Biomedical applications and prospects of temperature‐orchestrated photothermal therapy

Photothermal therapy (PTT) has been regarded as a promising strategy considering its advantages of high inherent specificity and a lower invasive burden. Since the photothermal killing of cells/bacteria showed different patterns of death depending on the varying temperature in PTT, the temperature c...

Full description

Saved in:
Bibliographic Details
Published inMedComm - Biomaterials and applications Vol. 1; no. 2
Main Authors Xu, Nuo, Zhang, Xu, Qi, Tingting, Wu, Yongzhi, Xie, Xi, Chen, Fangman, Shao, Dan, Liao, Jinfeng
Format Journal Article
LanguageEnglish
Published London John Wiley & Sons, Inc 01.09.2022
Wiley
Subjects
Online AccessGet full text
ISSN2769-643X
2769-643X
DOI10.1002/mba2.25

Cover

Loading…
Abstract Photothermal therapy (PTT) has been regarded as a promising strategy considering its advantages of high inherent specificity and a lower invasive burden. Since the photothermal killing of cells/bacteria showed different patterns of death depending on the varying temperature in PTT, the temperature change of PTT is vital to cell/tissue response in scientific research and clinical application. On one hand, mild PTT has received substantial attention in the treatment of cancer and soft/hard tissue repair. On the other hand, the high temperature induced by PTT is capable of antibacterial capacity, which is better than conventional antibiotic therapy with drug resistance. Herein, we summarize the recent developments in the application of temperature‐dependent photothermal biomaterials, mainly covering the temperature ranges of 40–42°C, 43–50°C, and over 50°C. We highlight the biological mechanism of PTT and the latest progress in the treatment of different diseases. Finally, we conclude by discussing the challenges and perspectives of biomaterials in addressing temperature‐orchestrated PTT. Given a deep understanding of the interaction between temperature and biology, rationally designed biomaterials with sophisticated photothermal responsiveness will benefit the outcomes of personalized PTT toward various diseases. Photothermal therapy can be used for the treatment of tumors, tissue defects, and anti‐infection, depending on the effects at varying temperatures. In this review, we summarize the recent developments in the application of temperature‐dependent photothermal biomaterials, including the temperature ranges of 40–42°C, 43–50°C, and over 50°C. Moreover, the challenges and perspectives of biomaterials in addressing temperature‐orchestrated PTT were discussed.
AbstractList Photothermal therapy (PTT) has been regarded as a promising strategy considering its advantages of high inherent specificity and a lower invasive burden. Since the photothermal killing of cells/bacteria showed different patterns of death depending on the varying temperature in PTT, the temperature change of PTT is vital to cell/tissue response in scientific research and clinical application. On one hand, mild PTT has received substantial attention in the treatment of cancer and soft/hard tissue repair. On the other hand, the high temperature induced by PTT is capable of antibacterial capacity, which is better than conventional antibiotic therapy with drug resistance. Herein, we summarize the recent developments in the application of temperature‐dependent photothermal biomaterials, mainly covering the temperature ranges of 40–42°C, 43–50°C, and over 50°C. We highlight the biological mechanism of PTT and the latest progress in the treatment of different diseases. Finally, we conclude by discussing the challenges and perspectives of biomaterials in addressing temperature‐orchestrated PTT. Given a deep understanding of the interaction between temperature and biology, rationally designed biomaterials with sophisticated photothermal responsiveness will benefit the outcomes of personalized PTT toward various diseases. Photothermal therapy can be used for the treatment of tumors, tissue defects, and anti‐infection, depending on the effects at varying temperatures. In this review, we summarize the recent developments in the application of temperature‐dependent photothermal biomaterials, including the temperature ranges of 40–42°C, 43–50°C, and over 50°C. Moreover, the challenges and perspectives of biomaterials in addressing temperature‐orchestrated PTT were discussed.
Photothermal therapy (PTT) has been regarded as a promising strategy considering its advantages of high inherent specificity and a lower invasive burden. Since the photothermal killing of cells/bacteria showed different patterns of death depending on the varying temperature in PTT, the temperature change of PTT is vital to cell/tissue response in scientific research and clinical application. On one hand, mild PTT has received substantial attention in the treatment of cancer and soft/hard tissue repair. On the other hand, the high temperature induced by PTT is capable of antibacterial capacity, which is better than conventional antibiotic therapy with drug resistance. Herein, we summarize the recent developments in the application of temperature‐dependent photothermal biomaterials, mainly covering the temperature ranges of 40–42°C, 43–50°C, and over 50°C. We highlight the biological mechanism of PTT and the latest progress in the treatment of different diseases. Finally, we conclude by discussing the challenges and perspectives of biomaterials in addressing temperature‐orchestrated PTT. Given a deep understanding of the interaction between temperature and biology, rationally designed biomaterials with sophisticated photothermal responsiveness will benefit the outcomes of personalized PTT toward various diseases.
Abstract Photothermal therapy (PTT) has been regarded as a promising strategy considering its advantages of high inherent specificity and a lower invasive burden. Since the photothermal killing of cells/bacteria showed different patterns of death depending on the varying temperature in PTT, the temperature change of PTT is vital to cell/tissue response in scientific research and clinical application. On one hand, mild PTT has received substantial attention in the treatment of cancer and soft/hard tissue repair. On the other hand, the high temperature induced by PTT is capable of antibacterial capacity, which is better than conventional antibiotic therapy with drug resistance. Herein, we summarize the recent developments in the application of temperature‐dependent photothermal biomaterials, mainly covering the temperature ranges of 40–42°C, 43–50°C, and over 50°C. We highlight the biological mechanism of PTT and the latest progress in the treatment of different diseases. Finally, we conclude by discussing the challenges and perspectives of biomaterials in addressing temperature‐orchestrated PTT. Given a deep understanding of the interaction between temperature and biology, rationally designed biomaterials with sophisticated photothermal responsiveness will benefit the outcomes of personalized PTT toward various diseases.
Photothermal therapy (PTT) has been regarded as a promising strategy considering its advantages of high inherent specificity and a lower invasive burden. Since the photothermal killing of cells/bacteria showed different patterns of death depending on the varying temperature in PTT, the temperature change of PTT is vital to cell/tissue response in scientific research and clinical application. On one hand, mild PTT has received substantial attention in the treatment of cancer and soft/hard tissue repair. On the other hand, the high temperature induced by PTT is capable of antibacterial capacity, which is better than conventional antibiotic therapy with drug resistance. Herein, we summarize the recent developments in the application of temperature‐dependent photothermal biomaterials, mainly covering the temperature ranges of 40–42°C, 43–50°C, and over 50°C. We highlight the biological mechanism of PTT and the latest progress in the treatment of different diseases. Finally, we conclude by discussing the challenges and perspectives of biomaterials in addressing temperature‐orchestrated PTT. Given a deep understanding of the interaction between temperature and biology, rationally designed biomaterials with sophisticated photothermal responsiveness will benefit the outcomes of personalized PTT toward various diseases.
Author Xu, Nuo
Chen, Fangman
Shao, Dan
Zhang, Xu
Liao, Jinfeng
Xie, Xi
Qi, Tingting
Wu, Yongzhi
Author_xml – sequence: 1
  givenname: Nuo
  surname: Xu
  fullname: Xu, Nuo
  organization: Sichuan University
– sequence: 2
  givenname: Xu
  surname: Zhang
  fullname: Zhang, Xu
  organization: Sichuan University
– sequence: 3
  givenname: Tingting
  surname: Qi
  fullname: Qi, Tingting
  organization: University of Electronic Science and Technology of China
– sequence: 4
  givenname: Yongzhi
  surname: Wu
  fullname: Wu, Yongzhi
  organization: Sichuan University
– sequence: 5
  givenname: Xi
  surname: Xie
  fullname: Xie, Xi
  organization: Sichuan University
– sequence: 6
  givenname: Fangman
  surname: Chen
  fullname: Chen, Fangman
  organization: University of Macau
– sequence: 7
  givenname: Dan
  surname: Shao
  fullname: Shao, Dan
  email: shaodan@scut.edu.cn
  organization: South China University of Technology
– sequence: 8
  givenname: Jinfeng
  orcidid: 0000-0001-8101-4030
  surname: Liao
  fullname: Liao, Jinfeng
  email: liaojinfeng.762@163.com
  organization: Sichuan University
BookMark eNp1kU1qHDEQhUWwIY5jfIWGLLII7ei_W0vb5MfgkI0N3okaqZTR0N3qqDWY2eUIOWNOEo0nhBCSVT0VH09Vr16QoylNSMg5oxeMUv52XAG_4OoZOeGdNq2W4uHoD_2cnC3LhlbScCqVPiEPVzGN6KODoYF5HqooMU1LA5Nv5pyWGV1ZmhSaguOMGco2449v31N2a1xKfWPl1qmkssY8Vpd9hXn3khwHGBY8-1VPyf37d3fXH9vbzx9uri9vWyeoUG3opKDAjeBM-wAIXjPRhdAxw41bVeWM6jz2snNOguyZ6qA3ikvGNNNKnJKbg69PsLFzjiPknU0Q7VMj5S8WcoluQLvqXZBcB-9RS0d1zwJ4odHI0HcrJarXq4NXXfzrtq5nN2mbpzq-FdRwoWivTaVeHyhX41kyht-_Mmr3V7D7K1i-n639i3SxPOVbg4vDP_g3B_4xDrj7n639dHXJK_0T-yqa9Q
CitedBy_id crossref_primary_10_1021_acsabm_4c00651
crossref_primary_10_3389_fbioe_2024_1389327
crossref_primary_10_1016_j_matdes_2024_112817
crossref_primary_10_1002_mabi_202300215
crossref_primary_10_1021_acsnano_4c04067
crossref_primary_10_1002_advs_202405575
crossref_primary_10_1155_2024_1444990
crossref_primary_10_1016_j_mtadv_2024_100555
crossref_primary_10_1002_mabi_202400594
crossref_primary_10_1016_j_bioactmat_2023_11_001
crossref_primary_10_3390_nano14020186
crossref_primary_10_1002_adhm_202402363
crossref_primary_10_3390_pharmaceutics15102448
crossref_primary_10_1186_s12951_024_02701_3
crossref_primary_10_1002_adfm_202414419
Cites_doi 10.1016/j.drudis.2020.05.014
10.1021/acsami.7b03017
10.1016/j.actbio.2021.05.002
10.1038/nrclinonc.2017.101
10.1039/D1NR00323B
10.1016/S1470-2045(02)00818-5
10.1002/jso.25438
10.1634/theoncologist.2018-0337
10.1016/j.cclet.2020.08.009
10.1039/D1TB02625A
10.1038/s41368-021-00113-9
10.1002/advs.202106015
10.21037/tgh.2016.08.03
10.1016/j.nano.2015.11.014
10.1007/s12020-019-02019-3
10.1016/j.actbio.2022.06.041
10.1016/j.colsurfb.2022.112462
10.1016/j.cej.2020.128224
10.1016/j.jphotobiol.2021.112125
10.1016/j.biomaterials.2019.119463
10.1002/advs.201902070
10.1002/adfm.202010637
10.7150/thno.68756
10.1177/0269215511400767
10.1016/j.cclet.2021.11.079
10.1088/1748-605X/ac5a23
10.1002/smtd.201900343
10.2147/IJN.S299448
10.1016/j.cclet.2020.02.043
10.1016/j.apsb.2022.02.023
10.1186/s12951-021-01114-w
10.1016/j.critrevonc.2015.05.011
10.1002/adfm.202101505
10.1016/j.jconrel.2021.04.005
10.4161/cbt.10.11.13434
10.1016/j.mehy.2016.02.005
10.1016/j.cclet.2021.08.087
10.1016/j.biomaterials.2017.06.030
10.1038/ncomms13193
10.1097/PRA.0000000000000181
10.1002/sctm.18-0266
10.1002/adma.201503799
10.1021/acsnano.8b05982
10.1002/adma.202107883
10.1016/j.cclet.2020.09.010
10.1038/natrevmats.2016.14
10.1039/D0BM00617C
10.1016/j.matdes.2022.110467
10.1038/nature21349
10.1002/adfm.201702834
10.1039/C3TB21246G
10.1016/j.cej.2021.128779
10.1073/pnas.1906929116
10.1016/j.biomaterials.2021.120885
10.1016/j.bioactmat.2021.01.006
10.1021/ja057254a
10.1039/D0NR02291H
10.1002/smll.201901560
10.1016/j.biomaterials.2020.119909
10.1016/j.biomaterials.2021.120792
10.1016/j.cclet.2021.07.025
10.1074/jbc.M706464200
10.1002/anie.201811273
10.1109/LRA.2021.3068953
10.1039/D1TB00703C
10.1002/adma.201800180
10.1152/ajplung.00252.2006
10.1039/D0BM01397H
10.3390/pharmaceutics11090463
10.1016/j.nantod.2020.100910
10.1039/C8CS00081F
10.1021/acsnano.8b06032
10.1039/C8CC08570F
10.3389/fphar.2021.664123
10.1002/anie.201506154
10.1073/pnas.1703151114
10.1016/j.mattod.2019.12.005
10.1021/jacs.6b11382
10.1016/S1040-8428(01)00179-2
10.1002/adma.201705980
10.1038/s41575-018-0005-x
10.1021/acsami.9b12879
10.34133/2021/9780943
10.1002/adma.202200139
10.1021/acsami.0c23143
10.1016/j.jcis.2021.03.050
10.1021/acsnano.5b00021
10.1021/acsnano.7b08868
10.1016/j.actbio.2018.08.015
10.1021/acsami.0c07372
10.1016/j.carbpol.2022.119722
10.1039/C9NR01833F
10.1080/02656730500307298
10.1002/admi.202001538
10.1016/j.semcdb.2016.11.005
10.1016/j.nano.2020.102241
10.1016/j.biomaterials.2018.12.008
10.1016/j.colsurfb.2020.111243
10.1016/j.critrevonc.2015.10.004
10.1186/s12943-018-0928-4
10.1166/jbn.2022.3229
10.1186/s12951-021-00884-7
10.1016/j.biomaterials.2018.08.031
10.1021/acsnano.6b07927
10.1126/sciadv.abb1311
10.1021/acs.chemmater.6b04405
10.1016/j.biomaterials.2020.120414
10.1016/j.nano.2013.11.001
10.1016/j.carbpol.2019.115565
10.1002/adma.201900822
10.1186/s11671-020-03459-x
10.1016/j.msec.2020.111371
10.1002/tcr.202000170
10.1016/j.ccr.2021.213826
10.7150/thno.38261
10.1002/adfm.202113269
10.1016/j.cell.2017.01.017
10.1002/adma.202100595
10.1016/j.msec.2022.112641
10.1016/j.apsusc.2021.149428
10.1002/adhm.202001743
10.1177/0885328220929616
10.1002/adfm.201806877
10.1021/acsnano.9b09282
10.1038/s41427-021-00303-1
10.1039/D2NJ00878E
10.1002/adfm.201704135
10.1016/j.cej.2021.128568
10.1002/adfm.201904401
10.1002/adfm.201909938
10.1002/adfm.201909391
10.1002/adma.202110062
10.1016/j.ccr.2017.11.019
10.1016/j.biomaterials.2019.119629
10.7150/thno.39471
10.1002/adma.201705611
10.1017/S0025727300052431
10.1002/advs.201800510
10.1038/s41551-016-0010
10.1039/D1TB00724F
10.1016/j.radonc.2018.12.005
10.1039/C4NR00708E
10.1253/circj.CJ-11-0915
10.1038/s41467-018-06529-y
10.1039/D1RA00579K
10.1016/j.biomaterials.2019.03.024
10.1016/j.jconrel.2021.05.011
10.7150/thno.16183
10.1007/s12272-021-01313-x
10.1016/j.biomaterials.2018.05.027
10.1016/j.colsurfa.2020.125506
10.1007/s10856-021-06636-1
10.1002/adfm.201808306
10.1080/17425247.2021.1912008
10.1186/s12951-022-01426-5
10.1021/acsbiomaterials.1c01217
10.1016/j.jiec.2021.03.003
10.1021/acs.jpclett.9b01735
10.7150/thno.44668
10.1038/nrc3672
10.1007/s12274-020-2853-2
10.1080/02656730701769841
10.1016/j.nantod.2020.101020
10.1002/mabi.202100082
10.1016/j.jconrel.2019.11.016
10.1002/adma.202100599
10.2147/IJN.S246336
10.1016/j.critrevonc.2015.05.010
10.1021/acs.jpcc.9b01961
10.1002/smll.202107071
10.1039/C7CS00522A
10.2203/dose-response.08-014.Rattan
10.2217/nnm-2017-0380
10.3390/pharmaceutics13010052
10.1016/j.ijpharm.2020.120082
10.1039/C8NR09618J
10.1039/C8TB02325E
10.1002/smll.202005473
10.3389/fonc.2022.950228
10.1016/j.biomaterials.2019.119677
10.1016/j.cclet.2021.08.023
10.1038/s41564-019-0503-9
10.1016/j.biomaterials.2018.05.055
10.1016/j.jvir.2017.08.021
10.1080/02656736.2018.1423709
10.1016/j.jiec.2021.03.052
10.1021/acs.nanolett.2c00500
10.1021/acsbiomaterials.1c01291
10.1021/acsnano.0c08790
10.3389/fchem.2020.00824
10.1021/acsnano.6b06658
10.1021/acsnano.9b01411
10.1021/nn101373r
10.21037/atm-20-6514
10.1002/adfm.202105383
10.1021/acs.bioconjchem.6b00512
10.3390/cancers11010078
10.1016/j.bioactmat.2020.08.005
10.1186/s12951-021-00824-5
10.7150/thno.29989
10.1021/acsami.0c23073
10.1088/1748-605X/ab9fce
10.1038/s41413-021-00139-z
10.1002/adfm.202100738
10.1371/journal.pone.0117106
10.1016/j.intimp.2021.107461
10.1109/JSTQE.2021.3061462
10.1002/anie.202005899
10.1039/D0QI01344G
10.1002/adma.201202625
10.1021/acs.biomac.0c01567
10.1016/j.critrevonc.2019.04.023
10.1016/j.cclet.2021.03.080
10.1002/advs.201901690
10.1016/j.bioactmat.2020.07.017
10.1016/j.carbpol.2020.117286
10.1039/D0BM01785J
10.1039/c0pp00306a
10.1021/acsnano.9b06168
10.1002/adma.202200179
10.1016/j.cej.2021.128610
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Sichuan International Medical Exchange & Promotion Association (SCIMEA).
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Sichuan International Medical Exchange & Promotion Association (SCIMEA).
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1002/mba2.25
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Materials Science Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2769-643X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_b8cf426fdde64c0681fad36e94f87b53
10_1002_mba2_25
MBA225
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 32171354; 31972925; and 82072049
– fundername: Sichuan Science and Technology Program
  funderid: 2021YJ0123
– fundername: Sichuan Cadre Health Research Project
  funderid: 2021‐805
– fundername: Fundamental Research Funds for Central Universities
– fundername: Excellent Youth Fund of Sichuan Cancer Hospital
  funderid: YB2021028
GroupedDBID 0R~
24P
ABJCF
ACCMX
ADPDF
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
BGLVJ
CCPQU
EBS
GROUPED_DOAJ
HCIFZ
KB.
M~E
PDBOC
PIMPY
TEORI
AAYXX
CITATION
OVD
PHGZM
PHGZT
8FE
8FG
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
D1I
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
WIN
ID FETCH-LOGICAL-c3035-f7430a293216dfaead6137ff71929cb7ffc957de847cc4a48157a895241161653
IEDL.DBID 24P
ISSN 2769-643X
IngestDate Wed Aug 27 01:21:06 EDT 2025
Fri Jul 25 11:37:19 EDT 2025
Thu Apr 24 23:03:24 EDT 2025
Tue Jul 01 00:46:49 EDT 2025
Wed Jan 22 16:25:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3035-f7430a293216dfaead6137ff71929cb7ffc957de847cc4a48157a895241161653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8101-4030
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmba2.25
PQID 3092350869
PQPubID 6853473
PageCount 25
ParticipantIDs doaj_primary_oai_doaj_org_article_b8cf426fdde64c0681fad36e94f87b53
proquest_journals_3092350869
crossref_primary_10_1002_mba2_25
crossref_citationtrail_10_1002_mba2_25
wiley_primary_10_1002_mba2_25_MBA225
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
20220901
2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle MedComm - Biomaterials and applications
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2010; 10
2021; 608
2022; 293
2019; 11
2019; 10
2019; 13
2019; 15
2020; 203
2020; 15
2020; 14
2019; 18
2020; 13
2020; 12
2022; 20
2020; 10
2019; 206
2022; 22
2022; 214
2022; 215
2018; 47
2018; 175
2018; 6
2018; 9
2018; 177
2018; 5
2021; 552
2007; 292
2019; 24
2021; 435
2022; 34
2014; 14
2019; 29
2008; 24
2018; 30
2021; 274
2021; 273
2022; 32
2022; 33
2018; 34
2012; 24
2017; 168
2010; 4
2014; 10
2021; 2021
21
2017; 62
2019; 8
2018; 29
2019; 9
2019; 4
1990; 34
2019; 6
2018; 183
2021; 44
2007; 282
2019; 31
2015; 54
2016; 98
2002; 3
2019; 223
2020; 36
2020; 35
2020; 34
2021; 264
31
2016; 12
2017; 139
2016; 6
2016; 7
2016; 1
2020; 30
2021; 411
2021; 414
2022; 8
2022; 9
2018; 357
2022; 12
2022; 14
2020; 25
2017; 141
2021; 254
2022; 10
2021; 133
2012; 48
2018; 12
2021; 60
2016; 28
2017; 541
2018; 15
2020; 317
2022; 17
2022; 18
2016; 22
2020; 29
2018; 13
2022; 133
2021; 27
2021; 409
46
2017; 1
2021; 21
2021; 22
2020; 241
2019; 58
2005; 21
2011; 10
2017; 114
2017; 9
2019; 123
2021; 36
2020; 8
2020; 7
2020; 6
2021; 32
2020; 4
2021; 31
2021; 34
2014; 2
2021; 33
2002; 43
2019; 116
2019; 119
2021; 592
2011; 25
2021; 594
2019; 193
2014; 6
2006; 128
2016; 89
2018; 79
2021; 9
2021; 8
2021; 6
2017; 28
2017; 27
2015; 96
2015; 10
2017; 29
2021; 94
2015; 9
2012; 76
2021; 13
2021; 16
2021; 15
2021; 98
2021; 10
2021; 97
2021; 12
2021; 11
2021; 333
2020; 195
2017; 14
2021; 335
2020; 230
2021; 18
2021; 216
2017; 11
2021; 17
2021; 19
2020; 117
2009; 7
2020; 67
2020; 232
2019; 139
2018; 54
2022; 149
2019; 131
e_1_2_10_109_1
e_1_2_10_210_1
e_1_2_10_158_1
e_1_2_10_207_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_135_1
e_1_2_10_173_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_112_1
e_1_2_10_196_1
e_1_2_10_13_1
e_1_2_10_51_1
Huang Q (e_1_2_10_40_1) 2019; 13
e_1_2_10_222_1
e_1_2_10_147_1
e_1_2_10_219_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_124_1
e_1_2_10_162_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_101_1
e_1_2_10_185_1
e_1_2_10_41_1
e_1_2_10_211_1
e_1_2_10_159_1
e_1_2_10_90_1
e_1_2_10_208_1
e_1_2_10_52_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_151_1
e_1_2_10_174_1
e_1_2_10_197_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_200_1
e_1_2_10_223_1
e_1_2_10_148_1
e_1_2_10_64_1
Maruf M (e_1_2_10_230_1) 2020; 203
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_163_1
e_1_2_10_186_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_42_1
e_1_2_10_190_1
e_1_2_10_212_1
e_1_2_10_91_1
e_1_2_10_209_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_152_1
e_1_2_10_198_1
e_1_2_10_175_1
e_1_2_10_30_1
Rabini A (e_1_2_10_71_1) 2012; 48
e_1_2_10_201_1
e_1_2_10_224_1
e_1_2_10_80_1
e_1_2_10_149_1
e_1_2_10_126_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_187_1
e_1_2_10_164_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_213_1
e_1_2_10_130_1
e_1_2_10_199_1
e_1_2_10_92_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_191_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_153_1
e_1_2_10_176_1
e_1_2_10_31_1
e_1_2_10_225_1
e_1_2_10_202_1
e_1_2_10_188_1
e_1_2_10_81_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_180_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_142_1
e_1_2_10_165_1
e_1_2_10_89_1
e_1_2_10_21_1
e_1_2_10_44_1
Weng Y (e_1_2_10_134_1) 2022; 14
e_1_2_10_214_1
He J (e_1_2_10_231_1) 2020; 67
e_1_2_10_131_1
e_1_2_10_177_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_116_1
e_1_2_10_192_1
e_1_2_10_55_1
e_1_2_10_78_1
e_1_2_10_154_1
e_1_2_10_32_1
e_1_2_10_203_1
e_1_2_10_226_1
e_1_2_10_120_1
e_1_2_10_166_1
e_1_2_10_189_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_105_1
e_1_2_10_181_1
e_1_2_10_67_1
e_1_2_10_143_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_215_1
e_1_2_10_132_1
e_1_2_10_155_1
e_1_2_10_178_1
e_1_2_10_117_1
e_1_2_10_170_1
e_1_2_10_193_1
e_1_2_10_94_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_204_1
e_1_2_10_227_1
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_167_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_182_1
e_1_2_10_83_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_216_1
e_1_2_10_110_1
e_1_2_10_156_1
e_1_2_10_179_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_194_1
e_1_2_10_171_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_220_1
e_1_2_10_11_1
e_1_2_10_119_1
e_1_2_10_205_1
e_1_2_10_228_1
e_1_2_10_145_1
e_1_2_10_168_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_183_1
e_1_2_10_160_1
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_108_1
e_1_2_10_217_1
e_1_2_10_157_1
e_1_2_10_229_1
e_1_2_10_73_1
e_1_2_10_172_1
e_1_2_10_96_1
e_1_2_10_111_1
e_1_2_10_195_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_50_1
e_1_2_10_206_1
e_1_2_10_221_1
e_1_2_10_146_1
e_1_2_10_169_1
e_1_2_10_218_1
e_1_2_10_62_1
e_1_2_10_161_1
e_1_2_10_85_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_184_1
e_1_2_10_47_1
References_xml – volume: 29
  issue: 13
  year: 2019
  article-title: 2D black phosphorus‐based biomedical applications
  publication-title: Adv Funct Mater
– volume: 6
  start-page: 9494
  issue: 16
  year: 2014
  end-page: 9530
  article-title: Nanoparticles for photothermal therapies
  publication-title: Nanoscale
– volume: 4
  issue: 2
  year: 2020
  article-title: 2D layered double hydroxide nanoparticles: recent progress toward preclinical/clinical nanomedicine
  publication-title: Small Methods
– volume: 195
  year: 2020
  article-title: MoS2‐ALG‐Fe/GOx hydrogel with Fenton catalytic activity for combined cancer photothermal, starvation, and chemodynamic therapy
  publication-title: Colloids Surfaces B
– volume: 335
  start-page: 49
  year: 2021
  end-page: 58
  article-title: Heat/pH‐boosted release of 5‐fluorouracil and albumin‐bound paclitaxel from Cu‐doped layered double hydroxide nanomedicine for synergistical chemo‐photo‐therapy of breast cancer
  publication-title: J Controlled Release
– volume: 8
  start-page: 502
  issue: 2
  year: 2022
  end-page: 511
  article-title: Fe(III)‐doped polyaminopyrrole nanoparticle for imaging‐guided photothermal therapy of bladder cancer
  publication-title: ACS Biomater Sci Eng
– volume: 117
  year: 2020
  article-title: Facile synthesis of biocompatible L‐cysteine‐modified MoS nanospheres with high photothermal conversion efficiency for photothermal therapy of tumor
  publication-title: Mater Sci Eng C Mater Biol Appl
– volume: 13
  start-page: 8751
  issue: 19
  year: 2021
  end-page: 8772
  article-title: Near‐infrared inorganic nanomaterial‐based nanosystems for photothermal therapy
  publication-title: Nanoscale
– volume: 133
  year: 2022
  article-title: Near‐infrared light control of GelMA/PMMA/PDA hydrogel with mild photothermal therapy for skull regeneration
  publication-title: Biomater Adv
– volume: 29
  year: 2020
  article-title: Enhanced radiotherapy using photothermal therapy based on dual‐sensitizer of gold nanoparticles with acid‐induced aggregation
  publication-title: Nanomedicine
– volume: 13
  start-page: 1405
  issue: 12
  year: 2018
  end-page: 1416
  article-title: Antibacterial gold nanoparticle‐based photothermal killing of vancomycin‐resistant bacteria
  publication-title: Nanomedicine
– volume: 29
  start-page: 268
  issue: 2
  year: 2018
  end-page: 275.e1
  article-title: Percutaneous microwave versus radiofrequency ablation of colorectal liver metastases: ablation with clear margins (A0) provides the best local tumor control
  publication-title: J Vasc Interv Radiol
– volume: 15
  start-page: 6517
  issue: 4
  year: 2021
  end-page: 6529
  article-title: Temperature‐sensitive lipid‐coated carbon nanotubes for synergistic photothermal therapy and gene therapy
  publication-title: ACS Nano
– volume: 30
  issue: 14
  year: 2018
  article-title: Dual‐peak absorbing semiconducting copolymer nanoparticles for first and second near‐infrared window photothermal therapy: a comparative study
  publication-title: Adv Mater
– volume: 36
  year: 2021
  article-title: A nano vector with photothermally enhanced drug release and retention to overcome cancer multidrug resistance
  publication-title: Nano Today
– volume: 13
  start-page: 14894
  issue: 13
  year: 2021
  end-page: 14910
  article-title: NIR‐controlled treatment of multidrug‐resistant tumor cells by mesoporous silica capsules containing gold nanorods and doxorubicin
  publication-title: ACS Appl Mater Interfaces
– volume: 43
  start-page: 33
  issue: 1
  year: 2002
  end-page: 56
  article-title: The cellular and molecular basis of hyperthermia
  publication-title: Crit Rev Oncol Hematol
– volume: 11
  start-page: 7157
  issue: 15
  year: 2019
  end-page: 7165
  article-title: Enhanced radiosensitization of ternary Cu3BiSe3 nanoparticles by photo‐induced hyperthermia in the second near‐infrared biological window
  publication-title: Nanoscale
– volume: 6
  start-page: 12
  issue: 1
  year: 2021
  end-page: 25
  article-title: Synergistic antibacterial activity of physical‐chemical multi‐mechanism by TiO nanorod arrays for safe biofilm eradication on implant
  publication-title: Bioact Mater
– volume: 216
  year: 2021
  article-title: Engineering of gemcitabine coated nano‐graphene oxide sheets for efficient near‐infrared radiation mediated in vivo lung cancer photothermal therapy
  publication-title: J Photochem Photobiol B‐Biol
– volume: 98
  start-page: 290
  year: 2016
  end-page: 301
  article-title: Functional role of inorganic trace elements in angiogenesis part III: (Ti, Li, Ce, As, Hg, Va, Nb and Pb)
  publication-title: Crit Rev Oncol Hematol
– volume: 67
  start-page: 2119
  issue: 7
  year: 2020
  end-page: 2129
  article-title: A clinical prototype transrectal diffuse optical tomography (TRDOT) system for in vivo monitoring of photothermal therapy (PTT) of focal prostate cancer
  publication-title: IEEE Trans Biomed Eng
– volume: 15
  issue: 5
  year: 2020
  article-title: Collagen particles with collagen‐binding bone morphogenetic protein‐2 promote vertebral laminar regeneration in infant rabbits
  publication-title: Biomed Mater
– volume: 177
  start-page: 40
  year: 2018
  end-page: 51
  article-title: Novel theranostic nanoplatform for complete mice tumor elimination via MR imaging‐guided acid‐enhanced photothermo‐/chemo‐therapy
  publication-title: Biomaterials
– volume: 10
  start-page: 1081
  issue: 11
  year: 2010
  end-page: 1087
  article-title: Clinical effects of in situ photoimmunotherapy on late‐stage melanoma patients: a preliminary study
  publication-title: Cancer Biol Ther
– volume: 552
  year: 2021
  article-title: Solar‐triggered photothermal therapy for tumor ablation by Ag nanoparticles self‐precipitated on structural titanium oxide nanofibers
  publication-title: Appl Surf Sci
– volume: 12
  start-page: 31172
  issue: 28
  year: 2020
  end-page: 31181
  article-title: Hollow mesoporous Bi@PEG‐FA nanoshell as a novel dual‐stimuli‐responsive nanocarrier for synergistic chemo‐photothermal cancer therapy
  publication-title: ACS Appl Mater Interfaces
– volume: 12
  start-page: 1756
  issue: 4
  year: 2022
  end-page: 1768
  article-title: A light‐driven dual‐nanotransformer with deep tumor penetration for efficient chemo‐immunotherapy
  publication-title: Theranostics
– volume: 14
  start-page: 2265
  issue: 2
  year: 2020
  end-page: 2275
  article-title: Well‐defined gold nanorod/polymer hybrid coating with inherent antifouling and photothermal bactericidal properties for treating an infected hernia
  publication-title: ACS Nano
– volume: 114
  start-page: E5655
  issue: 28
  year: 2017
  end-page: E5663
  article-title: Targeting cancer cell integrins using gold nanorods in photothermal therapy inhibits migration through affecting cytoskeletal proteins
  publication-title: Proc Natl Acad Sci USA
– volume: 333
  start-page: 487
  year: 2021
  end-page: 499
  article-title: Photothermal treatment by PLGA‐gold nanorod‐isatin nanocomplexes under near‐infrared irradiation for alleviating psoriasiform hyperproliferation
  publication-title: J Control Release
– volume: 31
  issue: 25
  article-title: Nanoagent‐promoted mild‐temperature photothermal therapy for cancer treatment
  publication-title: Adv Funct Mater
– volume: 9
  start-page: 6
  issue: 1
  year: 2015
  end-page: 11
  article-title: Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy
  publication-title: ACS Nano
– volume: 18
  start-page: 10
  year: 2019
  article-title: Role of the tumor microenvironment in PD‐L1/PD‐1‐mediated tumor immune escape
  publication-title: Mol Cancer
– volume: 62
  start-page: 142
  year: 2017
  end-page: 151
  article-title: Biology of Hsp47 (Serpin H1), a collagen‐specific molecular chaperone
  publication-title: Semin Cell Dev Biol
– volume: 33
  start-page: 328
  issue: 1
  year: 2022
  end-page: 333
  article-title: An in situ nanoparticle recombinant strategy for the enhancement of photothermal therapy
  publication-title: Chin Chem Lett
– volume: 54
  start-page: 11526
  issue: 39
  year: 2015
  end-page: 11530
  article-title: Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents
  publication-title: Angew Chem Int Ed
– volume: 9
  start-page: 747
  issue: 3
  year: 2019
  end-page: 760
  article-title: Lectin‐mediated pH‐sensitive doxorubicin prodrug for pre‐targeted chemotherapy of colorectal cancer with enhanced efficacy and reduced side effects
  publication-title: Theranostics
– volume: 28
  start-page: 9341
  issue: 42
  year: 2016
  end-page: 9348
  article-title: Near‐infrared‐triggered azobenzene‐liposome/upconversion nanoparticle hybrid vesicles for remotely controlled drug delivery to overcome cancer multidrug resistance
  publication-title: Adv Mater
– volume: 34
  issue: 16
  year: 2022
  article-title: Amino‐acid‐encoded supramolecular photothermal nanomedicine for enhanced cancer therapy
  publication-title: Adv Mater
– volume: 131
  start-page: 135
  year: 2019
  end-page: 144
  article-title: Clinical feasibility and efficacy of stereotactic body radiotherapy for hepatocellular carcinoma: a systematic review and meta‐analysis of observational studies
  publication-title: Radiother Oncol
– volume: 98
  start-page: 211
  year: 2021
  end-page: 216
  article-title: Gold nanorods‐encapsulated thermosensitive drug carriers for NIR light‐responsive anticancer therapy
  publication-title: J Ind Eng Chem
– volume: 35
  start-page: 430
  issue: 3
  year: 2020
  end-page: 445
  article-title: Targeted gold nanoshelled hybrid nanocapsules encapsulating doxorubicin for bimodal imaging and near‐infrared triggered synergistic therapy of Her2‐positve breast cancer
  publication-title: J Biomater Appl
– volume: 12
  start-page: 2201
  issue: 3
  year: 2018
  end-page: 2210
  article-title: Microwave‐activated Mn‐doped zirconium metal organic framework nanocubes for highly effective combination of microwave dynamic and thermal therapies against cancer
  publication-title: ACS Nano
– volume: 6
  issue: 22
  year: 2019
  article-title: Janus nanobullets combine photodynamic therapy and magnetic hyperthermia to potentiate synergetic anti‐metastatic immunotherapy
  publication-title: Adv Sci
– volume: 29
  issue: 4
  year: 2019
  article-title: Supramolecular photothermal nanomaterials as an emerging paradigm toward precision cancer therapy
  publication-title: Adv Funct Mater
– volume: 12
  start-page: 431
  issue: 2
  year: 2016
  end-page: 438
  article-title: Synergistic antibacterial effects of localized heat and oxidative stress caused by hydroxyl radicals mediated by graphene/iron oxide‐based nanocomposites
  publication-title: Nanomedicine
– volume: 414
  year: 2021
  article-title: Cysteamine: a key to trigger aggregation‐induced NIR‐II photothermal effect and silver release booming of gold‐silver nanocages for synergetic treatment of multidrug‐resistant bacteria infection
  publication-title: Chem Eng J
– volume: 175
  start-page: 19
  year: 2018
  end-page: 29
  article-title: Gold and gold‐silver alloy nanoparticles enhance the myogenic differentiation of myoblasts through p38 MAPK signaling pathway and promote in vivo skeletal muscle regeneration
  publication-title: Biomaterials
– volume: 9
  start-page: 958
  issue: 11
  year: 2021
  article-title: A narrative review of hyperthermic intrathoracic chemotherapy for advanced lung cancer
  publication-title: Ann Transl Med
– volume: 223
  year: 2019
  article-title: Multivalency‐assisted membrane‐penetrating siRNA delivery sensitizes photothermal ablation via inhibition of tumor glycolysis metabolism
  publication-title: Biomaterials
– volume: 30
  issue: 10
  year: 2018
  article-title: 2D‐black‐phosphorus‐reinforced 3D‐printed scaffolds: a stepwise countermeasure for osteosarcoma
  publication-title: Adv Mater
– volume: 34
  issue: 17
  year: 2022
  article-title: Semiconducting polymer nanoparticles with intramolecular motion‐induced photothermy for tumor phototheranostics and tooth root canal therapy
  publication-title: Adv Mater Deerfield
– volume: 15
  start-page: 2045
  year: 2020
  end-page: 2058
  article-title: Advanced black phosphorus nanomaterials for bone regeneration
  publication-title: Int J Nanomedicine
– volume: 128
  start-page: 2115
  issue: 6
  year: 2006
  end-page: 2120
  article-title: Cancer cell imaging and photothermal therapy in the near‐infrared region by using gold nanorods
  publication-title: J Am Chem Soc
– volume: 11
  start-page: 463
  issue: 9
  year: 2019
  article-title: Metal‐organic framework‐based chemo‐photothermal combinational system for precise, rapid, and efficient antibacterial therapeutics
  publication-title: Pharmaceutics
– volume: 33
  start-page: 2501
  issue: 5
  year: 2022
  end-page: 2506
  article-title: Boron difluoride formazanate dye for high‐efficiency NIR‐II fluorescence imaging‐guided cancer photothermal therapy
  publication-title: Chin Chem Lett
– volume: 17
  year: 2022
  article-title: A review: potential application and outlook of photothermal therapy in oral cancer treatment
  publication-title: Biomed Mater
– volume: 79
  start-page: 265
  year: 2018
  end-page: 275
  article-title: Dual‐functional 3D‐printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models
  publication-title: Acta Biomater
– volume: 24
  start-page: e990
  issue: 10
  year: 2019
  end-page: e1005
  article-title: Radiofrequency ablation and microwave ablation in liver tumors: an update
  publication-title: Oncologist
– volume: 292
  start-page: L1515
  issue: 6
  year: 2007
  end-page: L1525
  article-title: Heat shock protein 90 modulates endothelial nitric oxide synthase activity and vascular reactivity in the newborn piglet pulmonary circulation
  publication-title: Am J Physiol Lung Cell Mol Physiol
– volume: 435
  year: 2021
  article-title: Surface architectured black phosphorous nanoconstructs based smart and versatile platform for cancer theranostics
  publication-title: Coord Chem Rev
– volume: 282
  start-page: 37567
  issue: 52
  year: 2007
  end-page: 37574
  article-title: A heat shock protein 90 binding domain in endothelial nitric‐oxide synthase influences enzyme function
  publication-title: J Biol Chem
– volume: 30
  year: 2018
  article-title: Metal‐organic‐framework‐derived carbon nanostructure augmented sonodynamic cancer therapy
  publication-title: Adv Mater
– volume: 22
  start-page: 3095
  issue: 7
  year: 2022
  end-page: 3103
  article-title: Surgical tumor‐derived photothermal nanovaccine for personalized cancer therapy and prevention
  publication-title: Nano Lett
– volume: 13
  start-page: 5816
  issue: 5
  year: 2019
  end-page: 5825
  article-title: Redox‐activatable and acid‐enhanced nanotheranostics for second near‐infrared photoacoustic tomography and combined photothermal tumor therapy
  publication-title: ACS Nano
– volume: 33
  issue: 20
  year: 2021
  article-title: A systematic strategy of combinational blow for overcoming cascade drug resistance via NIR‐light‐triggered hyperthermia
  publication-title: Adv Mater
– volume: 1
  issue: 5
  year: 2016
  article-title: Analysis of nanoparticle delivery to tumours
  publication-title: Nat Rev Mater
– volume: 94
  year: 2021
  article-title: Immune and metabolic checkpoints blockade: dual wielding against tumors
  publication-title: Int Immunopharmacol
– volume: 47
  start-page: 2280
  issue: 7
  year: 2018
  end-page: 2297
  article-title: Organic molecule‐based photothermal agents: an expanding photothermal therapy universe
  publication-title: Chem Soc Rev
– volume: 60
  start-page: 7476
  issue: 14
  year: 2021
  end-page: 7487
  article-title: NIR‐II AIEgens: a win–win integration towards bioapplications
  publication-title: Angew Chem Int Ed
– volume: 67
  start-page: 35
  issue: 1
  year: 2020
  end-page: 43
  article-title: Efficacy of thermal ablation in benign non‐functioning solid thyroid nodule: a systematic review and meta‐analysis
  publication-title: Endocrine
– volume: 116
  start-page: 18590
  issue: 37
  year: 2019
  end-page: 18596
  article-title: Gold nanoshell‐localized photothermal ablation of prostate tumors in a clinical pilot device study
  publication-title: Proc Natl Acad Sci USA
– volume: 31
  issue: 16
  year: 2019
  article-title: Self‐assembling endogenous biliverdin as a versatile near‐infrared photothermal nanoagent for cancer theranostics
  publication-title: Adv Mater
– volume: 10
  start-page: 1500
  issue: 4
  year: 2020
  end-page: 1513
  article-title: Ultrasmall CuS@BSA nanoparticles with mild photothermal conversion synergistically induce MSCs‐differentiated fibroblast and improve skin regeneration
  publication-title: Theranostics
– volume: 9
  start-page: 3319
  issue: 9
  year: 2021
  end-page: 3333
  article-title: Bifunctional scaffolds of hydroxyapatite/poly(dopamine)/carboxymethyl chitosan with osteogenesis and anti‐osteosarcoma effect
  publication-title: Biomater Sci
– volume: 293
  year: 2022
  article-title: An injectable, self‐healing carboxymethylated chitosan hydrogel with mild photothermal stimulation for wound healing
  publication-title: Carbohydr Polymers
– volume: 22
  start-page: 1137
  issue: 3
  year: 2021
  end-page: 1146
  article-title: A smart “Sense‐and‐treat” nanoplatform based on semiconducting polymer nanoparticles for precise photothermal‐photodynamic combined therapy
  publication-title: Biomacromolecules
– volume: 8
  start-page: 1084
  issue: 10
  year: 2019
  end-page: 1091
  article-title: Adipose‐derived stromal cells are capable of restoring bone regeneration after post‐traumatic osteomyelitis and modulate B‐cell response
  publication-title: Stem Cells Transl Med
– volume: 32
  start-page: 1055
  issue: 3
  year: 2021
  end-page: 1060
  article-title: Polydopamine (PDA)‐activated cobalt sulfide nanospheres responsive to tumor microenvironment (TME) for chemotherapeutic‐enhanced photothermal therapy
  publication-title: Chin Chem Lett
– volume: 254
  year: 2021
  article-title: Hyaluronic acid thiol modified injectable hydrogel: synthesis, characterization, drug release, cellular drug uptake and anticancer activity
  publication-title: Carbohydr Polym
– volume: 32
  start-page: 561
  issue: 1
  year: 2021
  end-page: 564
  article-title: Stimuli‐responsive dual drugs‐conjugated polydopamine nanoparticles for the combination photothermal‐cocktail chemotherapy
  publication-title: Chin Chem Lett
– volume: 139
  start-page: 1921
  issue: 5
  year: 2017
  end-page: 1927
  article-title: Biological photothermal nanodots based on self‐assembly of peptide porphyrin conjugates for antitumor therapy
  publication-title: J Am Chem Soc
– volume: 31
  issue: 47
  year: 2021
  article-title: Injectable hydrogel with NIR light‐responsive, dual‐mode PTH release for osteoregeneration in osteoporosis
  publication-title: Adv Funct Mater
– volume: 13
  start-page: 2340
  issue: 9
  year: 2020
  end-page: 2350
  article-title: Ofloxacin loaded MoS nanoflakes for synergistic mild‐temperature photothermal/antibiotic therapy with reduced drug resistance of bacteria
  publication-title: Nano Res
– volume: 36
  start-page: 48
  year: 2020
  end-page: 62
  article-title: A novel photothermally controlled multifunctional scaffold for clinical treatment of osteosarcoma and tissue regeneration
  publication-title: Mater Today
– volume: 411
  year: 2021
  article-title: Ball‐milling fabrication of BiAgOS nanoparticles for 808 nm light mediated photodynamic/photothermal treatment
  publication-title: Chem Eng J
– volume: 232
  year: 2020
  article-title: Pifithrin‐mu incorporated in gold nanoparticle amplifies pro‐apoptotic unfolded protein response cascades to potentiate synergistic glioblastoma therapy
  publication-title: Biomaterials
– volume: 33
  start-page: 10
  issue: 1
  year: 2022
  article-title: In vitro and in vivo MRI imaging and photothermal therapeutic properties of hematite (α‐Fe O ) nanorods
  publication-title: J Mater Sci Mater Med
– volume: 14
  start-page: 199
  issue: 3
  year: 2014
  end-page: 208
  article-title: Thermal ablation of tumours: biological mechanisms and advances in therapy
  publication-title: Nat Rev Cancer
– volume: 13
  start-page: 9
  year: 2021
  article-title: Biomaterial‐based strategies for maxillofacial tumour therapy and bone defect regeneration
  publication-title: Int J Oral Sci
– volume: 32
  start-page: 2411
  issue: 8
  year: 2021
  end-page: 2414
  article-title: Mild hyperthermia‐enhanced chemo‐photothermal synergistic therapy using doxorubicin‐loaded gold nanovesicles
  publication-title: Chin Chem Lett
– volume: 9
  start-page: 8026
  issue: 26
  year: 2019
  end-page: 8047
  article-title: Advances in nanomedicine for cancer starvation therapy
  publication-title: Theranostics
– volume: 1
  start-page: 10
  year: 2017
  article-title: Near‐infrared fluorophores for biomedical imaging
  publication-title: Nat Biomed Eng
– volume: 230
  year: 2020
  article-title: Modulation of tumor microenvironment using a TLR‐7/8 agonist‐loaded nanoparticle system that exerts low‐temperature hyperthermia and immunotherapy for in situ cancer vaccination
  publication-title: Biomaterials
– volume: 12
  start-page: 3233
  issue: 8
  year: 2022
  end-page: 3254
  article-title: Cell membrane coated‐nanoparticles for cancer immunotherapy
  publication-title: Acta Pharm Sin B
– volume: 411
  year: 2021
  article-title: Erbium‐doped tungsten selenide nanosheets with near‐infrared II emission and photothermal conversion
  publication-title: Chem Eng J
– volume: 13
  start-page: 284
  issue: 1
  year: 2019
  end-page: 294
  article-title: Multifunctional two‐dimensional core‐shell MXene@gold nanocomposites for enhanced photo‐radio combined therapy in the second biological window
  publication-title: ACS Nano
– volume: 17
  issue: 13
  year: 2021
  article-title: Ultrasmall FeS2 nanoparticles‐decorated carbon spheres with laser‐mediated ferrous ion release for antibacterial therapy
  publication-title: Small
– volume: 96
  start-page: 143
  issue: 1
  year: 2015
  end-page: 155
  article-title: Functional role of inorganic trace elements in angiogenesis‐part II: Cr, Si, Zn, Cu, and S
  publication-title: Crit Rev Oncol Hematol
– volume: 15
  issue: 41
  year: 2019
  article-title: Multifunctional nanoengineered hydrogels consisting of black phosphorus nanosheets upregulate bone formation
  publication-title: Small
– volume: 139
  start-page: 67
  year: 2019
  end-page: 74
  article-title: Whole‐body hyperthermia in combination with systemic therapy in advanced solid malignancies
  publication-title: Crit Rev Oncol Hematol
– volume: 214
  year: 2022
  article-title: MoS2/LaF3 for enhanced photothermal therapy performance of poorly‐differentiated hepatoma
  publication-title: Colloids Surfaces B
– volume: 3
  start-page: 487
  issue: 8
  year: 2002
  end-page: 497
  article-title: Hyperthermia in combined treatment of cancer
  publication-title: Lancet Oncol
– volume: 14
  start-page: 717
  issue: 12
  year: 2017
  end-page: 734
  article-title: The immune contexture in cancer prognosis and treatment
  publication-title: Nat Rev Clin Oncol
– volume: 34
  start-page: 294
  issue: 3
  year: 1990
  end-page: 310
  article-title: Wagner‐Jauregg and fever therapy
  publication-title: Med Hist
– volume: 6
  start-page: 2221
  issue: 8
  year: 2021
  end-page: 2230
  article-title: Gold nanorods and nanohydroxyapatite hybrid hydrogel for preventing bone tumor recurrence via postoperative photothermal therapy and bone regeneration promotion
  publication-title: Bioact Mater
– volume: 12
  start-page: 14739
  issue: 27
  year: 2020
  end-page: 14750
  article-title: Functionalized boron nanosheets as an intelligent nanoplatform for synergistic low‐temperature photothermal therapy and chemotherapy
  publication-title: Nanoscale
– volume: 15
  start-page: 333
  issue: 6
  year: 2018
  end-page: 348
  article-title: Therapeutic developments in pancreatic cancer: current and future perspectives
  publication-title: Nat Rev Gastroenterol Hepatol
– volume: 594
  start-page: 493
  year: 2021
  end-page: 501
  article-title: Engineering of a dual‐modal phototherapeutic nanoplatform for single NIR laser‐triggered tumor therapy
  publication-title: J Colloid Interface Sci
– volume: 30
  issue: 25
  year: 2020
  article-title: Cocrystal strategy toward multifunctional 3D‐printing scaffolds enables NIR‐activated photonic osteosarcoma hyperthermia and enhanced bone defect regeneration
  publication-title: Adv Funct Mater
– volume: 76
  start-page: 1712
  issue: 7
  year: 2012
  end-page: 1721
  article-title: Waon therapy upregulates Hsp90 and leads to angiogenesis through the Akt‐endothelial nitric oxide synthase pathway in mouse hindlimb ischemia
  publication-title: Circ J
– volume: 8
  start-page: 824
  year: 2020
  article-title: Peptide‐decorated supramolecules for subcellular targeted cancer therapy: recent advances
  publication-title: Front Chem
– volume: 6
  issue: 32
  year: 2020
  article-title: Multifunctional bioactive Nd‐Ca‐Si glasses for fluorescence thermometry, photothermal therapy, and burn tissue repair
  publication-title: Sci Adv
– volume: 592
  year: 2021
  article-title: EGFR targeting for cancer therapy: pharmacology and immunoconjugates with drugs and nanoparticles
  publication-title: Int J Pharm
– volume: 24
  start-page: 5586
  issue: 41
  year: 2012
  end-page: 5592
  article-title: In vitro and in vivo near‐infrared photothermal therapy of cancer using polypyrrole organic nanoparticles
  publication-title: Adv Mater
– volume: 13
  start-page: 7115
  issue: 6
  year: 2021
  end-page: 7126
  article-title: Synergistic cancer photochemotherapy via layered double hydroxide‐based trimodal nanomedicine at very low therapeutic doses
  publication-title: ACS Appl Mater Interfaces
– volume: 16
  start-page: 1681
  year: 2021
  end-page: 1706
  article-title: Carbon nanotubes: smart drug/gene delivery carriers
  publication-title: Int J Nanomedicine
– volume: 133
  start-page: 244
  year: 2021
  end-page: 256
  article-title: Mild hyperthermia promotes immune checkpoint blockade‐based immunotherapy against metastatic pancreatic cancer using size‐adjustable nanoparticles
  publication-title: Acta Biomater
– volume: 24
  start-page: 3
  issue: 1
  year: 2008
  end-page: 15
  article-title: Cellular responses to hyperthermia (40–46°C): cell killing and molecular events
  publication-title: Int J Hyperthermia
– volume: 13
  start-page: 52
  issue: 1
  year: 2021
  article-title: Au‐ZnO conjugated black phosphorus as a near‐infrared light‐triggering and recurrence‐suppressing nanoantibiotic platform against
  publication-title: Pharmaceutics
– volume: 357
  start-page: 1
  year: 2018
  end-page: 17
  article-title: Antimicrobial silver nanomaterials
  publication-title: Coord Chem Rev
– volume: 13
  start-page: 6372
  issue: 6
  year: 2019
  end-page: 6382
  article-title: Controlled co‐delivery of growth factors through layer‐by‐layer assembly of core‐shell nanofibers for improving bone regeneration
  publication-title: ACS Nano
– volume: 10
  start-page: 1453
  issue: 9
  year: 2022
  end-page: 1462
  article-title: A multifunctional α‐Fe O @PEDOT core–shell nanoplatform for gene and photothermal combination anticancer therapy
  publication-title: J Mater Chem B
– volume: 6
  start-page: 5137
  issue: 3
  year: 2021
  end-page: 5144
  article-title: A robotic platform to navigate MRI‐guided focused ultrasound system
  publication-title: IEEE Robot Autom Lett
– volume: 19
  start-page: 137
  issue: 1
  year: 2021
  article-title: NIR‐II‐activated biocompatible hollow nanocarbons for cancer photothermal therapy
  publication-title: J Nanobiotechnology
– volume: 6
  start-page: 312
  issue: 2
  year: 2021
  end-page: 325
  article-title: Reversing cold tumors to hot: an immunoadjuvant‐functionalized metal‐organic framework for multimodal imaging‐guided synergistic photo‐immunotherapy
  publication-title: Bioact Mater
– volume: 11
  start-page: 78
  issue: 1
  year: 2019
  article-title: Variation in clinical application of hyperthermic intraperitoneal chemotherapy: a review
  publication-title: Cancers
– volume: 16
  start-page: 9
  issue: 1
  year: 2021
  article-title: Targeted single‐walled carbon nanotubes for photothermal therapy combined with immune checkpoint inhibition for the treatment of metastatic breast cancer
  publication-title: Nanoscale Res Lett
– volume: 34
  issue: 16
  year: 2022
  article-title: An engineered protein‐Au bioplaster for efficient skin tumor therapy
  publication-title: Adv Mater
– volume: 123
  start-page: 15375
  issue: 25
  year: 2019
  end-page: 15393
  article-title: Gold‐nanoparticle‐assisted plasmonic photothermal therapy advances toward clinical application
  publication-title: J Phys Chem C
– volume: 9
  start-page: 18
  issue: 1
  year: 2021
  article-title: Review of a new bone tumor therapy strategy based on bifunctional biomaterials
  publication-title: Bone Res
– volume: 183
  start-page: 30
  year: 2018
  end-page: 42
  article-title: Platinum‐doped carbon nanoparticles inhibit cancer cell migration under mild laser irradiation: multi‐organelle‐targeted photothermal therapy
  publication-title: Biomaterials
– volume: 22
  start-page: 410
  issue: 5
  year: 2016
  end-page: 415
  article-title: Pyrotherapy for the treatment of psychosis in the 21st century: a case report and literature review
  publication-title: J Psychiatr Pract
– volume: 7
  issue: 23
  year: 2020
  article-title: Black phosphorus: degradation mechanism, passivation method, and application for in situ tissue regeneration
  publication-title: Adv Mater Interfaces
– volume: 241
  year: 2020
  article-title: Local delivery of bone morphogenetic protein‐2 from near infrared‐responsive hydrogels for bone tissue regeneration
  publication-title: Biomaterials
– volume: 6
  start-page: 7728
  issue: 46
  year: 2018
  end-page: 7736
  article-title: Bifunctional scaffolds for the photothermal therapy of breast tumor cells and adipose tissue regeneration
  publication-title: J Mater Chem B
– volume: 33
  start-page: 575
  issue: 2
  year: 2022
  end-page: 586
  article-title: Strategies for efficient photothermal therapy at mild temperatures: progresses and challenges
  publication-title: Chin Chem Lett
– volume: 19
  start-page: 413
  issue: 1
  year: 2021
  article-title: Self‐assembled nanoparticles containing photosensitizer and polycationic brush for synergistic photothermal and photodynamic therapy against periodontitis
  publication-title: J Nanobiotechnology
– volume: 10
  start-page: 1487
  issue: 7
  year: 2014
  end-page: 1496
  article-title: Tumor vascular permeabilization using localized mild hyperthermia to improve macromolecule transport
  publication-title: Nanomedicine
– volume: 97
  start-page: 476
  year: 2021
  end-page: 484
  article-title: Drug‐dye‐apoptosis inducing micelles for enhancing host immunity against advanced metastatic breast cancer by the combination of low dose chemotherapy and photothermal therapy
  publication-title: J Ind Eng Chem
– volume: 34
  issue: 46
  year: 2021
  article-title: Cancer‐cell‐biomimetic nanoparticles for targeted therapy of multiple myeloma based on bone marrow homing
  publication-title: Adv Mater
– volume: 28
  start-page: 124
  issue: 1
  year: 2017
  end-page: 134
  article-title: Inorganic nanoparticles for image‐guided therapy
  publication-title: Bioconjug Chem
– volume: 1
  start-page: 69
  year: 2016
  article-title: Intraperitoneal free cancer cells in gastric cancer: pathology of peritoneal carcinomatosis and rationale for intraperitoneal chemotherapy/hyperthermic intraperitoneal chemotherapy in gastric cancer
  publication-title: Transl Gastroenterol Hepatol
– volume: 31
  issue: 18
  year: 2021
  article-title: Robust nanovaccine based on polydopamine‐coated mesoporous silica nanoparticles for effective photothermal‐immunotherapy against melanoma
  publication-title: Adv Funct Mater
– volume: 29
  issue: 36
  year: 2019
  article-title: Stimuli‐Responsive scaffold for breast cancer treatment combining accurate photothermal therapy and adipose tissue regeneration
  publication-title: Adv Funct Mater
– volume: 4
  start-page: 6439
  issue: 11
  year: 2010
  end-page: 6448
  article-title: Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway
  publication-title: ACS Nano
– volume: 264
  year: 2021
  article-title: A novel “hot spring”‐mimetic hydrogel with excellent angiogenic properties for chronic wound healing
  publication-title: Biomaterials
– volume: 33
  start-page: 793
  issue: 2
  year: 2022
  end-page: 797
  article-title: An endoplasmic reticulum‐targeted organic photothermal agent for enhanced cancer therapy
  publication-title: Chin Chem Lett
– volume: 9
  start-page: 826
  issue: 3
  year: 2021
  end-page: 834
  article-title: Highly biocompatible and recyclable biomimetic nanoparticles for antibiotic‐resistant bacteria infection
  publication-title: Biomater Sci
– volume: 34
  year: 2020
  article-title: Near‐infrared heptamethine cyanine dye‐based nanoscale coordination polymers with intrinsic nucleus‐targeting for low temperature photothermal therapy
  publication-title: Nano Today
– volume: 10
  start-page: 817
  issue: 5
  year: 2011
  end-page: 821
  article-title: Preliminary safety and efficacy results of laser immunotherapy for the treatment of metastatic breast cancer patients
  publication-title: Photochem Photobiol Sci
– volume: 608
  year: 2021
  article-title: Aptamer modified MoS2 nanosheets application in targeted photothermal therapy for breast cancer
  publication-title: Colloids Surf A Physicochem Eng Asp
– volume: 9
  start-page: 4236
  year: 2018
  article-title: Harnessing copper‐palladium alloy tetrapod nanoparticle‐induced pro‐survival autophagy for optimized photothermal therapy of drug‐resistant cancer
  publication-title: Nat Commun
– volume: 119
  start-page: 613
  issue: 5
  year: 2019
  end-page: 615
  article-title: Cytoreduction and hyperthermic intraperitoneal chemotherapy in metastatic colorectal cancer
  publication-title: J Surg Oncol
– volume: 11
  start-page: 10061
  issue: 17
  year: 2021
  end-page: 10074
  article-title: Assembled small organic molecules for photodynamic therapy and photothermal therapy
  publication-title: RSC Adv
– volume: 54
  start-page: 14108
  issue: 100
  year: 2018
  end-page: 14111
  article-title: A mitochondria‐targeting photothermogenic nanozyme for MRI‐guided mild photothermal therapy
  publication-title: Chem Commun
– volume: 9
  start-page: 10
  issue: 1
  year: 2021
  end-page: 22
  article-title: Photothermal bactericidal surfaces: killing bacteria using light instead of biocides
  publication-title: Biomater Sci
– volume: 31
  issue: 25
  year: 2021
  article-title: Nanoagent‐promoted mild‐temperature photothermal therapy for cancer treatment
  publication-title: Adv Funct Mater
– volume: 2
  start-page: 1584
  issue: 11
  year: 2014
  end-page: 1593
  article-title: Enhanced bone regeneration with a gold nanoparticle‐hydrogel complex
  publication-title: J Mater Chem B
– volume: 32
  start-page: 1010
  issue: 3
  year: 2021
  end-page: 1016
  article-title: Recent advances in photothermal and RNA interfering synergistic therapy
  publication-title: Chin Chem Lett
– volume: 8
  start-page: 1983
  issue: 8
  year: 2021
  end-page: 1996
  article-title: Unprecedented collateral sensitivity for cisplatin‐resistant lung cancer cells presented by new ruthenium organometallic compounds
  publication-title: Inorg Chem Front
– volume: 18
  issue: 13
  year: 2022
  article-title: Combination of photothermal therapy with anti‐inflammation therapy attenuates the inflammation tumor microenvironment and weakens immunosuppression for enhancement antitumor treatment
  publication-title: Small
– volume: 30
  issue: 16
  year: 2020
  article-title: Enzyme‐mediated tumor starvation and phototherapy enhance mild‐temperature photothermal therapy
  publication-title: Adv Funct Mater
– volume: 48
  start-page: 549
  issue: 4
  year: 2012
  end-page: 559
  article-title: Deep heating therapy via microwave diathermy relieves pain and improves physical function in patients with knee osteoarthritis: a double‐blind randomized clinical trial
  publication-title: Eur J Phys Rehabil Med
– volume: 89
  start-page: 63
  year: 2016
  end-page: 64
  article-title: A hybrid fever therapy for increased tumor selectivity
  publication-title: Med Hypotheses
– volume: 7
  start-page: 90
  issue: 1
  year: 2009
  end-page: 103
  article-title: Heat stress and hormetin‐induced hormesis in human cells: effects on aging, wound healing, angiogenesis, and differentiation
  publication-title: Dose‐Response
– volume: 317
  start-page: 347
  year: 2020
  end-page: 374
  article-title: A glance over doxorubicin based‐nanotherapeutics: from proof‐of‐concept studies to solutions in the market
  publication-title: J Control Release
– volume: 7
  issue: 9
  year: 2020
  article-title: Overcoming multidrug‐resistant MRSA using conventional aminoglycoside antibiotics
  publication-title: Adv Sci
– volume: 9
  start-page: 4567
  year: 2021
  end-page: 4576
  article-title: An injectable photothermally active antibacterial composite hydroxypropyl chitin hydrogel for promoting the wound healing process through photobiomodulation
  publication-title: J Mater Chem B
– volume: 215
  year: 2022
  article-title: Biodegradable polydopamine and tetrasulfide bond co‐doped hollowed mesoporous silica nanospheres as GSH‐triggered nanosystem for synergistic chemo‐photothermal therapy of breast cancer
  publication-title: Mater Des
– volume: 11
  start-page: 34755
  issue: 38
  year: 2019
  end-page: 34765
  article-title: Janus gold triangle‐mesoporous silica nanoplatforms for hypoxia‐activated radio‐chemo‐photothermal therapy of liver cancer
  publication-title: ACS Appl Mater Interfaces
– volume: 409
  year: 2021
  article-title: Injectable self‐healing CuS nanoparticle complex hydrogels with antibacterial, anti‐cancer, and wound healing properties
  publication-title: Chem Eng J
– volume: 21
  start-page: 681
  issue: 8
  year: 2005
  end-page: 687
  article-title: How do cells respond to their thermal environment?
  publication-title: Int J Hyperthermia
– volume: 230
  year: 2020
  article-title: Facile and eco‐friendly fabrication of polysaccharides‐based nanocomposite hydrogel for photothermal treatment of wound infection
  publication-title: Carbohydr Polymers
– volume: 27
  issue: 39
  year: 2017
  article-title: Mutually synergistic nanoparticles for effective thermo‐molecularly targeted therapy
  publication-title: Adv Funct Mater
– volume: 31
  issue: 24
  year: 2021
  article-title: Multi‐functional black bioactive glasses prepared via containerless melting process for tumor therapy and tissue regeneration
  publication-title: Adv Funct Mater
– volume: 6
  start-page: 2458
  issue: 13
  year: 2016
  end-page: 2487
  article-title: Beyond the barriers of light penetration: strategies, perspectives and possibilities for photodynamic therapy
  publication-title: Theranostics
– volume: 32
  issue: 22
  year: 2022
  article-title: Microneedle patches integrated with biomineralized melanin nanoparticles for simultaneous skin tumor photothermal therapy and wound healing
  publication-title: Adv Funct Mater
– volume: 168
  start-page: 707
  issue: 4
  year: 2017
  end-page: 723
  article-title: Primary, adaptive, and acquired resistance to cancer immunotherapy
  publication-title: Cell
– volume: 58
  start-page: 1057
  issue: 4
  year: 2019
  end-page: 1061
  article-title: A dual‐targeted organic photothermal agent for enhanced photothermal therapy
  publication-title: Angew Chem Int Ed
– volume: 149
  start-page: 334
  year: 2022
  end-page: 346
  article-title: A prodrug hydrogel with tumor microenvironment and near‐infrared light dual‐responsive action for synergistic cancer immunotherapy
  publication-title: Acta Biomater
– volume: 10
  start-page: 4185
  issue: 15
  year: 2019
  end-page: 4191
  article-title: Near‐infrared light‐triggered porous AuPd alloy nanoparticles to produce mild localized heat to accelerate bone regeneration
  publication-title: J Phys Chem Lett
– volume: 33
  issue: 21
  year: 2021
  article-title: Supramolecular nanofibrils formed by coassembly of clinically approved drugs for tumor photothermal immunotherapy
  publication-title: Adv Mater
– volume: 14
  start-page: 1991
  issue: 3
  year: 2022
  end-page: 2001
  article-title: ICG‐ER: a new probe for photoimaging and photothermal therapy for breast cancer
  publication-title: Am J Transl Res
– volume: 13
  start-page: 39
  year: 2021
  article-title: Strategies to improve photodynamic therapy efficacy by relieving the tumor hypoxia environment
  publication-title: NPG Asia Mater
– volume: 12
  start-page: 27
  year: 2021
  article-title: Improvement of gold nanorods in photothermal therapy: recent progress and perspective
  publication-title: Front Pharmacol
– volume: 206
  start-page: 1
  year: 2019
  end-page: 12
  article-title: Bioinspired nanoplatelets for chemo‐photothermal therapy of breast cancer metastasis inhibition
  publication-title: Biomaterials
– volume: 7
  year: 2016
  article-title: Photothermal therapy with immune‐adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy
  publication-title: Nat Commun
– volume: 19
  start-page: 77
  issue: 1
  year: 2021
  article-title: A DM1‐doped porous gold nanoshell system for NIR accelerated redox‐responsive release and triple modal imaging guided photothermal synergistic chemotherapy
  publication-title: J Nanobiotechnology
– volume: 11
  start-page: 1419
  issue: 2
  year: 2017
  end-page: 1431
  article-title: Overcoming the heat endurance of tumor cells by interfering with the anaerobic glycolysis metabolism for improved photothermal therapy
  publication-title: ACS Nano
– volume: 273
  year: 2021
  article-title: A versatile photothermal vaccine based on acid‐responsive glyco‐nanoplatform for synergistic therapy of cancer
  publication-title: Biomaterials
– volume: 541
  start-page: 321
  issue: 7637
  year: 2017
  end-page: 330
  article-title: Elements of cancer immunity and the cancer‐immune set point
  publication-title: Nature
– volume: 96
  start-page: 129
  issue: 1
  year: 2015
  end-page: 142
  article-title: Functional role of inorganic trace elements in angiogenesis‐part I: N, Fe, Se, P, Au, and Ca
  publication-title: Crit Rev Oncol Hematol
– volume: 18
  start-page: 158
  issue: 1
  year: 2022
  end-page: 165
  article-title: Prostate‐specific membrane antigen‐1‐mediated Au@SiO2@Au core‐shell nanoparticles: targeting prostate cancer to enhance photothermal therapy and fluorescence imaging
  publication-title: J Biomed Nanotechnol
– volume: 44
  start-page: 165
  issue: 2
  year: 2021
  end-page: 181
  article-title: Recent progress in development and applications of second near‐infrared (NIR‐II) nanoprobes
  publication-title: Arch Pharmacal Res
– volume: 193
  start-page: 1
  year: 2019
  end-page: 11
  article-title: Near‐infrared light control of bone regeneration with biodegradable photothermal osteoimplant
  publication-title: Biomaterials
– volume: 10
  issue: 2
  year: 2015
  article-title: Carbonate ion‐enriched hot spring water promotes skin wound healing in nude rats
  publication-title: PLoS One
– volume: 20
  start-page: 238
  issue: 1
  year: 2022
  article-title: Restorative biodegradable two‐layered hybrid microneedles for melanoma photothermal/chemo co‐therapy and wound healing
  publication-title: J Nanobiotechnology
– volume: 21
  article-title: A novel vancomycin‐functionalized‐magnetic graphene composite for use as a near‐infrared‐induced synergistic chemo‐photothermal antibacterial
  publication-title: Macromol Biosci
– volume: 47
  start-page: 6930
  issue: 18
  year: 2018
  end-page: 6946
  article-title: Cancer cell nucleus‐targeting nanocomposites for advanced tumor therapeutics
  publication-title: Chem Soc Rev
– volume: 34
  start-page: 953
  issue: 7
  year: 2018
  end-page: 960
  article-title: The effect of modulated electro‐hyperthermia on temperature and blood flow in human cervical carcinoma
  publication-title: Int J Hyperthermia
– volume: 203
  start-page: E373
  year: 2020
  end-page: E374
  article-title: Phase II clinical trial: short‐term oncologic outcomes of nanoparticle‐directed focal photothermal laser ablation
  publication-title: J Urol
– volume: 11
  start-page: 1054
  issue: 1
  year: 2017
  end-page: 1063
  article-title: Diketopyrrolopyrrole‐triphenylamine organic nanoparticles as multifunctional reagents for photoacoustic imaging‐guided photodynamic/photothermal synergistic tumor therapy
  publication-title: ACS Nano
– volume: 141
  start-page: 116
  year: 2017
  end-page: 124
  article-title: Autophagy inhibition enabled efficient photothermal therapy at a mild temperature
  publication-title: Biomaterials
– volume: 11
  start-page: 8680
  issue: 18
  year: 2019
  end-page: 8691
  article-title: Nanomaterials with a photothermal effect for antibacterial activities: an overview
  publication-title: Nanoscale
– volume: 27
  issue: 45
  year: 2017
  article-title: A multifunctional nanoplatform against multidrug resistant cancer: merging the best of targeted chemo/gene/photothermal therapy
  publication-title: Adv Funct Mater
– volume: 25
  start-page: 1431
  issue: 8
  year: 2020
  end-page: 1443
  article-title: Prussian blue nanoparticles: synthesis, surface modification, and biomedical applications
  publication-title: Drug Discovery Today
– volume: 4
  start-page: 1432
  issue: 9
  year: 2019
  end-page: 1442
  article-title: Defining and combating antibiotic resistance from one health and global health perspectives
  publication-title: Nat Microbiol
– volume: 21
  start-page: 781
  issue: 4
  year: 2021
  end-page: 796
  article-title: Polydopamine‐based nanoparticles for photothermal therapy/chemotherapy and their synergistic therapy with autophagy inhibitor to promote antitumor treatment
  publication-title: Chem Rec
– volume: 8
  start-page: 540
  issue: 2
  year: 2022
  end-page: 550
  article-title: Ultrathin nanosheet‐supported Ag@Ag2O core‐shell nanoparticles with vastly enhanced photothermal conversion efficiency for NIR‐II‐triggered photothermal therapy
  publication-title: ACS Biomater Sci Eng
– volume: 18
  start-page: 1261
  issue: 9
  year: 2021
  end-page: 1290
  article-title: Metallic nanoparticles as drug delivery system for the treatment of cancer
  publication-title: Expert Opin Drug Deliv
– volume: 5
  issue: 10
  year: 2018
  article-title: Polydopamine‐modified black phosphorous nanocapsule with enhanced stability and photothermal performance for tumor multimodal treatments
  publication-title: Adv Sci
– volume: 46
  start-page: 8043
  end-page: 8052
  article-title: An injectable self‐healing CS/PDA‐AgNPs hybrid hydrogel for mild and highly‐efficient photothermal sterilization
  publication-title: New J Chem
– volume: 9
  issue: 11
  year: 2022
  article-title: Engineering robust ag‐decorated polydopamine nano‐photothermal platforms to combat bacterial infection and prompt wound healing
  publication-title: Adv Sci
– volume: 12
  year: 2022
  article-title: Ultrasound‐guided microwave ablation in the treatment of early‐stage tongue cancer
  publication-title: Front Oncol
– volume: 14
  start-page: 2847
  issue: 3
  year: 2020
  end-page: 2859
  article-title: Degradable carbon‐silica nanocomposite with immunoadjuvant property for dual‐modality photothermal/photodynamic therapy
  publication-title: ACS Nano
– volume: 10
  start-page: 7273
  issue: 16
  year: 2020
  end-page: 7286
  article-title: Complementary autophagy inhibition and glucose metabolism with rattle‐structured polydopamine@mesoporous silica nanoparticles for augmented low‐temperature photothermal therapy and in vivo photoacoustic imaging
  publication-title: Theranostics
– volume: 9
  start-page: 15952
  issue: 19
  year: 2017
  end-page: 15961
  article-title: Nuclear‐targeting gold nanorods for extremely low NIR activated photothermal therapy
  publication-title: ACS Appl Mater Interfaces
– volume: 10
  issue: 7
  year: 2021
  article-title: 2D nanomaterials for tissue engineering and regenerative nanomedicines: recent advances and future challenges
  publication-title: Adv Healthcare Mater
– volume: 29
  start-page: 718
  issue: 2
  year: 2017
  end-page: 725
  article-title: Highly efficient NIR‐II photothermal conversion based on an organic conjugated polymer
  publication-title: Chem Mater
– volume: 25
  start-page: 1109
  issue: 12
  year: 2011
  end-page: 1118
  article-title: Short‐term effects of local microwave hyperthermia on pain and function in patients with mild to moderate carpal tunnel syndrome: a double blind randomized sham‐controlled trial
  publication-title: Clin Rehabil
– volume: 27
  issue: 5
  year: 2021
  article-title: Plasmonic gold nanostar‐mediated photothermal immunotherapy
  publication-title: IEEE J Sel Top Quantum Electron
– volume: 2021
  year: 2021
  article-title: Manganese‐doped calcium silicate nanowire composite hydrogels for melanoma treatment and wound healing
  publication-title: Research
– volume: 9
  start-page: 4355
  year: 2021
  end-page: 4364
  article-title: Bone cements for therapy and regeneration for minimally invasive treatment of neoplastic bone defects
  publication-title: J Mater Chem B
– volume: 274
  year: 2021
  article-title: Biomineralized calcium carbonate nanohybrids for mild photothermal heating‐enhanced gene therapy
  publication-title: Biomaterials
– volume: 13
  start-page: 1342
  issue: 2
  year: 2019
  end-page: 1353
  article-title: Boosting the radiosensitizing and photothermal performance of Cu2‐xSe nanocrystals for synergetic radiophotothermal therapy of orthotopic breast cancer
  publication-title: ACS Nano
– ident: e_1_2_10_54_1
  doi: 10.1016/j.drudis.2020.05.014
– ident: e_1_2_10_128_1
  doi: 10.1021/acsami.7b03017
– ident: e_1_2_10_160_1
  doi: 10.1016/j.actbio.2021.05.002
– ident: e_1_2_10_152_1
  doi: 10.1038/nrclinonc.2017.101
– ident: e_1_2_10_211_1
  doi: 10.1039/D1NR00323B
– ident: e_1_2_10_24_1
  doi: 10.1016/S1470-2045(02)00818-5
– ident: e_1_2_10_22_1
  doi: 10.1002/jso.25438
– ident: e_1_2_10_14_1
  doi: 10.1634/theoncologist.2018-0337
– ident: e_1_2_10_112_1
  doi: 10.1016/j.cclet.2020.08.009
– ident: e_1_2_10_119_1
  doi: 10.1039/D1TB02625A
– ident: e_1_2_10_221_1
  doi: 10.1038/s41368-021-00113-9
– ident: e_1_2_10_195_1
  doi: 10.1002/advs.202106015
– ident: e_1_2_10_21_1
  doi: 10.21037/tgh.2016.08.03
– ident: e_1_2_10_192_1
  doi: 10.1016/j.nano.2015.11.014
– ident: e_1_2_10_15_1
  doi: 10.1007/s12020-019-02019-3
– ident: e_1_2_10_159_1
  doi: 10.1016/j.actbio.2022.06.041
– ident: e_1_2_10_173_1
  doi: 10.1016/j.colsurfb.2022.112462
– ident: e_1_2_10_227_1
  doi: 10.1016/j.cej.2020.128224
– ident: e_1_2_10_44_1
  doi: 10.1016/j.jphotobiol.2021.112125
– ident: e_1_2_10_168_1
  doi: 10.1016/j.biomaterials.2019.119463
– ident: e_1_2_10_204_1
  doi: 10.1002/advs.201902070
– ident: e_1_2_10_163_1
  doi: 10.1002/adfm.202010637
– ident: e_1_2_10_30_1
  doi: 10.7150/thno.68756
– ident: e_1_2_10_72_1
  doi: 10.1177/0269215511400767
– ident: e_1_2_10_63_1
  doi: 10.1016/j.cclet.2021.11.079
– ident: e_1_2_10_212_1
  doi: 10.1088/1748-605X/ac5a23
– ident: e_1_2_10_139_1
  doi: 10.1002/smtd.201900343
– ident: e_1_2_10_45_1
  doi: 10.2147/IJN.S299448
– volume: 14
  start-page: 1991
  issue: 3
  year: 2022
  ident: e_1_2_10_134_1
  article-title: ICG‐ER: a new probe for photoimaging and photothermal therapy for breast cancer
  publication-title: Am J Transl Res
– ident: e_1_2_10_111_1
  doi: 10.1016/j.cclet.2020.02.043
– ident: e_1_2_10_29_1
  doi: 10.1016/j.apsb.2022.02.023
– ident: e_1_2_10_201_1
  doi: 10.1186/s12951-021-01114-w
– volume: 203
  start-page: E373
  year: 2020
  ident: e_1_2_10_230_1
  article-title: Phase II clinical trial: short‐term oncologic outcomes of nanoparticle‐directed focal photothermal laser ablation
  publication-title: J Urol
– ident: e_1_2_10_86_1
  doi: 10.1016/j.critrevonc.2015.05.011
– ident: e_1_2_10_82_1
  doi: 10.1002/adfm.202101505
– ident: e_1_2_10_31_1
  doi: 10.1016/j.jconrel.2021.04.005
– ident: e_1_2_10_229_1
  doi: 10.4161/cbt.10.11.13434
– ident: e_1_2_10_5_1
  doi: 10.1016/j.mehy.2016.02.005
– ident: e_1_2_10_131_1
  doi: 10.1016/j.cclet.2021.08.087
– ident: e_1_2_10_107_1
  doi: 10.1016/j.biomaterials.2017.06.030
– ident: e_1_2_10_165_1
  doi: 10.1038/ncomms13193
– ident: e_1_2_10_7_1
  doi: 10.1097/PRA.0000000000000181
– ident: e_1_2_10_90_1
  doi: 10.1002/sctm.18-0266
– ident: e_1_2_10_147_1
  doi: 10.1002/adma.201503799
– ident: e_1_2_10_184_1
  doi: 10.1021/acsnano.8b05982
– ident: e_1_2_10_36_1
  doi: 10.1002/adma.202107883
– ident: e_1_2_10_120_1
  doi: 10.1016/j.cclet.2020.09.010
– volume: 13
  start-page: 1342
  issue: 2
  year: 2019
  ident: e_1_2_10_40_1
  article-title: Boosting the radiosensitizing and photothermal performance of Cu2‐xSe nanocrystals for synergetic radiophotothermal therapy of orthotopic breast cancer
  publication-title: ACS Nano
– ident: e_1_2_10_33_1
  doi: 10.1038/natrevmats.2016.14
– ident: e_1_2_10_186_1
  doi: 10.1039/D0BM00617C
– ident: e_1_2_10_151_1
  doi: 10.1016/j.matdes.2022.110467
– ident: e_1_2_10_154_1
  doi: 10.1038/nature21349
– ident: e_1_2_10_121_1
  doi: 10.1002/adfm.201702834
– ident: e_1_2_10_95_1
  doi: 10.1039/C3TB21246G
– ident: e_1_2_10_208_1
  doi: 10.1016/j.cej.2021.128779
– ident: e_1_2_10_26_1
  doi: 10.1073/pnas.1906929116
– ident: e_1_2_10_118_1
  doi: 10.1016/j.biomaterials.2021.120885
– ident: e_1_2_10_37_1
  doi: 10.1016/j.bioactmat.2021.01.006
– ident: e_1_2_10_68_1
  doi: 10.1021/ja057254a
– ident: e_1_2_10_122_1
  doi: 10.1039/D0NR02291H
– ident: e_1_2_10_99_1
  doi: 10.1002/smll.201901560
– ident: e_1_2_10_103_1
  doi: 10.1016/j.biomaterials.2020.119909
– ident: e_1_2_10_162_1
  doi: 10.1016/j.biomaterials.2021.120792
– ident: e_1_2_10_115_1
  doi: 10.1016/j.cclet.2021.07.025
– ident: e_1_2_10_75_1
  doi: 10.1074/jbc.M706464200
– ident: e_1_2_10_53_1
  doi: 10.1002/anie.201811273
– ident: e_1_2_10_11_1
  doi: 10.1109/LRA.2021.3068953
– ident: e_1_2_10_132_1
  doi: 10.1039/D1TB00703C
– ident: e_1_2_10_12_1
  doi: 10.1002/adma.201800180
– ident: e_1_2_10_74_1
  doi: 10.1152/ajplung.00252.2006
– ident: e_1_2_10_197_1
  doi: 10.1039/D0BM01397H
– ident: e_1_2_10_198_1
  doi: 10.3390/pharmaceutics11090463
– ident: e_1_2_10_126_1
  doi: 10.1016/j.nantod.2020.100910
– ident: e_1_2_10_129_1
  doi: 10.1039/C8CS00081F
– ident: e_1_2_10_77_1
  doi: 10.1021/acsnano.8b06032
– ident: e_1_2_10_124_1
  doi: 10.1039/C8CC08570F
– ident: e_1_2_10_25_1
  doi: 10.3389/fphar.2021.664123
– ident: e_1_2_10_98_1
  doi: 10.1002/anie.201506154
– ident: e_1_2_10_133_1
  doi: 10.1073/pnas.1703151114
– ident: e_1_2_10_104_1
  doi: 10.1016/j.mattod.2019.12.005
– ident: e_1_2_10_217_1
  doi: 10.1021/jacs.6b11382
– ident: e_1_2_10_2_1
  doi: 10.1016/S1040-8428(01)00179-2
– ident: e_1_2_10_60_1
  doi: 10.1002/adma.201705980
– ident: e_1_2_10_13_1
  doi: 10.1038/s41575-018-0005-x
– ident: e_1_2_10_39_1
  doi: 10.1021/acsami.9b12879
– ident: e_1_2_10_224_1
  doi: 10.34133/2021/9780943
– ident: e_1_2_10_218_1
  doi: 10.1002/adma.202200139
– ident: e_1_2_10_138_1
  doi: 10.1021/acsami.0c23143
– volume: 48
  start-page: 549
  issue: 4
  year: 2012
  ident: e_1_2_10_71_1
  article-title: Deep heating therapy via microwave diathermy relieves pain and improves physical function in patients with knee osteoarthritis: a double‐blind randomized clinical trial
  publication-title: Eur J Phys Rehabil Med
– ident: e_1_2_10_114_1
  doi: 10.1016/j.jcis.2021.03.050
– ident: e_1_2_10_105_1
  doi: 10.1021/acsnano.5b00021
– ident: e_1_2_10_18_1
  doi: 10.1021/acsnano.7b08868
– ident: e_1_2_10_91_1
  doi: 10.1016/j.actbio.2018.08.015
– ident: e_1_2_10_177_1
  doi: 10.1021/acsami.0c07372
– ident: e_1_2_10_84_1
  doi: 10.1016/j.carbpol.2022.119722
– ident: e_1_2_10_191_1
  doi: 10.1039/C9NR01833F
– ident: e_1_2_10_3_1
  doi: 10.1080/02656730500307298
– ident: e_1_2_10_100_1
  doi: 10.1002/admi.202001538
– ident: e_1_2_10_73_1
  doi: 10.1016/j.semcdb.2016.11.005
– ident: e_1_2_10_117_1
  doi: 10.1016/j.nano.2020.102241
– ident: e_1_2_10_102_1
  doi: 10.1016/j.biomaterials.2018.12.008
– ident: e_1_2_10_50_1
  doi: 10.1016/j.colsurfb.2020.111243
– ident: e_1_2_10_87_1
  doi: 10.1016/j.critrevonc.2015.10.004
– ident: e_1_2_10_157_1
  doi: 10.1186/s12943-018-0928-4
– ident: e_1_2_10_130_1
  doi: 10.1166/jbn.2022.3229
– ident: e_1_2_10_183_1
  doi: 10.1186/s12951-021-00884-7
– ident: e_1_2_10_125_1
  doi: 10.1016/j.biomaterials.2018.08.031
– ident: e_1_2_10_56_1
  doi: 10.1021/acsnano.6b07927
– ident: e_1_2_10_62_1
  doi: 10.1126/sciadv.abb1311
– ident: e_1_2_10_59_1
  doi: 10.1021/acs.chemmater.6b04405
– ident: e_1_2_10_83_1
  doi: 10.1016/j.biomaterials.2020.120414
– ident: e_1_2_10_106_1
  doi: 10.1016/j.nano.2013.11.001
– ident: e_1_2_10_193_1
  doi: 10.1016/j.carbpol.2019.115565
– ident: e_1_2_10_216_1
  doi: 10.1002/adma.201900822
– ident: e_1_2_10_46_1
  doi: 10.1186/s11671-020-03459-x
– ident: e_1_2_10_51_1
  doi: 10.1016/j.msec.2020.111371
– ident: e_1_2_10_171_1
  doi: 10.1002/tcr.202000170
– ident: e_1_2_10_48_1
  doi: 10.1016/j.ccr.2021.213826
– ident: e_1_2_10_167_1
  doi: 10.7150/thno.38261
– ident: e_1_2_10_143_1
  doi: 10.1002/adfm.202113269
– ident: e_1_2_10_153_1
  doi: 10.1016/j.cell.2017.01.017
– ident: e_1_2_10_158_1
  doi: 10.1002/adma.202100595
– ident: e_1_2_10_93_1
  doi: 10.1016/j.msec.2022.112641
– ident: e_1_2_10_127_1
  doi: 10.1016/j.apsusc.2021.149428
– ident: e_1_2_10_79_1
  doi: 10.1002/adhm.202001743
– ident: e_1_2_10_43_1
  doi: 10.1177/0885328220929616
– ident: e_1_2_10_213_1
  doi: 10.1002/adfm.201806877
– ident: e_1_2_10_69_1
  doi: 10.1021/acsnano.9b09282
– ident: e_1_2_10_200_1
  doi: 10.1038/s41427-021-00303-1
– ident: e_1_2_10_194_1
  doi: 10.1039/D2NJ00878E
– ident: e_1_2_10_145_1
  doi: 10.1002/adfm.201704135
– ident: e_1_2_10_185_1
  doi: 10.1016/j.cej.2021.128568
– volume: 67
  start-page: 2119
  issue: 7
  year: 2020
  ident: e_1_2_10_231_1
  article-title: A clinical prototype transrectal diffuse optical tomography (TRDOT) system for in vivo monitoring of photothermal therapy (PTT) of focal prostate cancer
  publication-title: IEEE Trans Biomed Eng
– ident: e_1_2_10_223_1
  doi: 10.1002/adfm.201904401
– ident: e_1_2_10_179_1
  doi: 10.1002/adfm.201909938
– ident: e_1_2_10_169_1
  doi: 10.1002/adfm.201909391
– ident: e_1_2_10_172_1
  doi: 10.1002/adma.202110062
– ident: e_1_2_10_207_1
  doi: 10.1016/j.ccr.2017.11.019
– ident: e_1_2_10_161_1
  doi: 10.1016/j.biomaterials.2019.119629
– ident: e_1_2_10_88_1
  doi: 10.7150/thno.39471
– ident: e_1_2_10_101_1
  doi: 10.1002/adma.201705611
– ident: e_1_2_10_6_1
  doi: 10.1017/S0025727300052431
– ident: e_1_2_10_144_1
  doi: 10.1002/advs.201800510
– ident: e_1_2_10_61_1
  doi: 10.1038/s41551-016-0010
– ident: e_1_2_10_225_1
  doi: 10.1039/D1TB00724F
– ident: e_1_2_10_16_1
  doi: 10.1016/j.radonc.2018.12.005
– ident: e_1_2_10_67_1
  doi: 10.1039/C4NR00708E
– ident: e_1_2_10_76_1
  doi: 10.1253/circj.CJ-11-0915
– ident: e_1_2_10_108_1
  doi: 10.1038/s41467-018-06529-y
– ident: e_1_2_10_214_1
  doi: 10.1039/D1RA00579K
– ident: e_1_2_10_137_1
  doi: 10.1016/j.biomaterials.2019.03.024
– ident: e_1_2_10_141_1
  doi: 10.1016/j.jconrel.2021.05.011
– ident: e_1_2_10_199_1
  doi: 10.7150/thno.16183
– ident: e_1_2_10_182_1
  doi: 10.1007/s12272-021-01313-x
– ident: e_1_2_10_96_1
  doi: 10.1016/j.biomaterials.2018.05.027
– ident: e_1_2_10_49_1
  doi: 10.1016/j.colsurfa.2020.125506
– ident: e_1_2_10_175_1
  doi: 10.1007/s10856-021-06636-1
– ident: e_1_2_10_47_1
  doi: 10.1002/adfm.201808306
– ident: e_1_2_10_34_1
  doi: 10.1080/17425247.2021.1912008
– ident: e_1_2_10_142_1
  doi: 10.1186/s12951-022-01426-5
– ident: e_1_2_10_176_1
  doi: 10.1021/acsbiomaterials.1c01217
– ident: e_1_2_10_35_1
  doi: 10.1016/j.jiec.2021.03.003
– ident: e_1_2_10_94_1
  doi: 10.1021/acs.jpclett.9b01735
– ident: e_1_2_10_123_1
  doi: 10.7150/thno.44668
– ident: e_1_2_10_9_1
  doi: 10.1038/nrc3672
– ident: e_1_2_10_202_1
  doi: 10.1007/s12274-020-2853-2
– ident: e_1_2_10_113_1
  doi: 10.1016/j.cej.2021.128568
– ident: e_1_2_10_65_1
  doi: 10.1080/02656730701769841
– ident: e_1_2_10_149_1
  doi: 10.1016/j.nantod.2020.101020
– ident: e_1_2_10_203_1
  doi: 10.1002/mabi.202100082
– ident: e_1_2_10_135_1
  doi: 10.1016/j.jconrel.2019.11.016
– ident: e_1_2_10_146_1
  doi: 10.1002/adma.202100599
– ident: e_1_2_10_89_1
  doi: 10.2147/IJN.S246336
– ident: e_1_2_10_85_1
  doi: 10.1016/j.critrevonc.2015.05.010
– ident: e_1_2_10_70_1
  doi: 10.1021/acs.jpcc.9b01961
– ident: e_1_2_10_166_1
  doi: 10.1002/smll.202107071
– ident: e_1_2_10_209_1
  doi: 10.1039/C7CS00522A
– ident: e_1_2_10_81_1
  doi: 10.2203/dose-response.08-014.Rattan
– ident: e_1_2_10_205_1
  doi: 10.2217/nnm-2017-0380
– ident: e_1_2_10_188_1
  doi: 10.3390/pharmaceutics13010052
– ident: e_1_2_10_32_1
  doi: 10.1016/j.ijpharm.2020.120082
– ident: e_1_2_10_116_1
  doi: 10.1039/C8NR09618J
– ident: e_1_2_10_222_1
  doi: 10.1039/C8TB02325E
– ident: e_1_2_10_206_1
  doi: 10.1002/smll.202005473
– ident: e_1_2_10_23_1
  doi: 10.3389/fonc.2022.950228
– ident: e_1_2_10_28_1
  doi: 10.1016/j.biomaterials.2019.119677
– ident: e_1_2_10_109_1
  doi: 10.1016/j.cclet.2021.08.023
– ident: e_1_2_10_187_1
  doi: 10.1038/s41564-019-0503-9
– ident: e_1_2_10_140_1
  doi: 10.1016/j.biomaterials.2018.05.055
– ident: e_1_2_10_17_1
  doi: 10.1016/j.jvir.2017.08.021
– ident: e_1_2_10_4_1
  doi: 10.1080/02656736.2018.1423709
– ident: e_1_2_10_38_1
  doi: 10.1016/j.jiec.2021.03.052
– ident: e_1_2_10_164_1
  doi: 10.1021/acs.nanolett.2c00500
– ident: e_1_2_10_174_1
  doi: 10.1021/acsbiomaterials.1c01291
– ident: e_1_2_10_66_1
  doi: 10.1021/acsnano.0c08790
– ident: e_1_2_10_215_1
  doi: 10.3389/fchem.2020.00824
– ident: e_1_2_10_170_1
  doi: 10.1021/acsnano.6b06658
– ident: e_1_2_10_219_1
  doi: 10.1021/acsnano.9b01411
– ident: e_1_2_10_97_1
  doi: 10.1021/nn101373r
– ident: e_1_2_10_20_1
  doi: 10.21037/atm-20-6514
– ident: e_1_2_10_92_1
  doi: 10.1002/adfm.202105383
– ident: e_1_2_10_210_1
  doi: 10.1021/acs.bioconjchem.6b00512
– ident: e_1_2_10_19_1
  doi: 10.3390/cancers11010078
– ident: e_1_2_10_155_1
  doi: 10.1016/j.bioactmat.2020.08.005
– ident: e_1_2_10_42_1
  doi: 10.1186/s12951-021-00824-5
– ident: e_1_2_10_180_1
  doi: 10.1016/j.cej.2020.128224
– ident: e_1_2_10_136_1
  doi: 10.7150/thno.29989
– ident: e_1_2_10_150_1
  doi: 10.1021/acsami.0c23073
– ident: e_1_2_10_78_1
  doi: 10.1088/1748-605X/ab9fce
– ident: e_1_2_10_178_1
  doi: 10.1038/s41413-021-00139-z
– ident: e_1_2_10_64_1
  doi: 10.1002/adfm.202100738
– ident: e_1_2_10_80_1
  doi: 10.1371/journal.pone.0117106
– ident: e_1_2_10_156_1
  doi: 10.1016/j.intimp.2021.107461
– ident: e_1_2_10_41_1
  doi: 10.1109/JSTQE.2021.3061462
– ident: e_1_2_10_58_1
  doi: 10.1002/anie.202005899
– ident: e_1_2_10_190_1
  doi: 10.1039/D0BM00617C
– ident: e_1_2_10_148_1
  doi: 10.1039/D0QI01344G
– ident: e_1_2_10_55_1
  doi: 10.1002/adma.201202625
– ident: e_1_2_10_57_1
  doi: 10.1021/acs.biomac.0c01567
– ident: e_1_2_10_8_1
  doi: 10.1016/j.critrevonc.2019.04.023
– ident: e_1_2_10_110_1
  doi: 10.1016/j.cclet.2021.03.080
– ident: e_1_2_10_10_1
  doi: 10.1002/advs.201901690
– ident: e_1_2_10_189_1
  doi: 10.1016/j.bioactmat.2020.07.017
– ident: e_1_2_10_226_1
  doi: 10.1002/adfm.202100738
– ident: e_1_2_10_27_1
  doi: 10.1016/j.carbpol.2020.117286
– ident: e_1_2_10_220_1
  doi: 10.1039/D0BM01785J
– ident: e_1_2_10_228_1
  doi: 10.1039/c0pp00306a
– ident: e_1_2_10_52_1
  doi: 10.1021/acsnano.9b06168
– ident: e_1_2_10_196_1
  doi: 10.1002/adma.202200179
– ident: e_1_2_10_181_1
  doi: 10.1016/j.cej.2021.128610
SSID ssj0002920456
Score 2.3706763
SecondaryResourceType review_article
Snippet Photothermal therapy (PTT) has been regarded as a promising strategy considering its advantages of high inherent specificity and a lower invasive burden. Since...
Abstract Photothermal therapy (PTT) has been regarded as a promising strategy considering its advantages of high inherent specificity and a lower invasive...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Ablation
anti‐infection
Bacteria
biomaterials
Biomedical materials
Cancer therapies
cancer treatment
Chemotherapy
Clinical trials
Disease
Fever
Gold
Health services
Heat
High temperature
Hyperthermia
Infections
Metastasis
Nanomaterials
Nanoparticles
photothermal therapy
Side effects
Temperature
Temperature dependence
Therapy
Tissue engineering
tissue regeneration
Tumors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ekx7EJ0ar7KF4C81zkz22YilCPVnobdknHmwibT148yf4G_0lzmzSEhHx4i0kw7LM7Oz3hd35hpC-dCVX1qowSkwSZjwuQ2UkC1PlAK-1A1TAE93pA5vMsvt5Pu-0-sI7YY08cOO4gSq1AxRxkIYs0xErYydNyizPXFmo3Ot8AuZ1fqZwD8YeTEANmipZVBkdLJRMfEPsDvx4lf5v1LJLUD3CjA_JQUsN6bCZ0hHZsdUx2e8IBp6Q-chXy6NjaffomcrKUBjf102uaO0oSk61esmf7x_10vfFQlkIsHuq177uagGjNPVXb6dkNr57vJ2EbW-EUKeoMukA-SMJWJ3EzDgJ6wFwuXCuAMbGtYInzfPCWAAfrTOJkiyFLHkOgA0cj-XpGdmt6sqeExq7WBeSmxTIQgbsTyquHAfQUlZCdkYBudm4TOhWOBz7VzyLRvI4EehbkeQBoVvDl0Yr46fJCH2-_Yzi1v4FhFy0IRd_hTwgvU3ERJtxK5FGQFWBbTIekL6P4m9zENPREHaxi_-YyiXZS7Aewl8665Hd9fLVXgFLWatrvyC_AFuZ6L4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LSgMxFL1ou9GF-MRqlVkUd0PnmZmspCMtRWgRsdBdSDITXdhObevCnZ_gN_ol3mTSWhHdDTMhDDfJPYck9xyAFlcpFUUhXC_IAzeifuqKnBM3FArxWipEBX2iOxiS_ii6Hcdju-G2sNcqVznRJOq8lHqPvB16SEWQTRB6PXtxtWuUPl21FhrbUMcUnMY1qGfd4d39epdFezFFxsI1SAh1EX7HVeWsVh5tTwQPjEn2BiQZ5f4fdHOTtBrU6e3DnqWLTqca3wPYKqaHsLshIngE48xU0OtgO5vH0Q6f5g72b2opF06pHC1DZTWUP98_yrnxytJSEdjuqVyaWqwJ9lLVZL0dw6jXfbjpu9YvwZWhVp5UyAY8jvgd-CRXHOcIYnWiVIIsjkqBT5LGSV4gIEkZcS3TkvCUxgjiyPtIHJ5AbVpOi1NwfOXLhNM8RAIRISPkggpFEchEwXHFeg24WoWMSSsmrj0tnlklgxwwHVsWxA1w1g1nlX7G7yaZjvn6sxa8Ni_K-SOz64eJVCokEwqzMYmkR1Jf8TwkBY1Umog4bEBzNWLMrsIF-54zDWiZUfzrH9gg62BmO_u_l3PYCXT1g7li1oTacv5aXCAnWYpLO_G-AE3r4rY
  priority: 102
  providerName: ProQuest
Title Biomedical applications and prospects of temperature‐orchestrated photothermal therapy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmba2.25
https://www.proquest.com/docview/3092350869
https://doaj.org/article/b8cf426fdde64c0681fad36e94f87b53
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xWGBAPEV5VBkQWyBxEiceKWqpkIoqRKVulu3EMNAGtWVgQfwEfiO_hDsnlCKExGJFydmKbJ-_L3buO4ATZTOhi0L7AcuZH4sw83WuuB9pi3htLKICnej2bnh3EF8Pk-FCqq9KH2K-4Uae4dZrcnClp-ffoqEjrdgZS5ZhlQJrKXkBi_vz7RVKwhS73K0s5cJH3B1WIbNU-7yu-wOLnGT_D565yFYd3HQ2YaPmid5FNbBbsFSMt2F9QT1wB4YtFzpPvewtnkN7apx72L4Lopx6pfVIf6oWT_54ey8nLkkWaUSg3UM5c0FYI2ylCsZ62YVBp3132fXrRAm-iUhy0iINCBQCNwt5bhVODgTp1NoU6ZswGq-MSNK8QCQyJlakz5KqTCSI3kj4eBLtwcq4HBf74IU2NKkSeYTMIUYqqLTQViCC6UKhqwYNOP3qMmlqFXFKZvEoK_1jJqlvJUsa4M0NnyrhjN8mLerz-WNSunY3ysm9rB1H6sxYZBEWl2Eem4BnoVV5xAsR2yzVSdSAo68Rk7X7TWUUIG9F6slFA07cKP71DrLXusAl7eB_Zoewxij8wf1jdgQrs8lzcYykZKabbvphmXWumrDaat_0b5vuAx_L3mv7E00T5I0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtQwEB1V7QE4VFBALJTWh8ItauIkTnxAVbe02tLuCqFW2puxHRsOdNPuLkK98Qn9Ej6KL2HGSbZbIbj1tspaVjQez3uJM-8B7GhfSuOciWJe8SiTSRmZSosoNR7x2npEBTrRHY7E4Dz7MM7HK_Cr64Whzyq7mhgKdVVbeke-m8ZIRZBNCLl3eRWRaxSdrnYWGk1anLjrH_jINnt3_B7X9w3nR4dnB4OodRWIbEr6jB4xM9aIcjwRldcYSUS0wvsCuY60Bn9ZmReVw7JtbaZJzKTQpcwR6pAdCXKJwJK_hjRD4i5a6x-OPn5avNUh76csWMbyQsgI4X7cdOqS0unuhdE8mHIvQWBwCrhDb5dJckC5o8ew3tJTtt_k0xNYcZMNeLQkWvgUxv3QsU-Ly5aPv5meVAznD72bM1Z7RrJXrWbz75839TR4c5E0BY77Ws9D79cFztL0gF0_g_N7ieRzWJ3UE_cCWOITW2hZpUhYMmSg2kjjJQKncRorRNyDt13IlG3Fy8lD45tqZJe5otgqnveALQZeNnodfw_pU8wXf5PAdrhQT7-odr8qU1qP5MVj9ReZjUWZeF2lwsnMl4XJ0x5sdium2l0_U7c52oOdsIr_ugc17O9jJX35_1m24cHgbHiqTo9HJ6_gIafOi_B52yaszqff3WvkQ3Oz1SYhg8_3nfd_AH9vHfw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xSAgOiFWUNYeKWyBxEic-UqBiK-IAUm-W7cRwoE3VlgM3PoFv5EuYcUIpQkjcomRsRWOP35PteQPQVDYTuii0H7Cc-bEIM1_nivuRtojXxiIq0Ilu55ZfPMRX3aQ7Veqr0oeYbLhRZLj1mgJ8kNvjb9HQnlbsiCWzME9HfXSbj8V3k-0VKsIUu9qtLOXCR9ztVimz1Pq4bvsDi5xk_w-eOc1WHdy0V2C55oneSTWwqzBT9NdgaUo9cB26LZc6T172ps-hPdXPPezfJVGOvNJ6pD9Viyd_vL2XQ1ckizQi0O6pHLskrB72UiVjvW7AQ_v8_vTCrwsl-CYiyUmLNCBQCNws5LlVODkQpFNrU6Rvwmh8MiJJ8wKRyJhYkT5LqjKRIHoj4eNJtAlz_bJfbIEX2tCkSuQRMocYqaDSQluBCKYLhaEaNODwy2XS1CriVMziWVb6x0ySbyVLGuBNDAeVcMZvkxb5fPKZlK7di3L4KOvAkTozFlmExWWYxybgWWhVHvFCxDZLdRI1YPdrxGQdfiMZBchbkXpy0YCmG8W__kF2Wie4pG3_z-wAFu7O2vLm8vZ6BxYZZUK462a7MDcevhR7yE_Get_NxE85yOKF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomedical+applications+and+prospects+of+temperature%E2%80%90orchestrated+photothermal+therapy&rft.jtitle=MedComm+-+Biomaterials+and+applications&rft.au=Xu%2C+Nuo&rft.au=Zhang%2C+Xu&rft.au=Qi%2C+Tingting&rft.au=Wu%2C+Yongzhi&rft.date=2022-09-01&rft.issn=2769-643X&rft.eissn=2769-643X&rft.volume=1&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fmba2.25&rft.externalDBID=10.1002%252Fmba2.25&rft.externalDocID=MBA225
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2769-643X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2769-643X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2769-643X&client=summon