Non‐Equilibrium Kinetic States of a [2]Rotaxane‐Based Molecular Shuttle Controlled by Acid Concentrations
A [2]rotaxane‐based molecular shuttle with an acid‐responsive asymmetric macrocycle on a symmetric dumbbell axle is reported. Upon adding TFA, the macrocycle, namely the amine naphthotube, is protonated and translocates from the di(quaternary ammonium) station to the triazole stations because of ele...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 50; pp. e202214296 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
12.12.2022
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A [2]rotaxane‐based molecular shuttle with an acid‐responsive asymmetric macrocycle on a symmetric dumbbell axle is reported. Upon adding TFA, the macrocycle, namely the amine naphthotube, is protonated and translocates from the di(quaternary ammonium) station to the triazole stations because of electrostatic repulsion and weakened binding. The shuttling kinetics are slow due to the steric hindrance caused by the ethyl group on the quaternary ammonium center and can be followed by 1H NMR spectroscopy. Interestingly, it was found that the shuttling kinetics depends on the concentration of TFA. A kinetic intermediate was detected and can even be captured in the presence of a high concentration of TFA. Extensive control experiments revealed that the shuttling kinetics and the capture of the kinetic intermediate are related to the different protonation states of the rotaxanes.
A [2]rotaxane‐based molecular shuttle with an acid‐responsive asymmetric macrocycle on a symmetric dumbbell axle has been synthesized. The shuttling kinetics can be controlled by the acid concentration and the kinetic intermediate can even be captured at a high concentration of acid. This was explained by invoking different protonation states of the rotaxane at different concentrations of acid. |
---|---|
AbstractList | A [2]rotaxane-based molecular shuttle with an acid-responsive asymmetric macrocycle on a symmetric dumbbell axle is reported. Upon adding TFA, the macrocycle, namely the amine naphthotube, is protonated and translocates from the di(quaternary ammonium) station to the triazole stations because of electrostatic repulsion and weakened binding. The shuttling kinetics are slow due to the steric hindrance caused by the ethyl group on the quaternary ammonium center and can be followed by H-1 NMR spectroscopy. Interestingly, it was found that the shuttling kinetics depends on the concentration of TFA. A kinetic intermediate was detected and can even be captured in the presence of a high concentration of TFA. Extensive control experiments revealed that the shuttling kinetics and the capture of the kinetic intermediate are related to the different protonation states of the rotaxanes. A [2]rotaxane-based molecular shuttle with an acid-responsive asymmetric macrocycle on a symmetric dumbbell axle is reported. Upon adding TFA, the macrocycle, namely the amine naphthotube, is protonated and translocates from the di(quaternary ammonium) station to the triazole stations because of electrostatic repulsion and weakened binding. The shuttling kinetics are slow due to the steric hindrance caused by the ethyl group on the quaternary ammonium center and can be followed by H NMR spectroscopy. Interestingly, it was found that the shuttling kinetics depends on the concentration of TFA. A kinetic intermediate was detected and can even be captured in the presence of a high concentration of TFA. Extensive control experiments revealed that the shuttling kinetics and the capture of the kinetic intermediate are related to the different protonation states of the rotaxanes. A [2]rotaxane‐based molecular shuttle with an acid‐responsive asymmetric macrocycle on a symmetric dumbbell axle is reported. Upon adding TFA, the macrocycle, namely the amine naphthotube, is protonated and translocates from the di(quaternary ammonium) station to the triazole stations because of electrostatic repulsion and weakened binding. The shuttling kinetics are slow due to the steric hindrance caused by the ethyl group on the quaternary ammonium center and can be followed by 1H NMR spectroscopy. Interestingly, it was found that the shuttling kinetics depends on the concentration of TFA. A kinetic intermediate was detected and can even be captured in the presence of a high concentration of TFA. Extensive control experiments revealed that the shuttling kinetics and the capture of the kinetic intermediate are related to the different protonation states of the rotaxanes. A [2]rotaxane‐based molecular shuttle with an acid‐responsive asymmetric macrocycle on a symmetric dumbbell axle has been synthesized. The shuttling kinetics can be controlled by the acid concentration and the kinetic intermediate can even be captured at a high concentration of acid. This was explained by invoking different protonation states of the rotaxane at different concentrations of acid. A [2]rotaxane‐based molecular shuttle with an acid‐responsive asymmetric macrocycle on a symmetric dumbbell axle is reported. Upon adding TFA, the macrocycle, namely the amine naphthotube, is protonated and translocates from the di(quaternary ammonium) station to the triazole stations because of electrostatic repulsion and weakened binding. The shuttling kinetics are slow due to the steric hindrance caused by the ethyl group on the quaternary ammonium center and can be followed by 1 H NMR spectroscopy. Interestingly, it was found that the shuttling kinetics depends on the concentration of TFA. A kinetic intermediate was detected and can even be captured in the presence of a high concentration of TFA. Extensive control experiments revealed that the shuttling kinetics and the capture of the kinetic intermediate are related to the different protonation states of the rotaxanes. A [2]rotaxane‐based molecular shuttle with an acid‐responsive asymmetric macrocycle on a symmetric dumbbell axle is reported. Upon adding TFA, the macrocycle, namely the amine naphthotube, is protonated and translocates from the di(quaternary ammonium) station to the triazole stations because of electrostatic repulsion and weakened binding. The shuttling kinetics are slow due to the steric hindrance caused by the ethyl group on the quaternary ammonium center and can be followed by 1H NMR spectroscopy. Interestingly, it was found that the shuttling kinetics depends on the concentration of TFA. A kinetic intermediate was detected and can even be captured in the presence of a high concentration of TFA. Extensive control experiments revealed that the shuttling kinetics and the capture of the kinetic intermediate are related to the different protonation states of the rotaxanes. |
Author | Zhao, Lei‐Min Zheng, Li‐Shuo Jiang, Wei Wang, Xiaoping |
Author_xml | – sequence: 1 givenname: Lei‐Min surname: Zhao fullname: Zhao, Lei‐Min organization: Southern University of Science and Technology (SUSTech) – sequence: 2 givenname: Li‐Shuo surname: Zheng fullname: Zheng, Li‐Shuo organization: Southern University of Science and Technology (SUSTech) – sequence: 3 givenname: Xiaoping surname: Wang fullname: Wang, Xiaoping email: wangxp@sustech.edu.cn organization: Southern University of Science and Technology (SUSTech) – sequence: 4 givenname: Wei orcidid: 0000-0001-7683-5811 surname: Jiang fullname: Jiang, Wei email: jiangw@sustech.edu.cn organization: Southern University of Science and Technology (SUSTech) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36251219$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU2LFDEQhoOsuB969SgNHpce89H56OPYjLq4ruDqSSSk09WYpSfZTdLo3PwJ_kZ_iRlndgVBNJcUVc9blbx1jA588IDQY4IXBGP6zHgHC4opJQ1txT10RDglNZOSHZS4YayWipNDdJzSVeGVwuIBOmSCckJJe4TWF8H_-PZ9dTO7yfXRzevqtfOQna0us8mQqjBWpvpIP70L2Xw1Hgr93CQYqjdhAjtPJlaXn-ecJ6i64HMM01SK_aZaWjdsUxZK1mQXfHqI7o9mSvBof5-gDy9W77tX9fnbl2fd8ry2DDNRCzXYpqU9J2CGnnNpLZdSEEW5GiWjXDZiFK1tx16InkthyAiibwzwlhKw7AQ93fW9juFmhpT1VZijLyM1LVpFyyGFerKn5n4Ng76Obm3iRt-6U4DTHfAF-jAm66B85g7DGCvFFBGsRHjbTv0_3bn8y5IuzD4XabOT2hhSijBqu68X59ykCdbbbevttvXdtots8YfsdtpfBe3-iW6CzT9ovbw4W_3W_gT0j7w6 |
CitedBy_id | crossref_primary_10_1002_cjoc_202300239 crossref_primary_10_1002_ange_202315668 crossref_primary_10_1002_chem_202304025 crossref_primary_10_1039_D3SC04408D crossref_primary_10_1002_ange_202414072 crossref_primary_10_1021_acs_inorgchem_4c01675 crossref_primary_10_1002_anie_202414072 crossref_primary_10_1002_anie_202315668 crossref_primary_10_1002_chem_202500350 crossref_primary_10_1002_rpm_20230016 |
Cites_doi | 10.1016/j.chempr.2020.07.009 10.1038/nnano.2014.260 10.1038/s41586-022-05033-0 10.1002/anie.201702992 10.1038/s41565-021-00975-4 10.1002/ange.201803349 10.1038/nchem.2543 10.1038/s41586-022-04450-5 10.1038/35089509 10.1038/s41467-022-30012-4 10.1002/anie.200504313 10.1002/ange.202201882 10.1002/anie.201702979 10.1038/s41570-019-0122-2 10.1021/acs.chemrev.9b00291 10.1002/9781119044123 10.1038/nature18013 10.1002/ange.201703216 10.1002/ange.201702992 10.1126/science.288.5463.88 10.1038/s41586-021-03575-3 10.1126/science.aao1377 10.1002/ange.200504313 10.1021/acs.chemrev.1c00340 10.1002/ange.202011566 10.1126/science.abk1391 10.1038/nature01601 10.1039/C7CS00245A 10.1002/anie.201910318 10.1002/anie.202201258 10.1126/science.abb3962 10.1002/ange.202206631 10.1038/43646 10.1038/s41557-022-00917-0 10.1038/nature01758 10.1038/s41557-022-00899-z 10.1021/acs.chemrev.9b00288 10.1002/anie.201703216 10.1002/anie.202011566 10.1002/ange.201910318 10.1021/acs.accounts.9b00415 10.1002/anie.202206631 10.1002/anie.202201882 10.1038/nnano.2015.96 10.1002/anie.201803349 10.1038/s41570-017-0096 10.1021/acs.orglett.1c02940 10.1002/ange.202201258 10.1002/ange.201702979 10.1038/nrm2774 10.1002/anie.202117273 10.1038/NCHEM.2543 10.1039/c7cs00245a 10.1038/NNANO.2015.96 10.1038/NNANO.2014.260 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 17B 1KM AHQBO BLEPL DTL EGQ CGR CUY CVF ECM EIF NPM 7TM K9. |
DOI | 10.1002/anie.202214296 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science - Science Citation Index Expanded - 2022 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) |
DatabaseTitle | CrossRef Web of Science MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts |
DatabaseTitleList | Web of Science MEDLINE CrossRef ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 36251219 000883816300001 10_1002_anie_202214296 ANIE202214296 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22125105 – fundername: Shenzhen "Pengcheng Scholar", Guangdong Provincial Key Laboratory of Catalysis grantid: 2020B121201002 – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2019A1515110216 – fundername: Shenzhen Science and Technology Innovation Committee grantid: JCYJ20180504165810828 – fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC) grantid: 22125105 – fundername: Guangdong High-Level Personnel of Special Support Program grantid: 2019TX05C157 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 17B 1KM BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE CGR CUY CVF ECM EIF NPM 7TM K9. |
ID | FETCH-LOGICAL-c3036-68dc492b51eadb557cc577618258f7325746f69c9fb66b576a1fe6b4ae5921ec3 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 12 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000883816300001 |
ISSN | 1433-7851 |
IngestDate | Fri Jul 25 11:47:24 EDT 2025 Thu Apr 03 07:00:34 EDT 2025 Wed Jul 09 18:30:48 EDT 2025 Fri Aug 29 16:06:26 EDT 2025 Tue Jul 01 01:46:56 EDT 2025 Thu Apr 24 23:03:42 EDT 2025 Wed Jan 22 16:20:56 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Keywords | ROTATION Non-Equilibrium State Kinetics DRIVEN MOTORS ROTARY Molecular Shuttle Naphthotube Rotaxane |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c3036-68dc492b51eadb557cc577618258f7325746f69c9fb66b576a1fe6b4ae5921ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7683-5811 |
PMID | 36251219 |
PQID | 2746822221 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | webofscience_primary_000883816300001 proquest_journals_2746822221 crossref_primary_10_1002_anie_202214296 webofscience_primary_000883816300001CitationCount wiley_primary_10_1002_anie_202214296_ANIE202214296 pubmed_primary_36251219 crossref_citationtrail_10_1002_anie_202214296 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 12, 2022 |
PublicationDateYYYYMMDD | 2022-12-12 |
PublicationDate_xml | – month: 12 year: 2022 text: December 12, 2022 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2022 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2017; 1 2019; 3 2021; 23 2020; 120 2017; 46 2015; 10 2020 2020; 59 132 2020; 368 2021; 121 2017 2017; 56 129 1999; 401 2017; 358 2019 2019; 58 131 2021; 16 2020; 6 2022 2022; 61 134 2009; 10 2003; 424 2020; 53 2018 2018; 57 130 2007 2007; 46 119 2022; 13 2022; 14 2022; 609 2016 2016; 534 2001; 2 2000; 288 2021; 374 2021; 594 2022; 604 2003; 422 2016; 8 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_1 e_1_2_7_7_2 (e_1_2_7_19_3) 2022; 134 e_1_2_7_19_2 e_1_2_7_17_2 e_1_2_7_15_3 e_1_2_7_15_2 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_41_2 e_1_2_7_11_3 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_45_2 e_1_2_7_45_3 e_1_2_7_47_1 e_1_2_7_26_2 e_1_2_7_28_1 e_1_2_7_25_2 e_1_2_7_31_2 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_2 e_1_2_7_35_2 e_1_2_7_37_2 e_1_2_7_39_2 (e_1_2_7_46_3) 2022; 134 e_1_2_7_4_2 e_1_2_7_2_3 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_14_2 e_1_2_7_12_3 e_1_2_7_42_1 e_1_2_7_12_2 e_1_2_7_10_3 e_1_2_7_44_1 e_1_2_7_10_2 e_1_2_7_46_2 e_1_2_7_48_1 e_1_2_7_27_2 e_1_2_7_29_1 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_36_2 e_1_2_7_38_2 Wang (000883816300001.45) 2020; 132 Collins, BSL (WOS:000384411700012) 2016; 8 Baroncini, M (WOS:000507144600006) 2020; 120 Ragazzon, G (WOS:000347405800023) 2015; 10 Hirokawa, N (WOS:000270040300011) 2009; 10 Feringa (000883816300001.13) 2017; 129 Mo, K (WOS:000847977100001) 2022; 609 Feringa, BL (WOS:000408605300013) 2017; 56 Wang, XP (WOS:000788852000038) 2022; 13 Amano, S (WOS:000770174600001) 2022; 14 Cui, JS (WOS:000435766800040) 2018; 57 Yoshida, M (WOS:000171077700013) 2001; 2 Kay, E.R. (000883816300001.16) 2022; 134 Amano, S (WOS:000665247800014) 2021; 594 Bach, NN (WOS:000764010200001) 2022; 61 Amano, S (WOS:000705776100005) 2021; 16 Kay, E.R. (000883816300001.40) 2018; 130 Schliwa, M (WOS:000182272300050) 2003; 422 Leigh, DA (WOS:000184032700037) 2003; 424 van Leeuwen, T (WOS:000418266400002) 2017; 1 Kassem, S (WOS:000400833000016) 2017; 46 Bruns, C.J. (000883816300001.2) 2016 Koumura, N (WOS:000082458800050) 1999; 401 Feng, L (WOS:000728578700051) 2021; 374 Gerwien, A (WOS:000808583400014) 2022; 14 Erbas-Cakmak, S (WOS:000413251000036) 2017; 358 Qiu, YY (WOS:000544031400033) 2020; 368 Yang, LP (WOS:000509420300017) 2020; 53 Sauvage, JP (WOS:000408605300014) 2017; 56 Wilson, MR (WOS:000377475100038) 2016; 534 Lancia, F (WOS:000484803800005) 2019; 3 Qiu, YY (WOS:000558679600013) 2020; 6 Costil, R (WOS:000718326200006) 2021; 121 Dattler, D (WOS:000507144600009) 2020; 120 Wang, LL (WOS:000578273200001) 2020; 59 Mondal, A (WOS:000849810500001) 2022; 61 Kay, E.R. (000883816300001.47) 2022; 134 Quan, ZY (WOS:000750924000001) 2022; 61 Zheng (000883816300001.43) 2019; 131 Kay, E.R. (000883816300001.20) 2022; 134 Kay, E.R. (000883816300001.9) 2017; 129 Zheng, LS (WOS:000485592500001) 2019; 58 Vale, R. D. (INSPEC:6634397) 2000; 288 Cherraben, S (WOS:000709693500047) 2021; 23 Cheng, CY (WOS:000355620000018) 2015; 10 Kay, ER (WOS:000243183400008) 2007; 46 Stoddart, JF (WOS:000408605300015) 2017; 56 Borsley, S (WOS:000779100400019) 2022; 604 Stoddart (000883816300001.11) 2017; 129 |
References_xml | – volume: 534 start-page: 235 year: 2016 end-page: 240 publication-title: Nature – volume: 422 start-page: 759 year: 2003 end-page: 765 publication-title: Nature – volume: 401 start-page: 152 year: 1999 end-page: 155 publication-title: Nature – volume: 10 start-page: 70 year: 2015 end-page: 75 publication-title: Nat. Nanotechnol. – volume: 121 start-page: 13213 year: 2021 end-page: 13237 publication-title: Chem. Rev. – volume: 609 start-page: 293 year: 2022 end-page: 298 publication-title: Nature – volume: 120 start-page: 310 year: 2020 end-page: 433 publication-title: Chem. Rev. – volume: 56 129 start-page: 11060 11206 year: 2017 2017 end-page: 11078 11226 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 682 year: 2009 end-page: 696 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 46 start-page: 2592 year: 2017 end-page: 2621 publication-title: Chem. Soc. Rev. – volume: 368 start-page: 1247 year: 2020 end-page: 1253 publication-title: Science – volume: 3 start-page: 536 year: 2019 end-page: 551 publication-title: Nat. Chem. Rev. – volume: 8 start-page: 860 year: 2016 end-page: 866 publication-title: Nat. Chem. – volume: 58 131 start-page: 15136 15280 year: 2019 2019 end-page: 15141 15285 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 14 start-page: 670 year: 2022 end-page: 676 publication-title: Nat. Chem. – volume: 2 start-page: 669 year: 2001 end-page: 677 publication-title: Nat. Rev. Mol. Cell Biol. – year: 2016 – volume: 358 start-page: 340 year: 2017 end-page: 343 publication-title: Science – volume: 16 start-page: 1057 year: 2021 end-page: 1067 publication-title: Nat. Nanotechnol. – volume: 57 130 start-page: 7809 7935 year: 2018 2018 end-page: 7814 7940 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 start-page: 198 year: 2020 end-page: 208 publication-title: Acc. Chem. Res. – volume: 594 start-page: 529 year: 2021 end-page: 534 publication-title: Nature – volume: 288 start-page: 88 year: 2000 end-page: 95 publication-title: Science – volume: 14 start-page: 530 year: 2022 end-page: 537 publication-title: Nat. Chem. – volume: 374 start-page: 1215 year: 2021 end-page: 1221 publication-title: Science – volume: 46 119 start-page: 72 72 year: 2007 2007 end-page: 191 196 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 56 129 start-page: 11094 11244 year: 2017 2017 end-page: 11125 11277 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 23 start-page: 7938 year: 2021 end-page: 7942 publication-title: Org. Lett. – volume: 10 start-page: 547 year: 2015 end-page: 553 publication-title: Nat. Nanotechnol. – volume: 56 129 start-page: 11080 11228 year: 2017 2017 end-page: 11093 11242 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 604 start-page: 80 year: 2022 end-page: 85 publication-title: Nature – volume: 120 start-page: 200 year: 2020 end-page: 268 publication-title: Chem. Rev. – volume: 13 start-page: 2291 year: 2022 publication-title: Nat. Commun. – volume: 1 start-page: 0096 year: 2017 publication-title: Nat. Chem. Rev. – volume: 424 start-page: 174 year: 2003 end-page: 179 publication-title: Nature – volume: 6 start-page: 1952 year: 2020 end-page: 1977 publication-title: Chem – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 23817 24025 year: 2020 2020 end-page: 23824 24032 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_7_37_2 doi: 10.1016/j.chempr.2020.07.009 – ident: e_1_2_7_34_2 doi: 10.1038/nnano.2014.260 – ident: e_1_2_7_22_2 doi: 10.1038/s41586-022-05033-0 – ident: e_1_2_7_10_2 doi: 10.1002/anie.201702992 – ident: e_1_2_7_28_1 doi: 10.1038/s41565-021-00975-4 – ident: e_1_2_7_41_2 doi: 10.1002/ange.201803349 – ident: e_1_2_7_18_2 doi: 10.1038/nchem.2543 – ident: e_1_2_7_20_2 doi: 10.1038/s41586-022-04450-5 – ident: e_1_2_7_47_1 doi: 10.1038/35089509 – ident: e_1_2_7_42_1 doi: 10.1038/s41467-022-30012-4 – ident: e_1_2_7_2_2 doi: 10.1002/anie.200504313 – volume: 134 year: 2022 ident: e_1_2_7_19_3 publication-title: Angew. Chem. doi: 10.1002/ange.202201882 – ident: e_1_2_7_33_1 – ident: e_1_2_7_12_2 doi: 10.1002/anie.201702979 – ident: e_1_2_7_5_2 doi: 10.1038/s41570-019-0122-2 – ident: e_1_2_7_6_2 doi: 10.1021/acs.chemrev.9b00291 – ident: e_1_2_7_3_2 doi: 10.1002/9781119044123 – ident: e_1_2_7_16_1 – ident: e_1_2_7_25_2 doi: 10.1038/nature18013 – ident: e_1_2_7_11_3 doi: 10.1002/ange.201703216 – ident: e_1_2_7_13_1 – ident: e_1_2_7_10_3 doi: 10.1002/ange.201702992 – ident: e_1_2_7_30_2 doi: 10.1126/science.288.5463.88 – ident: e_1_2_7_39_2 doi: 10.1038/s41586-021-03575-3 – ident: e_1_2_7_26_2 doi: 10.1126/science.aao1377 – ident: e_1_2_7_2_3 doi: 10.1002/ange.200504313 – ident: e_1_2_7_8_2 doi: 10.1021/acs.chemrev.1c00340 – ident: e_1_2_7_45_3 doi: 10.1002/ange.202011566 – ident: e_1_2_7_38_2 doi: 10.1126/science.abk1391 – ident: e_1_2_7_31_2 doi: 10.1038/nature01601 – ident: e_1_2_7_4_2 doi: 10.1039/C7CS00245A – ident: e_1_2_7_43_1 doi: 10.1002/anie.201910318 – ident: e_1_2_7_46_2 doi: 10.1002/anie.202201258 – ident: e_1_2_7_36_2 doi: 10.1126/science.abb3962 – ident: e_1_2_7_15_3 doi: 10.1002/ange.202206631 – ident: e_1_2_7_17_2 doi: 10.1038/43646 – ident: e_1_2_7_21_2 doi: 10.1038/s41557-022-00917-0 – ident: e_1_2_7_24_2 doi: 10.1038/nature01758 – ident: e_1_2_7_29_1 – ident: e_1_2_7_27_2 doi: 10.1038/s41557-022-00899-z – ident: e_1_2_7_7_2 doi: 10.1021/acs.chemrev.9b00288 – ident: e_1_2_7_1_1 – ident: e_1_2_7_11_2 doi: 10.1002/anie.201703216 – ident: e_1_2_7_45_2 doi: 10.1002/anie.202011566 – ident: e_1_2_7_43_2 doi: 10.1002/ange.201910318 – ident: e_1_2_7_44_1 – ident: e_1_2_7_40_1 doi: 10.1021/acs.accounts.9b00415 – ident: e_1_2_7_15_2 doi: 10.1002/anie.202206631 – ident: e_1_2_7_19_2 doi: 10.1002/anie.202201882 – ident: e_1_2_7_35_2 doi: 10.1038/nnano.2015.96 – ident: e_1_2_7_41_1 doi: 10.1002/anie.201803349 – ident: e_1_2_7_14_2 doi: 10.1038/s41570-017-0096 – ident: e_1_2_7_48_1 doi: 10.1021/acs.orglett.1c02940 – volume: 134 year: 2022 ident: e_1_2_7_46_3 publication-title: Angew. Chem. doi: 10.1002/ange.202201258 – ident: e_1_2_7_9_1 – ident: e_1_2_7_12_3 doi: 10.1002/ange.201702979 – ident: e_1_2_7_23_1 – ident: e_1_2_7_32_2 doi: 10.1038/nrm2774 – volume: 130 start-page: 7935 year: 2018 ident: 000883816300001.40 publication-title: Angew. Chem – volume: 1 start-page: ARTN 0096 year: 2017 ident: WOS:000418266400002 article-title: Dynamic control of function by light-driven molecular motors publication-title: NATURE REVIEWS CHEMISTRY doi: 10.1038/s41570-017-0096 – volume: 374 start-page: 1215 year: 2021 ident: WOS:000728578700051 article-title: Active mechanisorption driven by pumping cassettes publication-title: SCIENCE doi: 10.1126/science.abk1391 – volume: 13 start-page: ARTN 2291 year: 2022 ident: WOS:000788852000038 article-title: Switchable bifunctional molecular recognition in water using a pH-responsive Endo-functionalized cavity publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-022-30012-4 – volume: 422 start-page: 759 year: 2003 ident: WOS:000182272300050 article-title: Molecular motors publication-title: NATURE doi: 10.1038/nature01601 – volume: 56 start-page: 11094 year: 2017 ident: WOS:000408605300015 article-title: Mechanically Interlocked Molecules (MIMs)-Molecular Shuttles, Switches, and Machines (Nobel Lecture) publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201703216 – volume: 53 start-page: 198 year: 2020 ident: WOS:000509420300017 article-title: Naphthotubes: Macrocyclic Hosts with a Biomimetic Cavity Feature publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.9b00415 – volume: 61 start-page: ARTN e202201882 year: 2022 ident: WOS:000764010200001 article-title: Active Mechanical Threading by a Molecular Motor publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202201882 – volume: 134 year: 2022 ident: 000883816300001.20 publication-title: Angew. Chem – volume: 424 start-page: 174 year: 2003 ident: WOS:000184032700037 article-title: Unidirectional rotation in a mechanically interlocked molecular rotor publication-title: NATURE doi: 10.1038/nature01758 – volume: 358 start-page: 340 year: 2017 ident: WOS:000413251000036 article-title: Rotary and linear molecular motors driven by pulses of a chemical fuel publication-title: SCIENCE doi: 10.1126/science.aao1377 – volume: 16 start-page: 1057 year: 2021 ident: WOS:000705776100005 article-title: Chemical engines: driving systems away from equilibrium through catalyst reaction cycles publication-title: NATURE NANOTECHNOLOGY doi: 10.1038/s41565-021-00975-4 – volume: 56 start-page: 11059 year: 2017 ident: WOS:000408605300013 article-title: The Art of Building Small: From Molecular Switches to Motors (Nobel Lecture) publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201702979 – volume: 61 start-page: ARTN e202117273 year: 2022 ident: WOS:000750924000001 article-title: Mechanism of the Bifunctional Multiple Product Sesterterpene Synthase AcAS from Aspergillus calidoustus publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202117273 – volume: 129 start-page: 11244 year: 2017 ident: 000883816300001.11 publication-title: Angew. Chem – volume: 288 start-page: 88 year: 2000 ident: INSPEC:6634397 article-title: The way things move: looking under the hood of molecular motor proteins publication-title: Science – volume: 23 start-page: 7938 year: 2021 ident: WOS:000709693500047 article-title: Precise Rate Control of Pseudorotaxane Dethreading by pH-Responsive Selectively Functionalized Cyclodextrins publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.1c02940 – volume: 3 start-page: 536 year: 2019 ident: WOS:000484803800005 article-title: Life-like motion driven by artificial molecular machines publication-title: NATURE REVIEWS CHEMISTRY doi: 10.1038/s41570-019-0122-2 – volume: 8 start-page: 860 year: 2016 ident: WOS:000384411700012 article-title: A chemically powered unidirectional rotary molecular motor based on a palladium redox cycle publication-title: NATURE CHEMISTRY doi: 10.1038/NCHEM.2543 – volume: 46 start-page: 2592 year: 2017 ident: WOS:000400833000016 article-title: Artificial molecular motors publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c7cs00245a – volume: 534 start-page: 235 year: 2016 ident: WOS:000377475100038 article-title: An autonomous chemically fuelled small-molecule motor publication-title: NATURE doi: 10.1038/nature18013 – volume: 129 start-page: 11228 year: 2017 ident: 000883816300001.9 publication-title: Angew. Chem – volume: 134 year: 2022 ident: 000883816300001.16 publication-title: Angew. Chem – volume: 6 start-page: 1952 year: 2020 ident: WOS:000558679600013 article-title: Pumps through the Ages publication-title: CHEM doi: 10.1016/j.chempr.2020.07.009 – volume: 120 start-page: 200 year: 2020 ident: WOS:000507144600006 article-title: Photo- and Redox-Driven Artificial Molecular Motors publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.9b00291 – volume: 61 start-page: ARTN e202206631 year: 2022 ident: WOS:000849810500001 article-title: Chemically Driven Rotatory Molecular Machines publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202206631 – volume: 58 start-page: 15136 year: 2019 ident: WOS:000485592500001 article-title: Biomimetic Synchronized Motion of Two Interacting Macrocycles in [3]Rotaxane-Based Molecular Shuttles publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201910318 – volume: 10 start-page: 547 year: 2015 ident: WOS:000355620000018 article-title: An artificial molecular pump publication-title: NATURE NANOTECHNOLOGY doi: 10.1038/NNANO.2015.96 – year: 2016 ident: 000883816300001.2 publication-title: The Nature of the Mechanical Bond: From Molecules to Machines – volume: 57 start-page: 7809 year: 2018 ident: WOS:000435766800040 article-title: Directional Shuttling of a Stimuli-Responsive Cone-Like Macrocycle on a Single-State Symmetric Dumbbell Axle publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201803349 – volume: 10 start-page: 682 year: 2009 ident: WOS:000270040300011 article-title: Kinesin superfamily motor proteins and intracellular transport publication-title: NATURE REVIEWS MOLECULAR CELL BIOLOGY doi: 10.1038/nrm2774 – volume: 121 start-page: 13213 year: 2021 ident: WOS:000718326200006 article-title: Directing Coupled Motion with Light: A Key Step Toward Machine-Like Function publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.1c00340 – volume: 368 start-page: 1247 year: 2020 ident: WOS:000544031400033 article-title: A precise polyrotaxane synthesizer publication-title: SCIENCE doi: 10.1126/science.abb3962 – volume: 594 start-page: 529 year: 2021 ident: WOS:000665247800014 article-title: A catalysis-driven artificial molecular pump publication-title: NATURE doi: 10.1038/s41586-021-03575-3 – volume: 120 start-page: 310 year: 2020 ident: WOS:000507144600009 article-title: Design of Collective Motions from Synthetic Molecular Switches, Rotors, and Motors publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.9b00288 – volume: 59 start-page: 23817 year: 2020 ident: WOS:000578273200001 article-title: A Green and Wide-Scope Approach for Chiroptical Sensing of Organic Molecules through Biomimetic Recognition in Water publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202011566 – volume: 132 start-page: 24025 year: 2020 ident: 000883816300001.45 publication-title: Angew. Chem – volume: 14 start-page: 670 year: 2022 ident: WOS:000808583400014 article-title: Photogearing as a concept for translation of precise motions at the nanoscale publication-title: NATURE CHEMISTRY doi: 10.1038/s41557-022-00917-0 – volume: 14 start-page: 530 year: 2022 ident: WOS:000770174600001 article-title: Insights from an information thermodynamics analysis of a synthetic molecular motor publication-title: NATURE CHEMISTRY doi: 10.1038/s41557-022-00899-z – volume: 2 start-page: 669 year: 2001 ident: WOS:000171077700013 article-title: ATP synthase - A marvellous rotary engine of the cell publication-title: NATURE REVIEWS MOLECULAR CELL BIOLOGY – volume: 604 start-page: 80 year: 2022 ident: WOS:000779100400019 article-title: Autonomous fuelled directional rotation about a covalent single bond publication-title: NATURE doi: 10.1038/s41586-022-04450-5 – volume: 609 start-page: 293 year: 2022 ident: WOS:000847977100001 article-title: Intrinsically unidirectional chemically fuelled rotary molecular motors (Retracted article. See vol. 619, pg. 658, 2023) publication-title: NATURE doi: 10.1038/s41586-022-05033-0 – volume: 46 start-page: 72 year: 2007 ident: WOS:000243183400008 article-title: Synthetic molecular motors and mechanical machines publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200504313 – volume: 134 year: 2022 ident: 000883816300001.47 publication-title: Angew. Chem – volume: 129 start-page: 11206 year: 2017 ident: 000883816300001.13 publication-title: Angew. Chem – volume: 401 start-page: 152 year: 1999 ident: WOS:000082458800050 article-title: Light-driven monodirectional molecular rotor publication-title: NATURE – volume: 56 start-page: 11080 year: 2017 ident: WOS:000408605300014 article-title: From Chemical Topology to Molecular Machines (Nobel Lecture) publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201702992 – volume: 131 start-page: 15280 year: 2019 ident: 000883816300001.43 publication-title: Angew. Chem – volume: 10 start-page: 70 year: 2015 ident: WOS:000347405800023 article-title: Light-powered autonomous and directional molecular motion of a dissipative self-assembling system publication-title: NATURE NANOTECHNOLOGY doi: 10.1038/NNANO.2014.260 |
SSID | ssj0028806 |
Score | 2.4707663 |
Snippet | A [2]rotaxane‐based molecular shuttle with an acid‐responsive asymmetric macrocycle on a symmetric dumbbell axle is reported. Upon adding TFA, the macrocycle,... A [2]rotaxane-based molecular shuttle with an acid-responsive asymmetric macrocycle on a symmetric dumbbell axle is reported. Upon adding TFA, the macrocycle,... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202214296 |
SubjectTerms | Ammonium Ammonium Compounds Antifungal agents Chemistry Chemistry, Multidisciplinary Kinetics Magnetic Resonance Spectroscopy Molecular Shuttle Naphthotube NMR NMR spectroscopy Non-Equilibrium State Nuclear magnetic resonance Physical Sciences Protonation Rotaxane Rotaxanes Rotaxanes - chemistry Science & Technology Steric hindrance Triazoles - chemistry |
Title | Non‐Equilibrium Kinetic States of a [2]Rotaxane‐Based Molecular Shuttle Controlled by Acid Concentrations |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202214296 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000883816300001 https://www.ncbi.nlm.nih.gov/pubmed/36251219 https://www.proquest.com/docview/2746822221 |
Volume | 61 |
WOS | 000883816300001 |
WOSCitedRecordID | wos000883816300001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hLnDp-5EWkA9IPQXWTuLEx-1qEaViD7RISFUV2Y6jIiDblkRqe-pP4DfyS5iJk8BSVUXlECmJJw8nM57P9vgbgM1CyFSYSIVG0GgV-oxQZVkRllabeISbKGm8Y38mdw_jvaPk6MYqfs8PMQy4kWW07TUZuDbn29ekobQCG_t3gjjDFHFuU8AWoaKDgT9KoHL65UVRFFIW-p61cSS2Fy9f9Ep_QM1bXmkRyLaeaOch6L4OPgDlZKupzZb9dYve8T6VfAQPOpjKxl6vHsOSq57AyqTPDvcUzmbz6vL3xfRbc9yuGmjO2Ht8Goozj1_ZvGSafRKfD-a1_qErh9Jv0WUWbL_PyMs-fGmIQplNfLz8KRaan2xsjws65eNGW7t4Boc704-T3bBL3RBa8omhzAobK2ESjppqkiS1NklTiZ2ZJCvTCNuJWJZSWVUaKQ32eTQvnTSxdokS3NnoOSxX88q9BGZ5IZTlWrkMNQkBpzJCm1GmuXDaRFEAYf_rctvxmlN6jdPcMzKLnD5iPnzEAN4M8l89o8dfJdd6Tcg7yz7PsRcvCVQJHsALrx3DbRAMIH7iKoDNm-oylBPgymimNmonVQLgdxGbdJUikoI6ANHqyz9ePR_P3k2Ho1f_c9FrWKV9Ct3hYg2W6--NW0cAVpuN1siuAF24JvQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOZQL_z-BAj5U4pR27SROfFxWW21pdw-llZAQimzHUSvabAuJBJx4BJ6RJ2EmTgJbhEBwyCHJOImdmcw3zvgbgM1CyFSYSIVG0GwV-oxQZVkRllabeISbKGm-Y76Qs6P45eukzyaktTCeH2KYcCPLaL_XZOA0Ib39gzWUlmBjgCeINEzJq3CNynq3UdXBwCAlUD39AqMoCqkOfc_bOBLbq-1X_dIvYPOSX1qFsq0v2rkJpu-FT0F5t9XUZst-vkTw-F_dvAU3OqTKxl61bsMVV92B9UlfIO4unC2W1bcvX6cXzUm7cKA5Y3t4OxRnHsKyZck0eyPeHixr_VFXDqVfoNcs2LwvysteHTfEoswmPmX-FE-aT2xsTwo65FNHW9O4B0c708PJLOyqN4SW3GIos8LGSpiEo7KaJEmtTdJUYjyTZGUa4acilqVUVpVGSoNhj-alkybWLlGCOxvdh7VqWbmHwCwvhLJcK5ehMiHmVEZoM8o0F06bKAog7N9dbjtqc6qwcZp7UmaR0yDmwyAG8HyQP_ekHr-V3OhVIe-M-0OOgbwkXCV4AA-8egyXQTyAEIqrADZ_1pfhPGGujH7WRu1_lQD434hNuk4RT0EdgGgV5g-Pno8Xu9Nh79G_NHoG67PD-X6-v7vYewzX6Thl8nCxAWv1-8Y9QTxWm6etxX0HvWQrDw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BkYAL34VAAR8qcUq7dhInPi7bXbWUrlChUiWEIttxREWbLZBIwImfwG_klzATJ6FbhEBwyCHJOImdN5lnx34DsF4ImQoTqdAIGq3CmBGqLCvC0moTj3ATJY137M3l9kH87DA5PLOK3-tDDANu5Bnt95oc_LQoN3-KhtIKbOzfCdIMU_IiXIrlKCNcb-0PAlIC0enXF0VRSGnoe9nGkdhcLr8cln7hmufC0jKTbUPR7DrovhJ-Bsq7jaY2G_bLOX3H_6nlDbjW8VQ29sC6CRdcdQuuTPr0cLfhZL6ovn_9Nn3fHLXLBpoTtot3Q3PmCSxblEyz1-LN_qLWn3Tl0PopxsyC7fUpednLtw1pKLOJnzB_jCfNZza2RwUd8hNHW8e4Awez6avJdtjlbggtBcVQZoWNlTAJR6iaJEmtTdJUYm8myco0wg9FLEuprCqNlAY7PZqXTppYu0QJ7my0CivVonL3gFleCGW5Vi5DKCHjVEZoM8o0F06bKAog7F9dbjthc8qvcZx7SWaRUyPmQyMG8GSwP_WSHr-1XOuRkHeu_THHbrwkViV4AHc9OobLIBtAAsVVAOtn4TKcJ8aV0a_aqP2rEgD_G7NJVylSKagDEC1e_vDo-Xi-Mx327v9Locdw-cXWLH--M999AFfpME3j4WINVuoPjXuIZKw2j1p_-wEylinH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-Equilibrium+Kinetic+States+of+a+%5B2%5DRotaxane-Based+Molecular+Shuttle+Controlled+by+Acid+Concentrations&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhao%2C+Lei-Min&rft.au=Zheng%2C+Li-Shuo&rft.au=Wang%2C+Xiaoping&rft.au=Jiang%2C+Wei&rft.date=2022-12-12&rft.eissn=1521-3773&rft.volume=61&rft.issue=50&rft.spage=e202214296&rft_id=info:doi/10.1002%2Fanie.202214296&rft_id=info%3Apmid%2F36251219&rft.externalDocID=36251219 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |