Biomedical applications and prospects of temperature‐orchestrated photothermal therapy
Photothermal therapy (PTT) has been regarded as a promising strategy considering its advantages of high inherent specificity and a lower invasive burden. Since the photothermal killing of cells/bacteria showed different patterns of death depending on the varying temperature in PTT, the temperature c...
Saved in:
Published in | MedComm - Biomaterials and applications Vol. 1; no. 2 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
John Wiley & Sons, Inc
01.09.2022
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 2769-643X 2769-643X |
DOI | 10.1002/mba2.25 |
Cover
Loading…
Abstract | Photothermal therapy (PTT) has been regarded as a promising strategy considering its advantages of high inherent specificity and a lower invasive burden. Since the photothermal killing of cells/bacteria showed different patterns of death depending on the varying temperature in PTT, the temperature change of PTT is vital to cell/tissue response in scientific research and clinical application. On one hand, mild PTT has received substantial attention in the treatment of cancer and soft/hard tissue repair. On the other hand, the high temperature induced by PTT is capable of antibacterial capacity, which is better than conventional antibiotic therapy with drug resistance. Herein, we summarize the recent developments in the application of temperature‐dependent photothermal biomaterials, mainly covering the temperature ranges of 40–42°C, 43–50°C, and over 50°C. We highlight the biological mechanism of PTT and the latest progress in the treatment of different diseases. Finally, we conclude by discussing the challenges and perspectives of biomaterials in addressing temperature‐orchestrated PTT. Given a deep understanding of the interaction between temperature and biology, rationally designed biomaterials with sophisticated photothermal responsiveness will benefit the outcomes of personalized PTT toward various diseases.
Photothermal therapy can be used for the treatment of tumors, tissue defects, and anti‐infection, depending on the effects at varying temperatures. In this review, we summarize the recent developments in the application of temperature‐dependent photothermal biomaterials, including the temperature ranges of 40–42°C, 43–50°C, and over 50°C. Moreover, the challenges and perspectives of biomaterials in addressing temperature‐orchestrated PTT were discussed. |
---|---|
AbstractList | Photothermal therapy (PTT) has been regarded as a promising strategy considering its advantages of high inherent specificity and a lower invasive burden. Since the photothermal killing of cells/bacteria showed different patterns of death depending on the varying temperature in PTT, the temperature change of PTT is vital to cell/tissue response in scientific research and clinical application. On one hand, mild PTT has received substantial attention in the treatment of cancer and soft/hard tissue repair. On the other hand, the high temperature induced by PTT is capable of antibacterial capacity, which is better than conventional antibiotic therapy with drug resistance. Herein, we summarize the recent developments in the application of temperature‐dependent photothermal biomaterials, mainly covering the temperature ranges of 40–42°C, 43–50°C, and over 50°C. We highlight the biological mechanism of PTT and the latest progress in the treatment of different diseases. Finally, we conclude by discussing the challenges and perspectives of biomaterials in addressing temperature‐orchestrated PTT. Given a deep understanding of the interaction between temperature and biology, rationally designed biomaterials with sophisticated photothermal responsiveness will benefit the outcomes of personalized PTT toward various diseases.
Photothermal therapy can be used for the treatment of tumors, tissue defects, and anti‐infection, depending on the effects at varying temperatures. In this review, we summarize the recent developments in the application of temperature‐dependent photothermal biomaterials, including the temperature ranges of 40–42°C, 43–50°C, and over 50°C. Moreover, the challenges and perspectives of biomaterials in addressing temperature‐orchestrated PTT were discussed. Photothermal therapy (PTT) has been regarded as a promising strategy considering its advantages of high inherent specificity and a lower invasive burden. Since the photothermal killing of cells/bacteria showed different patterns of death depending on the varying temperature in PTT, the temperature change of PTT is vital to cell/tissue response in scientific research and clinical application. On one hand, mild PTT has received substantial attention in the treatment of cancer and soft/hard tissue repair. On the other hand, the high temperature induced by PTT is capable of antibacterial capacity, which is better than conventional antibiotic therapy with drug resistance. Herein, we summarize the recent developments in the application of temperature‐dependent photothermal biomaterials, mainly covering the temperature ranges of 40–42°C, 43–50°C, and over 50°C. We highlight the biological mechanism of PTT and the latest progress in the treatment of different diseases. Finally, we conclude by discussing the challenges and perspectives of biomaterials in addressing temperature‐orchestrated PTT. Given a deep understanding of the interaction between temperature and biology, rationally designed biomaterials with sophisticated photothermal responsiveness will benefit the outcomes of personalized PTT toward various diseases. Abstract Photothermal therapy (PTT) has been regarded as a promising strategy considering its advantages of high inherent specificity and a lower invasive burden. Since the photothermal killing of cells/bacteria showed different patterns of death depending on the varying temperature in PTT, the temperature change of PTT is vital to cell/tissue response in scientific research and clinical application. On one hand, mild PTT has received substantial attention in the treatment of cancer and soft/hard tissue repair. On the other hand, the high temperature induced by PTT is capable of antibacterial capacity, which is better than conventional antibiotic therapy with drug resistance. Herein, we summarize the recent developments in the application of temperature‐dependent photothermal biomaterials, mainly covering the temperature ranges of 40–42°C, 43–50°C, and over 50°C. We highlight the biological mechanism of PTT and the latest progress in the treatment of different diseases. Finally, we conclude by discussing the challenges and perspectives of biomaterials in addressing temperature‐orchestrated PTT. Given a deep understanding of the interaction between temperature and biology, rationally designed biomaterials with sophisticated photothermal responsiveness will benefit the outcomes of personalized PTT toward various diseases. Photothermal therapy (PTT) has been regarded as a promising strategy considering its advantages of high inherent specificity and a lower invasive burden. Since the photothermal killing of cells/bacteria showed different patterns of death depending on the varying temperature in PTT, the temperature change of PTT is vital to cell/tissue response in scientific research and clinical application. On one hand, mild PTT has received substantial attention in the treatment of cancer and soft/hard tissue repair. On the other hand, the high temperature induced by PTT is capable of antibacterial capacity, which is better than conventional antibiotic therapy with drug resistance. Herein, we summarize the recent developments in the application of temperature‐dependent photothermal biomaterials, mainly covering the temperature ranges of 40–42°C, 43–50°C, and over 50°C. We highlight the biological mechanism of PTT and the latest progress in the treatment of different diseases. Finally, we conclude by discussing the challenges and perspectives of biomaterials in addressing temperature‐orchestrated PTT. Given a deep understanding of the interaction between temperature and biology, rationally designed biomaterials with sophisticated photothermal responsiveness will benefit the outcomes of personalized PTT toward various diseases. |
Author | Xu, Nuo Chen, Fangman Shao, Dan Zhang, Xu Liao, Jinfeng Xie, Xi Qi, Tingting Wu, Yongzhi |
Author_xml | – sequence: 1 givenname: Nuo surname: Xu fullname: Xu, Nuo organization: Sichuan University – sequence: 2 givenname: Xu surname: Zhang fullname: Zhang, Xu organization: Sichuan University – sequence: 3 givenname: Tingting surname: Qi fullname: Qi, Tingting organization: University of Electronic Science and Technology of China – sequence: 4 givenname: Yongzhi surname: Wu fullname: Wu, Yongzhi organization: Sichuan University – sequence: 5 givenname: Xi surname: Xie fullname: Xie, Xi organization: Sichuan University – sequence: 6 givenname: Fangman surname: Chen fullname: Chen, Fangman organization: University of Macau – sequence: 7 givenname: Dan surname: Shao fullname: Shao, Dan email: shaodan@scut.edu.cn organization: South China University of Technology – sequence: 8 givenname: Jinfeng orcidid: 0000-0001-8101-4030 surname: Liao fullname: Liao, Jinfeng email: liaojinfeng.762@163.com organization: Sichuan University |
BookMark | eNp1kU1qHDEQhUWwIY5jfIWGLLII7ei_W0vb5MfgkI0N3okaqZTR0N3qqDWY2eUIOWNOEo0nhBCSVT0VH09Vr16QoylNSMg5oxeMUv52XAG_4OoZOeGdNq2W4uHoD_2cnC3LhlbScCqVPiEPVzGN6KODoYF5HqooMU1LA5Nv5pyWGV1ZmhSaguOMGco2449v31N2a1xKfWPl1qmkssY8Vpd9hXn3khwHGBY8-1VPyf37d3fXH9vbzx9uri9vWyeoUG3opKDAjeBM-wAIXjPRhdAxw41bVeWM6jz2snNOguyZ6qA3ikvGNNNKnJKbg69PsLFzjiPknU0Q7VMj5S8WcoluQLvqXZBcB-9RS0d1zwJ4odHI0HcrJarXq4NXXfzrtq5nN2mbpzq-FdRwoWivTaVeHyhX41kyht-_Mmr3V7D7K1i-n639i3SxPOVbg4vDP_g3B_4xDrj7n639dHXJK_0T-yqa9Q |
CitedBy_id | crossref_primary_10_1021_acsabm_4c00651 crossref_primary_10_3389_fbioe_2024_1389327 crossref_primary_10_1016_j_matdes_2024_112817 crossref_primary_10_1002_mabi_202300215 crossref_primary_10_1021_acsnano_4c04067 crossref_primary_10_1002_advs_202405575 crossref_primary_10_1155_2024_1444990 crossref_primary_10_1016_j_mtadv_2024_100555 crossref_primary_10_1002_mabi_202400594 crossref_primary_10_1016_j_bioactmat_2023_11_001 crossref_primary_10_3390_nano14020186 crossref_primary_10_1002_adhm_202402363 crossref_primary_10_3390_pharmaceutics15102448 crossref_primary_10_1186_s12951_024_02701_3 crossref_primary_10_1002_adfm_202414419 |
Cites_doi | 10.1016/j.drudis.2020.05.014 10.1021/acsami.7b03017 10.1016/j.actbio.2021.05.002 10.1038/nrclinonc.2017.101 10.1039/D1NR00323B 10.1016/S1470-2045(02)00818-5 10.1002/jso.25438 10.1634/theoncologist.2018-0337 10.1016/j.cclet.2020.08.009 10.1039/D1TB02625A 10.1038/s41368-021-00113-9 10.1002/advs.202106015 10.21037/tgh.2016.08.03 10.1016/j.nano.2015.11.014 10.1007/s12020-019-02019-3 10.1016/j.actbio.2022.06.041 10.1016/j.colsurfb.2022.112462 10.1016/j.cej.2020.128224 10.1016/j.jphotobiol.2021.112125 10.1016/j.biomaterials.2019.119463 10.1002/advs.201902070 10.1002/adfm.202010637 10.7150/thno.68756 10.1177/0269215511400767 10.1016/j.cclet.2021.11.079 10.1088/1748-605X/ac5a23 10.1002/smtd.201900343 10.2147/IJN.S299448 10.1016/j.cclet.2020.02.043 10.1016/j.apsb.2022.02.023 10.1186/s12951-021-01114-w 10.1016/j.critrevonc.2015.05.011 10.1002/adfm.202101505 10.1016/j.jconrel.2021.04.005 10.4161/cbt.10.11.13434 10.1016/j.mehy.2016.02.005 10.1016/j.cclet.2021.08.087 10.1016/j.biomaterials.2017.06.030 10.1038/ncomms13193 10.1097/PRA.0000000000000181 10.1002/sctm.18-0266 10.1002/adma.201503799 10.1021/acsnano.8b05982 10.1002/adma.202107883 10.1016/j.cclet.2020.09.010 10.1038/natrevmats.2016.14 10.1039/D0BM00617C 10.1016/j.matdes.2022.110467 10.1038/nature21349 10.1002/adfm.201702834 10.1039/C3TB21246G 10.1016/j.cej.2021.128779 10.1073/pnas.1906929116 10.1016/j.biomaterials.2021.120885 10.1016/j.bioactmat.2021.01.006 10.1021/ja057254a 10.1039/D0NR02291H 10.1002/smll.201901560 10.1016/j.biomaterials.2020.119909 10.1016/j.biomaterials.2021.120792 10.1016/j.cclet.2021.07.025 10.1074/jbc.M706464200 10.1002/anie.201811273 10.1109/LRA.2021.3068953 10.1039/D1TB00703C 10.1002/adma.201800180 10.1152/ajplung.00252.2006 10.1039/D0BM01397H 10.3390/pharmaceutics11090463 10.1016/j.nantod.2020.100910 10.1039/C8CS00081F 10.1021/acsnano.8b06032 10.1039/C8CC08570F 10.3389/fphar.2021.664123 10.1002/anie.201506154 10.1073/pnas.1703151114 10.1016/j.mattod.2019.12.005 10.1021/jacs.6b11382 10.1016/S1040-8428(01)00179-2 10.1002/adma.201705980 10.1038/s41575-018-0005-x 10.1021/acsami.9b12879 10.34133/2021/9780943 10.1002/adma.202200139 10.1021/acsami.0c23143 10.1016/j.jcis.2021.03.050 10.1021/acsnano.5b00021 10.1021/acsnano.7b08868 10.1016/j.actbio.2018.08.015 10.1021/acsami.0c07372 10.1016/j.carbpol.2022.119722 10.1039/C9NR01833F 10.1080/02656730500307298 10.1002/admi.202001538 10.1016/j.semcdb.2016.11.005 10.1016/j.nano.2020.102241 10.1016/j.biomaterials.2018.12.008 10.1016/j.colsurfb.2020.111243 10.1016/j.critrevonc.2015.10.004 10.1186/s12943-018-0928-4 10.1166/jbn.2022.3229 10.1186/s12951-021-00884-7 10.1016/j.biomaterials.2018.08.031 10.1021/acsnano.6b07927 10.1126/sciadv.abb1311 10.1021/acs.chemmater.6b04405 10.1016/j.biomaterials.2020.120414 10.1016/j.nano.2013.11.001 10.1016/j.carbpol.2019.115565 10.1002/adma.201900822 10.1186/s11671-020-03459-x 10.1016/j.msec.2020.111371 10.1002/tcr.202000170 10.1016/j.ccr.2021.213826 10.7150/thno.38261 10.1002/adfm.202113269 10.1016/j.cell.2017.01.017 10.1002/adma.202100595 10.1016/j.msec.2022.112641 10.1016/j.apsusc.2021.149428 10.1002/adhm.202001743 10.1177/0885328220929616 10.1002/adfm.201806877 10.1021/acsnano.9b09282 10.1038/s41427-021-00303-1 10.1039/D2NJ00878E 10.1002/adfm.201704135 10.1016/j.cej.2021.128568 10.1002/adfm.201904401 10.1002/adfm.201909938 10.1002/adfm.201909391 10.1002/adma.202110062 10.1016/j.ccr.2017.11.019 10.1016/j.biomaterials.2019.119629 10.7150/thno.39471 10.1002/adma.201705611 10.1017/S0025727300052431 10.1002/advs.201800510 10.1038/s41551-016-0010 10.1039/D1TB00724F 10.1016/j.radonc.2018.12.005 10.1039/C4NR00708E 10.1253/circj.CJ-11-0915 10.1038/s41467-018-06529-y 10.1039/D1RA00579K 10.1016/j.biomaterials.2019.03.024 10.1016/j.jconrel.2021.05.011 10.7150/thno.16183 10.1007/s12272-021-01313-x 10.1016/j.biomaterials.2018.05.027 10.1016/j.colsurfa.2020.125506 10.1007/s10856-021-06636-1 10.1002/adfm.201808306 10.1080/17425247.2021.1912008 10.1186/s12951-022-01426-5 10.1021/acsbiomaterials.1c01217 10.1016/j.jiec.2021.03.003 10.1021/acs.jpclett.9b01735 10.7150/thno.44668 10.1038/nrc3672 10.1007/s12274-020-2853-2 10.1080/02656730701769841 10.1016/j.nantod.2020.101020 10.1002/mabi.202100082 10.1016/j.jconrel.2019.11.016 10.1002/adma.202100599 10.2147/IJN.S246336 10.1016/j.critrevonc.2015.05.010 10.1021/acs.jpcc.9b01961 10.1002/smll.202107071 10.1039/C7CS00522A 10.2203/dose-response.08-014.Rattan 10.2217/nnm-2017-0380 10.3390/pharmaceutics13010052 10.1016/j.ijpharm.2020.120082 10.1039/C8NR09618J 10.1039/C8TB02325E 10.1002/smll.202005473 10.3389/fonc.2022.950228 10.1016/j.biomaterials.2019.119677 10.1016/j.cclet.2021.08.023 10.1038/s41564-019-0503-9 10.1016/j.biomaterials.2018.05.055 10.1016/j.jvir.2017.08.021 10.1080/02656736.2018.1423709 10.1016/j.jiec.2021.03.052 10.1021/acs.nanolett.2c00500 10.1021/acsbiomaterials.1c01291 10.1021/acsnano.0c08790 10.3389/fchem.2020.00824 10.1021/acsnano.6b06658 10.1021/acsnano.9b01411 10.1021/nn101373r 10.21037/atm-20-6514 10.1002/adfm.202105383 10.1021/acs.bioconjchem.6b00512 10.3390/cancers11010078 10.1016/j.bioactmat.2020.08.005 10.1186/s12951-021-00824-5 10.7150/thno.29989 10.1021/acsami.0c23073 10.1088/1748-605X/ab9fce 10.1038/s41413-021-00139-z 10.1002/adfm.202100738 10.1371/journal.pone.0117106 10.1016/j.intimp.2021.107461 10.1109/JSTQE.2021.3061462 10.1002/anie.202005899 10.1039/D0QI01344G 10.1002/adma.201202625 10.1021/acs.biomac.0c01567 10.1016/j.critrevonc.2019.04.023 10.1016/j.cclet.2021.03.080 10.1002/advs.201901690 10.1016/j.bioactmat.2020.07.017 10.1016/j.carbpol.2020.117286 10.1039/D0BM01785J 10.1039/c0pp00306a 10.1021/acsnano.9b06168 10.1002/adma.202200179 10.1016/j.cej.2021.128610 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Sichuan International Medical Exchange & Promotion Association (SCIMEA). 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Sichuan International Medical Exchange & Promotion Association (SCIMEA). – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1002/mba2.25 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2769-643X |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_b8cf426fdde64c0681fad36e94f87b53 10_1002_mba2_25 MBA225 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 32171354; 31972925; and 82072049 – fundername: Sichuan Science and Technology Program funderid: 2021YJ0123 – fundername: Sichuan Cadre Health Research Project funderid: 2021‐805 – fundername: Fundamental Research Funds for Central Universities – fundername: Excellent Youth Fund of Sichuan Cancer Hospital funderid: YB2021028 |
GroupedDBID | 0R~ 24P ABJCF ACCMX ADPDF AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR BGLVJ CCPQU EBS GROUPED_DOAJ HCIFZ KB. M~E PDBOC PIMPY TEORI AAYXX CITATION OVD PHGZM PHGZT 8FE 8FG AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC D1I DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO WIN |
ID | FETCH-LOGICAL-c3035-f7430a293216dfaead6137ff71929cb7ffc957de847cc4a48157a895241161653 |
IEDL.DBID | 24P |
ISSN | 2769-643X |
IngestDate | Wed Aug 27 01:21:06 EDT 2025 Fri Jul 25 11:37:19 EDT 2025 Thu Apr 24 23:03:24 EDT 2025 Tue Jul 01 00:46:49 EDT 2025 Wed Jan 22 16:25:25 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3035-f7430a293216dfaead6137ff71929cb7ffc957de847cc4a48157a895241161653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8101-4030 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmba2.25 |
PQID | 3092350869 |
PQPubID | 6853473 |
PageCount | 25 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b8cf426fdde64c0681fad36e94f87b53 proquest_journals_3092350869 crossref_primary_10_1002_mba2_25 crossref_citationtrail_10_1002_mba2_25 wiley_primary_10_1002_mba2_25_MBA225 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2022 2022-09-00 20220901 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | MedComm - Biomaterials and applications |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2010; 10 2021; 608 2022; 293 2019; 11 2019; 10 2019; 13 2019; 15 2020; 203 2020; 15 2020; 14 2019; 18 2020; 13 2020; 12 2022; 20 2020; 10 2019; 206 2022; 22 2022; 214 2022; 215 2018; 47 2018; 175 2018; 6 2018; 9 2018; 177 2018; 5 2021; 552 2007; 292 2019; 24 2021; 435 2022; 34 2014; 14 2019; 29 2008; 24 2018; 30 2021; 274 2021; 273 2022; 32 2022; 33 2018; 34 2012; 24 2017; 168 2010; 4 2014; 10 2021; 2021 21 2017; 62 2019; 8 2018; 29 2019; 9 2019; 4 1990; 34 2019; 6 2018; 183 2021; 44 2007; 282 2019; 31 2015; 54 2016; 98 2002; 3 2019; 223 2020; 36 2020; 35 2020; 34 2021; 264 31 2016; 12 2017; 139 2016; 6 2016; 7 2016; 1 2020; 30 2021; 411 2021; 414 2022; 8 2022; 9 2018; 357 2022; 12 2022; 14 2020; 25 2017; 141 2021; 254 2022; 10 2021; 133 2012; 48 2018; 12 2021; 60 2016; 28 2017; 541 2018; 15 2020; 317 2022; 17 2022; 18 2016; 22 2020; 29 2018; 13 2022; 133 2021; 27 2021; 409 46 2017; 1 2021; 21 2021; 22 2020; 241 2019; 58 2005; 21 2011; 10 2017; 114 2017; 9 2019; 123 2021; 36 2020; 8 2020; 7 2020; 6 2021; 32 2020; 4 2021; 31 2021; 34 2014; 2 2021; 33 2002; 43 2019; 116 2019; 119 2021; 592 2011; 25 2021; 594 2019; 193 2014; 6 2006; 128 2016; 89 2018; 79 2021; 9 2021; 8 2021; 6 2017; 28 2017; 27 2015; 96 2015; 10 2017; 29 2021; 94 2015; 9 2012; 76 2021; 13 2021; 16 2021; 15 2021; 98 2021; 10 2021; 97 2021; 12 2021; 11 2021; 333 2020; 195 2017; 14 2021; 335 2020; 230 2021; 18 2021; 216 2017; 11 2021; 17 2021; 19 2020; 117 2009; 7 2020; 67 2020; 232 2019; 139 2018; 54 2022; 149 2019; 131 e_1_2_10_109_1 e_1_2_10_210_1 e_1_2_10_158_1 e_1_2_10_207_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_135_1 e_1_2_10_173_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_112_1 e_1_2_10_196_1 e_1_2_10_13_1 e_1_2_10_51_1 Huang Q (e_1_2_10_40_1) 2019; 13 e_1_2_10_222_1 e_1_2_10_147_1 e_1_2_10_219_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_124_1 e_1_2_10_162_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_101_1 e_1_2_10_185_1 e_1_2_10_41_1 e_1_2_10_211_1 e_1_2_10_159_1 e_1_2_10_90_1 e_1_2_10_208_1 e_1_2_10_52_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_151_1 e_1_2_10_174_1 e_1_2_10_197_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_200_1 e_1_2_10_223_1 e_1_2_10_148_1 e_1_2_10_64_1 Maruf M (e_1_2_10_230_1) 2020; 203 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_163_1 e_1_2_10_186_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_42_1 e_1_2_10_190_1 e_1_2_10_212_1 e_1_2_10_91_1 e_1_2_10_209_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_198_1 e_1_2_10_175_1 e_1_2_10_30_1 Rabini A (e_1_2_10_71_1) 2012; 48 e_1_2_10_201_1 e_1_2_10_224_1 e_1_2_10_80_1 e_1_2_10_149_1 e_1_2_10_126_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_187_1 e_1_2_10_164_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_213_1 e_1_2_10_130_1 e_1_2_10_199_1 e_1_2_10_92_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_191_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_153_1 e_1_2_10_176_1 e_1_2_10_31_1 e_1_2_10_225_1 e_1_2_10_202_1 e_1_2_10_188_1 e_1_2_10_81_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_180_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_142_1 e_1_2_10_165_1 e_1_2_10_89_1 e_1_2_10_21_1 e_1_2_10_44_1 Weng Y (e_1_2_10_134_1) 2022; 14 e_1_2_10_214_1 He J (e_1_2_10_231_1) 2020; 67 e_1_2_10_131_1 e_1_2_10_177_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_116_1 e_1_2_10_192_1 e_1_2_10_55_1 e_1_2_10_78_1 e_1_2_10_154_1 e_1_2_10_32_1 e_1_2_10_203_1 e_1_2_10_226_1 e_1_2_10_120_1 e_1_2_10_166_1 e_1_2_10_189_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_105_1 e_1_2_10_181_1 e_1_2_10_67_1 e_1_2_10_143_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_215_1 e_1_2_10_132_1 e_1_2_10_155_1 e_1_2_10_178_1 e_1_2_10_117_1 e_1_2_10_170_1 e_1_2_10_193_1 e_1_2_10_94_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_204_1 e_1_2_10_227_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_167_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_182_1 e_1_2_10_83_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_216_1 e_1_2_10_110_1 e_1_2_10_156_1 e_1_2_10_179_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_194_1 e_1_2_10_171_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_220_1 e_1_2_10_11_1 e_1_2_10_119_1 e_1_2_10_205_1 e_1_2_10_228_1 e_1_2_10_145_1 e_1_2_10_168_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_183_1 e_1_2_10_160_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_108_1 e_1_2_10_217_1 e_1_2_10_157_1 e_1_2_10_229_1 e_1_2_10_73_1 e_1_2_10_172_1 e_1_2_10_96_1 e_1_2_10_111_1 e_1_2_10_195_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_50_1 e_1_2_10_206_1 e_1_2_10_221_1 e_1_2_10_146_1 e_1_2_10_169_1 e_1_2_10_218_1 e_1_2_10_62_1 e_1_2_10_161_1 e_1_2_10_85_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_184_1 e_1_2_10_47_1 |
References_xml | – volume: 29 issue: 13 year: 2019 article-title: 2D black phosphorus‐based biomedical applications publication-title: Adv Funct Mater – volume: 6 start-page: 9494 issue: 16 year: 2014 end-page: 9530 article-title: Nanoparticles for photothermal therapies publication-title: Nanoscale – volume: 4 issue: 2 year: 2020 article-title: 2D layered double hydroxide nanoparticles: recent progress toward preclinical/clinical nanomedicine publication-title: Small Methods – volume: 195 year: 2020 article-title: MoS2‐ALG‐Fe/GOx hydrogel with Fenton catalytic activity for combined cancer photothermal, starvation, and chemodynamic therapy publication-title: Colloids Surfaces B – volume: 335 start-page: 49 year: 2021 end-page: 58 article-title: Heat/pH‐boosted release of 5‐fluorouracil and albumin‐bound paclitaxel from Cu‐doped layered double hydroxide nanomedicine for synergistical chemo‐photo‐therapy of breast cancer publication-title: J Controlled Release – volume: 8 start-page: 502 issue: 2 year: 2022 end-page: 511 article-title: Fe(III)‐doped polyaminopyrrole nanoparticle for imaging‐guided photothermal therapy of bladder cancer publication-title: ACS Biomater Sci Eng – volume: 117 year: 2020 article-title: Facile synthesis of biocompatible L‐cysteine‐modified MoS nanospheres with high photothermal conversion efficiency for photothermal therapy of tumor publication-title: Mater Sci Eng C Mater Biol Appl – volume: 13 start-page: 8751 issue: 19 year: 2021 end-page: 8772 article-title: Near‐infrared inorganic nanomaterial‐based nanosystems for photothermal therapy publication-title: Nanoscale – volume: 133 year: 2022 article-title: Near‐infrared light control of GelMA/PMMA/PDA hydrogel with mild photothermal therapy for skull regeneration publication-title: Biomater Adv – volume: 29 year: 2020 article-title: Enhanced radiotherapy using photothermal therapy based on dual‐sensitizer of gold nanoparticles with acid‐induced aggregation publication-title: Nanomedicine – volume: 13 start-page: 1405 issue: 12 year: 2018 end-page: 1416 article-title: Antibacterial gold nanoparticle‐based photothermal killing of vancomycin‐resistant bacteria publication-title: Nanomedicine – volume: 29 start-page: 268 issue: 2 year: 2018 end-page: 275.e1 article-title: Percutaneous microwave versus radiofrequency ablation of colorectal liver metastases: ablation with clear margins (A0) provides the best local tumor control publication-title: J Vasc Interv Radiol – volume: 15 start-page: 6517 issue: 4 year: 2021 end-page: 6529 article-title: Temperature‐sensitive lipid‐coated carbon nanotubes for synergistic photothermal therapy and gene therapy publication-title: ACS Nano – volume: 30 issue: 14 year: 2018 article-title: Dual‐peak absorbing semiconducting copolymer nanoparticles for first and second near‐infrared window photothermal therapy: a comparative study publication-title: Adv Mater – volume: 36 year: 2021 article-title: A nano vector with photothermally enhanced drug release and retention to overcome cancer multidrug resistance publication-title: Nano Today – volume: 13 start-page: 14894 issue: 13 year: 2021 end-page: 14910 article-title: NIR‐controlled treatment of multidrug‐resistant tumor cells by mesoporous silica capsules containing gold nanorods and doxorubicin publication-title: ACS Appl Mater Interfaces – volume: 43 start-page: 33 issue: 1 year: 2002 end-page: 56 article-title: The cellular and molecular basis of hyperthermia publication-title: Crit Rev Oncol Hematol – volume: 11 start-page: 7157 issue: 15 year: 2019 end-page: 7165 article-title: Enhanced radiosensitization of ternary Cu3BiSe3 nanoparticles by photo‐induced hyperthermia in the second near‐infrared biological window publication-title: Nanoscale – volume: 6 start-page: 12 issue: 1 year: 2021 end-page: 25 article-title: Synergistic antibacterial activity of physical‐chemical multi‐mechanism by TiO nanorod arrays for safe biofilm eradication on implant publication-title: Bioact Mater – volume: 216 year: 2021 article-title: Engineering of gemcitabine coated nano‐graphene oxide sheets for efficient near‐infrared radiation mediated in vivo lung cancer photothermal therapy publication-title: J Photochem Photobiol B‐Biol – volume: 98 start-page: 290 year: 2016 end-page: 301 article-title: Functional role of inorganic trace elements in angiogenesis part III: (Ti, Li, Ce, As, Hg, Va, Nb and Pb) publication-title: Crit Rev Oncol Hematol – volume: 67 start-page: 2119 issue: 7 year: 2020 end-page: 2129 article-title: A clinical prototype transrectal diffuse optical tomography (TRDOT) system for in vivo monitoring of photothermal therapy (PTT) of focal prostate cancer publication-title: IEEE Trans Biomed Eng – volume: 15 issue: 5 year: 2020 article-title: Collagen particles with collagen‐binding bone morphogenetic protein‐2 promote vertebral laminar regeneration in infant rabbits publication-title: Biomed Mater – volume: 177 start-page: 40 year: 2018 end-page: 51 article-title: Novel theranostic nanoplatform for complete mice tumor elimination via MR imaging‐guided acid‐enhanced photothermo‐/chemo‐therapy publication-title: Biomaterials – volume: 10 start-page: 1081 issue: 11 year: 2010 end-page: 1087 article-title: Clinical effects of in situ photoimmunotherapy on late‐stage melanoma patients: a preliminary study publication-title: Cancer Biol Ther – volume: 552 year: 2021 article-title: Solar‐triggered photothermal therapy for tumor ablation by Ag nanoparticles self‐precipitated on structural titanium oxide nanofibers publication-title: Appl Surf Sci – volume: 12 start-page: 31172 issue: 28 year: 2020 end-page: 31181 article-title: Hollow mesoporous Bi@PEG‐FA nanoshell as a novel dual‐stimuli‐responsive nanocarrier for synergistic chemo‐photothermal cancer therapy publication-title: ACS Appl Mater Interfaces – volume: 12 start-page: 1756 issue: 4 year: 2022 end-page: 1768 article-title: A light‐driven dual‐nanotransformer with deep tumor penetration for efficient chemo‐immunotherapy publication-title: Theranostics – volume: 14 start-page: 2265 issue: 2 year: 2020 end-page: 2275 article-title: Well‐defined gold nanorod/polymer hybrid coating with inherent antifouling and photothermal bactericidal properties for treating an infected hernia publication-title: ACS Nano – volume: 114 start-page: E5655 issue: 28 year: 2017 end-page: E5663 article-title: Targeting cancer cell integrins using gold nanorods in photothermal therapy inhibits migration through affecting cytoskeletal proteins publication-title: Proc Natl Acad Sci USA – volume: 333 start-page: 487 year: 2021 end-page: 499 article-title: Photothermal treatment by PLGA‐gold nanorod‐isatin nanocomplexes under near‐infrared irradiation for alleviating psoriasiform hyperproliferation publication-title: J Control Release – volume: 31 issue: 25 article-title: Nanoagent‐promoted mild‐temperature photothermal therapy for cancer treatment publication-title: Adv Funct Mater – volume: 9 start-page: 6 issue: 1 year: 2015 end-page: 11 article-title: Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy publication-title: ACS Nano – volume: 18 start-page: 10 year: 2019 article-title: Role of the tumor microenvironment in PD‐L1/PD‐1‐mediated tumor immune escape publication-title: Mol Cancer – volume: 62 start-page: 142 year: 2017 end-page: 151 article-title: Biology of Hsp47 (Serpin H1), a collagen‐specific molecular chaperone publication-title: Semin Cell Dev Biol – volume: 33 start-page: 328 issue: 1 year: 2022 end-page: 333 article-title: An in situ nanoparticle recombinant strategy for the enhancement of photothermal therapy publication-title: Chin Chem Lett – volume: 54 start-page: 11526 issue: 39 year: 2015 end-page: 11530 article-title: Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents publication-title: Angew Chem Int Ed – volume: 9 start-page: 747 issue: 3 year: 2019 end-page: 760 article-title: Lectin‐mediated pH‐sensitive doxorubicin prodrug for pre‐targeted chemotherapy of colorectal cancer with enhanced efficacy and reduced side effects publication-title: Theranostics – volume: 28 start-page: 9341 issue: 42 year: 2016 end-page: 9348 article-title: Near‐infrared‐triggered azobenzene‐liposome/upconversion nanoparticle hybrid vesicles for remotely controlled drug delivery to overcome cancer multidrug resistance publication-title: Adv Mater – volume: 34 issue: 16 year: 2022 article-title: Amino‐acid‐encoded supramolecular photothermal nanomedicine for enhanced cancer therapy publication-title: Adv Mater – volume: 131 start-page: 135 year: 2019 end-page: 144 article-title: Clinical feasibility and efficacy of stereotactic body radiotherapy for hepatocellular carcinoma: a systematic review and meta‐analysis of observational studies publication-title: Radiother Oncol – volume: 98 start-page: 211 year: 2021 end-page: 216 article-title: Gold nanorods‐encapsulated thermosensitive drug carriers for NIR light‐responsive anticancer therapy publication-title: J Ind Eng Chem – volume: 35 start-page: 430 issue: 3 year: 2020 end-page: 445 article-title: Targeted gold nanoshelled hybrid nanocapsules encapsulating doxorubicin for bimodal imaging and near‐infrared triggered synergistic therapy of Her2‐positve breast cancer publication-title: J Biomater Appl – volume: 12 start-page: 2201 issue: 3 year: 2018 end-page: 2210 article-title: Microwave‐activated Mn‐doped zirconium metal organic framework nanocubes for highly effective combination of microwave dynamic and thermal therapies against cancer publication-title: ACS Nano – volume: 6 issue: 22 year: 2019 article-title: Janus nanobullets combine photodynamic therapy and magnetic hyperthermia to potentiate synergetic anti‐metastatic immunotherapy publication-title: Adv Sci – volume: 29 issue: 4 year: 2019 article-title: Supramolecular photothermal nanomaterials as an emerging paradigm toward precision cancer therapy publication-title: Adv Funct Mater – volume: 12 start-page: 431 issue: 2 year: 2016 end-page: 438 article-title: Synergistic antibacterial effects of localized heat and oxidative stress caused by hydroxyl radicals mediated by graphene/iron oxide‐based nanocomposites publication-title: Nanomedicine – volume: 414 year: 2021 article-title: Cysteamine: a key to trigger aggregation‐induced NIR‐II photothermal effect and silver release booming of gold‐silver nanocages for synergetic treatment of multidrug‐resistant bacteria infection publication-title: Chem Eng J – volume: 175 start-page: 19 year: 2018 end-page: 29 article-title: Gold and gold‐silver alloy nanoparticles enhance the myogenic differentiation of myoblasts through p38 MAPK signaling pathway and promote in vivo skeletal muscle regeneration publication-title: Biomaterials – volume: 9 start-page: 958 issue: 11 year: 2021 article-title: A narrative review of hyperthermic intrathoracic chemotherapy for advanced lung cancer publication-title: Ann Transl Med – volume: 223 year: 2019 article-title: Multivalency‐assisted membrane‐penetrating siRNA delivery sensitizes photothermal ablation via inhibition of tumor glycolysis metabolism publication-title: Biomaterials – volume: 30 issue: 10 year: 2018 article-title: 2D‐black‐phosphorus‐reinforced 3D‐printed scaffolds: a stepwise countermeasure for osteosarcoma publication-title: Adv Mater – volume: 34 issue: 17 year: 2022 article-title: Semiconducting polymer nanoparticles with intramolecular motion‐induced photothermy for tumor phototheranostics and tooth root canal therapy publication-title: Adv Mater Deerfield – volume: 15 start-page: 2045 year: 2020 end-page: 2058 article-title: Advanced black phosphorus nanomaterials for bone regeneration publication-title: Int J Nanomedicine – volume: 128 start-page: 2115 issue: 6 year: 2006 end-page: 2120 article-title: Cancer cell imaging and photothermal therapy in the near‐infrared region by using gold nanorods publication-title: J Am Chem Soc – volume: 11 start-page: 463 issue: 9 year: 2019 article-title: Metal‐organic framework‐based chemo‐photothermal combinational system for precise, rapid, and efficient antibacterial therapeutics publication-title: Pharmaceutics – volume: 33 start-page: 2501 issue: 5 year: 2022 end-page: 2506 article-title: Boron difluoride formazanate dye for high‐efficiency NIR‐II fluorescence imaging‐guided cancer photothermal therapy publication-title: Chin Chem Lett – volume: 17 year: 2022 article-title: A review: potential application and outlook of photothermal therapy in oral cancer treatment publication-title: Biomed Mater – volume: 79 start-page: 265 year: 2018 end-page: 275 article-title: Dual‐functional 3D‐printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models publication-title: Acta Biomater – volume: 24 start-page: e990 issue: 10 year: 2019 end-page: e1005 article-title: Radiofrequency ablation and microwave ablation in liver tumors: an update publication-title: Oncologist – volume: 292 start-page: L1515 issue: 6 year: 2007 end-page: L1525 article-title: Heat shock protein 90 modulates endothelial nitric oxide synthase activity and vascular reactivity in the newborn piglet pulmonary circulation publication-title: Am J Physiol Lung Cell Mol Physiol – volume: 435 year: 2021 article-title: Surface architectured black phosphorous nanoconstructs based smart and versatile platform for cancer theranostics publication-title: Coord Chem Rev – volume: 282 start-page: 37567 issue: 52 year: 2007 end-page: 37574 article-title: A heat shock protein 90 binding domain in endothelial nitric‐oxide synthase influences enzyme function publication-title: J Biol Chem – volume: 30 year: 2018 article-title: Metal‐organic‐framework‐derived carbon nanostructure augmented sonodynamic cancer therapy publication-title: Adv Mater – volume: 22 start-page: 3095 issue: 7 year: 2022 end-page: 3103 article-title: Surgical tumor‐derived photothermal nanovaccine for personalized cancer therapy and prevention publication-title: Nano Lett – volume: 13 start-page: 5816 issue: 5 year: 2019 end-page: 5825 article-title: Redox‐activatable and acid‐enhanced nanotheranostics for second near‐infrared photoacoustic tomography and combined photothermal tumor therapy publication-title: ACS Nano – volume: 33 issue: 20 year: 2021 article-title: A systematic strategy of combinational blow for overcoming cascade drug resistance via NIR‐light‐triggered hyperthermia publication-title: Adv Mater – volume: 1 issue: 5 year: 2016 article-title: Analysis of nanoparticle delivery to tumours publication-title: Nat Rev Mater – volume: 94 year: 2021 article-title: Immune and metabolic checkpoints blockade: dual wielding against tumors publication-title: Int Immunopharmacol – volume: 47 start-page: 2280 issue: 7 year: 2018 end-page: 2297 article-title: Organic molecule‐based photothermal agents: an expanding photothermal therapy universe publication-title: Chem Soc Rev – volume: 60 start-page: 7476 issue: 14 year: 2021 end-page: 7487 article-title: NIR‐II AIEgens: a win–win integration towards bioapplications publication-title: Angew Chem Int Ed – volume: 67 start-page: 35 issue: 1 year: 2020 end-page: 43 article-title: Efficacy of thermal ablation in benign non‐functioning solid thyroid nodule: a systematic review and meta‐analysis publication-title: Endocrine – volume: 116 start-page: 18590 issue: 37 year: 2019 end-page: 18596 article-title: Gold nanoshell‐localized photothermal ablation of prostate tumors in a clinical pilot device study publication-title: Proc Natl Acad Sci USA – volume: 31 issue: 16 year: 2019 article-title: Self‐assembling endogenous biliverdin as a versatile near‐infrared photothermal nanoagent for cancer theranostics publication-title: Adv Mater – volume: 10 start-page: 1500 issue: 4 year: 2020 end-page: 1513 article-title: Ultrasmall CuS@BSA nanoparticles with mild photothermal conversion synergistically induce MSCs‐differentiated fibroblast and improve skin regeneration publication-title: Theranostics – volume: 9 start-page: 3319 issue: 9 year: 2021 end-page: 3333 article-title: Bifunctional scaffolds of hydroxyapatite/poly(dopamine)/carboxymethyl chitosan with osteogenesis and anti‐osteosarcoma effect publication-title: Biomater Sci – volume: 293 year: 2022 article-title: An injectable, self‐healing carboxymethylated chitosan hydrogel with mild photothermal stimulation for wound healing publication-title: Carbohydr Polymers – volume: 22 start-page: 1137 issue: 3 year: 2021 end-page: 1146 article-title: A smart “Sense‐and‐treat” nanoplatform based on semiconducting polymer nanoparticles for precise photothermal‐photodynamic combined therapy publication-title: Biomacromolecules – volume: 8 start-page: 1084 issue: 10 year: 2019 end-page: 1091 article-title: Adipose‐derived stromal cells are capable of restoring bone regeneration after post‐traumatic osteomyelitis and modulate B‐cell response publication-title: Stem Cells Transl Med – volume: 32 start-page: 1055 issue: 3 year: 2021 end-page: 1060 article-title: Polydopamine (PDA)‐activated cobalt sulfide nanospheres responsive to tumor microenvironment (TME) for chemotherapeutic‐enhanced photothermal therapy publication-title: Chin Chem Lett – volume: 254 year: 2021 article-title: Hyaluronic acid thiol modified injectable hydrogel: synthesis, characterization, drug release, cellular drug uptake and anticancer activity publication-title: Carbohydr Polym – volume: 32 start-page: 561 issue: 1 year: 2021 end-page: 564 article-title: Stimuli‐responsive dual drugs‐conjugated polydopamine nanoparticles for the combination photothermal‐cocktail chemotherapy publication-title: Chin Chem Lett – volume: 139 start-page: 1921 issue: 5 year: 2017 end-page: 1927 article-title: Biological photothermal nanodots based on self‐assembly of peptide porphyrin conjugates for antitumor therapy publication-title: J Am Chem Soc – volume: 31 issue: 47 year: 2021 article-title: Injectable hydrogel with NIR light‐responsive, dual‐mode PTH release for osteoregeneration in osteoporosis publication-title: Adv Funct Mater – volume: 13 start-page: 2340 issue: 9 year: 2020 end-page: 2350 article-title: Ofloxacin loaded MoS nanoflakes for synergistic mild‐temperature photothermal/antibiotic therapy with reduced drug resistance of bacteria publication-title: Nano Res – volume: 36 start-page: 48 year: 2020 end-page: 62 article-title: A novel photothermally controlled multifunctional scaffold for clinical treatment of osteosarcoma and tissue regeneration publication-title: Mater Today – volume: 411 year: 2021 article-title: Ball‐milling fabrication of BiAgOS nanoparticles for 808 nm light mediated photodynamic/photothermal treatment publication-title: Chem Eng J – volume: 232 year: 2020 article-title: Pifithrin‐mu incorporated in gold nanoparticle amplifies pro‐apoptotic unfolded protein response cascades to potentiate synergistic glioblastoma therapy publication-title: Biomaterials – volume: 33 start-page: 10 issue: 1 year: 2022 article-title: In vitro and in vivo MRI imaging and photothermal therapeutic properties of hematite (α‐Fe O ) nanorods publication-title: J Mater Sci Mater Med – volume: 14 start-page: 199 issue: 3 year: 2014 end-page: 208 article-title: Thermal ablation of tumours: biological mechanisms and advances in therapy publication-title: Nat Rev Cancer – volume: 13 start-page: 9 year: 2021 article-title: Biomaterial‐based strategies for maxillofacial tumour therapy and bone defect regeneration publication-title: Int J Oral Sci – volume: 32 start-page: 2411 issue: 8 year: 2021 end-page: 2414 article-title: Mild hyperthermia‐enhanced chemo‐photothermal synergistic therapy using doxorubicin‐loaded gold nanovesicles publication-title: Chin Chem Lett – volume: 9 start-page: 8026 issue: 26 year: 2019 end-page: 8047 article-title: Advances in nanomedicine for cancer starvation therapy publication-title: Theranostics – volume: 1 start-page: 10 year: 2017 article-title: Near‐infrared fluorophores for biomedical imaging publication-title: Nat Biomed Eng – volume: 230 year: 2020 article-title: Modulation of tumor microenvironment using a TLR‐7/8 agonist‐loaded nanoparticle system that exerts low‐temperature hyperthermia and immunotherapy for in situ cancer vaccination publication-title: Biomaterials – volume: 12 start-page: 3233 issue: 8 year: 2022 end-page: 3254 article-title: Cell membrane coated‐nanoparticles for cancer immunotherapy publication-title: Acta Pharm Sin B – volume: 411 year: 2021 article-title: Erbium‐doped tungsten selenide nanosheets with near‐infrared II emission and photothermal conversion publication-title: Chem Eng J – volume: 13 start-page: 284 issue: 1 year: 2019 end-page: 294 article-title: Multifunctional two‐dimensional core‐shell MXene@gold nanocomposites for enhanced photo‐radio combined therapy in the second biological window publication-title: ACS Nano – volume: 17 issue: 13 year: 2021 article-title: Ultrasmall FeS2 nanoparticles‐decorated carbon spheres with laser‐mediated ferrous ion release for antibacterial therapy publication-title: Small – volume: 96 start-page: 143 issue: 1 year: 2015 end-page: 155 article-title: Functional role of inorganic trace elements in angiogenesis‐part II: Cr, Si, Zn, Cu, and S publication-title: Crit Rev Oncol Hematol – volume: 15 issue: 41 year: 2019 article-title: Multifunctional nanoengineered hydrogels consisting of black phosphorus nanosheets upregulate bone formation publication-title: Small – volume: 139 start-page: 67 year: 2019 end-page: 74 article-title: Whole‐body hyperthermia in combination with systemic therapy in advanced solid malignancies publication-title: Crit Rev Oncol Hematol – volume: 214 year: 2022 article-title: MoS2/LaF3 for enhanced photothermal therapy performance of poorly‐differentiated hepatoma publication-title: Colloids Surfaces B – volume: 3 start-page: 487 issue: 8 year: 2002 end-page: 497 article-title: Hyperthermia in combined treatment of cancer publication-title: Lancet Oncol – volume: 14 start-page: 717 issue: 12 year: 2017 end-page: 734 article-title: The immune contexture in cancer prognosis and treatment publication-title: Nat Rev Clin Oncol – volume: 34 start-page: 294 issue: 3 year: 1990 end-page: 310 article-title: Wagner‐Jauregg and fever therapy publication-title: Med Hist – volume: 6 start-page: 2221 issue: 8 year: 2021 end-page: 2230 article-title: Gold nanorods and nanohydroxyapatite hybrid hydrogel for preventing bone tumor recurrence via postoperative photothermal therapy and bone regeneration promotion publication-title: Bioact Mater – volume: 12 start-page: 14739 issue: 27 year: 2020 end-page: 14750 article-title: Functionalized boron nanosheets as an intelligent nanoplatform for synergistic low‐temperature photothermal therapy and chemotherapy publication-title: Nanoscale – volume: 15 start-page: 333 issue: 6 year: 2018 end-page: 348 article-title: Therapeutic developments in pancreatic cancer: current and future perspectives publication-title: Nat Rev Gastroenterol Hepatol – volume: 594 start-page: 493 year: 2021 end-page: 501 article-title: Engineering of a dual‐modal phototherapeutic nanoplatform for single NIR laser‐triggered tumor therapy publication-title: J Colloid Interface Sci – volume: 30 issue: 25 year: 2020 article-title: Cocrystal strategy toward multifunctional 3D‐printing scaffolds enables NIR‐activated photonic osteosarcoma hyperthermia and enhanced bone defect regeneration publication-title: Adv Funct Mater – volume: 76 start-page: 1712 issue: 7 year: 2012 end-page: 1721 article-title: Waon therapy upregulates Hsp90 and leads to angiogenesis through the Akt‐endothelial nitric oxide synthase pathway in mouse hindlimb ischemia publication-title: Circ J – volume: 8 start-page: 824 year: 2020 article-title: Peptide‐decorated supramolecules for subcellular targeted cancer therapy: recent advances publication-title: Front Chem – volume: 6 issue: 32 year: 2020 article-title: Multifunctional bioactive Nd‐Ca‐Si glasses for fluorescence thermometry, photothermal therapy, and burn tissue repair publication-title: Sci Adv – volume: 592 year: 2021 article-title: EGFR targeting for cancer therapy: pharmacology and immunoconjugates with drugs and nanoparticles publication-title: Int J Pharm – volume: 24 start-page: 5586 issue: 41 year: 2012 end-page: 5592 article-title: In vitro and in vivo near‐infrared photothermal therapy of cancer using polypyrrole organic nanoparticles publication-title: Adv Mater – volume: 13 start-page: 7115 issue: 6 year: 2021 end-page: 7126 article-title: Synergistic cancer photochemotherapy via layered double hydroxide‐based trimodal nanomedicine at very low therapeutic doses publication-title: ACS Appl Mater Interfaces – volume: 16 start-page: 1681 year: 2021 end-page: 1706 article-title: Carbon nanotubes: smart drug/gene delivery carriers publication-title: Int J Nanomedicine – volume: 133 start-page: 244 year: 2021 end-page: 256 article-title: Mild hyperthermia promotes immune checkpoint blockade‐based immunotherapy against metastatic pancreatic cancer using size‐adjustable nanoparticles publication-title: Acta Biomater – volume: 24 start-page: 3 issue: 1 year: 2008 end-page: 15 article-title: Cellular responses to hyperthermia (40–46°C): cell killing and molecular events publication-title: Int J Hyperthermia – volume: 13 start-page: 52 issue: 1 year: 2021 article-title: Au‐ZnO conjugated black phosphorus as a near‐infrared light‐triggering and recurrence‐suppressing nanoantibiotic platform against publication-title: Pharmaceutics – volume: 357 start-page: 1 year: 2018 end-page: 17 article-title: Antimicrobial silver nanomaterials publication-title: Coord Chem Rev – volume: 13 start-page: 6372 issue: 6 year: 2019 end-page: 6382 article-title: Controlled co‐delivery of growth factors through layer‐by‐layer assembly of core‐shell nanofibers for improving bone regeneration publication-title: ACS Nano – volume: 10 start-page: 1453 issue: 9 year: 2022 end-page: 1462 article-title: A multifunctional α‐Fe O @PEDOT core–shell nanoplatform for gene and photothermal combination anticancer therapy publication-title: J Mater Chem B – volume: 6 start-page: 5137 issue: 3 year: 2021 end-page: 5144 article-title: A robotic platform to navigate MRI‐guided focused ultrasound system publication-title: IEEE Robot Autom Lett – volume: 19 start-page: 137 issue: 1 year: 2021 article-title: NIR‐II‐activated biocompatible hollow nanocarbons for cancer photothermal therapy publication-title: J Nanobiotechnology – volume: 6 start-page: 312 issue: 2 year: 2021 end-page: 325 article-title: Reversing cold tumors to hot: an immunoadjuvant‐functionalized metal‐organic framework for multimodal imaging‐guided synergistic photo‐immunotherapy publication-title: Bioact Mater – volume: 11 start-page: 78 issue: 1 year: 2019 article-title: Variation in clinical application of hyperthermic intraperitoneal chemotherapy: a review publication-title: Cancers – volume: 16 start-page: 9 issue: 1 year: 2021 article-title: Targeted single‐walled carbon nanotubes for photothermal therapy combined with immune checkpoint inhibition for the treatment of metastatic breast cancer publication-title: Nanoscale Res Lett – volume: 34 issue: 16 year: 2022 article-title: An engineered protein‐Au bioplaster for efficient skin tumor therapy publication-title: Adv Mater – volume: 123 start-page: 15375 issue: 25 year: 2019 end-page: 15393 article-title: Gold‐nanoparticle‐assisted plasmonic photothermal therapy advances toward clinical application publication-title: J Phys Chem C – volume: 9 start-page: 18 issue: 1 year: 2021 article-title: Review of a new bone tumor therapy strategy based on bifunctional biomaterials publication-title: Bone Res – volume: 183 start-page: 30 year: 2018 end-page: 42 article-title: Platinum‐doped carbon nanoparticles inhibit cancer cell migration under mild laser irradiation: multi‐organelle‐targeted photothermal therapy publication-title: Biomaterials – volume: 22 start-page: 410 issue: 5 year: 2016 end-page: 415 article-title: Pyrotherapy for the treatment of psychosis in the 21st century: a case report and literature review publication-title: J Psychiatr Pract – volume: 7 issue: 23 year: 2020 article-title: Black phosphorus: degradation mechanism, passivation method, and application for in situ tissue regeneration publication-title: Adv Mater Interfaces – volume: 241 year: 2020 article-title: Local delivery of bone morphogenetic protein‐2 from near infrared‐responsive hydrogels for bone tissue regeneration publication-title: Biomaterials – volume: 6 start-page: 7728 issue: 46 year: 2018 end-page: 7736 article-title: Bifunctional scaffolds for the photothermal therapy of breast tumor cells and adipose tissue regeneration publication-title: J Mater Chem B – volume: 33 start-page: 575 issue: 2 year: 2022 end-page: 586 article-title: Strategies for efficient photothermal therapy at mild temperatures: progresses and challenges publication-title: Chin Chem Lett – volume: 19 start-page: 413 issue: 1 year: 2021 article-title: Self‐assembled nanoparticles containing photosensitizer and polycationic brush for synergistic photothermal and photodynamic therapy against periodontitis publication-title: J Nanobiotechnology – volume: 10 start-page: 1487 issue: 7 year: 2014 end-page: 1496 article-title: Tumor vascular permeabilization using localized mild hyperthermia to improve macromolecule transport publication-title: Nanomedicine – volume: 97 start-page: 476 year: 2021 end-page: 484 article-title: Drug‐dye‐apoptosis inducing micelles for enhancing host immunity against advanced metastatic breast cancer by the combination of low dose chemotherapy and photothermal therapy publication-title: J Ind Eng Chem – volume: 34 issue: 46 year: 2021 article-title: Cancer‐cell‐biomimetic nanoparticles for targeted therapy of multiple myeloma based on bone marrow homing publication-title: Adv Mater – volume: 28 start-page: 124 issue: 1 year: 2017 end-page: 134 article-title: Inorganic nanoparticles for image‐guided therapy publication-title: Bioconjug Chem – volume: 1 start-page: 69 year: 2016 article-title: Intraperitoneal free cancer cells in gastric cancer: pathology of peritoneal carcinomatosis and rationale for intraperitoneal chemotherapy/hyperthermic intraperitoneal chemotherapy in gastric cancer publication-title: Transl Gastroenterol Hepatol – volume: 31 issue: 18 year: 2021 article-title: Robust nanovaccine based on polydopamine‐coated mesoporous silica nanoparticles for effective photothermal‐immunotherapy against melanoma publication-title: Adv Funct Mater – volume: 29 issue: 36 year: 2019 article-title: Stimuli‐Responsive scaffold for breast cancer treatment combining accurate photothermal therapy and adipose tissue regeneration publication-title: Adv Funct Mater – volume: 4 start-page: 6439 issue: 11 year: 2010 end-page: 6448 article-title: Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway publication-title: ACS Nano – volume: 264 year: 2021 article-title: A novel “hot spring”‐mimetic hydrogel with excellent angiogenic properties for chronic wound healing publication-title: Biomaterials – volume: 33 start-page: 793 issue: 2 year: 2022 end-page: 797 article-title: An endoplasmic reticulum‐targeted organic photothermal agent for enhanced cancer therapy publication-title: Chin Chem Lett – volume: 9 start-page: 826 issue: 3 year: 2021 end-page: 834 article-title: Highly biocompatible and recyclable biomimetic nanoparticles for antibiotic‐resistant bacteria infection publication-title: Biomater Sci – volume: 34 year: 2020 article-title: Near‐infrared heptamethine cyanine dye‐based nanoscale coordination polymers with intrinsic nucleus‐targeting for low temperature photothermal therapy publication-title: Nano Today – volume: 10 start-page: 817 issue: 5 year: 2011 end-page: 821 article-title: Preliminary safety and efficacy results of laser immunotherapy for the treatment of metastatic breast cancer patients publication-title: Photochem Photobiol Sci – volume: 608 year: 2021 article-title: Aptamer modified MoS2 nanosheets application in targeted photothermal therapy for breast cancer publication-title: Colloids Surf A Physicochem Eng Asp – volume: 9 start-page: 4236 year: 2018 article-title: Harnessing copper‐palladium alloy tetrapod nanoparticle‐induced pro‐survival autophagy for optimized photothermal therapy of drug‐resistant cancer publication-title: Nat Commun – volume: 119 start-page: 613 issue: 5 year: 2019 end-page: 615 article-title: Cytoreduction and hyperthermic intraperitoneal chemotherapy in metastatic colorectal cancer publication-title: J Surg Oncol – volume: 11 start-page: 10061 issue: 17 year: 2021 end-page: 10074 article-title: Assembled small organic molecules for photodynamic therapy and photothermal therapy publication-title: RSC Adv – volume: 54 start-page: 14108 issue: 100 year: 2018 end-page: 14111 article-title: A mitochondria‐targeting photothermogenic nanozyme for MRI‐guided mild photothermal therapy publication-title: Chem Commun – volume: 9 start-page: 10 issue: 1 year: 2021 end-page: 22 article-title: Photothermal bactericidal surfaces: killing bacteria using light instead of biocides publication-title: Biomater Sci – volume: 31 issue: 25 year: 2021 article-title: Nanoagent‐promoted mild‐temperature photothermal therapy for cancer treatment publication-title: Adv Funct Mater – volume: 2 start-page: 1584 issue: 11 year: 2014 end-page: 1593 article-title: Enhanced bone regeneration with a gold nanoparticle‐hydrogel complex publication-title: J Mater Chem B – volume: 32 start-page: 1010 issue: 3 year: 2021 end-page: 1016 article-title: Recent advances in photothermal and RNA interfering synergistic therapy publication-title: Chin Chem Lett – volume: 8 start-page: 1983 issue: 8 year: 2021 end-page: 1996 article-title: Unprecedented collateral sensitivity for cisplatin‐resistant lung cancer cells presented by new ruthenium organometallic compounds publication-title: Inorg Chem Front – volume: 18 issue: 13 year: 2022 article-title: Combination of photothermal therapy with anti‐inflammation therapy attenuates the inflammation tumor microenvironment and weakens immunosuppression for enhancement antitumor treatment publication-title: Small – volume: 30 issue: 16 year: 2020 article-title: Enzyme‐mediated tumor starvation and phototherapy enhance mild‐temperature photothermal therapy publication-title: Adv Funct Mater – volume: 48 start-page: 549 issue: 4 year: 2012 end-page: 559 article-title: Deep heating therapy via microwave diathermy relieves pain and improves physical function in patients with knee osteoarthritis: a double‐blind randomized clinical trial publication-title: Eur J Phys Rehabil Med – volume: 89 start-page: 63 year: 2016 end-page: 64 article-title: A hybrid fever therapy for increased tumor selectivity publication-title: Med Hypotheses – volume: 7 start-page: 90 issue: 1 year: 2009 end-page: 103 article-title: Heat stress and hormetin‐induced hormesis in human cells: effects on aging, wound healing, angiogenesis, and differentiation publication-title: Dose‐Response – volume: 317 start-page: 347 year: 2020 end-page: 374 article-title: A glance over doxorubicin based‐nanotherapeutics: from proof‐of‐concept studies to solutions in the market publication-title: J Control Release – volume: 7 issue: 9 year: 2020 article-title: Overcoming multidrug‐resistant MRSA using conventional aminoglycoside antibiotics publication-title: Adv Sci – volume: 9 start-page: 4567 year: 2021 end-page: 4576 article-title: An injectable photothermally active antibacterial composite hydroxypropyl chitin hydrogel for promoting the wound healing process through photobiomodulation publication-title: J Mater Chem B – volume: 215 year: 2022 article-title: Biodegradable polydopamine and tetrasulfide bond co‐doped hollowed mesoporous silica nanospheres as GSH‐triggered nanosystem for synergistic chemo‐photothermal therapy of breast cancer publication-title: Mater Des – volume: 11 start-page: 34755 issue: 38 year: 2019 end-page: 34765 article-title: Janus gold triangle‐mesoporous silica nanoplatforms for hypoxia‐activated radio‐chemo‐photothermal therapy of liver cancer publication-title: ACS Appl Mater Interfaces – volume: 409 year: 2021 article-title: Injectable self‐healing CuS nanoparticle complex hydrogels with antibacterial, anti‐cancer, and wound healing properties publication-title: Chem Eng J – volume: 21 start-page: 681 issue: 8 year: 2005 end-page: 687 article-title: How do cells respond to their thermal environment? publication-title: Int J Hyperthermia – volume: 230 year: 2020 article-title: Facile and eco‐friendly fabrication of polysaccharides‐based nanocomposite hydrogel for photothermal treatment of wound infection publication-title: Carbohydr Polymers – volume: 27 issue: 39 year: 2017 article-title: Mutually synergistic nanoparticles for effective thermo‐molecularly targeted therapy publication-title: Adv Funct Mater – volume: 31 issue: 24 year: 2021 article-title: Multi‐functional black bioactive glasses prepared via containerless melting process for tumor therapy and tissue regeneration publication-title: Adv Funct Mater – volume: 6 start-page: 2458 issue: 13 year: 2016 end-page: 2487 article-title: Beyond the barriers of light penetration: strategies, perspectives and possibilities for photodynamic therapy publication-title: Theranostics – volume: 32 issue: 22 year: 2022 article-title: Microneedle patches integrated with biomineralized melanin nanoparticles for simultaneous skin tumor photothermal therapy and wound healing publication-title: Adv Funct Mater – volume: 168 start-page: 707 issue: 4 year: 2017 end-page: 723 article-title: Primary, adaptive, and acquired resistance to cancer immunotherapy publication-title: Cell – volume: 58 start-page: 1057 issue: 4 year: 2019 end-page: 1061 article-title: A dual‐targeted organic photothermal agent for enhanced photothermal therapy publication-title: Angew Chem Int Ed – volume: 149 start-page: 334 year: 2022 end-page: 346 article-title: A prodrug hydrogel with tumor microenvironment and near‐infrared light dual‐responsive action for synergistic cancer immunotherapy publication-title: Acta Biomater – volume: 10 start-page: 4185 issue: 15 year: 2019 end-page: 4191 article-title: Near‐infrared light‐triggered porous AuPd alloy nanoparticles to produce mild localized heat to accelerate bone regeneration publication-title: J Phys Chem Lett – volume: 33 issue: 21 year: 2021 article-title: Supramolecular nanofibrils formed by coassembly of clinically approved drugs for tumor photothermal immunotherapy publication-title: Adv Mater – volume: 14 start-page: 1991 issue: 3 year: 2022 end-page: 2001 article-title: ICG‐ER: a new probe for photoimaging and photothermal therapy for breast cancer publication-title: Am J Transl Res – volume: 13 start-page: 39 year: 2021 article-title: Strategies to improve photodynamic therapy efficacy by relieving the tumor hypoxia environment publication-title: NPG Asia Mater – volume: 12 start-page: 27 year: 2021 article-title: Improvement of gold nanorods in photothermal therapy: recent progress and perspective publication-title: Front Pharmacol – volume: 206 start-page: 1 year: 2019 end-page: 12 article-title: Bioinspired nanoplatelets for chemo‐photothermal therapy of breast cancer metastasis inhibition publication-title: Biomaterials – volume: 7 year: 2016 article-title: Photothermal therapy with immune‐adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy publication-title: Nat Commun – volume: 19 start-page: 77 issue: 1 year: 2021 article-title: A DM1‐doped porous gold nanoshell system for NIR accelerated redox‐responsive release and triple modal imaging guided photothermal synergistic chemotherapy publication-title: J Nanobiotechnology – volume: 11 start-page: 1419 issue: 2 year: 2017 end-page: 1431 article-title: Overcoming the heat endurance of tumor cells by interfering with the anaerobic glycolysis metabolism for improved photothermal therapy publication-title: ACS Nano – volume: 273 year: 2021 article-title: A versatile photothermal vaccine based on acid‐responsive glyco‐nanoplatform for synergistic therapy of cancer publication-title: Biomaterials – volume: 541 start-page: 321 issue: 7637 year: 2017 end-page: 330 article-title: Elements of cancer immunity and the cancer‐immune set point publication-title: Nature – volume: 96 start-page: 129 issue: 1 year: 2015 end-page: 142 article-title: Functional role of inorganic trace elements in angiogenesis‐part I: N, Fe, Se, P, Au, and Ca publication-title: Crit Rev Oncol Hematol – volume: 18 start-page: 158 issue: 1 year: 2022 end-page: 165 article-title: Prostate‐specific membrane antigen‐1‐mediated Au@SiO2@Au core‐shell nanoparticles: targeting prostate cancer to enhance photothermal therapy and fluorescence imaging publication-title: J Biomed Nanotechnol – volume: 44 start-page: 165 issue: 2 year: 2021 end-page: 181 article-title: Recent progress in development and applications of second near‐infrared (NIR‐II) nanoprobes publication-title: Arch Pharmacal Res – volume: 193 start-page: 1 year: 2019 end-page: 11 article-title: Near‐infrared light control of bone regeneration with biodegradable photothermal osteoimplant publication-title: Biomaterials – volume: 10 issue: 2 year: 2015 article-title: Carbonate ion‐enriched hot spring water promotes skin wound healing in nude rats publication-title: PLoS One – volume: 20 start-page: 238 issue: 1 year: 2022 article-title: Restorative biodegradable two‐layered hybrid microneedles for melanoma photothermal/chemo co‐therapy and wound healing publication-title: J Nanobiotechnology – volume: 21 article-title: A novel vancomycin‐functionalized‐magnetic graphene composite for use as a near‐infrared‐induced synergistic chemo‐photothermal antibacterial publication-title: Macromol Biosci – volume: 47 start-page: 6930 issue: 18 year: 2018 end-page: 6946 article-title: Cancer cell nucleus‐targeting nanocomposites for advanced tumor therapeutics publication-title: Chem Soc Rev – volume: 34 start-page: 953 issue: 7 year: 2018 end-page: 960 article-title: The effect of modulated electro‐hyperthermia on temperature and blood flow in human cervical carcinoma publication-title: Int J Hyperthermia – volume: 203 start-page: E373 year: 2020 end-page: E374 article-title: Phase II clinical trial: short‐term oncologic outcomes of nanoparticle‐directed focal photothermal laser ablation publication-title: J Urol – volume: 11 start-page: 1054 issue: 1 year: 2017 end-page: 1063 article-title: Diketopyrrolopyrrole‐triphenylamine organic nanoparticles as multifunctional reagents for photoacoustic imaging‐guided photodynamic/photothermal synergistic tumor therapy publication-title: ACS Nano – volume: 141 start-page: 116 year: 2017 end-page: 124 article-title: Autophagy inhibition enabled efficient photothermal therapy at a mild temperature publication-title: Biomaterials – volume: 11 start-page: 8680 issue: 18 year: 2019 end-page: 8691 article-title: Nanomaterials with a photothermal effect for antibacterial activities: an overview publication-title: Nanoscale – volume: 27 issue: 45 year: 2017 article-title: A multifunctional nanoplatform against multidrug resistant cancer: merging the best of targeted chemo/gene/photothermal therapy publication-title: Adv Funct Mater – volume: 25 start-page: 1431 issue: 8 year: 2020 end-page: 1443 article-title: Prussian blue nanoparticles: synthesis, surface modification, and biomedical applications publication-title: Drug Discovery Today – volume: 4 start-page: 1432 issue: 9 year: 2019 end-page: 1442 article-title: Defining and combating antibiotic resistance from one health and global health perspectives publication-title: Nat Microbiol – volume: 21 start-page: 781 issue: 4 year: 2021 end-page: 796 article-title: Polydopamine‐based nanoparticles for photothermal therapy/chemotherapy and their synergistic therapy with autophagy inhibitor to promote antitumor treatment publication-title: Chem Rec – volume: 8 start-page: 540 issue: 2 year: 2022 end-page: 550 article-title: Ultrathin nanosheet‐supported Ag@Ag2O core‐shell nanoparticles with vastly enhanced photothermal conversion efficiency for NIR‐II‐triggered photothermal therapy publication-title: ACS Biomater Sci Eng – volume: 18 start-page: 1261 issue: 9 year: 2021 end-page: 1290 article-title: Metallic nanoparticles as drug delivery system for the treatment of cancer publication-title: Expert Opin Drug Deliv – volume: 5 issue: 10 year: 2018 article-title: Polydopamine‐modified black phosphorous nanocapsule with enhanced stability and photothermal performance for tumor multimodal treatments publication-title: Adv Sci – volume: 46 start-page: 8043 end-page: 8052 article-title: An injectable self‐healing CS/PDA‐AgNPs hybrid hydrogel for mild and highly‐efficient photothermal sterilization publication-title: New J Chem – volume: 9 issue: 11 year: 2022 article-title: Engineering robust ag‐decorated polydopamine nano‐photothermal platforms to combat bacterial infection and prompt wound healing publication-title: Adv Sci – volume: 12 year: 2022 article-title: Ultrasound‐guided microwave ablation in the treatment of early‐stage tongue cancer publication-title: Front Oncol – volume: 14 start-page: 2847 issue: 3 year: 2020 end-page: 2859 article-title: Degradable carbon‐silica nanocomposite with immunoadjuvant property for dual‐modality photothermal/photodynamic therapy publication-title: ACS Nano – volume: 10 start-page: 7273 issue: 16 year: 2020 end-page: 7286 article-title: Complementary autophagy inhibition and glucose metabolism with rattle‐structured polydopamine@mesoporous silica nanoparticles for augmented low‐temperature photothermal therapy and in vivo photoacoustic imaging publication-title: Theranostics – volume: 9 start-page: 15952 issue: 19 year: 2017 end-page: 15961 article-title: Nuclear‐targeting gold nanorods for extremely low NIR activated photothermal therapy publication-title: ACS Appl Mater Interfaces – volume: 10 issue: 7 year: 2021 article-title: 2D nanomaterials for tissue engineering and regenerative nanomedicines: recent advances and future challenges publication-title: Adv Healthcare Mater – volume: 29 start-page: 718 issue: 2 year: 2017 end-page: 725 article-title: Highly efficient NIR‐II photothermal conversion based on an organic conjugated polymer publication-title: Chem Mater – volume: 25 start-page: 1109 issue: 12 year: 2011 end-page: 1118 article-title: Short‐term effects of local microwave hyperthermia on pain and function in patients with mild to moderate carpal tunnel syndrome: a double blind randomized sham‐controlled trial publication-title: Clin Rehabil – volume: 27 issue: 5 year: 2021 article-title: Plasmonic gold nanostar‐mediated photothermal immunotherapy publication-title: IEEE J Sel Top Quantum Electron – volume: 2021 year: 2021 article-title: Manganese‐doped calcium silicate nanowire composite hydrogels for melanoma treatment and wound healing publication-title: Research – volume: 9 start-page: 4355 year: 2021 end-page: 4364 article-title: Bone cements for therapy and regeneration for minimally invasive treatment of neoplastic bone defects publication-title: J Mater Chem B – volume: 274 year: 2021 article-title: Biomineralized calcium carbonate nanohybrids for mild photothermal heating‐enhanced gene therapy publication-title: Biomaterials – volume: 13 start-page: 1342 issue: 2 year: 2019 end-page: 1353 article-title: Boosting the radiosensitizing and photothermal performance of Cu2‐xSe nanocrystals for synergetic radiophotothermal therapy of orthotopic breast cancer publication-title: ACS Nano – ident: e_1_2_10_54_1 doi: 10.1016/j.drudis.2020.05.014 – ident: e_1_2_10_128_1 doi: 10.1021/acsami.7b03017 – ident: e_1_2_10_160_1 doi: 10.1016/j.actbio.2021.05.002 – ident: e_1_2_10_152_1 doi: 10.1038/nrclinonc.2017.101 – ident: e_1_2_10_211_1 doi: 10.1039/D1NR00323B – ident: e_1_2_10_24_1 doi: 10.1016/S1470-2045(02)00818-5 – ident: e_1_2_10_22_1 doi: 10.1002/jso.25438 – ident: e_1_2_10_14_1 doi: 10.1634/theoncologist.2018-0337 – ident: e_1_2_10_112_1 doi: 10.1016/j.cclet.2020.08.009 – ident: e_1_2_10_119_1 doi: 10.1039/D1TB02625A – ident: e_1_2_10_221_1 doi: 10.1038/s41368-021-00113-9 – ident: e_1_2_10_195_1 doi: 10.1002/advs.202106015 – ident: e_1_2_10_21_1 doi: 10.21037/tgh.2016.08.03 – ident: e_1_2_10_192_1 doi: 10.1016/j.nano.2015.11.014 – ident: e_1_2_10_15_1 doi: 10.1007/s12020-019-02019-3 – ident: e_1_2_10_159_1 doi: 10.1016/j.actbio.2022.06.041 – ident: e_1_2_10_173_1 doi: 10.1016/j.colsurfb.2022.112462 – ident: e_1_2_10_227_1 doi: 10.1016/j.cej.2020.128224 – ident: e_1_2_10_44_1 doi: 10.1016/j.jphotobiol.2021.112125 – ident: e_1_2_10_168_1 doi: 10.1016/j.biomaterials.2019.119463 – ident: e_1_2_10_204_1 doi: 10.1002/advs.201902070 – ident: e_1_2_10_163_1 doi: 10.1002/adfm.202010637 – ident: e_1_2_10_30_1 doi: 10.7150/thno.68756 – ident: e_1_2_10_72_1 doi: 10.1177/0269215511400767 – ident: e_1_2_10_63_1 doi: 10.1016/j.cclet.2021.11.079 – ident: e_1_2_10_212_1 doi: 10.1088/1748-605X/ac5a23 – ident: e_1_2_10_139_1 doi: 10.1002/smtd.201900343 – ident: e_1_2_10_45_1 doi: 10.2147/IJN.S299448 – volume: 14 start-page: 1991 issue: 3 year: 2022 ident: e_1_2_10_134_1 article-title: ICG‐ER: a new probe for photoimaging and photothermal therapy for breast cancer publication-title: Am J Transl Res – ident: e_1_2_10_111_1 doi: 10.1016/j.cclet.2020.02.043 – ident: e_1_2_10_29_1 doi: 10.1016/j.apsb.2022.02.023 – ident: e_1_2_10_201_1 doi: 10.1186/s12951-021-01114-w – volume: 203 start-page: E373 year: 2020 ident: e_1_2_10_230_1 article-title: Phase II clinical trial: short‐term oncologic outcomes of nanoparticle‐directed focal photothermal laser ablation publication-title: J Urol – ident: e_1_2_10_86_1 doi: 10.1016/j.critrevonc.2015.05.011 – ident: e_1_2_10_82_1 doi: 10.1002/adfm.202101505 – ident: e_1_2_10_31_1 doi: 10.1016/j.jconrel.2021.04.005 – ident: e_1_2_10_229_1 doi: 10.4161/cbt.10.11.13434 – ident: e_1_2_10_5_1 doi: 10.1016/j.mehy.2016.02.005 – ident: e_1_2_10_131_1 doi: 10.1016/j.cclet.2021.08.087 – ident: e_1_2_10_107_1 doi: 10.1016/j.biomaterials.2017.06.030 – ident: e_1_2_10_165_1 doi: 10.1038/ncomms13193 – ident: e_1_2_10_7_1 doi: 10.1097/PRA.0000000000000181 – ident: e_1_2_10_90_1 doi: 10.1002/sctm.18-0266 – ident: e_1_2_10_147_1 doi: 10.1002/adma.201503799 – ident: e_1_2_10_184_1 doi: 10.1021/acsnano.8b05982 – ident: e_1_2_10_36_1 doi: 10.1002/adma.202107883 – ident: e_1_2_10_120_1 doi: 10.1016/j.cclet.2020.09.010 – volume: 13 start-page: 1342 issue: 2 year: 2019 ident: e_1_2_10_40_1 article-title: Boosting the radiosensitizing and photothermal performance of Cu2‐xSe nanocrystals for synergetic radiophotothermal therapy of orthotopic breast cancer publication-title: ACS Nano – ident: e_1_2_10_33_1 doi: 10.1038/natrevmats.2016.14 – ident: e_1_2_10_186_1 doi: 10.1039/D0BM00617C – ident: e_1_2_10_151_1 doi: 10.1016/j.matdes.2022.110467 – ident: e_1_2_10_154_1 doi: 10.1038/nature21349 – ident: e_1_2_10_121_1 doi: 10.1002/adfm.201702834 – ident: e_1_2_10_95_1 doi: 10.1039/C3TB21246G – ident: e_1_2_10_208_1 doi: 10.1016/j.cej.2021.128779 – ident: e_1_2_10_26_1 doi: 10.1073/pnas.1906929116 – ident: e_1_2_10_118_1 doi: 10.1016/j.biomaterials.2021.120885 – ident: e_1_2_10_37_1 doi: 10.1016/j.bioactmat.2021.01.006 – ident: e_1_2_10_68_1 doi: 10.1021/ja057254a – ident: e_1_2_10_122_1 doi: 10.1039/D0NR02291H – ident: e_1_2_10_99_1 doi: 10.1002/smll.201901560 – ident: e_1_2_10_103_1 doi: 10.1016/j.biomaterials.2020.119909 – ident: e_1_2_10_162_1 doi: 10.1016/j.biomaterials.2021.120792 – ident: e_1_2_10_115_1 doi: 10.1016/j.cclet.2021.07.025 – ident: e_1_2_10_75_1 doi: 10.1074/jbc.M706464200 – ident: e_1_2_10_53_1 doi: 10.1002/anie.201811273 – ident: e_1_2_10_11_1 doi: 10.1109/LRA.2021.3068953 – ident: e_1_2_10_132_1 doi: 10.1039/D1TB00703C – ident: e_1_2_10_12_1 doi: 10.1002/adma.201800180 – ident: e_1_2_10_74_1 doi: 10.1152/ajplung.00252.2006 – ident: e_1_2_10_197_1 doi: 10.1039/D0BM01397H – ident: e_1_2_10_198_1 doi: 10.3390/pharmaceutics11090463 – ident: e_1_2_10_126_1 doi: 10.1016/j.nantod.2020.100910 – ident: e_1_2_10_129_1 doi: 10.1039/C8CS00081F – ident: e_1_2_10_77_1 doi: 10.1021/acsnano.8b06032 – ident: e_1_2_10_124_1 doi: 10.1039/C8CC08570F – ident: e_1_2_10_25_1 doi: 10.3389/fphar.2021.664123 – ident: e_1_2_10_98_1 doi: 10.1002/anie.201506154 – ident: e_1_2_10_133_1 doi: 10.1073/pnas.1703151114 – ident: e_1_2_10_104_1 doi: 10.1016/j.mattod.2019.12.005 – ident: e_1_2_10_217_1 doi: 10.1021/jacs.6b11382 – ident: e_1_2_10_2_1 doi: 10.1016/S1040-8428(01)00179-2 – ident: e_1_2_10_60_1 doi: 10.1002/adma.201705980 – ident: e_1_2_10_13_1 doi: 10.1038/s41575-018-0005-x – ident: e_1_2_10_39_1 doi: 10.1021/acsami.9b12879 – ident: e_1_2_10_224_1 doi: 10.34133/2021/9780943 – ident: e_1_2_10_218_1 doi: 10.1002/adma.202200139 – ident: e_1_2_10_138_1 doi: 10.1021/acsami.0c23143 – volume: 48 start-page: 549 issue: 4 year: 2012 ident: e_1_2_10_71_1 article-title: Deep heating therapy via microwave diathermy relieves pain and improves physical function in patients with knee osteoarthritis: a double‐blind randomized clinical trial publication-title: Eur J Phys Rehabil Med – ident: e_1_2_10_114_1 doi: 10.1016/j.jcis.2021.03.050 – ident: e_1_2_10_105_1 doi: 10.1021/acsnano.5b00021 – ident: e_1_2_10_18_1 doi: 10.1021/acsnano.7b08868 – ident: e_1_2_10_91_1 doi: 10.1016/j.actbio.2018.08.015 – ident: e_1_2_10_177_1 doi: 10.1021/acsami.0c07372 – ident: e_1_2_10_84_1 doi: 10.1016/j.carbpol.2022.119722 – ident: e_1_2_10_191_1 doi: 10.1039/C9NR01833F – ident: e_1_2_10_3_1 doi: 10.1080/02656730500307298 – ident: e_1_2_10_100_1 doi: 10.1002/admi.202001538 – ident: e_1_2_10_73_1 doi: 10.1016/j.semcdb.2016.11.005 – ident: e_1_2_10_117_1 doi: 10.1016/j.nano.2020.102241 – ident: e_1_2_10_102_1 doi: 10.1016/j.biomaterials.2018.12.008 – ident: e_1_2_10_50_1 doi: 10.1016/j.colsurfb.2020.111243 – ident: e_1_2_10_87_1 doi: 10.1016/j.critrevonc.2015.10.004 – ident: e_1_2_10_157_1 doi: 10.1186/s12943-018-0928-4 – ident: e_1_2_10_130_1 doi: 10.1166/jbn.2022.3229 – ident: e_1_2_10_183_1 doi: 10.1186/s12951-021-00884-7 – ident: e_1_2_10_125_1 doi: 10.1016/j.biomaterials.2018.08.031 – ident: e_1_2_10_56_1 doi: 10.1021/acsnano.6b07927 – ident: e_1_2_10_62_1 doi: 10.1126/sciadv.abb1311 – ident: e_1_2_10_59_1 doi: 10.1021/acs.chemmater.6b04405 – ident: e_1_2_10_83_1 doi: 10.1016/j.biomaterials.2020.120414 – ident: e_1_2_10_106_1 doi: 10.1016/j.nano.2013.11.001 – ident: e_1_2_10_193_1 doi: 10.1016/j.carbpol.2019.115565 – ident: e_1_2_10_216_1 doi: 10.1002/adma.201900822 – ident: e_1_2_10_46_1 doi: 10.1186/s11671-020-03459-x – ident: e_1_2_10_51_1 doi: 10.1016/j.msec.2020.111371 – ident: e_1_2_10_171_1 doi: 10.1002/tcr.202000170 – ident: e_1_2_10_48_1 doi: 10.1016/j.ccr.2021.213826 – ident: e_1_2_10_167_1 doi: 10.7150/thno.38261 – ident: e_1_2_10_143_1 doi: 10.1002/adfm.202113269 – ident: e_1_2_10_153_1 doi: 10.1016/j.cell.2017.01.017 – ident: e_1_2_10_158_1 doi: 10.1002/adma.202100595 – ident: e_1_2_10_93_1 doi: 10.1016/j.msec.2022.112641 – ident: e_1_2_10_127_1 doi: 10.1016/j.apsusc.2021.149428 – ident: e_1_2_10_79_1 doi: 10.1002/adhm.202001743 – ident: e_1_2_10_43_1 doi: 10.1177/0885328220929616 – ident: e_1_2_10_213_1 doi: 10.1002/adfm.201806877 – ident: e_1_2_10_69_1 doi: 10.1021/acsnano.9b09282 – ident: e_1_2_10_200_1 doi: 10.1038/s41427-021-00303-1 – ident: e_1_2_10_194_1 doi: 10.1039/D2NJ00878E – ident: e_1_2_10_145_1 doi: 10.1002/adfm.201704135 – ident: e_1_2_10_185_1 doi: 10.1016/j.cej.2021.128568 – volume: 67 start-page: 2119 issue: 7 year: 2020 ident: e_1_2_10_231_1 article-title: A clinical prototype transrectal diffuse optical tomography (TRDOT) system for in vivo monitoring of photothermal therapy (PTT) of focal prostate cancer publication-title: IEEE Trans Biomed Eng – ident: e_1_2_10_223_1 doi: 10.1002/adfm.201904401 – ident: e_1_2_10_179_1 doi: 10.1002/adfm.201909938 – ident: e_1_2_10_169_1 doi: 10.1002/adfm.201909391 – ident: e_1_2_10_172_1 doi: 10.1002/adma.202110062 – ident: e_1_2_10_207_1 doi: 10.1016/j.ccr.2017.11.019 – ident: e_1_2_10_161_1 doi: 10.1016/j.biomaterials.2019.119629 – ident: e_1_2_10_88_1 doi: 10.7150/thno.39471 – ident: e_1_2_10_101_1 doi: 10.1002/adma.201705611 – ident: e_1_2_10_6_1 doi: 10.1017/S0025727300052431 – ident: e_1_2_10_144_1 doi: 10.1002/advs.201800510 – ident: e_1_2_10_61_1 doi: 10.1038/s41551-016-0010 – ident: e_1_2_10_225_1 doi: 10.1039/D1TB00724F – ident: e_1_2_10_16_1 doi: 10.1016/j.radonc.2018.12.005 – ident: e_1_2_10_67_1 doi: 10.1039/C4NR00708E – ident: e_1_2_10_76_1 doi: 10.1253/circj.CJ-11-0915 – ident: e_1_2_10_108_1 doi: 10.1038/s41467-018-06529-y – ident: e_1_2_10_214_1 doi: 10.1039/D1RA00579K – ident: e_1_2_10_137_1 doi: 10.1016/j.biomaterials.2019.03.024 – ident: e_1_2_10_141_1 doi: 10.1016/j.jconrel.2021.05.011 – ident: e_1_2_10_199_1 doi: 10.7150/thno.16183 – ident: e_1_2_10_182_1 doi: 10.1007/s12272-021-01313-x – ident: e_1_2_10_96_1 doi: 10.1016/j.biomaterials.2018.05.027 – ident: e_1_2_10_49_1 doi: 10.1016/j.colsurfa.2020.125506 – ident: e_1_2_10_175_1 doi: 10.1007/s10856-021-06636-1 – ident: e_1_2_10_47_1 doi: 10.1002/adfm.201808306 – ident: e_1_2_10_34_1 doi: 10.1080/17425247.2021.1912008 – ident: e_1_2_10_142_1 doi: 10.1186/s12951-022-01426-5 – ident: e_1_2_10_176_1 doi: 10.1021/acsbiomaterials.1c01217 – ident: e_1_2_10_35_1 doi: 10.1016/j.jiec.2021.03.003 – ident: e_1_2_10_94_1 doi: 10.1021/acs.jpclett.9b01735 – ident: e_1_2_10_123_1 doi: 10.7150/thno.44668 – ident: e_1_2_10_9_1 doi: 10.1038/nrc3672 – ident: e_1_2_10_202_1 doi: 10.1007/s12274-020-2853-2 – ident: e_1_2_10_113_1 doi: 10.1016/j.cej.2021.128568 – ident: e_1_2_10_65_1 doi: 10.1080/02656730701769841 – ident: e_1_2_10_149_1 doi: 10.1016/j.nantod.2020.101020 – ident: e_1_2_10_203_1 doi: 10.1002/mabi.202100082 – ident: e_1_2_10_135_1 doi: 10.1016/j.jconrel.2019.11.016 – ident: e_1_2_10_146_1 doi: 10.1002/adma.202100599 – ident: e_1_2_10_89_1 doi: 10.2147/IJN.S246336 – ident: e_1_2_10_85_1 doi: 10.1016/j.critrevonc.2015.05.010 – ident: e_1_2_10_70_1 doi: 10.1021/acs.jpcc.9b01961 – ident: e_1_2_10_166_1 doi: 10.1002/smll.202107071 – ident: e_1_2_10_209_1 doi: 10.1039/C7CS00522A – ident: e_1_2_10_81_1 doi: 10.2203/dose-response.08-014.Rattan – ident: e_1_2_10_205_1 doi: 10.2217/nnm-2017-0380 – ident: e_1_2_10_188_1 doi: 10.3390/pharmaceutics13010052 – ident: e_1_2_10_32_1 doi: 10.1016/j.ijpharm.2020.120082 – ident: e_1_2_10_116_1 doi: 10.1039/C8NR09618J – ident: e_1_2_10_222_1 doi: 10.1039/C8TB02325E – ident: e_1_2_10_206_1 doi: 10.1002/smll.202005473 – ident: e_1_2_10_23_1 doi: 10.3389/fonc.2022.950228 – ident: e_1_2_10_28_1 doi: 10.1016/j.biomaterials.2019.119677 – ident: e_1_2_10_109_1 doi: 10.1016/j.cclet.2021.08.023 – ident: e_1_2_10_187_1 doi: 10.1038/s41564-019-0503-9 – ident: e_1_2_10_140_1 doi: 10.1016/j.biomaterials.2018.05.055 – ident: e_1_2_10_17_1 doi: 10.1016/j.jvir.2017.08.021 – ident: e_1_2_10_4_1 doi: 10.1080/02656736.2018.1423709 – ident: e_1_2_10_38_1 doi: 10.1016/j.jiec.2021.03.052 – ident: e_1_2_10_164_1 doi: 10.1021/acs.nanolett.2c00500 – ident: e_1_2_10_174_1 doi: 10.1021/acsbiomaterials.1c01291 – ident: e_1_2_10_66_1 doi: 10.1021/acsnano.0c08790 – ident: e_1_2_10_215_1 doi: 10.3389/fchem.2020.00824 – ident: e_1_2_10_170_1 doi: 10.1021/acsnano.6b06658 – ident: e_1_2_10_219_1 doi: 10.1021/acsnano.9b01411 – ident: e_1_2_10_97_1 doi: 10.1021/nn101373r – ident: e_1_2_10_20_1 doi: 10.21037/atm-20-6514 – ident: e_1_2_10_92_1 doi: 10.1002/adfm.202105383 – ident: e_1_2_10_210_1 doi: 10.1021/acs.bioconjchem.6b00512 – ident: e_1_2_10_19_1 doi: 10.3390/cancers11010078 – ident: e_1_2_10_155_1 doi: 10.1016/j.bioactmat.2020.08.005 – ident: e_1_2_10_42_1 doi: 10.1186/s12951-021-00824-5 – ident: e_1_2_10_180_1 doi: 10.1016/j.cej.2020.128224 – ident: e_1_2_10_136_1 doi: 10.7150/thno.29989 – ident: e_1_2_10_150_1 doi: 10.1021/acsami.0c23073 – ident: e_1_2_10_78_1 doi: 10.1088/1748-605X/ab9fce – ident: e_1_2_10_178_1 doi: 10.1038/s41413-021-00139-z – ident: e_1_2_10_64_1 doi: 10.1002/adfm.202100738 – ident: e_1_2_10_80_1 doi: 10.1371/journal.pone.0117106 – ident: e_1_2_10_156_1 doi: 10.1016/j.intimp.2021.107461 – ident: e_1_2_10_41_1 doi: 10.1109/JSTQE.2021.3061462 – ident: e_1_2_10_58_1 doi: 10.1002/anie.202005899 – ident: e_1_2_10_190_1 doi: 10.1039/D0BM00617C – ident: e_1_2_10_148_1 doi: 10.1039/D0QI01344G – ident: e_1_2_10_55_1 doi: 10.1002/adma.201202625 – ident: e_1_2_10_57_1 doi: 10.1021/acs.biomac.0c01567 – ident: e_1_2_10_8_1 doi: 10.1016/j.critrevonc.2019.04.023 – ident: e_1_2_10_110_1 doi: 10.1016/j.cclet.2021.03.080 – ident: e_1_2_10_10_1 doi: 10.1002/advs.201901690 – ident: e_1_2_10_189_1 doi: 10.1016/j.bioactmat.2020.07.017 – ident: e_1_2_10_226_1 doi: 10.1002/adfm.202100738 – ident: e_1_2_10_27_1 doi: 10.1016/j.carbpol.2020.117286 – ident: e_1_2_10_220_1 doi: 10.1039/D0BM01785J – ident: e_1_2_10_228_1 doi: 10.1039/c0pp00306a – ident: e_1_2_10_52_1 doi: 10.1021/acsnano.9b06168 – ident: e_1_2_10_196_1 doi: 10.1002/adma.202200179 – ident: e_1_2_10_181_1 doi: 10.1016/j.cej.2021.128610 |
SSID | ssj0002920456 |
Score | 2.3706763 |
SecondaryResourceType | review_article |
Snippet | Photothermal therapy (PTT) has been regarded as a promising strategy considering its advantages of high inherent specificity and a lower invasive burden. Since... Abstract Photothermal therapy (PTT) has been regarded as a promising strategy considering its advantages of high inherent specificity and a lower invasive... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Ablation anti‐infection Bacteria biomaterials Biomedical materials Cancer therapies cancer treatment Chemotherapy Clinical trials Disease Fever Gold Health services Heat High temperature Hyperthermia Infections Metastasis Nanomaterials Nanoparticles photothermal therapy Side effects Temperature Temperature dependence Therapy Tissue engineering tissue regeneration Tumors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ekx7EJ0ar7KF4C81zkz22YilCPVnobdknHmwibT148yf4G_0lzmzSEhHx4i0kw7LM7Oz3hd35hpC-dCVX1qowSkwSZjwuQ2UkC1PlAK-1A1TAE93pA5vMsvt5Pu-0-sI7YY08cOO4gSq1AxRxkIYs0xErYydNyizPXFmo3Ot8AuZ1fqZwD8YeTEANmipZVBkdLJRMfEPsDvx4lf5v1LJLUD3CjA_JQUsN6bCZ0hHZsdUx2e8IBp6Q-chXy6NjaffomcrKUBjf102uaO0oSk61esmf7x_10vfFQlkIsHuq177uagGjNPVXb6dkNr57vJ2EbW-EUKeoMukA-SMJWJ3EzDgJ6wFwuXCuAMbGtYInzfPCWAAfrTOJkiyFLHkOgA0cj-XpGdmt6sqeExq7WBeSmxTIQgbsTyquHAfQUlZCdkYBudm4TOhWOBz7VzyLRvI4EehbkeQBoVvDl0Yr46fJCH2-_Yzi1v4FhFy0IRd_hTwgvU3ERJtxK5FGQFWBbTIekL6P4m9zENPREHaxi_-YyiXZS7Aewl8665Hd9fLVXgFLWatrvyC_AFuZ6L4 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LSgMxFL1ou9GF-MRqlVkUd0PnmZmspCMtRWgRsdBdSDITXdhObevCnZ_gN_ol3mTSWhHdDTMhDDfJPYck9xyAFlcpFUUhXC_IAzeifuqKnBM3FArxWipEBX2iOxiS_ii6Hcdju-G2sNcqVznRJOq8lHqPvB16SEWQTRB6PXtxtWuUPl21FhrbUMcUnMY1qGfd4d39epdFezFFxsI1SAh1EX7HVeWsVh5tTwQPjEn2BiQZ5f4fdHOTtBrU6e3DnqWLTqca3wPYKqaHsLshIngE48xU0OtgO5vH0Q6f5g72b2opF06pHC1DZTWUP98_yrnxytJSEdjuqVyaWqwJ9lLVZL0dw6jXfbjpu9YvwZWhVp5UyAY8jvgd-CRXHOcIYnWiVIIsjkqBT5LGSV4gIEkZcS3TkvCUxgjiyPtIHJ5AbVpOi1NwfOXLhNM8RAIRISPkggpFEchEwXHFeg24WoWMSSsmrj0tnlklgxwwHVsWxA1w1g1nlX7G7yaZjvn6sxa8Ni_K-SOz64eJVCokEwqzMYmkR1Jf8TwkBY1Umog4bEBzNWLMrsIF-54zDWiZUfzrH9gg62BmO_u_l3PYCXT1g7li1oTacv5aXCAnWYpLO_G-AE3r4rY priority: 102 providerName: ProQuest |
Title | Biomedical applications and prospects of temperature‐orchestrated photothermal therapy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmba2.25 https://www.proquest.com/docview/3092350869 https://doaj.org/article/b8cf426fdde64c0681fad36e94f87b53 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xWGBAPEV5VBkQWyBxEiceKWqpkIoqRKVulu3EMNAGtWVgQfwEfiO_hDsnlCKExGJFydmKbJ-_L3buO4ATZTOhi0L7AcuZH4sw83WuuB9pi3htLKICnej2bnh3EF8Pk-FCqq9KH2K-4Uae4dZrcnClp-ffoqEjrdgZS5ZhlQJrKXkBi_vz7RVKwhS73K0s5cJH3B1WIbNU-7yu-wOLnGT_D565yFYd3HQ2YaPmid5FNbBbsFSMt2F9QT1wB4YtFzpPvewtnkN7apx72L4Lopx6pfVIf6oWT_54ey8nLkkWaUSg3UM5c0FYI2ylCsZ62YVBp3132fXrRAm-iUhy0iINCBQCNwt5bhVODgTp1NoU6ZswGq-MSNK8QCQyJlakz5KqTCSI3kj4eBLtwcq4HBf74IU2NKkSeYTMIUYqqLTQViCC6UKhqwYNOP3qMmlqFXFKZvEoK_1jJqlvJUsa4M0NnyrhjN8mLerz-WNSunY3ysm9rB1H6sxYZBEWl2Eem4BnoVV5xAsR2yzVSdSAo68Rk7X7TWUUIG9F6slFA07cKP71DrLXusAl7eB_Zoewxij8wf1jdgQrs8lzcYykZKabbvphmXWumrDaat_0b5vuAx_L3mv7E00T5I0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtQwEB1V7QE4VFBALJTWh8ItauIkTnxAVbe02tLuCqFW2puxHRsOdNPuLkK98Qn9Ej6KL2HGSbZbIbj1tspaVjQez3uJM-8B7GhfSuOciWJe8SiTSRmZSosoNR7x2npEBTrRHY7E4Dz7MM7HK_Cr64Whzyq7mhgKdVVbeke-m8ZIRZBNCLl3eRWRaxSdrnYWGk1anLjrH_jINnt3_B7X9w3nR4dnB4OodRWIbEr6jB4xM9aIcjwRldcYSUS0wvsCuY60Bn9ZmReVw7JtbaZJzKTQpcwR6pAdCXKJwJK_hjRD4i5a6x-OPn5avNUh76csWMbyQsgI4X7cdOqS0unuhdE8mHIvQWBwCrhDb5dJckC5o8ew3tJTtt_k0xNYcZMNeLQkWvgUxv3QsU-Ly5aPv5meVAznD72bM1Z7RrJXrWbz75839TR4c5E0BY77Ws9D79cFztL0gF0_g_N7ieRzWJ3UE_cCWOITW2hZpUhYMmSg2kjjJQKncRorRNyDt13IlG3Fy8lD45tqZJe5otgqnveALQZeNnodfw_pU8wXf5PAdrhQT7-odr8qU1qP5MVj9ReZjUWZeF2lwsnMl4XJ0x5sdium2l0_U7c52oOdsIr_ugc17O9jJX35_1m24cHgbHiqTo9HJ6_gIafOi_B52yaszqff3WvkQ3Oz1SYhg8_3nfd_AH9vHfw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xSAgOiFWUNYeKWyBxEic-UqBiK-IAUm-W7cRwoE3VlgM3PoFv5EuYcUIpQkjcomRsRWOP35PteQPQVDYTuii0H7Cc-bEIM1_nivuRtojXxiIq0Ilu55ZfPMRX3aQ7Veqr0oeYbLhRZLj1mgJ8kNvjb9HQnlbsiCWzME9HfXSbj8V3k-0VKsIUu9qtLOXCR9ztVimz1Pq4bvsDi5xk_w-eOc1WHdy0V2C55oneSTWwqzBT9NdgaUo9cB26LZc6T172ps-hPdXPPezfJVGOvNJ6pD9Viyd_vL2XQ1ckizQi0O6pHLskrB72UiVjvW7AQ_v8_vTCrwsl-CYiyUmLNCBQCNws5LlVODkQpFNrU6Rvwmh8MiJJ8wKRyJhYkT5LqjKRIHoj4eNJtAlz_bJfbIEX2tCkSuQRMocYqaDSQluBCKYLhaEaNODwy2XS1CriVMziWVb6x0ySbyVLGuBNDAeVcMZvkxb5fPKZlK7di3L4KOvAkTozFlmExWWYxybgWWhVHvFCxDZLdRI1YPdrxGQdfiMZBchbkXpy0YCmG8W__kF2Wie4pG3_z-wAFu7O2vLm8vZ6BxYZZUK462a7MDcevhR7yE_Get_NxE85yOKF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomedical+applications+and+prospects+of+temperature%E2%80%90orchestrated+photothermal+therapy&rft.jtitle=MedComm+-+Biomaterials+and+applications&rft.au=Xu%2C+Nuo&rft.au=Zhang%2C+Xu&rft.au=Qi%2C+Tingting&rft.au=Wu%2C+Yongzhi&rft.date=2022-09-01&rft.issn=2769-643X&rft.eissn=2769-643X&rft.volume=1&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fmba2.25&rft.externalDBID=10.1002%252Fmba2.25&rft.externalDocID=MBA225 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2769-643X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2769-643X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2769-643X&client=summon |