Nanotechnology connecting copper metabolism and tumor therapy

Copper (Cu) is an essential trace element in the human body that is involved in the formation of several natural enzymes, such as superoxide dismutase and cyclooxygenase. Due to the high density of the outer electron cloud of Cu, which allows the transfer of multiple electrons, Cu is often used as t...

Full description

Saved in:
Bibliographic Details
Published inMedComm - Biomaterials and applications Vol. 2; no. 2
Main Authors Li, Yongjuan, Dong, Ya, Zhou, Xinyao, Fan, Kelong
Format Journal Article
LanguageEnglish
Published London John Wiley & Sons, Inc 01.06.2023
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Copper (Cu) is an essential trace element in the human body that is involved in the formation of several natural enzymes, such as superoxide dismutase and cyclooxygenase. Due to the high density of the outer electron cloud of Cu, which allows the transfer of multiple electrons, Cu is often used as the catalytic center in various metabolic enzymes. However, both deficiency and excessive accumulation of Cu can result in irreversible damage to cells. Therefore, strategies to regulate Cu metabolism, such as Cu exhaustion and Cu supplementation, have emerged as attractive approaches in anticancer therapy, due to the potential damages caused by Cu metabolism disorders. Notably, recent advancements in nanotechnology have enabled the development of nanomaterials that can regulate Cu metabolism, making this therapy applicable in vivo. In this review, we provide a systematic discussion of the physical and chemical properties of Cu and summarize the applications of nanotechnology in Cu metabolism‐based antitumor therapy. Finally, we outline the future directions and challenges of nano‐Cu therapy, emphasizing the scientific problems and technical bottlenecks that need to be addressed for successful clinical translation. Copper metabolism is emerging as a therapeutic strategy for cancer treatment, and nanotechnology is being used to connect copper and tumor therapy. Copper deficiency and excess accumulation can cause cell damage, and nanotechnology is being used to reduce side effects and enhance therapeutic effects.
AbstractList Copper (Cu) is an essential trace element in the human body that is involved in the formation of several natural enzymes, such as superoxide dismutase and cyclooxygenase. Due to the high density of the outer electron cloud of Cu, which allows the transfer of multiple electrons, Cu is often used as the catalytic center in various metabolic enzymes. However, both deficiency and excessive accumulation of Cu can result in irreversible damage to cells. Therefore, strategies to regulate Cu metabolism, such as Cu exhaustion and Cu supplementation, have emerged as attractive approaches in anticancer therapy, due to the potential damages caused by Cu metabolism disorders. Notably, recent advancements in nanotechnology have enabled the development of nanomaterials that can regulate Cu metabolism, making this therapy applicable in vivo. In this review, we provide a systematic discussion of the physical and chemical properties of Cu and summarize the applications of nanotechnology in Cu metabolism‐based antitumor therapy. Finally, we outline the future directions and challenges of nano‐Cu therapy, emphasizing the scientific problems and technical bottlenecks that need to be addressed for successful clinical translation.
Abstract Copper (Cu) is an essential trace element in the human body that is involved in the formation of several natural enzymes, such as superoxide dismutase and cyclooxygenase. Due to the high density of the outer electron cloud of Cu, which allows the transfer of multiple electrons, Cu is often used as the catalytic center in various metabolic enzymes. However, both deficiency and excessive accumulation of Cu can result in irreversible damage to cells. Therefore, strategies to regulate Cu metabolism, such as Cu exhaustion and Cu supplementation, have emerged as attractive approaches in anticancer therapy, due to the potential damages caused by Cu metabolism disorders. Notably, recent advancements in nanotechnology have enabled the development of nanomaterials that can regulate Cu metabolism, making this therapy applicable in vivo. In this review, we provide a systematic discussion of the physical and chemical properties of Cu and summarize the applications of nanotechnology in Cu metabolism‐based antitumor therapy. Finally, we outline the future directions and challenges of nano‐Cu therapy, emphasizing the scientific problems and technical bottlenecks that need to be addressed for successful clinical translation.
Copper (Cu) is an essential trace element in the human body that is involved in the formation of several natural enzymes, such as superoxide dismutase and cyclooxygenase. Due to the high density of the outer electron cloud of Cu, which allows the transfer of multiple electrons, Cu is often used as the catalytic center in various metabolic enzymes. However, both deficiency and excessive accumulation of Cu can result in irreversible damage to cells. Therefore, strategies to regulate Cu metabolism, such as Cu exhaustion and Cu supplementation, have emerged as attractive approaches in anticancer therapy, due to the potential damages caused by Cu metabolism disorders. Notably, recent advancements in nanotechnology have enabled the development of nanomaterials that can regulate Cu metabolism, making this therapy applicable in vivo. In this review, we provide a systematic discussion of the physical and chemical properties of Cu and summarize the applications of nanotechnology in Cu metabolism‐based antitumor therapy. Finally, we outline the future directions and challenges of nano‐Cu therapy, emphasizing the scientific problems and technical bottlenecks that need to be addressed for successful clinical translation. Copper metabolism is emerging as a therapeutic strategy for cancer treatment, and nanotechnology is being used to connect copper and tumor therapy. Copper deficiency and excess accumulation can cause cell damage, and nanotechnology is being used to reduce side effects and enhance therapeutic effects.
Author Fan, Kelong
Dong, Ya
Li, Yongjuan
Zhou, Xinyao
Author_xml – sequence: 1
  givenname: Yongjuan
  surname: Li
  fullname: Li, Yongjuan
  organization: Zhengzhou University
– sequence: 2
  givenname: Ya
  surname: Dong
  fullname: Dong, Ya
  organization: Zhengzhou University
– sequence: 3
  givenname: Xinyao
  surname: Zhou
  fullname: Zhou, Xinyao
  organization: University of Pennsylvania
– sequence: 4
  givenname: Kelong
  orcidid: 0000-0001-6285-1933
  surname: Fan
  fullname: Fan, Kelong
  email: fankelong@ibp.ac.cn
  organization: Chinese Academy of Sciences
BookMark eNp1kEtrGzEUhUVwoGli-hcGusiijKPHjEZadOGaNDE4yaaF7oSejsyMNNXIBP_7KHUJIbSLyz0cPs69nI9gFmKwAHxCcIEgxFeDknhB6Ak4wx3lNW3Ir9kb_QHMp2kHC8kxbFp6Br7eyxCz1Y8h9nF7qHQMwersw7bIcbSpGmyWKvZ-GioZTJX3Q0xVfrRJjocLcOpkP9n5330Ofn6__rG6rTcPN-vVclNrAgmtCeKEaUMQta5tbauVUUxhphBjTjFuiLQQcmeNQhQ5XUzXKM6Z0w2EnSHnYH3MNVHuxJj8INNBROnFHyOmrZApe91b0bWq6TqDeAtJU0YZQxlVHDPDJUauZH0-Zo0p_t7bKYtd3KdQ3hcEckxahFpUqMsjpVOcpmTd61UExUvV4qVqQWgh63ek9llmH0NO0vf_4L8c-Sff28P_YsXdtyUu9DPpaI-z
CitedBy_id crossref_primary_10_1007_s12663_024_02374_3
crossref_primary_10_1002_adtp_202400426
crossref_primary_10_1007_s00432_024_05641_5
crossref_primary_10_1016_j_mtbio_2024_101217
crossref_primary_10_1002_advs_202405575
crossref_primary_10_1166_jbt_2024_3350
Cites_doi 10.1002/anie.201605159
10.1016/j.jconrel.2021.12.016
10.1038/s42003-022-04017-0
10.1016/j.chemosphere.2018.10.058
10.1002/1878-0261.13079
10.1016/j.ecoenv.2019.02.069
10.1016/j.talanta.2020.121731
10.1016/j.jnutbio.2021.108883
10.3390/nano11092156
10.3389/fimmu.2022.930278
10.1038/s41587-020-0707-9
10.2217/nnm-2021-0374
10.1016/j.biomaterials.2020.120553
10.1182/blood-2017-09-807263
10.1002/advs.201900848
10.1016/j.jcis.2021.02.085
10.1021/acsami.2c05944
10.1016/j.biomaterials.2022.121668
10.7150/thno.21694
10.1186/s40824-021-00221-x
10.1021/jacs.9b03503
10.1002/anie.202203546
10.1126/science.abo3959
10.1021/jacs.9b03661
10.3390/nu12123732
10.1021/acs.est.9b03873
10.1038/s41598-017-07452-w
10.1016/j.biomaterials.2021.120970
10.1021/acsami.0c01539
10.1017/S0954422419000180
10.1021/acs.inorgchem.1c03084
10.1016/j.jbc.2021.101060
10.1021/acs.est.2c02575
10.1016/j.molcel.2022.05.001
10.1016/j.bioelechem.2020.107483
10.1002/smll.202102178
10.1016/j.redox.2021.101912
10.1053/j.gastro.2018.11.032
10.1021/jacs.1c08456
10.1039/D1CP00118C
10.1021/acsami.1c19209
10.1039/C8DT01560K
10.1016/j.rvsc.2021.06.017
10.1186/s13046-022-02485-0
10.1038/s41556-021-00822-7
10.1038/s41572-018-0018-3
10.1021/nn506687t
10.1021/acsnano.1c07893
10.1002/adma.202006892
10.1016/j.msec.2018.10.062
10.1002/adma.202206861
10.1016/j.jconrel.2020.02.023
10.1016/j.bios.2020.112283
10.1016/j.jinorgbio.2022.111945
10.1021/jacs.0c10057
10.1016/j.jinorgbio.2021.111424
10.1016/j.bbapap.2014.09.008
10.1021/acs.nanolett.9b02691
10.1016/j.etap.2017.12.022
10.1016/j.jinorgbio.2016.03.004
10.1021/acs.jafc.1c07927
10.1016/j.ecoenv.2020.110806
10.1021/acs.nanolett.8b04757
10.1007/s12291-012-0240-9
10.1007/s00775-020-01837-5
10.1016/j.biomaterials.2021.121233
10.1039/D2TB01436J
10.1021/nn400928z
10.1016/j.ecoenv.2021.113039
10.1002/anie.202004733
10.1016/j.molonc.2015.02.007
10.1016/j.chemosphere.2022.136556
10.1016/j.aquatox.2020.105671
10.1039/D1TB01330K
10.1039/D2DT02498E
10.1016/j.freeradbiomed.2019.12.017
10.1021/acs.nanolett.6b03829
10.1002/adma.202110283
10.1002/smll.201905184
10.1038/s41467-022-31413-1
10.1021/acsnano.0c10407
10.1126/science.abf0529
10.1002/adhm.202101008
10.1021/acsnano.7b03857
10.1002/adma.202207793
10.1021/acsami.0c17919
10.1166/jbn.2016.2322
10.1016/j.biomaterials.2021.121016
10.1002/adma.202002246
10.1039/D0NR06866G
10.1016/j.foodchem.2022.132656
10.1021/acs.nanolett.9b01065
10.1002/adhm.202101634
10.1111/cpr.12568
10.1016/j.saa.2022.121281
10.3389/fphar.2022.930041
10.1016/j.envpol.2020.114420
10.1021/jacs.8b08714
10.1016/j.jinorgbio.2019.03.001
10.1016/j.jhazmat.2020.124629
10.1002/anie.202102589
10.1016/j.biomaterials.2020.120278
10.1021/acscentsci.1c01208
10.3390/antiox11112084
10.1016/j.saa.2022.122290
10.1002/anie.202101744
10.1007/s00775-019-01737-3
10.1016/j.fct.2020.111692
10.1002/smll.202006231
10.1016/j.jinorgbio.2022.112015
10.1002/adma.202204733
10.1002/advs.202201703
10.2174/1570159X18666200429233517
10.1016/j.isci.2022.104930
10.3390/ijms23116209
10.1016/j.cej.2019.03.272
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Sichuan International Medical Exchange & Promotion Association (SCIMEA).
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Sichuan International Medical Exchange & Promotion Association (SCIMEA).
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1002/mba2.36
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Materials Science Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2769-643X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_75b477d195034503bdd686b928d9a21f
10_1002_mba2_36
MBA236
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 52103190
– fundername: National Key Research and Development Program of China
  funderid: 2021YFA1201102
GroupedDBID 0R~
24P
ABJCF
ACCMX
ADPDF
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
BGLVJ
CCPQU
EBS
GROUPED_DOAJ
HCIFZ
KB.
M~E
PDBOC
PIMPY
TEORI
AAYXX
CITATION
OVD
PHGZM
PHGZT
8FE
8FG
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
D1I
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
WIN
PUEGO
ID FETCH-LOGICAL-c3036-31938cd316ef55e5cbdb8b28b188fb89d3ae009fedb161fc8fbf4b998fc4007d3
IEDL.DBID 24P
ISSN 2769-643X
IngestDate Wed Aug 27 01:26:50 EDT 2025
Wed Aug 13 06:53:43 EDT 2025
Tue Jul 01 00:46:49 EDT 2025
Thu Apr 24 22:56:09 EDT 2025
Wed Jan 22 16:20:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3036-31938cd316ef55e5cbdb8b28b188fb89d3ae009fedb161fc8fbf4b998fc4007d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6285-1933
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmba2.36
PQID 3092351151
PQPubID 6853473
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_75b477d195034503bdd686b928d9a21f
proquest_journals_3092351151
crossref_primary_10_1002_mba2_36
crossref_citationtrail_10_1002_mba2_36
wiley_primary_10_1002_mba2_36_MBA236
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
20230601
2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle MedComm - Biomaterials and applications
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2020; 163
2019; 96
2019; 13
2022; 23
2022; 24
2020; 16
2022; 25
2019; 19
2020; 321
2020; 12
2020; 201
2013; 7
2018; 47
2022; 287
2023; 290
2018; 4
2021; 279
2019; 24
2022; 34
2016; 159
2021; 276
2021; 275
2019; 156
2019; 6
2020; 263
2021; 268
2020; 145
2020; 33
2020; 147
2021; 143
2020; 32
2016; 16
2022; 236
2022; 237
2016; 12
2014; 1844
2022; 100
2022; 341
2021; 410
2022; 5
2021; 139
2022; 8
2022; 9
2022; 13
2019; 215
2022; 14
2022; 10
2022; 11
2022; 229
2021; 60
2019; 174
2022; 16
2022; 17
2022; 375
2021; 25
2017; 7
2021; 26
2021; 23
2013; 28
2019; 53
2022; 70
2020; 64
2019; 52
2020; 59
2018; 131
2021; 33
2022; 82
2021; 39
2020; 258
2020; 133
2021; 593
2019; 195
2021; 41
2021; 9
2022; 277
2021; 223
2022; 51
2022; 41
2022; 42
2015; 9
2019; 141
2020; 229
2016; 55
2021; 13
2021; 219
2021; 15
2022; 385
2021; 10
2021; 11
2022; 61
2017; 11
2021; 17
2021; 19
2022; 56
2022; 308
2021; 297
2019; 370
2018; 58
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_13_1
e_1_2_11_118_1
e_1_2_11_29_1
e_1_2_11_4_1
e_1_2_11_106_1
e_1_2_11_48_1
e_1_2_11_121_1
e_1_2_11_102_1
e_1_2_11_81_1
Huang Q (e_1_2_11_99_1) 2019; 13
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_89_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_43_1
e_1_2_11_85_1
e_1_2_11_17_1
e_1_2_11_117_1
e_1_2_11_59_1
e_1_2_11_113_1
Xia L (e_1_2_11_108_1) 2022; 42
e_1_2_11_50_1
e_1_2_11_92_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_119_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_54_1
e_1_2_11_96_1
e_1_2_11_103_1
e_1_2_11_28_1
e_1_2_11_5_1
Wu H (e_1_2_11_112_1) 2020; 64
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
Liu K (e_1_2_11_36_1) 2022; 24
e_1_2_11_107_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_114_1
e_1_2_11_16_1
e_1_2_11_110_1
e_1_2_11_39_1
e_1_2_11_72_1
e_1_2_11_91_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_6_1
e_1_2_11_104_1
e_1_2_11_27_1
e_1_2_11_2_1
e_1_2_11_100_1
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_45_1
e_1_2_11_68_1
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_22_1
e_1_2_11_64_1
e_1_2_11_115_1
e_1_2_11_15_1
e_1_2_11_111_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_94_1
e_1_2_11_71_1
e_1_2_11_90_1
e_1_2_11_10_1
e_1_2_11_56_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
e_1_2_11_33_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_105_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_120_1
e_1_2_11_82_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_109_1
e_1_2_11_18_1
e_1_2_11_116_1
e_1_2_11_37_1
References_xml – volume: 8
  start-page: 246
  issue: 2
  year: 2022
  end-page: 257
  article-title: Extracellular electron transfer enables cellular control of Cu(I)‐catalyzed alkyne‐azide cycloaddition
  publication-title: ACS Cent Sci
– volume: 11
  issue: 2
  year: 2022
  article-title: Biomimic binding affinity gradients triggered GSH‐response of core‐shell nanoparticles for cascade chemo/chemodynamic therapy
  publication-title: Adv Healthcare Mater
– volume: 141
  start-page: 10736
  issue: 27
  year: 2019
  end-page: 10743
  article-title: Chloride control of the mechanism of human serum ceruloplasmin (Cp) catalysis
  publication-title: J Am Chem Soc
– volume: 7
  start-page: 7638
  issue: 1
  year: 2017
  end-page: 7642
  article-title: Dextran‐catechin inhibits angiogenesis by disrupting copper homeostasis in endothelial cells
  publication-title: Sci Rep
– volume: 47
  start-page: 9492
  issue: 28
  year: 2018
  end-page: 9503
  article-title: Peptides derived from the histidine‐proline rich glycoprotein bind copper ions and exhibit anti‐angiogenic properties
  publication-title: Dalton Trans
– volume: 13
  start-page: 1342
  issue: 2
  year: 2019
  end-page: 1353
  article-title: Boosting the radiosensitizing and photothermal performance of Cu Se nanocrystals for synergetic radiophotothermal therapy of orthotopic breast cancer
  publication-title: ACS Nano
– volume: 64
  start-page: 1380
  issue: 13
  year: 2020
  end-page: 1389
  article-title: Biomimetic copper single‐atom nanozyme system for self‐enhanced nanocatalytic tumor therapy
  publication-title: J Hepatol
– volume: 12
  start-page: 3732
  issue: 12
  year: 2020
  article-title: The role of zinc and copper in gynecological malignancies
  publication-title: Nutrients
– volume: 23
  start-page: 8300
  issue: 14
  year: 2021
  end-page: 8308
  article-title: The effect of Cu dopants on electron transfer to O and the connection with acetone photocatalytic oxidations over nano‐TiO
  publication-title: Phys Chem Chem Phys
– volume: 145
  issue: 6
  year: 2020
  article-title: MiADMSA abrogates chronic copper‐induced hepatic and immunological changes in sprague dawley rats
  publication-title: Food Chem Toxicol
– volume: 34
  issue: 43
  year: 2022
  article-title: An enzyme‐engineered nonporous copper(I) coordination polymer nanoplatform for cuproptosis‐based synergistic cancer therapy
  publication-title: Adv Mater
– volume: 141
  start-page: 11531
  issue: 29
  year: 2019
  end-page: 11539
  article-title: Enhanced tumor‐specific disulfiram chemotherapy by in situ Cu chelation‐initiated nontoxicity‐to‐toxicity transition
  publication-title: J Am Chem Soc
– volume: 9
  start-page: 1788
  issue: 2
  year: 2015
  end-page: 1800
  article-title: Plasmonic copper sulfide nanocrystals exhibiting near‐infrared photothermal and photodynamic therapeutic effects
  publication-title: ACS Nano
– volume: 290
  issue: 3
  year: 2023
  article-title: A novel fluorescent probe based on a tripeptide‐Cu(II) complex system for detection of histidine and its application on test strips and smartphone
  publication-title: Spectrochim Acta, Part A
– volume: 201
  issue: 3
  year: 2020
  article-title: Copper induces hepatic inflammatory responses by activation of MAPKs and NF‐κB signalling pathways in the mouse
  publication-title: Ecotoxicol Environ Safety
– volume: 593
  start-page: 323
  issue: 32
  year: 2021
  end-page: 334
  article-title: Doxorubicin‐loaded hydrogen peroxide self‐providing copper nanodots for combination of chemotherapy and acid‐induced chemodynamic therapy against breast cancer
  publication-title: J Colloid Interface Sci
– volume: 258
  issue: 24
  year: 2020
  article-title: Enhanced cancer therapy by hypoxia‐responsive copper metal‐organic frameworks nanosystem
  publication-title: Biomaterials
– volume: 25
  issue: 9
  year: 2022
  article-title: Insights into singlet oxygen generation and electron‐transfer process induced by a single‐atom Cu catalyst with saturated Cu‐N4 sites
  publication-title: iScience
– volume: 13
  start-page: 3723
  issue: 6
  year: 2021
  end-page: 3736
  article-title: Using copper sulfide nanoparticles as cross‐linkers of tumor microenvironment responsive polymer micelles for cancer synergistic photo‐chemotherapy
  publication-title: Nanoscale
– volume: 297
  issue: 3
  year: 2021
  article-title: Strength of Cu‐efflux response in coordinates metal resistance in and contributes to the severity of environmental toxicity
  publication-title: J Biol Chem
– volume: 375
  start-page: 1254
  issue: 6586
  year: 2022
  end-page: 1261
  article-title: Copper induces cell death by targeting lipoylated TCA cycle proteins
  publication-title: Science
– volume: 156
  start-page: 1173
  issue: 4
  year: 2019
  end-page: 1189.e5
  article-title: Activation of autophagy, observed in liver tissues from patients with wilson disease and from ATP7B‐deficient animals, protects hepatocytes from copper‐induced apoptosis
  publication-title: Gastroenterology
– volume: 15
  start-page: 3402
  issue: 2
  year: 2021
  end-page: 3414
  article-title: Quantitative assessment of copper(II) in wilson's disease based on photoacoustic imaging and ratiometric surface‐enhanced Raman scattering
  publication-title: ACS Nano
– volume: 287
  issue: 6
  year: 2022
  article-title: Engineering dual catalytic nanomedicine for autophagy‐augmented and ferroptosis‐involved cancer nanotherapy
  publication-title: Biomaterials
– volume: 163
  issue: 1
  year: 2020
  article-title: Highly selective and sensitive detection of hydrogen sulfide in aqueous medium and live cells using peptide‐based bioprobe to mimic the binding sites of the ceruloplasmin for Cu(II) ions
  publication-title: Biosens Bioelectron
– volume: 26
  start-page: 67
  issue: 1
  year: 2021
  end-page: 79
  article-title: Fate of model complexes with monocopper center towards the functional properties of type 2 and type 3 copper oxidases
  publication-title: J Biol Inorg Chem
– volume: 139
  start-page: 11
  issue: 1
  year: 2021
  end-page: 17
  article-title: Effects of inorganic copper injection in beef cows at late gestation on fetal and postnatal growth, hematology and immune function of their progeny
  publication-title: Res Vet Sci
– volume: 370
  start-page: 1188
  issue: 14
  year: 2019
  end-page: 1199
  article-title: Rerouting engineered metal‐dependent shapes of mesoporous silica nanocontainers to biodegradable janus‐type (sphero‐ellipsoid) nanoreactors for chemodynamic therapy
  publication-title: Chem Eng J
– volume: 59
  start-page: 13385
  issue: 32
  year: 2020
  end-page: 13390
  article-title: Copper‐oxygen dynamics in the tyrosinase mechanism
  publication-title: Angew Chem Int Ed
– volume: 14
  start-page: 2534
  issue: 2
  year: 2022
  end-page: 2550
  article-title: Near‐infrared light‐controllable multifunction mesoporous polydopamine nanocomposites for promoting infected wound healing
  publication-title: ACS Appl Mater Interfaces
– volume: 276
  issue: 5
  year: 2021
  article-title: Nanoengineered biomimetic Cu‐based nanoparticles for multifunational and efficient tumor treatment
  publication-title: Biomaterials
– volume: 275
  issue: 4
  year: 2021
  article-title: Self‐delivery oxidative stress amplifier for chemotherapy sensitized immunotherapy
  publication-title: Biomaterials
– volume: 17
  issue: 8
  year: 2021
  article-title: Copper‐based nanoscale coordination polymers augmented tumor radioimmunotherapy for immunogenic cell death induction and T‐cell infiltration
  publication-title: Small
– volume: 96
  start-page: 129
  issue: 14
  year: 2019
  end-page: 137
  article-title: Quaternized chitosan‐stabilized copper sulfide nanoparticles for cancer therapy
  publication-title: Mater Sci Eng C
– volume: 1844
  start-page: 2155
  issue: 12
  year: 2014
  end-page: 2163
  article-title: Copper binding affinity of the C2B domain of synaptotagmin‐1 and its potential role in the nonclassical secretion of acidic fibroblast growth factor
  publication-title: Biochim Biophys Acta (BBA) Prot Proteom
– volume: 385
  issue: 14
  year: 2022
  article-title: Multispectroscopic and computational evaluation of the binding of flavonoids with bovine serum albumin in the presence of Cu
  publication-title: Food Chem
– volume: 174
  start-page: 110
  issue: 23
  year: 2019
  end-page: 119
  article-title: Inhibition of caspase‐1‐dependent pyroptosis attenuates copper‐induced apoptosis in chicken hepatocytes
  publication-title: Ecotoxicol Environ Safety
– volume: 41
  issue: 13
  year: 2021
  article-title: mtROS‐mediated Akt/AMPK/mTOR pathway was involved in copper‐induced autophagy and it attenuates copper‐induced apoptosis in RAW264.7 mouse monocytes
  publication-title: Redox Biol
– volume: 11
  start-page: 2084
  issue: 11
  year: 2022
  article-title: Copper depletion strongly enhances ferroptosis via mitochondrial perturbation and reduction in antioxidative mechanisms
  publication-title: Antioxidants
– volume: 33
  start-page: 43
  issue: 1
  year: 2020
  end-page: 49
  article-title: Copper physiology in ruminants: trafficking of systemic copper, adaptations to variation in nutritional supply and thiomolybdate challenge
  publication-title: Nutr Res Rev
– volume: 13
  issue: 35
  year: 2022
  article-title: Cuproptosis and cuproptosis‐related genes in rheumatoid arthritis: implication, prospects, and perspectives
  publication-title: Front Immunol
– volume: 229
  issue: 32
  year: 2020
  article-title: Individual and mixture toxicity of chromium and copper in development, oxidative stress, lipid metabolism and apoptosis of embryos
  publication-title: Aquat Toxicol
– volume: 23
  start-page: 6209
  issue: 11
  year: 2022
  article-title: Copper modulates mitochondrial oxidative phosphorylation to enhance dermal papilla cells proliferation in rex rabbits
  publication-title: Int J Mol Sci
– volume: 19
  start-page: 7750
  issue: 11
  year: 2019
  end-page: 7759
  article-title: Responsively aggregatable sub‐6 nm nanochelators induce simultaneous antiangiogenesis and vascular obstruction for enhanced tumor vasculature targeted therapy
  publication-title: Nano Lett
– volume: 147
  start-page: 187
  issue: 1
  year: 2020
  end-page: 199
  article-title: Oxidative misfolding of Cu/Zn‐superoxide dismutase triggered by non‐canonical intramolecular disulfide formation
  publication-title: Free Radic Biol Med
– volume: 5
  start-page: 1085
  issue: 1
  year: 2022
  end-page: 1090
  article-title: Structural analysis of the overoxidized Cu/Zn‐superoxide dismutase in ROS‐induced ALS filament formation
  publication-title: Comm Biol
– volume: 60
  start-page: 14324
  issue: 26
  year: 2021
  end-page: 14328
  article-title: Self‐assembly of copper‐DNAzyme nanohybrids for dual‐catalytic tumor therapy
  publication-title: Angew Chem Int Ed
– volume: 19
  start-page: 465
  issue: 4
  year: 2021
  end-page: 485
  article-title: Management perspective of wilson's disease: early diagnosis and individualized therapy
  publication-title: Curr Neuropharmacol
– volume: 32
  issue: 36
  year: 2020
  article-title: Bioinspired copper single‐atom catalysts for tumor parallel catalytic therapy
  publication-title: Adv Mater
– volume: 13
  start-page: 3615
  issue: 1
  year: 2022
  end-page: 3621
  article-title: Coordination of metal center biogenesis in human cytochrome c oxidase
  publication-title: Nat Commun
– volume: 58
  start-page: 105
  issue: 5
  year: 2018
  end-page: 113
  article-title: Inhibition of copper‐zinc superoxide dismutase activity by selected environmental xenobiotics
  publication-title: Environ Toxicol Pharmacol
– volume: 42
  issue: 6
  year: 2022
  article-title: Spatiotemporal ultrasound‐driven bioorthogonal catalytic therapy
  publication-title: Adv Mater
– volume: 143
  start-page: 830
  issue: 2
  year: 2021
  end-page: 838
  article-title: Histidine‐gated proton‐coupled electron transfer to the Cu(A) site of nitrous oxide reductase
  publication-title: J Am Chem Soc
– volume: 13
  start-page: 7070
  issue: 6
  year: 2021
  end-page: 7079
  article-title: Red microalgal sulfated polysaccharide‐Cu O complexes: characterization and bioactivity
  publication-title: ACS Appl Mater Interfaces
– volume: 7
  start-page: 4763
  issue: 19
  year: 2017
  end-page: 4776
  article-title: Copper manganese sulfide nanoplates: a new two‐dimensional theranostic nanoplatform for MRI/MSOT dual‐modal imaging‐guided photothermal therapy in the second near‐infrared window
  publication-title: Theranostics
– volume: 268
  issue: 42
  year: 2021
  article-title: Complementary and synergistic effects on osteogenic and angiogenic properties of copper‐incorporated silicocarnotite bioceramic: in vitro and in vivo studies
  publication-title: Biomaterials
– volume: 195
  start-page: 20
  issue: 4
  year: 2019
  end-page: 30
  article-title: Stability constant determination of sulfur and selenium amino acids with Cu(II) and Fe(II)
  publication-title: J Inorg Biochem
– volume: 61
  issue: 31
  year: 2022
  article-title: Restoration of the immunogenicity of tumor cells for enhanced cancer therapy via nanoparticle‐mediated copper chaperone inhibition
  publication-title: Angew Chem Int Ed
– volume: 60
  start-page: 16927
  issue: 22
  year: 2021
  end-page: 16931
  article-title: Ternary Cu complexes of human serum albumin and glycyl‐l‐histidyl‐l‐lysine
  publication-title: Inorganic Chem
– volume: 13
  issue: 32
  year: 2022
  article-title: Comprehensive analysis of cuproptosis‐related genes in immune infiltration and prognosis in melanoma
  publication-title: Front Pharmacol
– volume: 34
  issue: 47
  year: 2022
  article-title: Chemotherapy mediated by biomimetic polymeric nanoparticles potentiates enhanced tumor immunotherapy via amplification of endoplasmic reticulum stress and mitochondrial dysfunction
  publication-title: Adv Mater
– volume: 410
  issue: 35
  year: 2021
  article-title: Regulable metal‐oxo‐bridge configurations as electron transfer bridge to promote Cu(II)/Cu(I) redox behavior for efficient peroxymonosulfate activation
  publication-title: J Hazard Mater
– volume: 11
  start-page: 9103
  issue: 9
  year: 2017
  end-page: 9111
  article-title: Renal‐clearable ultrasmall coordination polymer nanodots for chelator‐free Cu‐labeling and imaging‐guided enhanced radiotherapy of cancer
  publication-title: ACS Nano
– volume: 11
  start-page: 2156
  issue: 9
  year: 2021
  article-title: Enhanced antibacterial activity of CuS‐BSA/lysozyme under near infrared light irradiation
  publication-title: Nanomaterials
– volume: 131
  start-page: 741
  issue: 7
  year: 2018
  end-page: 745
  article-title: Copper 64‐labeled daratumumab as a PET/CT imaging tracer for multiple myeloma
  publication-title: Blood
– volume: 341
  start-page: 646
  issue: 15
  year: 2022
  end-page: 660
  article-title: Copper arsenite‐complexed Fenton‐like nanoparticles as oxidative stress‐amplifying anticancer agents
  publication-title: J Controlled Release
– volume: 277
  issue: 3
  year: 2022
  article-title: Relay detection of Cu and bovine serum albumin by a dansyl derivative‐based fluorescent probe
  publication-title: Spectrochim Acta Part A
– volume: 24
  issue: 3
  year: 2022
  article-title: Redox modulatory Cu(II)‐baicalein microflowers prepared in one step effectively promote therapeutic angiogenesis in diabetic mice
  publication-title: Adv Healthc Mater
– volume: 219
  issue: 11
  year: 2021
  article-title: Ceruloplasmin as a source of Cu for a fungal pathogen
  publication-title: J Inorg Biochem
– volume: 7
  start-page: 5842
  issue: 7
  year: 2013
  end-page: 5849
  article-title: A magnetoplasmonic imaging agent for copper(I) with dual response by MRI and dark field microscopy
  publication-title: ACS Nano
– volume: 279
  issue: 5
  year: 2021
  article-title: Synergistic photothermal cancer immunotherapy by Cas9 ribonucleoprotein‐based copper sulfide nanotherapeutic platform targeting PTPN2
  publication-title: Biomaterials
– volume: 236
  issue: 4
  year: 2022
  article-title: Cu ions modulate the interaction between α‐synuclein and lipid membranes
  publication-title: J Inorg Biochem
– volume: 141
  start-page: 849
  issue: 2
  year: 2019
  end-page: 857
  article-title: Self‐assembled copper‐amino acid nanoparticles for in situ glutathione and H O sequentially triggered chemodynamic therapy
  publication-title: J Am Chem Soc
– volume: 321
  start-page: 483
  issue: 4
  year: 2020
  end-page: 496
  article-title: Co‐delivery of Cu(I) chelator and chemotherapeutics as a new strategy for tumor theranostic
  publication-title: J Controlled Release
– volume: 215
  start-page: 370
  issue: 5
  year: 2019
  end-page: 379
  article-title: SREBP‐1 and LXRα pathways mediated Cu‐induced hepatic lipid metabolism in zebrafish
  publication-title: Chemosphere
– volume: 9
  issue: 23
  year: 2022
  article-title: Polypyrrole nanoenzymes as tumor microenvironment modulators to reprogram macrophage and potentiate immunotherapy
  publication-title: Adv Sci
– volume: 263
  issue: 445
  year: 2020
  article-title: Waterborne Cu exposure increased lipid deposition and lipogenesis by affecting Wnt/β‐catenin pathway and the β‐catenin acetylation levels of grass carp
  publication-title: Environ Pollut
– volume: 159
  start-page: 149
  issue: 30
  year: 2016
  end-page: 158
  article-title: The inorganic perspective of VEGF: interactions of Cu with peptides encompassing a recognition domain of the VEGF receptor
  publication-title: J Inorg Biochem
– volume: 133
  issue: 6
  year: 2020
  article-title: Proton‐coupled electron transfer mechanisms of the copper centres of nitrous oxide reductase from arinobacter hydrocarbonoclasticus‐an electrochemical study
  publication-title: Bioelectrochemistry
– volume: 19
  start-page: 3344
  issue: 5
  year: 2019
  end-page: 3352
  article-title: CuS nanoparticles as a photodynamic nanoswitch for abrogating bypass signaling to overcome gefitinib resistance
  publication-title: Nano Lett
– volume: 55
  start-page: 10453
  issue: 35
  year: 2016
  end-page: 10457
  article-title: Simplest monodentate imidazole stabilization of the oxy‐tyrosinase Cu O core: phenolate hydroxylation through a Cu(III) intermediate
  publication-title: Angew Chem Int Ed
– volume: 100
  issue: 42
  year: 2022
  article-title: Copper (Cu) induced changes of lipid metabolism through oxidative stress‐mediated autophagy and Nrf2/PPARγ pathways
  publication-title: J Nutr Biochem
– volume: 308
  issue: 3
  year: 2022
  article-title: Effects of copper exposure on lipid metabolism and SREBP pathway in the Chinese mitten crab
  publication-title: Chemosphere
– volume: 82
  start-page: 1786
  issue: 10
  year: 2022
  end-page: 1787
  article-title: Cuproptosis: cellular and molecular mechanisms underlying copper‐induced cell death
  publication-title: Mol Cell
– volume: 19
  start-page: 1216
  issue: 2
  year: 2019
  end-page: 1226
  article-title: Poly(amidoamine) dendrimer‐coordinated copper(II) complexes as a theranostic nanoplatform for the radiotherapy‐enhanced magnetic resonance imaging and chemotherapy of tumors and tumor metastasis
  publication-title: Nano Lett
– volume: 17
  start-page: 303
  issue: 5
  year: 2022
  end-page: 324
  article-title: Copper‐induced tumor cell death mechanisms and antitumor theragnostic applications of copper complexes
  publication-title: Nanomedicine
– volume: 16
  start-page: 7731
  issue: 12
  year: 2016
  end-page: 7738
  article-title: Graphene encapsulated copper microwires as highly MRI compatible neural electrodes
  publication-title: Nano Lett
– volume: 10
  issue: 20
  year: 2021
  article-title: An organic nanotherapeutic agent self‐assembled from cyanine and Cu(II) for combined photothermal and chemodynamic therapy
  publication-title: Adv Healthcare Mater
– volume: 41
  start-page: 271
  issue: 1
  year: 2022
  end-page: 280
  article-title: Elesclomol: a copper ionophore targeting mitochondrial metabolism for cancer therapy
  publication-title: J Exp Clin Cancer Res
– volume: 39
  start-page: 357
  issue: 3
  year: 2021
  end-page: 367
  article-title: Mitochondrial copper depletion suppresses triple‐negative breast cancer in mice
  publication-title: Nature Biotechnol
– volume: 16
  start-page: 617
  issue: 1
  year: 2022
  end-page: 630
  article-title: One‐step integration of tumor microenvironment‐responsive calcium and copper peroxides nanocomposite for enhanced chemodynamic/ion‐interference therapy
  publication-title: ACS Nano
– volume: 12
  start-page: 17254
  issue: 15
  year: 2020
  end-page: 17267
  article-title: Fusiform‐like copper(II)‐based metal‐organic framework through relief hypoxia and GSH‐depletion co‐enhanced starvation and chemodynamic synergetic cancer therapy
  publication-title: ACS Appl Mater Interfaces
– volume: 4
  start-page: 21
  issue: 1
  year: 2018
  end-page: 25
  article-title: Wilson disease
  publication-title: Nat Rev Dis Primers
– volume: 237
  issue: 12
  year: 2022
  article-title: Comparative investigation of Cu(II) complexes with dithiocarbazate: structural design, theoretical calculation, and in vitro antitumor activity
  publication-title: J Inorg Biochem
– volume: 34
  issue: 51
  year: 2022
  article-title: Accelerating electron‐transfer dynamics by TiO ‐immobilized reversible single‐atom copper for enhanced artificial photosynthesis of urea
  publication-title: Adv Mater
– volume: 25
  start-page: 20
  issue: 1
  year: 2021
  end-page: 23
  article-title: Hyaluronate/black phosphorus complexes as a copper chelating agent for wilson disease treatment
  publication-title: Biomater Res
– volume: 9
  start-page: 1155
  issue: 6
  year: 2015
  end-page: 1168
  article-title: Disulfiram (DSF) acts as a copper ionophore to induce copper‐dependent oxidative stress and mediate anti‐tumor efficacy in inflammatory breast cancer
  publication-title: Mol Oncol
– volume: 223
  issue: 1
  year: 2021
  article-title: A novel “turn‐off” fluorescence assay based on acid‐copper nanoclusters in deep eutectic solvent micelles for co‐aggregation inducing fluorescence enhancement and its application
  publication-title: Talanta
– volume: 15
  start-page: 3527
  issue: 12
  year: 2021
  end-page: 3544
  article-title: Elesclomol induces copper‐dependent ferroptosis in colorectal cancer cells via degradation of ATP7A
  publication-title: Mol Oncol
– volume: 53
  start-page: 11774
  issue: 20
  year: 2019
  end-page: 11782
  article-title: Complexation enhances Cu(II)‐activated peroxydisulfate: a novel activation mechanism and Cu(III) contribution
  publication-title: Environ Sci Technol
– volume: 60
  start-page: 15980
  issue: 29
  year: 2021
  end-page: 15987
  article-title: Redox‐neutral s‐nitrosation mediated by a dicopper center
  publication-title: Angew Chem Int Ed
– volume: 52
  issue: 2
  year: 2019
  article-title: Blockage of SLC31A1‐dependent copper absorption increases pancreatic cancer cell autophagy to resist cell death
  publication-title: Cell Proliferation
– volume: 16
  issue: 1
  year: 2020
  article-title: Defective porous carbon polyhedra decorated with copper nanoparticles for enhanced NIR‐driven photothermal cancer therapy
  publication-title: Small
– volume: 17
  issue: 31
  year: 2021
  article-title: Cu,Zn Dopants boost electron transfer of carbon dots for antioxidation
  publication-title: Small
– volume: 24
  start-page: 1179
  issue: 8
  year: 2019
  end-page: 1188
  article-title: Copper and the brain noradrenergic system
  publication-title: J Biol Inorg Chem
– volume: 375
  start-page: 1231
  issue: 6586
  year: 2022
  end-page: 1232
  article-title: Copper‐induced cell death
  publication-title: Science
– volume: 28
  start-page: 147
  issue: 2
  year: 2013
  end-page: 151
  article-title: Importance of serum copper and vascular endothelial growth factor (VEGF‐A) levels in postmenopausal bleeding
  publication-title: Indian J Clin Biochem
– volume: 24
  start-page: 35
  issue: 1
  year: 2022
  end-page: 50
  article-title: Cysteine oxidation of copper transporter CTR1 drives VEGFR2 signalling and angiogenesis
  publication-title: Nature Cell Biol
– volume: 6
  issue: 15
  year: 2019
  article-title: Monodispersed copper(I)‐based nano metal‐organic framework as a biodegradable drug carrier with enhanced photodynamic therapy efficacy
  publication-title: Adv Sci
– volume: 10
  start-page: 8664
  issue: 42
  year: 2022
  end-page: 8671
  article-title: Multifunctional nanoreactors with nutrient consumption and ROS generation capabilities for antibacterial and skin repair
  publication-title: J Mater Chem B
– volume: 12
  start-page: 1835
  issue: 10
  year: 2016
  end-page: 1851
  article-title: A new modality for cancer treatment—nanoparticle mediated microwave induced photodynamic therapy
  publication-title: J Biomed Nanotechnol
– volume: 56
  start-page: 12404
  issue: 17
  year: 2022
  end-page: 12415
  article-title: Cell‐type‐dependent dissolution of CuO nanoparticles and efflux of Cu ions following cellular internalization
  publication-title: Environ Sci Technol
– volume: 33
  issue: 7
  year: 2021
  article-title: Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy
  publication-title: Adv Mater
– volume: 34
  issue: 15
  year: 2022
  article-title: Open‐shell nanosensitizers for glutathione responsive cancer sonodynamic therapy
  publication-title: Adv Mater
– volume: 143
  start-page: 17236
  issue: 41
  year: 2021
  end-page: 17249
  article-title: Electron transfer to the trinuclear copper cluster in electrocatalysis by the multicopper oxidases
  publication-title: J Am Chem Soc
– volume: 14
  start-page: 37280
  issue: 33
  year: 2022
  end-page: 37290
  article-title: Nanotrains of DNA copper nanoclusters that triggered a cascade fenton‐like reaction and glutathione depletion to doubly enhance chemodynamic therapy
  publication-title: ACS Appl Mater Interfaces
– volume: 51
  start-page: 15393
  issue: 40
  year: 2022
  end-page: 15402
  article-title: Thermal and photoinduced electron transfer reactions of phthalocyanine complexes of Zn(II) and Cu(II) in acetonitrile
  publication-title: Dalton Trans
– volume: 70
  start-page: 1293
  issue: 4
  year: 2022
  end-page: 1303
  article-title: Endoplasmic reticulum stress contributes to copper‐induced pyroptosisvia regulating the IRE1α‐XBP1 pathway in pig jejunal epithelial cells
  publication-title: J Agricult Food Chem
– volume: 229
  issue: 14
  year: 2022
  article-title: Autophagy and apoptosis mediated nano‐copper‐induced testicular damage
  publication-title: Ecotoxicol Environ Safety
– volume: 9
  start-page: 9413
  issue: 45
  year: 2021
  end-page: 9422
  article-title: Glutathione‐triggered nanoplatform for chemodynamic/metal‐ion therapy
  publication-title: J Mater Chem B
– ident: e_1_2_11_6_1
  doi: 10.1002/anie.201605159
– ident: e_1_2_11_59_1
  doi: 10.1016/j.jconrel.2021.12.016
– ident: e_1_2_11_12_1
  doi: 10.1038/s42003-022-04017-0
– ident: e_1_2_11_30_1
  doi: 10.1016/j.chemosphere.2018.10.058
– ident: e_1_2_11_54_1
  doi: 10.1002/1878-0261.13079
– ident: e_1_2_11_51_1
  doi: 10.1016/j.ecoenv.2019.02.069
– ident: e_1_2_11_84_1
  doi: 10.1016/j.talanta.2020.121731
– ident: e_1_2_11_28_1
  doi: 10.1016/j.jnutbio.2021.108883
– ident: e_1_2_11_101_1
  doi: 10.3390/nano11092156
– ident: e_1_2_11_48_1
  doi: 10.3389/fimmu.2022.930278
– ident: e_1_2_11_95_1
  doi: 10.1038/s41587-020-0707-9
– ident: e_1_2_11_104_1
  doi: 10.2217/nnm-2021-0374
– ident: e_1_2_11_45_1
  doi: 10.1016/j.biomaterials.2020.120553
– ident: e_1_2_11_79_1
  doi: 10.1182/blood-2017-09-807263
– ident: e_1_2_11_103_1
  doi: 10.1002/advs.201900848
– ident: e_1_2_11_69_1
  doi: 10.1016/j.jcis.2021.02.085
– ident: e_1_2_11_64_1
  doi: 10.1021/acsami.2c05944
– volume: 42
  issue: 6
  year: 2022
  ident: e_1_2_11_108_1
  article-title: Spatiotemporal ultrasound‐driven bioorthogonal catalytic therapy
  publication-title: Adv Mater
– ident: e_1_2_11_114_1
  doi: 10.1016/j.biomaterials.2022.121668
– ident: e_1_2_11_78_1
  doi: 10.7150/thno.21694
– ident: e_1_2_11_73_1
  doi: 10.1186/s40824-021-00221-x
– ident: e_1_2_11_97_1
  doi: 10.1021/jacs.9b03503
– ident: e_1_2_11_58_1
  doi: 10.1002/anie.202203546
– ident: e_1_2_11_53_1
  doi: 10.1126/science.abo3959
– ident: e_1_2_11_89_1
  doi: 10.1021/jacs.9b03661
– ident: e_1_2_11_4_1
  doi: 10.3390/nu12123732
– ident: e_1_2_11_11_1
  doi: 10.1021/acs.est.9b03873
– ident: e_1_2_11_96_1
  doi: 10.1038/s41598-017-07452-w
– ident: e_1_2_11_119_1
  doi: 10.1016/j.biomaterials.2021.120970
– ident: e_1_2_11_62_1
  doi: 10.1021/acsami.0c01539
– ident: e_1_2_11_19_1
  doi: 10.1017/S0954422419000180
– ident: e_1_2_11_86_1
  doi: 10.1021/acs.inorgchem.1c03084
– ident: e_1_2_11_92_1
  doi: 10.1016/j.jbc.2021.101060
– ident: e_1_2_11_93_1
  doi: 10.1021/acs.est.2c02575
– ident: e_1_2_11_46_1
  doi: 10.1016/j.molcel.2022.05.001
– ident: e_1_2_11_7_1
  doi: 10.1016/j.bioelechem.2020.107483
– ident: e_1_2_11_21_1
  doi: 10.1002/smll.202102178
– ident: e_1_2_11_49_1
  doi: 10.1016/j.redox.2021.101912
– ident: e_1_2_11_71_1
  doi: 10.1053/j.gastro.2018.11.032
– ident: e_1_2_11_27_1
  doi: 10.1021/jacs.1c08456
– ident: e_1_2_11_22_1
  doi: 10.1039/D1CP00118C
– ident: e_1_2_11_43_1
  doi: 10.1021/acsami.1c19209
– ident: e_1_2_11_40_1
  doi: 10.1039/C8DT01560K
– ident: e_1_2_11_3_1
  doi: 10.1016/j.rvsc.2021.06.017
– ident: e_1_2_11_67_1
  doi: 10.1186/s13046-022-02485-0
– ident: e_1_2_11_37_1
  doi: 10.1038/s41556-021-00822-7
– ident: e_1_2_11_72_1
  doi: 10.1038/s41572-018-0018-3
– ident: e_1_2_11_102_1
  doi: 10.1021/nn506687t
– ident: e_1_2_11_57_1
  doi: 10.1021/acsnano.1c07893
– ident: e_1_2_11_60_1
  doi: 10.1002/adma.202006892
– ident: e_1_2_11_68_1
  doi: 10.1016/j.msec.2018.10.062
– ident: e_1_2_11_117_1
  doi: 10.1002/adma.202206861
– ident: e_1_2_11_94_1
  doi: 10.1016/j.jconrel.2020.02.023
– ident: e_1_2_11_16_1
  doi: 10.1016/j.bios.2020.112283
– ident: e_1_2_11_31_1
  doi: 10.1016/j.jinorgbio.2022.111945
– ident: e_1_2_11_90_1
  doi: 10.1021/jacs.0c10057
– ident: e_1_2_11_15_1
  doi: 10.1016/j.jinorgbio.2021.111424
– ident: e_1_2_11_41_1
  doi: 10.1016/j.bbapap.2014.09.008
– ident: e_1_2_11_115_1
  doi: 10.1021/acs.nanolett.9b02691
– ident: e_1_2_11_14_1
  doi: 10.1016/j.etap.2017.12.022
– ident: e_1_2_11_39_1
  doi: 10.1016/j.jinorgbio.2016.03.004
– ident: e_1_2_11_52_1
  doi: 10.1021/acs.jafc.1c07927
– ident: e_1_2_11_42_1
  doi: 10.1016/j.ecoenv.2020.110806
– ident: e_1_2_11_98_1
  doi: 10.1021/acs.nanolett.8b04757
– ident: e_1_2_11_38_1
  doi: 10.1007/s12291-012-0240-9
– ident: e_1_2_11_18_1
  doi: 10.1007/s00775-020-01837-5
– ident: e_1_2_11_118_1
  doi: 10.1016/j.biomaterials.2021.121233
– ident: e_1_2_11_44_1
  doi: 10.1039/D2TB01436J
– ident: e_1_2_11_77_1
  doi: 10.1021/nn400928z
– ident: e_1_2_11_50_1
  doi: 10.1016/j.ecoenv.2021.113039
– ident: e_1_2_11_5_1
  doi: 10.1002/anie.202004733
– ident: e_1_2_11_80_1
  doi: 10.1016/j.molonc.2015.02.007
– ident: e_1_2_11_32_1
  doi: 10.1016/j.chemosphere.2022.136556
– ident: e_1_2_11_34_1
  doi: 10.1016/j.aquatox.2020.105671
– ident: e_1_2_11_61_1
  doi: 10.1039/D1TB01330K
– ident: e_1_2_11_23_1
  doi: 10.1039/D2DT02498E
– ident: e_1_2_11_13_1
  doi: 10.1016/j.freeradbiomed.2019.12.017
– ident: e_1_2_11_76_1
  doi: 10.1021/acs.nanolett.6b03829
– ident: e_1_2_11_109_1
  doi: 10.1002/adma.202110283
– ident: e_1_2_11_82_1
  doi: 10.1002/smll.201905184
– ident: e_1_2_11_8_1
  doi: 10.1038/s41467-022-31413-1
– volume: 64
  start-page: 1380
  issue: 13
  year: 2020
  ident: e_1_2_11_112_1
  article-title: Biomimetic copper single‐atom nanozyme system for self‐enhanced nanocatalytic tumor therapy
  publication-title: J Hepatol
– ident: e_1_2_11_75_1
  doi: 10.1021/acsnano.0c10407
– ident: e_1_2_11_116_1
  doi: 10.1126/science.abf0529
– ident: e_1_2_11_107_1
  doi: 10.1002/adhm.202101008
– ident: e_1_2_11_100_1
  doi: 10.1021/acsnano.7b03857
– volume: 13
  start-page: 1342
  issue: 2
  year: 2019
  ident: e_1_2_11_99_1
  article-title: Boosting the radiosensitizing and photothermal performance of Cu2‐xSe nanocrystals for synergetic radiophotothermal therapy of orthotopic breast cancer
  publication-title: ACS Nano
– ident: e_1_2_11_26_1
  doi: 10.1002/adma.202207793
– ident: e_1_2_11_10_1
  doi: 10.1021/acsami.0c17919
– ident: e_1_2_11_111_1
  doi: 10.1166/jbn.2016.2322
– ident: e_1_2_11_110_1
  doi: 10.1016/j.biomaterials.2021.121016
– ident: e_1_2_11_113_1
  doi: 10.1002/adma.202002246
– ident: e_1_2_11_83_1
  doi: 10.1039/D0NR06866G
– ident: e_1_2_11_87_1
  doi: 10.1016/j.foodchem.2022.132656
– ident: e_1_2_11_121_1
  doi: 10.1021/acs.nanolett.9b01065
– ident: e_1_2_11_63_1
  doi: 10.1002/adhm.202101634
– ident: e_1_2_11_35_1
  doi: 10.1111/cpr.12568
– ident: e_1_2_11_88_1
  doi: 10.1016/j.saa.2022.121281
– ident: e_1_2_11_47_1
  doi: 10.3389/fphar.2022.930041
– ident: e_1_2_11_33_1
  doi: 10.1016/j.envpol.2020.114420
– ident: e_1_2_11_105_1
  doi: 10.1021/jacs.8b08714
– ident: e_1_2_11_85_1
  doi: 10.1016/j.jinorgbio.2019.03.001
– ident: e_1_2_11_24_1
  doi: 10.1016/j.jhazmat.2020.124629
– ident: e_1_2_11_17_1
  doi: 10.1002/anie.202102589
– ident: e_1_2_11_81_1
  doi: 10.1016/j.biomaterials.2020.120278
– ident: e_1_2_11_20_1
  doi: 10.1021/acscentsci.1c01208
– ident: e_1_2_11_65_1
  doi: 10.3390/antiox11112084
– ident: e_1_2_11_91_1
  doi: 10.1016/j.saa.2022.122290
– ident: e_1_2_11_55_1
  doi: 10.1002/anie.202101744
– ident: e_1_2_11_2_1
  doi: 10.1007/s00775-019-01737-3
– ident: e_1_2_11_70_1
  doi: 10.1016/j.fct.2020.111692
– volume: 24
  issue: 3
  year: 2022
  ident: e_1_2_11_36_1
  article-title: Redox modulatory Cu(II)‐baicalein microflowers prepared in one step effectively promote therapeutic angiogenesis in diabetic mice
  publication-title: Adv Healthc Mater
– ident: e_1_2_11_56_1
  doi: 10.1002/smll.202006231
– ident: e_1_2_11_9_1
  doi: 10.1016/j.jinorgbio.2022.112015
– ident: e_1_2_11_66_1
  doi: 10.1002/adma.202204733
– ident: e_1_2_11_120_1
  doi: 10.1002/advs.202201703
– ident: e_1_2_11_74_1
  doi: 10.2174/1570159X18666200429233517
– ident: e_1_2_11_25_1
  doi: 10.1016/j.isci.2022.104930
– ident: e_1_2_11_29_1
  doi: 10.3390/ijms23116209
– ident: e_1_2_11_106_1
  doi: 10.1016/j.cej.2019.03.272
SSID ssj0002920456
Score 2.3198617
SecondaryResourceType review_article
Snippet Copper (Cu) is an essential trace element in the human body that is involved in the formation of several natural enzymes, such as superoxide dismutase and...
Abstract Copper (Cu) is an essential trace element in the human body that is involved in the formation of several natural enzymes, such as superoxide dismutase...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Adenosine triphosphatase
Amino acids
Angiogenesis
Binding sites
Breast cancer
Cancer therapies
cancer therapy
Chelating agents
Chemical elements
Chemical properties
Combination therapy
Copper
copper metabolism
cuproptosis
Cytotoxicity
Damage accumulation
Drug delivery systems
Drugs
Electron clouds
Electrons
Enzymes
Growth factors
Human body
ion interference therapy
Ligands
Metabolism
Nanomaterials
Nanotechnology
Plasma
Proteins
Small intestine
Superoxide dismutase
Therapy
Toxicity
Trace elements
Tumors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kJz2InxitsofiLbbZ3SSbg4dWLEWoJwu9LdkvEJq0tOnBf-9sNq0RES8eAmGzh2EmmXkTZt9DqMcMpENGdKhiw0LGoEHhMspDG7vJpoxaz6U3fU0mM_Yyj-ctqS83E-bpgb3j-mksWZpqp1ZKGVxS64QnMiNcZzmJrMu-UPNazZTLwU6DCaCBPyXrWEb7hczJQ03E_FV-apb-b9CyDVDrCjM-QccNNMRDb9IpOjDlGTpqEQaeo0dIhstq_zccKzemotzkMtyuVmaNC1NBWBfvmwLnpcbVtliusT9k9XGBZuPnt6dJ2AgghMpVFsiPGeVK0ygx4DsTK6kllwScybmVPNM0N4CRrNESgJtVsGiZhAbKKid3rukl6pTL0lwhDH1RnBpuDHSN0BMZKRkH6JAyO-A2MSRA9zu_CNWwgzuRioXwvMZEOAcKmgQI7zeuPCHGzy0j59j9Y8dgXS9AXEUTV_FXXAPU3YVFNJ_VRtAB4FGAiHEUoF4dqt9sENPRkNDk-j9MuUGHTmTeD4h1Uadab80tQJFK3tVv3Sc_rNqZ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH_odtGD-Inzix6Gt7otSdv0ILKJYwgbIgq7heZLBLfOrR78731pszkRPRRKGkp5SV5-7_Xl9wNoMoPukBEdqsiwkDEMULjsZKGNXGVTSm3FpTccxYNndj-Oxj7htvBllUufWDpqnSuXI2_RNkIRRAdR52b2HjrVKPd31UtobEIdXTDnNaj37kYPj6ssi9NiYqWEK0niNMTtd1ydnHXMo62JzMhVSc78vSWVzP0_4OY6aC13nf4u7Hi4GHSr8d2DDTPdh-01EsEDuEYHmRerDHmgXOmKctXMeDubmXkwMQUO9dvrYhJkUx0UH5N8HlQHrz4P4bl_93Q7CL0oQqjcboM-M6VcadqJDdrTREpqySVBA3NuJU81zQziJmu0RDBnFTZaJjGosspJoGt6BLVpPjXHEGCsFCWGG4ORJMZJRkrGEU4kzLa5jQ1pwOXSLkJ5xnAnXPEmKq5jIpwBBY0bEKw6ziqSjN9des6wq8eO1bpsyOcvwi8SkUSSJYl2yrSU4SW1jnksU8J1mpGObcDZcliEX2oL8T0xGtAsh-qvbxDDXpfQ-OT_t5zClpOUr8rBzqBWzD_MOQKPQl742fUFwn_WZA
  priority: 102
  providerName: ProQuest
Title Nanotechnology connecting copper metabolism and tumor therapy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmba2.36
https://www.proquest.com/docview/3092351151
https://doaj.org/article/75b477d195034503bdd686b928d9a21f
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LS_QwEB98XPTw4RP3U5cexFvVTdI0PXhwZVcRVkQU9haalwjug9168OLf7kxb64oIHhpKmkKZ6cz8Jkx-A3AkPLpDwVxsEy9iITBBUaaTxyGhyqaMh4pLb3Arrx_FzTAZLrT6qvghmg03sozSX5OB52Z--kUaOjI5O-FyGVbpYC1V8zFx12yvUBMmUfZuZanMYoy7w-rILL19Wr_7LRaVlP3fcOYiWi3DTX8D_tU4MbqoFLsJS368BesL7IHbcI6ecVI0W-ORpZoVS2XMeDud-lk08gXq-OV5PorysYuK19FkFlUnrt524LHfe7i8jutuCLGlMIPOMuPKOt6RHgXpE2ucUYahZJUKRmWO5x4BU_DOIIoLFieDMJhNBUu9zx3fhZXxZOz3IMIkKUm98h5TSEyQvDFCIY5IRThTQXrWguNPuWhbU4VTx4oXXZEcM00C1Fy2IGoWTit2jJ9LuiTY5jHRWZcTk9mTrq1Dp4kRaeqoJS0XeBnnpJImY8plOeuEFhx8qkXXNjbX_AzBKeLFpNOCo1JVv32DHnQvGJf__7ZsH9aop3xVD3YAK8Xs1R8i8ihMu_zHcFT9qzasdnu3d_ftMovHcfDe-wDcT9hf
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdYKOBD4RbatZ3EOVSoBZYt7fbUSnszsT1GSN3NspsK9U_xG5nJY1uE4NZDpMixLGs8nvnGGc8HsK2RzKGWIfEp6kRrClCMG5ZJTDmzqVCxraU3OcnGZ_rLNJ1uwK_-LgynVfY2sTHUofJ8Rr6jdgmKEDpIh-8XPxJmjeK_qz2FRqsWR3j5k0K21d7hR1rfN1KOPp1-GCcdq0Di2VyT0SmU8UENM6QJYepdcMZJmqEx0ZkiqBIJeEQMjtBQ9NQYtaOoJHrmEA-Kxr0Ft7UiT84300ef12c6zPykG8JYmWdFQs5-2t7T5TqnOzNXyndNKegrB9jwBPwBbq9D5MbHjR7A_Q6civ1Wmx7CBs4fwb1rJQsfwx6Z46pen8cLz4kynnOn6XWxwKWYYU2Kdf59NRPlPIj6YlYtRXvN6_IJnN2IsJ7C5rya4zMQFJmlORpEilspKkPntCHwkuu4a2KGcgBve7lY39UnZ5qMc9tWVpaWBWhVNgCx7rhoS3L83eWABbv-zDW0m4Zq-c12W9LmqdN5HpgHV2l6XAiZyVwhTShKOYwD2OqXxXYbe2Wv1HAA281S_WsOdnKwL1X2_P-jvIY749PJsT0-PDl6AXeZzL5NRNuCzXp5gS8J8tTuVaNnAr7etGL_Bqq-Ezk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IJ5iSwEfCrfQru04zqGHlrJqKa16oNLeTGyPEVL3od1UVX8S_5KZJBtaISQuPUSKEisajWfG3zjjbwC2NFI41DJmIUedaU0JivXDKks5VzaVKrVceien5vBcfxnn4zX4tToL0_JD9Btu7BlNvGYHn8e0_Yc0dOIr-VGZrp7yGK-vKFtb7h4d0NS-l3L0-dunw6xrKJAFjtQUb0plQ1RDgyQL5sFHb70k4axN3pZRVUiYI2H0BIRSoIdJe0pIUuD24VHRd-_Bff61yNVjUp_12znc9Ek3vWJlYcqM1vlxe0SXpd3uZL219jUtAm7h2pvouFneRk_gcYdLxV5rSE9hDafP4NENtsLnsEuReFb3W_EicI1M4LJpup3PcSEmWJNNXfxcTkQ1jaK-nMwWoj3hdf0Czu9EWS9hfTqb4isQlJTlBVpESlkpIUPvtSXcUui0Y5NBOYAPK7240FGTc4eMC9eSKkvHCnTKDED0A-ctG8ffQ_ZZsf1rps9uHswWP1znja7IvS6KyC1wlabLx2is8aW0sazkMA1gczUtrvPppVM7BIYJn-bDAWw1U_UvGdzJ_p5UZuP_hr2DB2cHI_f16PT4NTzkdvZtKdomrNeLS3xDoKf2bxtzE_D9ru37NwslEb4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanotechnology+connecting+copper+metabolism+and+tumor+therapy&rft.jtitle=MedComm+-+Biomaterials+and+applications&rft.au=Li%2C+Yongjuan&rft.au=Dong%2C+Ya&rft.au=Zhou%2C+Xinyao&rft.au=Fan%2C+Kelong&rft.date=2023-06-01&rft.issn=2769-643X&rft.eissn=2769-643X&rft.volume=2&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fmba2.36&rft.externalDBID=10.1002%252Fmba2.36&rft.externalDocID=MBA236
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2769-643X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2769-643X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2769-643X&client=summon