference. Water Resources Research 28: 183-188. – reference: Sang YF, Wang D, Wu JC. 2011. Comparison of the Wavelet Characters of Various Noises by Discrete Wavelet Transform. Hydrological Cycle and Water Resources Sustainability in Changing Environments. IAHS Publication 350: 622-626. – reference: Xu ZX, Li JY, Liu CM. 2007. Long-term trend analysis for major climate variables in the Yellow River basin. Hydrological Processes 21: 1935-1948. – reference: Almasri A, Locking H, Shukar G. 2008. Testing for climate warming in Sweden during 1850-1999 using wavelet analysis. Journal of Applied Statistics 35: 431-443. – reference: de Artigas M, Elias A, de Campra P. 2006. Discrete wavelet analysis to assess long-term trends in geomagnetic activity. Physics and Chemistry of the Earth 31: 77-80. – reference: Gao G, Chen DL, Xu CY, Simelton E. 2007. Trend of estimated actual evapotranspiration over China during 1960-2002. Journal of Geophysical Research-Atmospheres 112: D11120. – reference: Yue S, Pilon P, Phinney B, Cavadias G. 2002. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrological Processes 16: 1807-1829. – reference: Kallache M, Rust HW, Kropp J. 2005. Trend assessment: applications for hydrology and climate research. Nonlinear Processes in Geophysics 12: 2001-2210. – reference: Sang YF, Wang D, Wu JC, Zhu QP, Wang L. 2009a. Entropy-based wavelet de-noising method for time series analysis. Entropy 11: 1123-1147. – reference: Sang YF, Wang Z, Liu C. 2012. Period identification in hydrologic time series using empirical mode decomposition and maximum entropy spectral analysis. Journal of Hydrology 424: 154-164. – reference: Stock JH, Watson MW. 1988. Variable trends in economic time-series. Journal of Economic Perspectives 2: 147-174. – reference: Ding J, Deng YR. 1988. Stochastic Hydrology. The Publisher of the Science and Technology University of Chengdu: Chengdu, China (in Chinese). – reference: Labat D. 2005. Recent advances in wavelet analyses: Part 1. A review of concepts. Journal of Hydrology 314: 275-288. – reference: Wu ZH, Huang NE, Long SR, Peng CK. 2007. On the trend, detrending, and variability of nonlinear and nonstationary time series. Proceedings of the National Academy of Sciences 104: 14889-14894. – volume: 35 start-page: 431 year: 2008 end-page: 443 article-title: Testing for climate warming in Sweden during 1850–1999 using wavelet analysis publication-title: Journal of Applied Statistics – volume: 342 start-page: 5 year: 2005 end-page: 86 article-title: Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data publication-title: Science of the Total Environment – volume: 41 start-page: 613 year: 1995 end-page: 617 article-title: De‐noising by soft‐thresholding publication-title: IEEE Transactions on Information Theory – volume: 23 start-page: 2686 year: 2009 end-page: 2696 article-title: Development of a new method of wavelet aided trend detection and estimation publication-title: Hydrological Processes – volume: 289 start-page: 128 year: 2004 end-page: 144 article-title: Trend analysis of streamflow in Turkey publication-title: Journal of Hydrology – volume: 349 start-page: 350 year: 2008 end-page: 363 article-title: Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis publication-title: Journal of Hydrology – volume: 13 start-page: 245 year: 1945 end-page: 259 article-title: Non‐parametric tests against trend publication-title: Econometrica – year: 2000 – volume: 21 start-page: 1935 year: 2007 end-page: 1948 article-title: Long‐term trend analysis for major climate variables in the Yellow River basin publication-title: Hydrological Processes – year: 1975 – volume: 50 start-page: 797 year: 2005 end-page: 810 article-title: Trend detection in river flow series: 1. Annual maximum flow publication-title: Hydrological Sciences Journal‐Journal Des Sciences Hydrologiques – volume: 368 start-page: 165 year: 2009b end-page: 177 article-title: The relation between periods' identification and noises in hydrologic series data publication-title: Journal of Hydrology – volume: 24 start-page: 1661 year: 2004 end-page: 1670 article-title: Cycles and trends in the Czech temperatures series using wavelet transform publication-title: International Journal of Climatology – volume: 11 start-page: 1123 year: 2009a end-page: 1147 article-title: Entropy‐based wavelet de‐noising method for time series analysis publication-title: Entropy – volume: 22 start-page: 1327 year: 2002 end-page: 1337 article-title: Recent trends in temperature and precipitation over South Korea publication-title: International Journal of Climatology – volume: 79 start-page: 61 year: 1998 end-page: 78 article-title: A practical guide to wavelet analysis publication-title: Bulletin of the American Meteorological Society – volume: 31 start-page: 77 year: 2006 end-page: 80 article-title: Discrete wavelet analysis to assess long‐term trends in geomagnetic activity publication-title: Physics and Chemistry of the Earth – volume: 15 start-page: 313 year: 2004 end-page: 335 article-title: Trend assessment in a long memory dependence model using the discrete wavelet transform publication-title: Environmentrics – volume: 350 start-page: 622 year: 2011 end-page: 626 article-title: Comparison of the Wavelet Characters of Various Noises by Discrete Wavelet Transform. Hydrological Cycle and Water Resources Sustainability in Changing Environments publication-title: IAHS Publication – volume: E47 start-page: 2401 year: 1993 end-page: 2404 article-title: Extremely simple nonlinear noise‐reduction method publication-title: Physics Review – start-page: 57 year: 2005 end-page: 74 – volume: 12 start-page: 1499 year: 2010 end-page: 1513 article-title: Entropy‐Based Method of Choosing the Decomposition Level in Wavelet Threshold De‐noising publication-title: Entropy – volume: 112 start-page: D11120 year: 2007 article-title: Trend of estimated actual evapotranspiration over China during 1960–2002 publication-title: Journal of Geophysical Research‐Atmospheres – volume: 104 start-page: 14889 year: 2007 end-page: 14894 article-title: On the trend, detrending, and variability of nonlinear and nonstationary time series publication-title: Proceedings of the National Academy of Sciences – volume: 396 start-page: 104 year: 2011 end-page: 112 article-title: A new trend analysis for seasonal time series with consideration of data dependence publication-title: Journal of Hydrology – volume: 368 start-page: 143 year: 2009 end-page: 155 article-title: Enhancing the effectiveness of prewhitening in trend analysis of hydrologic data publication-title: Journal of Hydrology – volume: 424 start-page: 154 year: 2012 end-page: 164 article-title: Period identification in hydrologic time series using empirical mode decomposition and maximum entropy spectral analysis publication-title: Journal of Hydrology – volume: 28 start-page: 183 year: 1992 end-page: 188 article-title: Uncorrelated measurement error in flood frequency inference publication-title: Water Resources Research – volume: 23 start-page: 305 year: 2003 end-page: 313 article-title: Relationship between rainfall and West African wave disturbances in station observation publication-title: International Journal of Climatology – volume: 21 start-page: 1807 year: 2008 end-page: 1828 article-title: Application of new precipitation and reconstructed streamflow products to streamflow trend attribution in northern Eurasia publication-title: Journal of Climate – year: 1988 – volume: 12 start-page: 2001 year: 2005 end-page: 2210 article-title: Trend assessment: applications for hydrology and climate research publication-title: Nonlinear Processes in Geophysics – year: 1972 – volume: 368 start-page: 117 year: 2009 end-page: 130 article-title: Identification of hydrological trends in the presence of serial and cross correlations: A review of selected methods and their application to annual flow regimes of Canadian rivers publication-title: Journal of Hydrology – volume: 314 start-page: 275 year: 2005 end-page: 288 article-title: Recent advances in wavelet analyses: Part 1. A review of concepts publication-title: Journal of Hydrology – volume: 31 start-page: 1189 year: 2006 end-page: 1200 article-title: Long term trend analysis using discrete wavelet components of annual precipitation measurements in Marmara region (Turkey) publication-title: Physics and Chemistry of the Earth – volume: 1 start-page: 17 year: 1987 end-page: 36 article-title: Stochastic models in hydrology publication-title: Stochastic Hydrology and Hydraulics – volume: 23 start-page: 2737 year: 2009 end-page: 2743 article-title: Trend detection in hydrological series: when series are negatively correlated publication-title: Hydrological Processes – volume: 16 start-page: 1807 year: 2002 end-page: 1829 article-title: The influence of autocorrelation on the ability to detect trend in hydrological series publication-title: Hydrological Processes – volume: 2 start-page: 147 year: 1988 end-page: 174 article-title: Variable trends in economic time‐series publication-title: Journal of Economic Perspectives – ident: e_1_2_7_9_1 doi: 10.1142/9789812703347_0003 – ident: e_1_2_7_12_1 doi: 10.1016/j.jhydrol.2009.01.040 – ident: e_1_2_7_21_1 doi: 10.1016/j.scitotenv.2004.12.059 – ident: e_1_2_7_4_1 doi: 10.1080/02664760701835011 – ident: e_1_2_7_17_1 doi: 10.1016/j.jhydrol.2009.01.035 – ident: e_1_2_7_31_1 doi: 10.1016/j.jhydrol.2011.12.044 – ident: e_1_2_7_37_1 doi: 10.1073/pnas.0701020104 – ident: e_1_2_7_14_1 doi: 10.1016/j.jhydrol.2003.11.006 – ident: e_1_2_7_23_1 doi: 10.1016/j.pce.2006.04.043 – ident: e_1_2_7_38_1 doi: 10.1002/hyp.6405 – volume: 47 start-page: 2401 year: 1993 ident: e_1_2_7_32_1 article-title: Extremely simple nonlinear noise‐reduction method publication-title: Physics Review – volume-title: Stochastic Process in Hydrology year: 1972 ident: e_1_2_7_39_1 – ident: e_1_2_7_34_1 doi: 10.1257/jep.2.3.147 – ident: e_1_2_7_5_1 doi: 10.1002/env.642 – ident: e_1_2_7_11_1 doi: 10.1016/j.jhydrol.2007.11.009 – ident: e_1_2_7_27_1 doi: 10.3390/e11041123 – ident: e_1_2_7_36_1 doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 – volume: 350 start-page: 622 year: 2011 ident: e_1_2_7_30_1 article-title: Comparison of the Wavelet Characters of Various Noises by Discrete Wavelet Transform. Hydrological Cycle and Water Resources Sustainability in Changing Environments publication-title: IAHS Publication – ident: e_1_2_7_2_1 doi: 10.1175/2007JCLI1535.1 – ident: e_1_2_7_19_1 doi: 10.1623/hysj.2005.50.5.797 – ident: e_1_2_7_28_1 doi: 10.1016/j.jhydrol.2009.01.042 – ident: e_1_2_7_29_1 doi: 10.3390/e12061499 – ident: e_1_2_7_26_1 doi: 10.1002/hyp.7370 – volume-title: Stochastic Hydrology year: 1988 ident: e_1_2_7_7_1 – ident: e_1_2_7_35_1 doi: 10.1002/joc.883 – ident: e_1_2_7_25_1 doi: 10.1002/joc.1095 – ident: e_1_2_7_3_1 doi: 10.1002/hyp.7260 – ident: e_1_2_7_33_1 doi: 10.1016/j.jhydrol.2010.10.040 – volume: 112 start-page: D11120 year: 2007 ident: e_1_2_7_10_1 article-title: Trend of estimated actual evapotranspiration over China during 1960–2002 publication-title: Journal of Geophysical Research‐Atmospheres doi: 10.1029/2006JD008010 – ident: e_1_2_7_20_1 doi: 10.1016/j.jhydrol.2005.04.003 – ident: e_1_2_7_13_1 doi: 10.1002/joc.797 – ident: e_1_2_7_18_1 doi: 10.1029/91WR02269 – ident: e_1_2_7_24_1 doi: 10.1017/CBO9780511841040 – ident: e_1_2_7_22_1 doi: 10.2307/1907187 – volume-title: Rank Correlation Methods year: 1975 ident: e_1_2_7_16_1 – ident: e_1_2_7_6_1 doi: 10.1016/j.pce.2005.03.009 – ident: e_1_2_7_8_1 doi: 10.1109/18.382009 – ident: e_1_2_7_15_1 doi: 10.5194/npg-12-201-2005 – ident: e_1_2_7_40_1 doi: 10.1007/BF01543907 – ident: e_1_2_7_41_1 doi: 10.1002/hyp.1095 |
SSID | ssj0004080 |
Score | 2.2925968 |
Snippet | Trend identification is a substantial issue in hydrologic series analysis, but it is also a difficult task in practice due to the confusing concept of trend... |
SourceID | crossref wiley istex |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 2021 |
SubjectTerms | Mann-Kendall test periodicity statistical significance time series analysis trend identification wavelet |
Title | Discrete wavelet-based trend identification in hydrologic time series |
URI | https://api.istex.fr/ark:/67375/WNG-5V4P1Q1Q-H/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.9356 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFA2iC934FuuLCKKrqZnMI-lSfBUXYsUnLoY8aanUUke0rvwEv9EvMTczrVQUxNUwcGcI9ya5h5mTcxDa4kqqWBMWSC6iIDYRC2oi0UHKYhLriMvUeLbFaVq_jE9ukpuSVQlnYQp9iOEHN1gZfr-GBS7k4-6XaGiz363WogTUtoGqBXjo_Es5KibeNM2toSRICWcD3VlCdwcPjnSiCUjqyyhC9S3maAbdDQZXMEva1adcVtXrN93G_41-Fk2XyBPvFVNlDo2ZzjyaLE3Qm_0FdHzQcnuIA9H4WYAdRf7x9g5NTuMciLO4pUtmkS8mbnVws697xeaJwaMew3Q2j4vo8ujwYr8elD4LgYIGFlhqaWJDLkTNitASpV31BIsMh9-0XFNOlLsRIH6vVKqlIcRQS6xkKrFCRktovPPQMcsIp0yGKbHWhMLGaUSFQyTGIUrDmSBU2QraGeQ8U6UIOXhh3GeFfDLNXGIySEwFbQ4ju4Xwxg8x275swwDRawNRjSXZ9elxllzFZ2EjbGR1F-iL8eubsvrtGVxX_hq4iqaoN8YA4u4aGs97T2bdwZNcbviJ-AnF3eQW |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7U9qG-1Dut1xFEn7KdTJKZWXwStY1al1ZarSAMc2WXylrWFF2f-hP6G_0lzpkkWyoK4lMInITh3DNz8n0Aj6Q1tnRUZEbqIit9IbKhrlzGRUlLV0jDfZq2GPH6oHx9WB0uwdP-X5gWH2Kx4YaRkfI1BjhuSG-eo4aO58eDYVHxS7CChN7pe-rdOXZUSRNtWoyiKuNUih55lrLN_skLtWgF1fr9Yo-aiszWFfjUL6-dLTkanDRmYH_8htz4n-u_Cmtd80metd5yDZb89Dqsdjzo4_kN2H4xiWkk9tHkm0ZGiubn6RnWOUcanJ0lE9cNFyV7ksmUjOdu1uZPgjT1BD3af70JB1sv95_XWUe1kFmsYVlggVUhl1oPg84DtS4aUIvCSzyplY5JauONRvx7a7kznlLPAg1G2CpoU9yC5emXqV8HwoXJOQ3B5zqUvGA6NiU-NpVeCk2ZDRvwpFe6sh0OOdJhfFYtgjJTUTEKFbMBDxeSxy32xh9kHie7LQT07Ahn1USlPoy2VfW-3M338j1VR8Fkjb--SdUfd_F6-18FH8Bqvf92R-28Gr25A5dZ4snAOd67sNzMTvy92K005n7yyl_-fegx |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbYJjFeGBtDjHEx0gRP6RzHsd1HtNIVhqoOsTHEg-WrWg2VqmRi5YmfsN-4X4KPk3baBBLaUxTlJLLOxeco-fJ9CO1IayxzRGRG6iJjvhBZW5cu44IR5gppuE9oiz7vHbH3J-VJg6qEf2FqfojFCzeojLRfQ4FPXNi9Ig0dziatdlHyJbTCOJGQ0Z2PV9RRjCTVtFhEZRYviznxLKG78zuvtaIV8Or59RE19ZjuGvo6X10NLTltnVWmZX_dIG683fIfoPvN6Inf1Lmyju748QZabVTQh7OHaL8ziptInKLxTw16FNXl7wvocg5XgJzFI9dAi1I08WiMhzM3rXdPDCL1GPLZ_9hER923n_Z6WSO0kFnoYFmggZYhl1q3g84DsS6GT4vCS_hOKx2VxMYTDez31nJnPCGeBhKMsGXQpniElsffx_4xwlyYnJMQfK4D4wXVcSTxcaT0UmhCbdhCr-c-V7ZhIQcxjG-q5k-mKjpGgWO20MuF5aRm3viLzasUtoWBnp4CUk2U6nN_X5XHbJAf5oeqFw1TMP75JNX7MoDjk_81fIHuDjpd9eFd_2Ab3aNJJANAvE_RcjU988_iqFKZ5ykn_wB_oObp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete+wavelet%E2%80%90based+trend+identification+in+hydrologic+time+series&rft.jtitle=Hydrological+processes&rft.au=Sang%2C+Yan%E2%80%90Fang&rft.au=Wang%2C+Zhonggen&rft.au=Liu%2C+Changming&rft.date=2013-07-01&rft.issn=0885-6087&rft.eissn=1099-1085&rft.volume=27&rft.issue=14&rft.spage=2021&rft.epage=2031&rft_id=info:doi/10.1002%2Fhyp.9356&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hyp_9356 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon |