Non‐Equilibrium Kinetic States of a [2]Rotaxane‐Based Molecular Shuttle Controlled by Acid Concentrations

A [2]rotaxane‐based molecular shuttle with an acid‐responsive asymmetric macrocycle on a symmetric dumbbell axle is reported. Upon adding TFA, the macrocycle, namely the amine naphthotube, is protonated and translocates from the di(quaternary ammonium) station to the triazole stations because of ele...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 50; pp. e202214296 - n/a
Main Authors Zhao, Lei‐Min, Zheng, Li‐Shuo, Wang, Xiaoping, Jiang, Wei
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 12.12.2022
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A [2]rotaxane‐based molecular shuttle with an acid‐responsive asymmetric macrocycle on a symmetric dumbbell axle is reported. Upon adding TFA, the macrocycle, namely the amine naphthotube, is protonated and translocates from the di(quaternary ammonium) station to the triazole stations because of electrostatic repulsion and weakened binding. The shuttling kinetics are slow due to the steric hindrance caused by the ethyl group on the quaternary ammonium center and can be followed by 1H NMR spectroscopy. Interestingly, it was found that the shuttling kinetics depends on the concentration of TFA. A kinetic intermediate was detected and can even be captured in the presence of a high concentration of TFA. Extensive control experiments revealed that the shuttling kinetics and the capture of the kinetic intermediate are related to the different protonation states of the rotaxanes. A [2]rotaxane‐based molecular shuttle with an acid‐responsive asymmetric macrocycle on a symmetric dumbbell axle has been synthesized. The shuttling kinetics can be controlled by the acid concentration and the kinetic intermediate can even be captured at a high concentration of acid. This was explained by invoking different protonation states of the rotaxane at different concentrations of acid.
AbstractList A [2]rotaxane-based molecular shuttle with an acid-responsive asymmetric macrocycle on a symmetric dumbbell axle is reported. Upon adding TFA, the macrocycle, namely the amine naphthotube, is protonated and translocates from the di(quaternary ammonium) station to the triazole stations because of electrostatic repulsion and weakened binding. The shuttling kinetics are slow due to the steric hindrance caused by the ethyl group on the quaternary ammonium center and can be followed by H-1 NMR spectroscopy. Interestingly, it was found that the shuttling kinetics depends on the concentration of TFA. A kinetic intermediate was detected and can even be captured in the presence of a high concentration of TFA. Extensive control experiments revealed that the shuttling kinetics and the capture of the kinetic intermediate are related to the different protonation states of the rotaxanes.
A [2]rotaxane-based molecular shuttle with an acid-responsive asymmetric macrocycle on a symmetric dumbbell axle is reported. Upon adding TFA, the macrocycle, namely the amine naphthotube, is protonated and translocates from the di(quaternary ammonium) station to the triazole stations because of electrostatic repulsion and weakened binding. The shuttling kinetics are slow due to the steric hindrance caused by the ethyl group on the quaternary ammonium center and can be followed by H NMR spectroscopy. Interestingly, it was found that the shuttling kinetics depends on the concentration of TFA. A kinetic intermediate was detected and can even be captured in the presence of a high concentration of TFA. Extensive control experiments revealed that the shuttling kinetics and the capture of the kinetic intermediate are related to the different protonation states of the rotaxanes.
A [2]rotaxane‐based molecular shuttle with an acid‐responsive asymmetric macrocycle on a symmetric dumbbell axle is reported. Upon adding TFA, the macrocycle, namely the amine naphthotube, is protonated and translocates from the di(quaternary ammonium) station to the triazole stations because of electrostatic repulsion and weakened binding. The shuttling kinetics are slow due to the steric hindrance caused by the ethyl group on the quaternary ammonium center and can be followed by 1H NMR spectroscopy. Interestingly, it was found that the shuttling kinetics depends on the concentration of TFA. A kinetic intermediate was detected and can even be captured in the presence of a high concentration of TFA. Extensive control experiments revealed that the shuttling kinetics and the capture of the kinetic intermediate are related to the different protonation states of the rotaxanes. A [2]rotaxane‐based molecular shuttle with an acid‐responsive asymmetric macrocycle on a symmetric dumbbell axle has been synthesized. The shuttling kinetics can be controlled by the acid concentration and the kinetic intermediate can even be captured at a high concentration of acid. This was explained by invoking different protonation states of the rotaxane at different concentrations of acid.
A [2]rotaxane‐based molecular shuttle with an acid‐responsive asymmetric macrocycle on a symmetric dumbbell axle is reported. Upon adding TFA, the macrocycle, namely the amine naphthotube, is protonated and translocates from the di(quaternary ammonium) station to the triazole stations because of electrostatic repulsion and weakened binding. The shuttling kinetics are slow due to the steric hindrance caused by the ethyl group on the quaternary ammonium center and can be followed by 1 H NMR spectroscopy. Interestingly, it was found that the shuttling kinetics depends on the concentration of TFA. A kinetic intermediate was detected and can even be captured in the presence of a high concentration of TFA. Extensive control experiments revealed that the shuttling kinetics and the capture of the kinetic intermediate are related to the different protonation states of the rotaxanes.
A [2]rotaxane‐based molecular shuttle with an acid‐responsive asymmetric macrocycle on a symmetric dumbbell axle is reported. Upon adding TFA, the macrocycle, namely the amine naphthotube, is protonated and translocates from the di(quaternary ammonium) station to the triazole stations because of electrostatic repulsion and weakened binding. The shuttling kinetics are slow due to the steric hindrance caused by the ethyl group on the quaternary ammonium center and can be followed by 1H NMR spectroscopy. Interestingly, it was found that the shuttling kinetics depends on the concentration of TFA. A kinetic intermediate was detected and can even be captured in the presence of a high concentration of TFA. Extensive control experiments revealed that the shuttling kinetics and the capture of the kinetic intermediate are related to the different protonation states of the rotaxanes.
Author Zhao, Lei‐Min
Zheng, Li‐Shuo
Jiang, Wei
Wang, Xiaoping
Author_xml – sequence: 1
  givenname: Lei‐Min
  surname: Zhao
  fullname: Zhao, Lei‐Min
  organization: Southern University of Science and Technology (SUSTech)
– sequence: 2
  givenname: Li‐Shuo
  surname: Zheng
  fullname: Zheng, Li‐Shuo
  organization: Southern University of Science and Technology (SUSTech)
– sequence: 3
  givenname: Xiaoping
  surname: Wang
  fullname: Wang, Xiaoping
  email: wangxp@sustech.edu.cn
  organization: Southern University of Science and Technology (SUSTech)
– sequence: 4
  givenname: Wei
  orcidid: 0000-0001-7683-5811
  surname: Jiang
  fullname: Jiang, Wei
  email: jiangw@sustech.edu.cn
  organization: Southern University of Science and Technology (SUSTech)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36251219$$D View this record in MEDLINE/PubMed
BookMark eNqNkU2LFDEQhoOsuB969SgNHpce89H56OPYjLq4ruDqSSSk09WYpSfZTdLo3PwJ_kZ_iRlndgVBNJcUVc9blbx1jA588IDQY4IXBGP6zHgHC4opJQ1txT10RDglNZOSHZS4YayWipNDdJzSVeGVwuIBOmSCckJJe4TWF8H_-PZ9dTO7yfXRzevqtfOQna0us8mQqjBWpvpIP70L2Xw1Hgr93CQYqjdhAjtPJlaXn-ecJ6i64HMM01SK_aZaWjdsUxZK1mQXfHqI7o9mSvBof5-gDy9W77tX9fnbl2fd8ry2DDNRCzXYpqU9J2CGnnNpLZdSEEW5GiWjXDZiFK1tx16InkthyAiibwzwlhKw7AQ93fW9juFmhpT1VZijLyM1LVpFyyGFerKn5n4Ng76Obm3iRt-6U4DTHfAF-jAm66B85g7DGCvFFBGsRHjbTv0_3bn8y5IuzD4XabOT2hhSijBqu68X59ykCdbbbevttvXdtots8YfsdtpfBe3-iW6CzT9ovbw4W_3W_gT0j7w6
CitedBy_id crossref_primary_10_1002_cjoc_202300239
crossref_primary_10_1002_ange_202315668
crossref_primary_10_1002_chem_202304025
crossref_primary_10_1039_D3SC04408D
crossref_primary_10_1002_ange_202414072
crossref_primary_10_1021_acs_inorgchem_4c01675
crossref_primary_10_1002_anie_202414072
crossref_primary_10_1002_anie_202315668
crossref_primary_10_1002_chem_202500350
crossref_primary_10_1002_rpm_20230016
Cites_doi 10.1016/j.chempr.2020.07.009
10.1038/nnano.2014.260
10.1038/s41586-022-05033-0
10.1002/anie.201702992
10.1038/s41565-021-00975-4
10.1002/ange.201803349
10.1038/nchem.2543
10.1038/s41586-022-04450-5
10.1038/35089509
10.1038/s41467-022-30012-4
10.1002/anie.200504313
10.1002/ange.202201882
10.1002/anie.201702979
10.1038/s41570-019-0122-2
10.1021/acs.chemrev.9b00291
10.1002/9781119044123
10.1038/nature18013
10.1002/ange.201703216
10.1002/ange.201702992
10.1126/science.288.5463.88
10.1038/s41586-021-03575-3
10.1126/science.aao1377
10.1002/ange.200504313
10.1021/acs.chemrev.1c00340
10.1002/ange.202011566
10.1126/science.abk1391
10.1038/nature01601
10.1039/C7CS00245A
10.1002/anie.201910318
10.1002/anie.202201258
10.1126/science.abb3962
10.1002/ange.202206631
10.1038/43646
10.1038/s41557-022-00917-0
10.1038/nature01758
10.1038/s41557-022-00899-z
10.1021/acs.chemrev.9b00288
10.1002/anie.201703216
10.1002/anie.202011566
10.1002/ange.201910318
10.1021/acs.accounts.9b00415
10.1002/anie.202206631
10.1002/anie.202201882
10.1038/nnano.2015.96
10.1002/anie.201803349
10.1038/s41570-017-0096
10.1021/acs.orglett.1c02940
10.1002/ange.202201258
10.1002/ange.201702979
10.1038/nrm2774
10.1002/anie.202117273
10.1038/NCHEM.2543
10.1039/c7cs00245a
10.1038/NNANO.2015.96
10.1038/NNANO.2014.260
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
17B
1KM
AHQBO
BLEPL
DTL
EGQ
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
DOI 10.1002/anie.202214296
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Web of Science - Science Citation Index Expanded - 2022
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
Web of Science
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
DatabaseTitleList Web of Science
MEDLINE

CrossRef
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KM
  name: Index Chemicus
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 36251219
000883816300001
10_1002_anie_202214296
ANIE202214296
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22125105
– fundername: Shenzhen "Pengcheng Scholar", Guangdong Provincial Key Laboratory of Catalysis
  grantid: 2020B121201002
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2019A1515110216
– fundername: Shenzhen Science and Technology Innovation Committee
  grantid: JCYJ20180504165810828
– fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC)
  grantid: 22125105
– fundername: Guangdong High-Level Personnel of Special Support Program
  grantid: 2019TX05C157
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
17B
1KM
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
ID FETCH-LOGICAL-c3036-68dc492b51eadb557cc577618258f7325746f69c9fb66b576a1fe6b4ae5921ec3
IEDL.DBID DR2
ISICitedReferencesCount 12
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000883816300001
ISSN 1433-7851
IngestDate Fri Jul 25 11:47:24 EDT 2025
Thu Apr 03 07:00:34 EDT 2025
Wed Jul 09 18:30:48 EDT 2025
Fri Aug 29 16:06:26 EDT 2025
Tue Jul 01 01:46:56 EDT 2025
Thu Apr 24 23:03:42 EDT 2025
Wed Jan 22 16:20:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 50
Keywords ROTATION
Non-Equilibrium State
Kinetics
DRIVEN
MOTORS
ROTARY
Molecular Shuttle
Naphthotube
Rotaxane
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c3036-68dc492b51eadb557cc577618258f7325746f69c9fb66b576a1fe6b4ae5921ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7683-5811
PMID 36251219
PQID 2746822221
PQPubID 946352
PageCount 8
ParticipantIDs webofscience_primary_000883816300001
proquest_journals_2746822221
crossref_primary_10_1002_anie_202214296
webofscience_primary_000883816300001CitationCount
wiley_primary_10_1002_anie_202214296_ANIE202214296
pubmed_primary_36251219
crossref_citationtrail_10_1002_anie_202214296
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 12, 2022
PublicationDateYYYYMMDD 2022-12-12
PublicationDate_xml – month: 12
  year: 2022
  text: December 12, 2022
  day: 12
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAbbrev ANGEW CHEM INT EDIT
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2022
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2017; 1
2019; 3
2021; 23
2020; 120
2017; 46
2015; 10
2020 2020; 59 132
2020; 368
2021; 121
2017 2017; 56 129
1999; 401
2017; 358
2019 2019; 58 131
2021; 16
2020; 6
2022 2022; 61 134
2009; 10
2003; 424
2020; 53
2018 2018; 57 130
2007 2007; 46 119
2022; 13
2022; 14
2022; 609
2016
2016; 534
2001; 2
2000; 288
2021; 374
2021; 594
2022; 604
2003; 422
2016; 8
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_1
e_1_2_7_7_2
(e_1_2_7_19_3) 2022; 134
e_1_2_7_19_2
e_1_2_7_17_2
e_1_2_7_15_3
e_1_2_7_15_2
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_41_2
e_1_2_7_11_3
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_45_2
e_1_2_7_45_3
e_1_2_7_47_1
e_1_2_7_26_2
e_1_2_7_28_1
e_1_2_7_25_2
e_1_2_7_31_2
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_2
e_1_2_7_35_2
e_1_2_7_37_2
e_1_2_7_39_2
(e_1_2_7_46_3) 2022; 134
e_1_2_7_4_2
e_1_2_7_2_3
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_14_2
e_1_2_7_12_3
e_1_2_7_42_1
e_1_2_7_12_2
e_1_2_7_10_3
e_1_2_7_44_1
e_1_2_7_10_2
e_1_2_7_46_2
e_1_2_7_48_1
e_1_2_7_27_2
e_1_2_7_29_1
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_36_2
e_1_2_7_38_2
Wang (000883816300001.45) 2020; 132
Collins, BSL (WOS:000384411700012) 2016; 8
Baroncini, M (WOS:000507144600006) 2020; 120
Ragazzon, G (WOS:000347405800023) 2015; 10
Hirokawa, N (WOS:000270040300011) 2009; 10
Feringa (000883816300001.13) 2017; 129
Mo, K (WOS:000847977100001) 2022; 609
Feringa, BL (WOS:000408605300013) 2017; 56
Wang, XP (WOS:000788852000038) 2022; 13
Amano, S (WOS:000770174600001) 2022; 14
Cui, JS (WOS:000435766800040) 2018; 57
Yoshida, M (WOS:000171077700013) 2001; 2
Kay, E.R. (000883816300001.16) 2022; 134
Amano, S (WOS:000665247800014) 2021; 594
Bach, NN (WOS:000764010200001) 2022; 61
Amano, S (WOS:000705776100005) 2021; 16
Kay, E.R. (000883816300001.40) 2018; 130
Schliwa, M (WOS:000182272300050) 2003; 422
Leigh, DA (WOS:000184032700037) 2003; 424
van Leeuwen, T (WOS:000418266400002) 2017; 1
Kassem, S (WOS:000400833000016) 2017; 46
Bruns, C.J. (000883816300001.2) 2016
Koumura, N (WOS:000082458800050) 1999; 401
Feng, L (WOS:000728578700051) 2021; 374
Gerwien, A (WOS:000808583400014) 2022; 14
Erbas-Cakmak, S (WOS:000413251000036) 2017; 358
Qiu, YY (WOS:000544031400033) 2020; 368
Yang, LP (WOS:000509420300017) 2020; 53
Sauvage, JP (WOS:000408605300014) 2017; 56
Wilson, MR (WOS:000377475100038) 2016; 534
Lancia, F (WOS:000484803800005) 2019; 3
Qiu, YY (WOS:000558679600013) 2020; 6
Costil, R (WOS:000718326200006) 2021; 121
Dattler, D (WOS:000507144600009) 2020; 120
Wang, LL (WOS:000578273200001) 2020; 59
Mondal, A (WOS:000849810500001) 2022; 61
Kay, E.R. (000883816300001.47) 2022; 134
Quan, ZY (WOS:000750924000001) 2022; 61
Zheng (000883816300001.43) 2019; 131
Kay, E.R. (000883816300001.20) 2022; 134
Kay, E.R. (000883816300001.9) 2017; 129
Zheng, LS (WOS:000485592500001) 2019; 58
Vale, R. D. (INSPEC:6634397) 2000; 288
Cherraben, S (WOS:000709693500047) 2021; 23
Cheng, CY (WOS:000355620000018) 2015; 10
Kay, ER (WOS:000243183400008) 2007; 46
Stoddart, JF (WOS:000408605300015) 2017; 56
Borsley, S (WOS:000779100400019) 2022; 604
Stoddart (000883816300001.11) 2017; 129
References_xml – volume: 534
  start-page: 235
  year: 2016
  end-page: 240
  publication-title: Nature
– volume: 422
  start-page: 759
  year: 2003
  end-page: 765
  publication-title: Nature
– volume: 401
  start-page: 152
  year: 1999
  end-page: 155
  publication-title: Nature
– volume: 10
  start-page: 70
  year: 2015
  end-page: 75
  publication-title: Nat. Nanotechnol.
– volume: 121
  start-page: 13213
  year: 2021
  end-page: 13237
  publication-title: Chem. Rev.
– volume: 609
  start-page: 293
  year: 2022
  end-page: 298
  publication-title: Nature
– volume: 120
  start-page: 310
  year: 2020
  end-page: 433
  publication-title: Chem. Rev.
– volume: 56 129
  start-page: 11060 11206
  year: 2017 2017
  end-page: 11078 11226
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 682
  year: 2009
  end-page: 696
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 46
  start-page: 2592
  year: 2017
  end-page: 2621
  publication-title: Chem. Soc. Rev.
– volume: 368
  start-page: 1247
  year: 2020
  end-page: 1253
  publication-title: Science
– volume: 3
  start-page: 536
  year: 2019
  end-page: 551
  publication-title: Nat. Chem. Rev.
– volume: 8
  start-page: 860
  year: 2016
  end-page: 866
  publication-title: Nat. Chem.
– volume: 58 131
  start-page: 15136 15280
  year: 2019 2019
  end-page: 15141 15285
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 14
  start-page: 670
  year: 2022
  end-page: 676
  publication-title: Nat. Chem.
– volume: 2
  start-page: 669
  year: 2001
  end-page: 677
  publication-title: Nat. Rev. Mol. Cell Biol.
– year: 2016
– volume: 358
  start-page: 340
  year: 2017
  end-page: 343
  publication-title: Science
– volume: 16
  start-page: 1057
  year: 2021
  end-page: 1067
  publication-title: Nat. Nanotechnol.
– volume: 57 130
  start-page: 7809 7935
  year: 2018 2018
  end-page: 7814 7940
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 53
  start-page: 198
  year: 2020
  end-page: 208
  publication-title: Acc. Chem. Res.
– volume: 594
  start-page: 529
  year: 2021
  end-page: 534
  publication-title: Nature
– volume: 288
  start-page: 88
  year: 2000
  end-page: 95
  publication-title: Science
– volume: 14
  start-page: 530
  year: 2022
  end-page: 537
  publication-title: Nat. Chem.
– volume: 374
  start-page: 1215
  year: 2021
  end-page: 1221
  publication-title: Science
– volume: 46 119
  start-page: 72 72
  year: 2007 2007
  end-page: 191 196
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 56 129
  start-page: 11094 11244
  year: 2017 2017
  end-page: 11125 11277
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 23
  start-page: 7938
  year: 2021
  end-page: 7942
  publication-title: Org. Lett.
– volume: 10
  start-page: 547
  year: 2015
  end-page: 553
  publication-title: Nat. Nanotechnol.
– volume: 56 129
  start-page: 11080 11228
  year: 2017 2017
  end-page: 11093 11242
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 604
  start-page: 80
  year: 2022
  end-page: 85
  publication-title: Nature
– volume: 120
  start-page: 200
  year: 2020
  end-page: 268
  publication-title: Chem. Rev.
– volume: 13
  start-page: 2291
  year: 2022
  publication-title: Nat. Commun.
– volume: 1
  start-page: 0096
  year: 2017
  publication-title: Nat. Chem. Rev.
– volume: 424
  start-page: 174
  year: 2003
  end-page: 179
  publication-title: Nature
– volume: 6
  start-page: 1952
  year: 2020
  end-page: 1977
  publication-title: Chem
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 23817 24025
  year: 2020 2020
  end-page: 23824 24032
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_7_37_2
  doi: 10.1016/j.chempr.2020.07.009
– ident: e_1_2_7_34_2
  doi: 10.1038/nnano.2014.260
– ident: e_1_2_7_22_2
  doi: 10.1038/s41586-022-05033-0
– ident: e_1_2_7_10_2
  doi: 10.1002/anie.201702992
– ident: e_1_2_7_28_1
  doi: 10.1038/s41565-021-00975-4
– ident: e_1_2_7_41_2
  doi: 10.1002/ange.201803349
– ident: e_1_2_7_18_2
  doi: 10.1038/nchem.2543
– ident: e_1_2_7_20_2
  doi: 10.1038/s41586-022-04450-5
– ident: e_1_2_7_47_1
  doi: 10.1038/35089509
– ident: e_1_2_7_42_1
  doi: 10.1038/s41467-022-30012-4
– ident: e_1_2_7_2_2
  doi: 10.1002/anie.200504313
– volume: 134
  year: 2022
  ident: e_1_2_7_19_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202201882
– ident: e_1_2_7_33_1
– ident: e_1_2_7_12_2
  doi: 10.1002/anie.201702979
– ident: e_1_2_7_5_2
  doi: 10.1038/s41570-019-0122-2
– ident: e_1_2_7_6_2
  doi: 10.1021/acs.chemrev.9b00291
– ident: e_1_2_7_3_2
  doi: 10.1002/9781119044123
– ident: e_1_2_7_16_1
– ident: e_1_2_7_25_2
  doi: 10.1038/nature18013
– ident: e_1_2_7_11_3
  doi: 10.1002/ange.201703216
– ident: e_1_2_7_13_1
– ident: e_1_2_7_10_3
  doi: 10.1002/ange.201702992
– ident: e_1_2_7_30_2
  doi: 10.1126/science.288.5463.88
– ident: e_1_2_7_39_2
  doi: 10.1038/s41586-021-03575-3
– ident: e_1_2_7_26_2
  doi: 10.1126/science.aao1377
– ident: e_1_2_7_2_3
  doi: 10.1002/ange.200504313
– ident: e_1_2_7_8_2
  doi: 10.1021/acs.chemrev.1c00340
– ident: e_1_2_7_45_3
  doi: 10.1002/ange.202011566
– ident: e_1_2_7_38_2
  doi: 10.1126/science.abk1391
– ident: e_1_2_7_31_2
  doi: 10.1038/nature01601
– ident: e_1_2_7_4_2
  doi: 10.1039/C7CS00245A
– ident: e_1_2_7_43_1
  doi: 10.1002/anie.201910318
– ident: e_1_2_7_46_2
  doi: 10.1002/anie.202201258
– ident: e_1_2_7_36_2
  doi: 10.1126/science.abb3962
– ident: e_1_2_7_15_3
  doi: 10.1002/ange.202206631
– ident: e_1_2_7_17_2
  doi: 10.1038/43646
– ident: e_1_2_7_21_2
  doi: 10.1038/s41557-022-00917-0
– ident: e_1_2_7_24_2
  doi: 10.1038/nature01758
– ident: e_1_2_7_29_1
– ident: e_1_2_7_27_2
  doi: 10.1038/s41557-022-00899-z
– ident: e_1_2_7_7_2
  doi: 10.1021/acs.chemrev.9b00288
– ident: e_1_2_7_1_1
– ident: e_1_2_7_11_2
  doi: 10.1002/anie.201703216
– ident: e_1_2_7_45_2
  doi: 10.1002/anie.202011566
– ident: e_1_2_7_43_2
  doi: 10.1002/ange.201910318
– ident: e_1_2_7_44_1
– ident: e_1_2_7_40_1
  doi: 10.1021/acs.accounts.9b00415
– ident: e_1_2_7_15_2
  doi: 10.1002/anie.202206631
– ident: e_1_2_7_19_2
  doi: 10.1002/anie.202201882
– ident: e_1_2_7_35_2
  doi: 10.1038/nnano.2015.96
– ident: e_1_2_7_41_1
  doi: 10.1002/anie.201803349
– ident: e_1_2_7_14_2
  doi: 10.1038/s41570-017-0096
– ident: e_1_2_7_48_1
  doi: 10.1021/acs.orglett.1c02940
– volume: 134
  year: 2022
  ident: e_1_2_7_46_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202201258
– ident: e_1_2_7_9_1
– ident: e_1_2_7_12_3
  doi: 10.1002/ange.201702979
– ident: e_1_2_7_23_1
– ident: e_1_2_7_32_2
  doi: 10.1038/nrm2774
– volume: 130
  start-page: 7935
  year: 2018
  ident: 000883816300001.40
  publication-title: Angew. Chem
– volume: 1
  start-page: ARTN 0096
  year: 2017
  ident: WOS:000418266400002
  article-title: Dynamic control of function by light-driven molecular motors
  publication-title: NATURE REVIEWS CHEMISTRY
  doi: 10.1038/s41570-017-0096
– volume: 374
  start-page: 1215
  year: 2021
  ident: WOS:000728578700051
  article-title: Active mechanisorption driven by pumping cassettes
  publication-title: SCIENCE
  doi: 10.1126/science.abk1391
– volume: 13
  start-page: ARTN 2291
  year: 2022
  ident: WOS:000788852000038
  article-title: Switchable bifunctional molecular recognition in water using a pH-responsive Endo-functionalized cavity
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-022-30012-4
– volume: 422
  start-page: 759
  year: 2003
  ident: WOS:000182272300050
  article-title: Molecular motors
  publication-title: NATURE
  doi: 10.1038/nature01601
– volume: 56
  start-page: 11094
  year: 2017
  ident: WOS:000408605300015
  article-title: Mechanically Interlocked Molecules (MIMs)-Molecular Shuttles, Switches, and Machines (Nobel Lecture)
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201703216
– volume: 53
  start-page: 198
  year: 2020
  ident: WOS:000509420300017
  article-title: Naphthotubes: Macrocyclic Hosts with a Biomimetic Cavity Feature
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.9b00415
– volume: 61
  start-page: ARTN e202201882
  year: 2022
  ident: WOS:000764010200001
  article-title: Active Mechanical Threading by a Molecular Motor
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202201882
– volume: 134
  year: 2022
  ident: 000883816300001.20
  publication-title: Angew. Chem
– volume: 424
  start-page: 174
  year: 2003
  ident: WOS:000184032700037
  article-title: Unidirectional rotation in a mechanically interlocked molecular rotor
  publication-title: NATURE
  doi: 10.1038/nature01758
– volume: 358
  start-page: 340
  year: 2017
  ident: WOS:000413251000036
  article-title: Rotary and linear molecular motors driven by pulses of a chemical fuel
  publication-title: SCIENCE
  doi: 10.1126/science.aao1377
– volume: 16
  start-page: 1057
  year: 2021
  ident: WOS:000705776100005
  article-title: Chemical engines: driving systems away from equilibrium through catalyst reaction cycles
  publication-title: NATURE NANOTECHNOLOGY
  doi: 10.1038/s41565-021-00975-4
– volume: 56
  start-page: 11059
  year: 2017
  ident: WOS:000408605300013
  article-title: The Art of Building Small: From Molecular Switches to Motors (Nobel Lecture)
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201702979
– volume: 61
  start-page: ARTN e202117273
  year: 2022
  ident: WOS:000750924000001
  article-title: Mechanism of the Bifunctional Multiple Product Sesterterpene Synthase AcAS from Aspergillus calidoustus
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202117273
– volume: 129
  start-page: 11244
  year: 2017
  ident: 000883816300001.11
  publication-title: Angew. Chem
– volume: 288
  start-page: 88
  year: 2000
  ident: INSPEC:6634397
  article-title: The way things move: looking under the hood of molecular motor proteins
  publication-title: Science
– volume: 23
  start-page: 7938
  year: 2021
  ident: WOS:000709693500047
  article-title: Precise Rate Control of Pseudorotaxane Dethreading by pH-Responsive Selectively Functionalized Cyclodextrins
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.1c02940
– volume: 3
  start-page: 536
  year: 2019
  ident: WOS:000484803800005
  article-title: Life-like motion driven by artificial molecular machines
  publication-title: NATURE REVIEWS CHEMISTRY
  doi: 10.1038/s41570-019-0122-2
– volume: 8
  start-page: 860
  year: 2016
  ident: WOS:000384411700012
  article-title: A chemically powered unidirectional rotary molecular motor based on a palladium redox cycle
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/NCHEM.2543
– volume: 46
  start-page: 2592
  year: 2017
  ident: WOS:000400833000016
  article-title: Artificial molecular motors
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c7cs00245a
– volume: 534
  start-page: 235
  year: 2016
  ident: WOS:000377475100038
  article-title: An autonomous chemically fuelled small-molecule motor
  publication-title: NATURE
  doi: 10.1038/nature18013
– volume: 129
  start-page: 11228
  year: 2017
  ident: 000883816300001.9
  publication-title: Angew. Chem
– volume: 134
  year: 2022
  ident: 000883816300001.16
  publication-title: Angew. Chem
– volume: 6
  start-page: 1952
  year: 2020
  ident: WOS:000558679600013
  article-title: Pumps through the Ages
  publication-title: CHEM
  doi: 10.1016/j.chempr.2020.07.009
– volume: 120
  start-page: 200
  year: 2020
  ident: WOS:000507144600006
  article-title: Photo- and Redox-Driven Artificial Molecular Motors
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.9b00291
– volume: 61
  start-page: ARTN e202206631
  year: 2022
  ident: WOS:000849810500001
  article-title: Chemically Driven Rotatory Molecular Machines
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202206631
– volume: 58
  start-page: 15136
  year: 2019
  ident: WOS:000485592500001
  article-title: Biomimetic Synchronized Motion of Two Interacting Macrocycles in [3]Rotaxane-Based Molecular Shuttles
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201910318
– volume: 10
  start-page: 547
  year: 2015
  ident: WOS:000355620000018
  article-title: An artificial molecular pump
  publication-title: NATURE NANOTECHNOLOGY
  doi: 10.1038/NNANO.2015.96
– year: 2016
  ident: 000883816300001.2
  publication-title: The Nature of the Mechanical Bond: From Molecules to Machines
– volume: 57
  start-page: 7809
  year: 2018
  ident: WOS:000435766800040
  article-title: Directional Shuttling of a Stimuli-Responsive Cone-Like Macrocycle on a Single-State Symmetric Dumbbell Axle
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201803349
– volume: 10
  start-page: 682
  year: 2009
  ident: WOS:000270040300011
  article-title: Kinesin superfamily motor proteins and intracellular transport
  publication-title: NATURE REVIEWS MOLECULAR CELL BIOLOGY
  doi: 10.1038/nrm2774
– volume: 121
  start-page: 13213
  year: 2021
  ident: WOS:000718326200006
  article-title: Directing Coupled Motion with Light: A Key Step Toward Machine-Like Function
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.1c00340
– volume: 368
  start-page: 1247
  year: 2020
  ident: WOS:000544031400033
  article-title: A precise polyrotaxane synthesizer
  publication-title: SCIENCE
  doi: 10.1126/science.abb3962
– volume: 594
  start-page: 529
  year: 2021
  ident: WOS:000665247800014
  article-title: A catalysis-driven artificial molecular pump
  publication-title: NATURE
  doi: 10.1038/s41586-021-03575-3
– volume: 120
  start-page: 310
  year: 2020
  ident: WOS:000507144600009
  article-title: Design of Collective Motions from Synthetic Molecular Switches, Rotors, and Motors
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.9b00288
– volume: 59
  start-page: 23817
  year: 2020
  ident: WOS:000578273200001
  article-title: A Green and Wide-Scope Approach for Chiroptical Sensing of Organic Molecules through Biomimetic Recognition in Water
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202011566
– volume: 132
  start-page: 24025
  year: 2020
  ident: 000883816300001.45
  publication-title: Angew. Chem
– volume: 14
  start-page: 670
  year: 2022
  ident: WOS:000808583400014
  article-title: Photogearing as a concept for translation of precise motions at the nanoscale
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/s41557-022-00917-0
– volume: 14
  start-page: 530
  year: 2022
  ident: WOS:000770174600001
  article-title: Insights from an information thermodynamics analysis of a synthetic molecular motor
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/s41557-022-00899-z
– volume: 2
  start-page: 669
  year: 2001
  ident: WOS:000171077700013
  article-title: ATP synthase - A marvellous rotary engine of the cell
  publication-title: NATURE REVIEWS MOLECULAR CELL BIOLOGY
– volume: 604
  start-page: 80
  year: 2022
  ident: WOS:000779100400019
  article-title: Autonomous fuelled directional rotation about a covalent single bond
  publication-title: NATURE
  doi: 10.1038/s41586-022-04450-5
– volume: 609
  start-page: 293
  year: 2022
  ident: WOS:000847977100001
  article-title: Intrinsically unidirectional chemically fuelled rotary molecular motors (Retracted article. See vol. 619, pg. 658, 2023)
  publication-title: NATURE
  doi: 10.1038/s41586-022-05033-0
– volume: 46
  start-page: 72
  year: 2007
  ident: WOS:000243183400008
  article-title: Synthetic molecular motors and mechanical machines
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200504313
– volume: 134
  year: 2022
  ident: 000883816300001.47
  publication-title: Angew. Chem
– volume: 129
  start-page: 11206
  year: 2017
  ident: 000883816300001.13
  publication-title: Angew. Chem
– volume: 401
  start-page: 152
  year: 1999
  ident: WOS:000082458800050
  article-title: Light-driven monodirectional molecular rotor
  publication-title: NATURE
– volume: 56
  start-page: 11080
  year: 2017
  ident: WOS:000408605300014
  article-title: From Chemical Topology to Molecular Machines (Nobel Lecture)
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201702992
– volume: 131
  start-page: 15280
  year: 2019
  ident: 000883816300001.43
  publication-title: Angew. Chem
– volume: 10
  start-page: 70
  year: 2015
  ident: WOS:000347405800023
  article-title: Light-powered autonomous and directional molecular motion of a dissipative self-assembling system
  publication-title: NATURE NANOTECHNOLOGY
  doi: 10.1038/NNANO.2014.260
SSID ssj0028806
Score 2.4707663
Snippet A [2]rotaxane‐based molecular shuttle with an acid‐responsive asymmetric macrocycle on a symmetric dumbbell axle is reported. Upon adding TFA, the macrocycle,...
A [2]rotaxane-based molecular shuttle with an acid-responsive asymmetric macrocycle on a symmetric dumbbell axle is reported. Upon adding TFA, the macrocycle,...
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202214296
SubjectTerms Ammonium
Ammonium Compounds
Antifungal agents
Chemistry
Chemistry, Multidisciplinary
Kinetics
Magnetic Resonance Spectroscopy
Molecular Shuttle
Naphthotube
NMR
NMR spectroscopy
Non-Equilibrium State
Nuclear magnetic resonance
Physical Sciences
Protonation
Rotaxane
Rotaxanes
Rotaxanes - chemistry
Science & Technology
Steric hindrance
Triazoles - chemistry
Title Non‐Equilibrium Kinetic States of a [2]Rotaxane‐Based Molecular Shuttle Controlled by Acid Concentrations
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202214296
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000883816300001
https://www.ncbi.nlm.nih.gov/pubmed/36251219
https://www.proquest.com/docview/2746822221
Volume 61
WOS 000883816300001
WOSCitedRecordID wos000883816300001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hLnDp-5EWkA9IPQXWTuLEx-1qEaViD7RISFUV2Y6jIiDblkRqe-pP4DfyS5iJk8BSVUXlECmJJw8nM57P9vgbgM1CyFSYSIVG0GgV-oxQZVkRllabeISbKGm8Y38mdw_jvaPk6MYqfs8PMQy4kWW07TUZuDbn29ekobQCG_t3gjjDFHFuU8AWoaKDgT9KoHL65UVRFFIW-p61cSS2Fy9f9Ep_QM1bXmkRyLaeaOch6L4OPgDlZKupzZb9dYve8T6VfAQPOpjKxl6vHsOSq57AyqTPDvcUzmbz6vL3xfRbc9yuGmjO2Ht8Goozj1_ZvGSafRKfD-a1_qErh9Jv0WUWbL_PyMs-fGmIQplNfLz8KRaan2xsjws65eNGW7t4Boc704-T3bBL3RBa8omhzAobK2ESjppqkiS1NklTiZ2ZJCvTCNuJWJZSWVUaKQ32eTQvnTSxdokS3NnoOSxX88q9BGZ5IZTlWrkMNQkBpzJCm1GmuXDaRFEAYf_rctvxmlN6jdPcMzKLnD5iPnzEAN4M8l89o8dfJdd6Tcg7yz7PsRcvCVQJHsALrx3DbRAMIH7iKoDNm-oylBPgymimNmonVQLgdxGbdJUikoI6ANHqyz9ePR_P3k2Ho1f_c9FrWKV9Ct3hYg2W6--NW0cAVpuN1siuAF24JvQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOZQL_z-BAj5U4pR27SROfFxWW21pdw-llZAQimzHUSvabAuJBJx4BJ6RJ2EmTgJbhEBwyCHJOImdmcw3zvgbgM1CyFSYSIVG0GwV-oxQZVkRllabeISbKGm-Y76Qs6P45eukzyaktTCeH2KYcCPLaL_XZOA0Ib39gzWUlmBjgCeINEzJq3CNynq3UdXBwCAlUD39AqMoCqkOfc_bOBLbq-1X_dIvYPOSX1qFsq0v2rkJpu-FT0F5t9XUZst-vkTw-F_dvAU3OqTKxl61bsMVV92B9UlfIO4unC2W1bcvX6cXzUm7cKA5Y3t4OxRnHsKyZck0eyPeHixr_VFXDqVfoNcs2LwvysteHTfEoswmPmX-FE-aT2xsTwo65FNHW9O4B0c708PJLOyqN4SW3GIos8LGSpiEo7KaJEmtTdJUYjyTZGUa4acilqVUVpVGSoNhj-alkybWLlGCOxvdh7VqWbmHwCwvhLJcK5ehMiHmVEZoM8o0F06bKAog7N9dbjtqc6qwcZp7UmaR0yDmwyAG8HyQP_ekHr-V3OhVIe-M-0OOgbwkXCV4AA-8egyXQTyAEIqrADZ_1pfhPGGujH7WRu1_lQD434hNuk4RT0EdgGgV5g-Pno8Xu9Nh79G_NHoG67PD-X6-v7vYewzX6Thl8nCxAWv1-8Y9QTxWm6etxX0HvWQrDw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BkYAL34VAAR8qcUq7dhInPi7bXbWUrlChUiWEIttxREWbLZBIwImfwG_klzATJ6FbhEBwyCHJOImdN5lnx34DsF4ImQoTqdAIGq3CmBGqLCvC0moTj3ATJY137M3l9kH87DA5PLOK3-tDDANu5Bnt95oc_LQoN3-KhtIKbOzfCdIMU_IiXIrlKCNcb-0PAlIC0enXF0VRSGnoe9nGkdhcLr8cln7hmufC0jKTbUPR7DrovhJ-Bsq7jaY2G_bLOX3H_6nlDbjW8VQ29sC6CRdcdQuuTPr0cLfhZL6ovn_9Nn3fHLXLBpoTtot3Q3PmCSxblEyz1-LN_qLWn3Tl0PopxsyC7fUpednLtw1pKLOJnzB_jCfNZza2RwUd8hNHW8e4Awez6avJdtjlbggtBcVQZoWNlTAJR6iaJEmtTdJUYm8myco0wg9FLEuprCqNlAY7PZqXTppYu0QJ7my0CivVonL3gFleCGW5Vi5DKCHjVEZoM8o0F06bKAog7F9dbjthc8qvcZx7SWaRUyPmQyMG8GSwP_WSHr-1XOuRkHeu_THHbrwkViV4AHc9OobLIBtAAsVVAOtn4TKcJ8aV0a_aqP2rEgD_G7NJVylSKagDEC1e_vDo-Xi-Mx327v9Locdw-cXWLH--M999AFfpME3j4WINVuoPjXuIZKw2j1p_-wEylinH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-Equilibrium+Kinetic+States+of+a+%5B2%5DRotaxane-Based+Molecular+Shuttle+Controlled+by+Acid+Concentrations&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhao%2C+Lei-Min&rft.au=Zheng%2C+Li-Shuo&rft.au=Wang%2C+Xiaoping&rft.au=Jiang%2C+Wei&rft.date=2022-12-12&rft.eissn=1521-3773&rft.volume=61&rft.issue=50&rft.spage=e202214296&rft_id=info:doi/10.1002%2Fanie.202214296&rft_id=info%3Apmid%2F36251219&rft.externalDocID=36251219
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon