Vaccine based on folded receptor binding domain‐PreS fusion protein with potential to induce sterilizing immunity to SARS‐CoV‐2 variants
Background Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is responsible for the ongoing global COVID‐19 pandemic. One possibility to control the pandemic is to induce sterilizing immunity through the induction and maintenance of neutralizing antibodies preventing SARS‐CoV‐2 from enter...
Saved in:
Published in | Allergy (Copenhagen) Vol. 77; no. 8; pp. 2431 - 2445 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Denmark
Blackwell Publishing Ltd
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is responsible for the ongoing global COVID‐19 pandemic. One possibility to control the pandemic is to induce sterilizing immunity through the induction and maintenance of neutralizing antibodies preventing SARS‐CoV‐2 from entering human cells to replicate in.
Methods
We report the construction and in vitro and in vivo characterization of a SARS‐CoV‐2 subunit vaccine (PreS‐RBD) based on a structurally folded recombinant fusion protein consisting of two SARS‐CoV‐2 Spike protein receptor‐binding domains (RBD) fused to the N‐ and C‐terminus of hepatitis B virus (HBV) surface antigen PreS to enable the two unrelated proteins serving as immunologic carriers for each other.
Results
PreS‐RBD, but not RBD alone, induced a robust and uniform RBD‐specific IgG response in rabbits. Currently available genetic SARS‐CoV‐2 vaccines induce mainly transient IgG1 responses in vaccinated subjects whereas the PreS‐RBD vaccine induced RBD‐specific IgG antibodies consisting of an early IgG1 and sustained IgG4 antibody response in a SARS‐CoV‐2 naive subject. PreS‐RBD‐specific IgG antibodies were detected in serum and mucosal secretions, reacted with SARS‐CoV‐2 variants, including the omicron variant of concern and the HBV receptor‐binding sites on PreS of currently known HBV genotypes. PreS‐RBD‐specific antibodies of the immunized subject more potently inhibited the interaction of RBD with its human receptor ACE2 and their virus‐neutralizing titers (VNTs) were higher than median VNTs in a random sample of healthy subjects fully immunized with registered SARS‐CoV‐2 vaccines or in COVID‐19 convalescent subjects.
Conclusion
The PreS‐RBD vaccine has the potential to serve as a combination vaccine for inducing sterilizing immunity against SARS‐CoV‐2 and HBV by stopping viral replication through the inhibition of cellular virus entry.
This study reports the design and characterization of a SARS‐CoV‐2 subunit vaccine (PreS‐RBD). PreS‐RBD, but not RBD alone, induces RBD‐specific IgG1 and long‐lasting IgG4 in serum and mucosal fluids, and cross‐reacts with SARS‐CoV‐2 variants of concern. PreS‐RBD‐specific antibodies of the immunized subject more potently inhibit the interaction of RBD with angiotensin converting enzyme 2 (ACE2), and their virus‐neutralizing titers are higher than median titers in a random sample of healthy subjects fully immunized with registered SARS‐CoV‐2 vaccines or in COVID‐19 convalescent subjects.Abbreviations: COVID‐19, coronavirus disease 2019; IgG, immunoglobulin G; HBV, hepatitis B virus; RBD, receptor‐binding domain; PreS, HVB domain; SARS‐CoV‐2, severe acute respiratory syndrome coronavirus 2 |
---|---|
AbstractList | BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is responsible for the ongoing global COVID‐19 pandemic. One possibility to control the pandemic is to induce sterilizing immunity through the induction and maintenance of neutralizing antibodies preventing SARS‐CoV‐2 from entering human cells to replicate in.MethodsWe report the construction and in vitro and in vivo characterization of a SARS‐CoV‐2 subunit vaccine (PreS‐RBD) based on a structurally folded recombinant fusion protein consisting of two SARS‐CoV‐2 Spike protein receptor‐binding domains (RBD) fused to the N‐ and C‐terminus of hepatitis B virus (HBV) surface antigen PreS to enable the two unrelated proteins serving as immunologic carriers for each other.ResultsPreS‐RBD, but not RBD alone, induced a robust and uniform RBD‐specific IgG response in rabbits. Currently available genetic SARS‐CoV‐2 vaccines induce mainly transient IgG1 responses in vaccinated subjects whereas the PreS‐RBD vaccine induced RBD‐specific IgG antibodies consisting of an early IgG1 and sustained IgG4 antibody response in a SARS‐CoV‐2 naive subject. PreS‐RBD‐specific IgG antibodies were detected in serum and mucosal secretions, reacted with SARS‐CoV‐2 variants, including the omicron variant of concern and the HBV receptor‐binding sites on PreS of currently known HBV genotypes. PreS‐RBD‐specific antibodies of the immunized subject more potently inhibited the interaction of RBD with its human receptor ACE2 and their virus‐neutralizing titers (VNTs) were higher than median VNTs in a random sample of healthy subjects fully immunized with registered SARS‐CoV‐2 vaccines or in COVID‐19 convalescent subjects.ConclusionThe PreS‐RBD vaccine has the potential to serve as a combination vaccine for inducing sterilizing immunity against SARS‐CoV‐2 and HBV by stopping viral replication through the inhibition of cellular virus entry. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the ongoing global COVID-19 pandemic. One possibility to control the pandemic is to induce sterilizing immunity through the induction and maintenance of neutralizing antibodies preventing SARS-CoV-2 from entering human cells to replicate in. We report the construction and in vitro and in vivo characterization of a SARS-CoV-2 subunit vaccine (PreS-RBD) based on a structurally folded recombinant fusion protein consisting of two SARS-CoV-2 Spike protein receptor-binding domains (RBD) fused to the N- and C-terminus of hepatitis B virus (HBV) surface antigen PreS to enable the two unrelated proteins serving as immunologic carriers for each other. PreS-RBD, but not RBD alone, induced a robust and uniform RBD-specific IgG response in rabbits. Currently available genetic SARS-CoV-2 vaccines induce mainly transient IgG responses in vaccinated subjects whereas the PreS-RBD vaccine induced RBD-specific IgG antibodies consisting of an early IgG and sustained IgG antibody response in a SARS-CoV-2 naive subject. PreS-RBD-specific IgG antibodies were detected in serum and mucosal secretions, reacted with SARS-CoV-2 variants, including the omicron variant of concern and the HBV receptor-binding sites on PreS of currently known HBV genotypes. PreS-RBD-specific antibodies of the immunized subject more potently inhibited the interaction of RBD with its human receptor ACE2 and their virus-neutralizing titers (VNTs) were higher than median VNTs in a random sample of healthy subjects fully immunized with registered SARS-CoV-2 vaccines or in COVID-19 convalescent subjects. The PreS-RBD vaccine has the potential to serve as a combination vaccine for inducing sterilizing immunity against SARS-CoV-2 and HBV by stopping viral replication through the inhibition of cellular virus entry. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the ongoing global COVID-19 pandemic. One possibility to control the pandemic is to induce sterilizing immunity through the induction and maintenance of neutralizing antibodies preventing SARS-CoV-2 from entering human cells to replicate in.BACKGROUNDSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the ongoing global COVID-19 pandemic. One possibility to control the pandemic is to induce sterilizing immunity through the induction and maintenance of neutralizing antibodies preventing SARS-CoV-2 from entering human cells to replicate in.We report the construction and in vitro and in vivo characterization of a SARS-CoV-2 subunit vaccine (PreS-RBD) based on a structurally folded recombinant fusion protein consisting of two SARS-CoV-2 Spike protein receptor-binding domains (RBD) fused to the N- and C-terminus of hepatitis B virus (HBV) surface antigen PreS to enable the two unrelated proteins serving as immunologic carriers for each other.METHODSWe report the construction and in vitro and in vivo characterization of a SARS-CoV-2 subunit vaccine (PreS-RBD) based on a structurally folded recombinant fusion protein consisting of two SARS-CoV-2 Spike protein receptor-binding domains (RBD) fused to the N- and C-terminus of hepatitis B virus (HBV) surface antigen PreS to enable the two unrelated proteins serving as immunologic carriers for each other.PreS-RBD, but not RBD alone, induced a robust and uniform RBD-specific IgG response in rabbits. Currently available genetic SARS-CoV-2 vaccines induce mainly transient IgG1 responses in vaccinated subjects whereas the PreS-RBD vaccine induced RBD-specific IgG antibodies consisting of an early IgG1 and sustained IgG4 antibody response in a SARS-CoV-2 naive subject. PreS-RBD-specific IgG antibodies were detected in serum and mucosal secretions, reacted with SARS-CoV-2 variants, including the omicron variant of concern and the HBV receptor-binding sites on PreS of currently known HBV genotypes. PreS-RBD-specific antibodies of the immunized subject more potently inhibited the interaction of RBD with its human receptor ACE2 and their virus-neutralizing titers (VNTs) were higher than median VNTs in a random sample of healthy subjects fully immunized with registered SARS-CoV-2 vaccines or in COVID-19 convalescent subjects.RESULTSPreS-RBD, but not RBD alone, induced a robust and uniform RBD-specific IgG response in rabbits. Currently available genetic SARS-CoV-2 vaccines induce mainly transient IgG1 responses in vaccinated subjects whereas the PreS-RBD vaccine induced RBD-specific IgG antibodies consisting of an early IgG1 and sustained IgG4 antibody response in a SARS-CoV-2 naive subject. PreS-RBD-specific IgG antibodies were detected in serum and mucosal secretions, reacted with SARS-CoV-2 variants, including the omicron variant of concern and the HBV receptor-binding sites on PreS of currently known HBV genotypes. PreS-RBD-specific antibodies of the immunized subject more potently inhibited the interaction of RBD with its human receptor ACE2 and their virus-neutralizing titers (VNTs) were higher than median VNTs in a random sample of healthy subjects fully immunized with registered SARS-CoV-2 vaccines or in COVID-19 convalescent subjects.The PreS-RBD vaccine has the potential to serve as a combination vaccine for inducing sterilizing immunity against SARS-CoV-2 and HBV by stopping viral replication through the inhibition of cellular virus entry.CONCLUSIONThe PreS-RBD vaccine has the potential to serve as a combination vaccine for inducing sterilizing immunity against SARS-CoV-2 and HBV by stopping viral replication through the inhibition of cellular virus entry. Background Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is responsible for the ongoing global COVID‐19 pandemic. One possibility to control the pandemic is to induce sterilizing immunity through the induction and maintenance of neutralizing antibodies preventing SARS‐CoV‐2 from entering human cells to replicate in. Methods We report the construction and in vitro and in vivo characterization of a SARS‐CoV‐2 subunit vaccine (PreS‐RBD) based on a structurally folded recombinant fusion protein consisting of two SARS‐CoV‐2 Spike protein receptor‐binding domains (RBD) fused to the N‐ and C‐terminus of hepatitis B virus (HBV) surface antigen PreS to enable the two unrelated proteins serving as immunologic carriers for each other. Results PreS‐RBD, but not RBD alone, induced a robust and uniform RBD‐specific IgG response in rabbits. Currently available genetic SARS‐CoV‐2 vaccines induce mainly transient IgG1 responses in vaccinated subjects whereas the PreS‐RBD vaccine induced RBD‐specific IgG antibodies consisting of an early IgG1 and sustained IgG4 antibody response in a SARS‐CoV‐2 naive subject. PreS‐RBD‐specific IgG antibodies were detected in serum and mucosal secretions, reacted with SARS‐CoV‐2 variants, including the omicron variant of concern and the HBV receptor‐binding sites on PreS of currently known HBV genotypes. PreS‐RBD‐specific antibodies of the immunized subject more potently inhibited the interaction of RBD with its human receptor ACE2 and their virus‐neutralizing titers (VNTs) were higher than median VNTs in a random sample of healthy subjects fully immunized with registered SARS‐CoV‐2 vaccines or in COVID‐19 convalescent subjects. Conclusion The PreS‐RBD vaccine has the potential to serve as a combination vaccine for inducing sterilizing immunity against SARS‐CoV‐2 and HBV by stopping viral replication through the inhibition of cellular virus entry. This study reports the design and characterization of a SARS‐CoV‐2 subunit vaccine (PreS‐RBD). PreS‐RBD, but not RBD alone, induces RBD‐specific IgG1 and long‐lasting IgG4 in serum and mucosal fluids, and cross‐reacts with SARS‐CoV‐2 variants of concern. PreS‐RBD‐specific antibodies of the immunized subject more potently inhibit the interaction of RBD with angiotensin converting enzyme 2 (ACE2), and their virus‐neutralizing titers are higher than median titers in a random sample of healthy subjects fully immunized with registered SARS‐CoV‐2 vaccines or in COVID‐19 convalescent subjects.Abbreviations: COVID‐19, coronavirus disease 2019; IgG, immunoglobulin G; HBV, hepatitis B virus; RBD, receptor‐binding domain; PreS, HVB domain; SARS‐CoV‐2, severe acute respiratory syndrome coronavirus 2 |
Author | Niespodziana, Katarzyna Hofer, Gerhard Karaulov, Alexander Stockinger, Hannes Ohradanova‐Repic, Anna Tancevski, Ivan Valenta, Rudolf Gebetsberger, Laura Khaitov, Musa Baumgartner, Isabella Tulaeva, Inna Kratzer, Bernhard Wiedermann, Ursula Borochova, Kristina Keller, Walter Pickl, Winfried F. Gattinger, Pia Garner‐Spitzer, Erika Trapin, Doris |
Author_xml | – sequence: 1 givenname: Pia orcidid: 0000-0001-6724-8543 surname: Gattinger fullname: Gattinger, Pia organization: Medical University of Vienna – sequence: 2 givenname: Bernhard orcidid: 0000-0003-1091-4327 surname: Kratzer fullname: Kratzer, Bernhard organization: Medical University of Vienna – sequence: 3 givenname: Inna orcidid: 0000-0002-5825-2687 surname: Tulaeva fullname: Tulaeva, Inna organization: Sechenov First Moscow State Medical University – sequence: 4 givenname: Katarzyna orcidid: 0000-0003-0700-965X surname: Niespodziana fullname: Niespodziana, Katarzyna organization: Karl Landsteiner University of Health Sciences – sequence: 5 givenname: Anna orcidid: 0000-0002-8005-8522 surname: Ohradanova‐Repic fullname: Ohradanova‐Repic, Anna organization: Medical University of Vienna – sequence: 6 givenname: Laura orcidid: 0000-0002-6480-6228 surname: Gebetsberger fullname: Gebetsberger, Laura organization: Medical University of Vienna – sequence: 7 givenname: Kristina surname: Borochova fullname: Borochova, Kristina organization: Medical University of Vienna – sequence: 8 givenname: Erika orcidid: 0000-0002-5283-0458 surname: Garner‐Spitzer fullname: Garner‐Spitzer, Erika organization: Medical University of Vienna – sequence: 9 givenname: Doris surname: Trapin fullname: Trapin, Doris organization: Medical University of Vienna – sequence: 10 givenname: Gerhard surname: Hofer fullname: Hofer, Gerhard organization: University of Stockholm – sequence: 11 givenname: Walter orcidid: 0000-0002-2261-958X surname: Keller fullname: Keller, Walter organization: University of Graz – sequence: 12 givenname: Isabella surname: Baumgartner fullname: Baumgartner, Isabella organization: Medical University Vienna – sequence: 13 givenname: Ivan orcidid: 0000-0001-5116-8960 surname: Tancevski fullname: Tancevski, Ivan organization: Medical University of Innsbruck – sequence: 14 givenname: Musa orcidid: 0000-0003-4961-9640 surname: Khaitov fullname: Khaitov, Musa organization: Pirogov Russian National Research Medical University – sequence: 15 givenname: Alexander surname: Karaulov fullname: Karaulov, Alexander organization: Sechenov First Moscow State Medical University – sequence: 16 givenname: Hannes orcidid: 0000-0001-6404-4430 surname: Stockinger fullname: Stockinger, Hannes organization: Medical University of Vienna – sequence: 17 givenname: Ursula orcidid: 0000-0002-1302-3223 surname: Wiedermann fullname: Wiedermann, Ursula organization: Medical University of Vienna – sequence: 18 givenname: Winfried F. orcidid: 0000-0003-0430-4952 surname: Pickl fullname: Pickl, Winfried F. organization: Karl Landsteiner University of Health Sciences – sequence: 19 givenname: Rudolf orcidid: 0000-0001-5944-3365 surname: Valenta fullname: Valenta, Rudolf email: rudolf.valenta@meduniwien.ac.at organization: NRC Institute of Immunology FMBA of Russia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35357709$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc-OFCEQxolZ486uHnwBQ-JFD71LN013c5xM_JdMonF0r4SGQtnQMAK9m_HkExif0SeRcWYvG4WEqsDv-1JUnaETHzwg9LQmF3VZl9K5i5pRwh6gRU35UHHO2QlakJqwqmV0OEVnKV0TQvqGk0folDLK-p7wBfp5JZWyHvAoE2gcPDbB6ZJFULDNIeLRem39F6zDJK3__ePXhwgbbOZkC7yNIYP1-Nbmr3hbcp-tdDgHXFSzApwyROvs972DnabZ27zbP2-WHzfFaxWuytngGxmt9Dk9Rg-NdAmeHOM5-vz61afV22r9_s271XJdKUooqwaqeTf2yjDoANqh6Tpa6m20Ma0yWmrWGUZbNYCEclN3WjadhtGYXtVs6Og5enHwLR_4NkPKYrJJgXPSQ5iTaLqWDaxvyB59fg-9DnP0pbpCcU7KboZCPTtS8ziBFttoJxl34q7TBbg8ACqGlCIYoWyWuTQxR2mdqInYz1KUWYq_syyKl_cUd6b_Yo_ut9bB7v-gWK7XB8UfxxezBQ |
CitedBy_id | crossref_primary_10_1111_all_16210 crossref_primary_10_3390_vaccines12010100 crossref_primary_10_1111_all_15593 crossref_primary_10_3389_fimmu_2025_1452814 crossref_primary_10_3390_vaccines12101123 crossref_primary_10_3389_fimmu_2022_958581 crossref_primary_10_3390_vaccines11040874 crossref_primary_10_1186_s43141_023_00472_2 crossref_primary_10_3390_vaccines12040377 crossref_primary_10_1002_nadc_20244140285 crossref_primary_10_1016_j_intimp_2024_113362 crossref_primary_10_1111_all_15502 crossref_primary_10_3390_ijms24065352 crossref_primary_10_3390_vaccines12030229 crossref_primary_10_1111_all_15406 crossref_primary_10_1002_jmv_29625 crossref_primary_10_3390_ijms24065104 crossref_primary_10_1016_j_ccell_2022_04_003 crossref_primary_10_1080_14760584_2023_2211153 crossref_primary_10_3389_fimmu_2024_1325998 crossref_primary_10_1016_j_ebiom_2023_104574 |
Cites_doi | 10.1056/NEJMoa2110475 10.1016/j.jaci.2017.10.010 10.1111/all.14300 10.1126/science.1144603 10.1016/j.ebiom.2016.07.023 10.1056/NEJM199908123410702 10.1056/NEJMoa2104840 10.1016/j.ebiom.2016.08.022 10.1038/s41591-021-01294-w 10.1111/all.14908 10.1016/j.ebiom.2019.11.006 10.1111/all.15187 10.1016/j.ebiom.2020.102953 10.1038/s41586-020-2814-7 10.1002/jmv.27516 10.1056/NEJMc2032195 10.1038/s41598-020-78711-6 10.1038/nri1934 10.1053/j.gastro.2013.12.024 10.1016/j.ebiom.2016.07.032 10.1111/all.14714 10.1111/all.15066 10.1093/cid/ciab1041 10.1016/S0140-6736(21)02844-0 10.1111/all.15142 10.1038/s41577-020-00479-7 10.1111/all.14711 10.1016/j.jim.2010.12.008 10.1186/1743-422X-10-239 10.1016/j.imlet.2017.04.015 10.1016/j.jaci.2005.04.003 10.3201/eid2802.212422 10.1016/j.jhep.2010.10.019 10.1038/s41591-021-01556-7 10.4049/jimmunol.0713622 10.1056/NEJMoa2109908 10.1016/j.jaci.2011.02.004 10.1016/j.jaci.2018.09.039 10.1093/ehjqcco/qcab090 10.3390/jcm10245876 10.1111/all.15264 10.1111/all.14523 10.1001/jamacardio.2021.3471 10.1056/NEJMoa2105385 10.1084/jem.132.2.283 10.1016/j.jaci.2010.12.1080 10.1038/s41541-021-00369-6 10.1101/2021.12.08.21267417 10.1016/j.jaci.2017.09.052 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd. 2022 The Authors. Allergy published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd. – notice: 2022 The Authors. Allergy published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 H94 K9. 7X8 |
DOI | 10.1111/all.15305 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts MEDLINE - Academic |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1398-9995 |
EndPage | 2445 |
ExternalDocumentID | 35357709 10_1111_all_15305 ALL15305 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Austrian Science Fund funderid: DK‐W1248; P29398; P34253‐B – fundername: Danube Allergy Research Cluster of Lower Austria funderid: 330950005 – fundername: Viravaxx AG |
GroupedDBID | .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 23M 24P 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8F7 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAKAS AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOETA ATUGU AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D P6G PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TR2 UB1 V9Y W8V W99 WBKPD WHWMO WIH WIJ WIK WIN WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR XG1 Y6R ZGI ZXP ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7T5 H94 K9. 7X8 |
ID | FETCH-LOGICAL-c3035-83d96b7cf5e6ee482663ece2dff4cfdad56f534c8eaef4c16da26debff7c15863 |
IEDL.DBID | DR2 |
ISSN | 0105-4538 1398-9995 |
IngestDate | Thu Jul 10 23:18:25 EDT 2025 Mon Jul 14 08:19:39 EDT 2025 Mon Jul 21 06:01:28 EDT 2025 Thu Apr 24 23:03:12 EDT 2025 Tue Jul 01 02:54:29 EDT 2025 Wed Jan 22 16:23:41 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | COVID-19 neutralizing antibodies SARS-CoV-2 vaccine antibody response sterilizing immunity |
Language | English |
License | Attribution 2022 The Authors. Allergy published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3035-83d96b7cf5e6ee482663ece2dff4cfdad56f534c8eaef4c16da26debff7c15863 |
Notes | Funding information This study was supported by grants from Austrian Science Fund, Grant numbers: DK‐W1248 and P29398; Viravaxx AG; and Danube Allergy Research Cluster of Lower Austria, Grant number: 330950005. AOR and HS also acknowledge funding by the Austrian Science Fund (FWF, grant number P34253‐B). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5825-2687 0000-0001-6724-8543 0000-0002-1302-3223 0000-0002-8005-8522 0000-0001-5116-8960 0000-0002-2261-958X 0000-0003-0700-965X 0000-0002-6480-6228 0000-0003-0430-4952 0000-0001-5944-3365 0000-0003-1091-4327 0000-0002-5283-0458 0000-0003-4961-9640 0000-0001-6404-4430 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fall.15305 |
PMID | 35357709 |
PQID | 2699090928 |
PQPubID | 34098 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2645857206 proquest_journals_2699090928 pubmed_primary_35357709 crossref_citationtrail_10_1111_all_15305 crossref_primary_10_1111_all_15305 wiley_primary_10_1111_all_15305_ALL15305 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2022 2022-08-00 20220801 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
PublicationDecade | 2020 |
PublicationPlace | Denmark |
PublicationPlace_xml | – name: Denmark – name: Zurich |
PublicationTitle | Allergy (Copenhagen) |
PublicationTitleAlternate | Allergy |
PublicationYear | 2022 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2018; 142 2021; 27 2021; 6 2021; 21 2019; 50 2022; 94 2009; 182 2021; 28 2005; 116 1999; 341 2011; 55 2020; 59 2006; 6 2021; 384 2020; 586 2021; 385 2020; 10 2021; 74 2022; 399 2016; 11 2019; 143 1970; 132 2011; 127 2021; 76 2021; 10 2007; 317 2013; 10 2021 2017; 140 2022; 77 2017; 189 2011; 365 2014; 146 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 Steindl‐Munda PE (e_1_2_9_44_1) 2021; 74 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 27 start-page: 717 issue: 4 year: 2021 end-page: 726 article-title: Resistance of SARS‐CoV‐2 variants to neutralization by monoclonal and serum‐derived polyclonal antibodies publication-title: Nat Med – volume: 399 start-page: 234 issue: 10321 year: 2022 end-page: 236 article-title: Reduced neutralisation of SARS‐CoV‐2 omicron B.1.1.529 variant by post‐immunisation serum publication-title: Lancet – year: 2021 article-title: Neutralization of SARS‐CoV‐2 Omicron variant by sera from BNT162b2 or Coronavac vaccine recipients publication-title: Clin Infect Dis – volume: 10 start-page: 21779 issue: 1 year: 2020 article-title: Structural and functional comparison of SARS‐CoV‐2‐spike receptor binding domain produced in Pichia pastoris and mammalian cells publication-title: Sci Rep – volume: 11 start-page: 58 year: 2016 end-page: 67 article-title: Immunotherapy with the PreS‐based Grass pollen allergy vaccine BM32 induces antibody responses protecting against hepatitis B infection publication-title: EBioMedicine – volume: 6 start-page: 1446 issue: 12 year: 2021 end-page: 1450 article-title: Association of myocarditis with BNT162b2 messenger RNA COVID‐19 vaccine in a case series of children publication-title: JAMA Cardiol – year: 2021 article-title: SARS‐CoV‐2 Omicron has extensive but incomplete escape of Pfizer BNT162b2 elicited neutralization and requires ACE2 for infection publication-title: medRxiv – volume: 77 start-page: 1658 issue: 6 year: 2022 end-page: 1660 article-title: The form of PEG matters: PEG conjugated with lipids and not PEG alone could be the specific form involved in allergic reactions to COVID‐19 vaccines publication-title: Allergy – volume: 76 start-page: 3627 issue: 12 year: 2021 end-page: 3641 article-title: The role of allergen‐specific IgE, IgG and IgA in allergic disease publication-title: Allergy – volume: 55 start-page: 29 issue: 1 year: 2011 end-page: 37 article-title: N‐terminal myristoylation‐dependent masking of neutralizing epitopes in the preS1 attachment site of hepatitis B virus publication-title: J Hepatol – volume: 6 start-page: 761 issue: 10 year: 2006 end-page: 771 article-title: Immunological mechanisms of allergen‐specific immunotherapy publication-title: Nat Rev Immunol – volume: 76 start-page: 878 issue: 3 year: 2021 end-page: 883 article-title: Antibodies in serum of convalescent patients following mild COVID‐19 do not always prevent virus‐receptor binding publication-title: Allergy – volume: 77 start-page: 1885 issue: 6 year: 2022 end-page: 1894 article-title: Receptor binding domain‐IgG levels correlate with protection in residents facing SARS‐CoV‐2 B.1.1.7 outbreaks publication-title: Allergy – volume: 6 start-page: 104 issue: 1 year: 2021 article-title: Distinguishing features of current COVID‐19 vaccines: knowns and unknowns of antigen presentation and modes of action publication-title: NPJ Vaccines – volume: 132 start-page: 283 issue: 2 year: 1970 end-page: 299 article-title: Carrier function in anti‐hapten immune responses. II. Specific properties of carrier cells capable of enhancing anti‐hapten antibody responses publication-title: J Exp Med – volume: 384 start-page: 80 issue: 1 year: 2021 end-page: 82 article-title: Durability of responses after SARS‐CoV‐2 mRNA‐1273 vaccination publication-title: N Engl J Med – volume: 127 start-page: 509 issue: 2 year: 2011 end-page: 516.e5165 article-title: Long‐term tolerance after allergen immunotherapy is accompanied by selective persistence of blocking antibodies publication-title: J Allergy Clin Immunol – volume: 116 start-page: 347 issue: 2 year: 2005 end-page: 354 article-title: Allergen‐specific nasal IgG antibodies induced by vaccination with genetically modified allergens are associated with reduced nasal allergen sensitivity publication-title: J Allergy Clin Immunol – volume: 10 start-page: 5876 issue: 24 year: 2021 article-title: Autopsy findings and causality relationship between death and COVID‐19 vaccination: a systematic review publication-title: J Clin Med – volume: 76 start-page: 131 issue: 1 year: 2021 end-page: 149 article-title: Past, present, and future of allergen immunotherapy vaccines publication-title: Allergy – volume: 317 start-page: 1554 issue: 5844 year: 2007 end-page: 1557 article-title: Anti‐inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange publication-title: Science – volume: 385 start-page: 1078 issue: 12 year: 2021 end-page: 1090 article-title: Safety of the BNT162b2 mRNA Covid‐19 vaccine in a nationwide setting publication-title: N Engl J Med – volume: 21 start-page: 83 issue: 2 year: 2021 end-page: 100 article-title: A guide to vaccinology: from basic principles to new developments publication-title: Nat Rev Immunol – volume: 140 start-page: 1485 issue: 6 year: 2017 end-page: 1498 article-title: Mechanisms of allergen immunotherapy for inhaled allergens and predictive biomarkers publication-title: J Allergy Clin Immunol – volume: 127 start-page: 1562 issue: 6 year: 2011 end-page: 70.e6 article-title: A hypoallergenic cat vaccine based on Fel d 1‐derived peptides fused to hepatitis B PreS publication-title: J Allergy Clin Immunol – volume: 189 start-page: 19 year: 2017 end-page: 26 article-title: Recombinant allergy vaccines based on allergen‐derived B cell epitopes publication-title: Immunol Lett – volume: 74 start-page: 522A year: 2021 end-page: 523A article-title: VVX001 induces robust Pre‐S‐specific immunity in patients chronically infected with Hepatitis B publication-title: Hepatology – volume: 50 start-page: 421 year: 2019 end-page: 432 article-title: Two years of treatment with the recombinant grass pollen allergy vaccine BM32 induces a continuously increasing allergen‐specific IgG response publication-title: EBioMedicine – volume: 586 start-page: 594 issue: 7830 year: 2020 end-page: 599 article-title: COVID‐19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses publication-title: Nature – volume: 77 start-page: 1616 issue: 5 year: 2022 end-page: 1620 article-title: Omicron: a SARS‐CoV‐2 variant of real concern publication-title: Allergy – volume: 182 start-page: 6298 issue: 10 year: 2009 end-page: 6306 article-title: A combination vaccine for allergy and rhinovirus infections based on rhinovirus‐derived surface protein VP1 and a nonallergenic peptide of the major timothy grass pollen allergen Phl p 1 publication-title: J Immunol – volume: 385 start-page: 1680 issue: 18 year: 2021 end-page: 1689 article-title: Clinical features of vaccine‐induced immune thrombocytopenia and thrombosis publication-title: N Engl J Med – volume: 341 start-page: 468 issue: 7 year: 1999 end-page: 475 article-title: Long‐term clinical efficacy of grass‐pollen immunotherapy publication-title: N Engl J Med – volume: 94 start-page: 1728 issue: 4 year: 2022 end-page: 1733 article-title: Sequence analysis of the emerging SARS‐CoV‐2 variant Omicron in South Africa publication-title: J Med Virol – volume: 76 start-page: 1617 issue: 6 year: 2021 end-page: 1618 article-title: Allergic reactions to the first COVID‐19 vaccine: a potential role of polyethylene glycol? publication-title: Allergy – volume: 384 start-page: 2092 issue: 22 year: 2021 end-page: 2101 article-title: Thrombotic thrombocytopenia after ChAdOx1 nCov‐19 vaccination publication-title: N Engl J Med – volume: 10 start-page: 239 issue: 1 year: 2013 article-title: Medical virology of hepatitis B: how it began and where we are now publication-title: Virol J – volume: 142 start-page: 497 issue: 2 year: 2018 end-page: 509.e9 article-title: Safety and efficacy of immunotherapy with the recombinant B‐cell epitope‐based grass pollen vaccine BM32 publication-title: J Allergy Clin Immunol – volume: 77 start-page: 230 issue: 1 year: 2022 end-page: 242 article-title: Neutralization of SARS‐CoV‐2 requires antibodies against conformational receptor‐binding domain epitopes publication-title: Allergy – volume: 59 start-page: 102953 year: 2020 article-title: Quantification, epitope mapping and genotype cross‐reactivity of hepatitis B preS‐specific antibodies in subjects vaccinated with different dosage regimens of BM32 publication-title: EBioMedicine – volume: 27 start-page: 2144 issue: 12 year: 2021 end-page: 2153 article-title: Neurological complications after first dose of COVID‐19 vaccines and SARS‐CoV‐2 infection publication-title: Nat Med – volume: 28 issue: 2 year: 2021 article-title: Probable transmission of SARS‐CoV‐2 omicron variant in quarantine Hotel, Hong Kong, China, November 2021 publication-title: Emerg Infect Dis – volume: 143 start-page: 1067 issue: 3 year: 2019 end-page: 1076 article-title: Nasal allergen‐neutralizing IgG4 antibodies block IgE‐mediated responses: novel biomarker of subcutaneous grass pollen immunotherapy publication-title: J Allergy Clin Immunol – volume: 384 start-page: 2202 issue: 23 year: 2021 end-page: 2211 article-title: Pathologic antibodies to platelet factor 4 after ChAdOx1 nCoV‐19 vaccination publication-title: N Engl J Med – year: 2021 article-title: Myocarditis and pericarditis in adolescents after first and second doses of mRNA COVID‐19 vaccines publication-title: Eur Heart J Qual Care Clin Outcomes – volume: 146 start-page: 1070 issue: 4 year: 2014 end-page: 1083 article-title: Hepatitis B and D viruses exploit sodium taurocholate co‐transporting polypeptide for species‐specific entry into hepatocytes publication-title: Gastroenterology – volume: 11 start-page: 5 year: 2016 end-page: 6 article-title: Development of an allergy immunotherapy leads to a new type of hepatitis B vaccine publication-title: EBioMedicine – volume: 76 start-page: 1922 issue: 6 year: 2021 end-page: 1924 article-title: SARS‐CoV‐2 candidate vaccines ‐ composition, mechanisms of action and stages of clinical development publication-title: Allergy – volume: 11 start-page: 43 year: 2016 end-page: 57 article-title: Mechanisms, safety and efficacy of a B cell epitope‐based vaccine for immunotherapy of grass pollen allergy publication-title: EBioMedicine – volume: 365 start-page: 67 issue: 1–2 year: 2011 end-page: 75 article-title: Plasmablast‐derived polyclonal antibody response after influenza vaccination publication-title: J Immunol Methods – ident: e_1_2_9_10_1 doi: 10.1056/NEJMoa2110475 – ident: e_1_2_9_46_1 doi: 10.1016/j.jaci.2017.10.010 – ident: e_1_2_9_49_1 doi: 10.1111/all.14300 – ident: e_1_2_9_52_1 doi: 10.1126/science.1144603 – ident: e_1_2_9_30_1 doi: 10.1016/j.ebiom.2016.07.023 – ident: e_1_2_9_34_1 doi: 10.1056/NEJM199908123410702 – ident: e_1_2_9_7_1 doi: 10.1056/NEJMoa2104840 – ident: e_1_2_9_42_1 doi: 10.1016/j.ebiom.2016.08.022 – ident: e_1_2_9_17_1 doi: 10.1038/s41591-021-01294-w – ident: e_1_2_9_47_1 doi: 10.1111/all.14908 – ident: e_1_2_9_36_1 doi: 10.1016/j.ebiom.2019.11.006 – ident: e_1_2_9_14_1 doi: 10.1111/all.15187 – ident: e_1_2_9_31_1 doi: 10.1016/j.ebiom.2020.102953 – ident: e_1_2_9_3_1 doi: 10.1038/s41586-020-2814-7 – ident: e_1_2_9_18_1 doi: 10.1002/jmv.27516 – volume: 74 start-page: 522A year: 2021 ident: e_1_2_9_44_1 article-title: VVX001 induces robust Pre‐S‐specific immunity in patients chronically infected with Hepatitis B publication-title: Hepatology – ident: e_1_2_9_4_1 doi: 10.1056/NEJMc2032195 – ident: e_1_2_9_45_1 doi: 10.1038/s41598-020-78711-6 – ident: e_1_2_9_5_1 – ident: e_1_2_9_33_1 doi: 10.1038/nri1934 – ident: e_1_2_9_40_1 doi: 10.1053/j.gastro.2013.12.024 – ident: e_1_2_9_41_1 doi: 10.1016/j.ebiom.2016.07.032 – ident: e_1_2_9_2_1 doi: 10.1111/all.14714 – ident: e_1_2_9_25_1 doi: 10.1111/all.15066 – ident: e_1_2_9_22_1 doi: 10.1093/cid/ciab1041 – ident: e_1_2_9_23_1 doi: 10.1016/S0140-6736(21)02844-0 – ident: e_1_2_9_26_1 doi: 10.1111/all.15142 – ident: e_1_2_9_27_1 doi: 10.1038/s41577-020-00479-7 – ident: e_1_2_9_13_1 doi: 10.1111/all.14711 – ident: e_1_2_9_48_1 doi: 10.1016/j.jim.2010.12.008 – ident: e_1_2_9_28_1 doi: 10.1186/1743-422X-10-239 – ident: e_1_2_9_39_1 doi: 10.1016/j.imlet.2017.04.015 – ident: e_1_2_9_50_1 doi: 10.1016/j.jaci.2005.04.003 – ident: e_1_2_9_19_1 doi: 10.3201/eid2802.212422 – ident: e_1_2_9_29_1 doi: 10.1016/j.jhep.2010.10.019 – ident: e_1_2_9_15_1 doi: 10.1038/s41591-021-01556-7 – ident: e_1_2_9_37_1 doi: 10.4049/jimmunol.0713622 – ident: e_1_2_9_9_1 doi: 10.1056/NEJMoa2109908 – ident: e_1_2_9_38_1 doi: 10.1016/j.jaci.2011.02.004 – ident: e_1_2_9_51_1 doi: 10.1016/j.jaci.2018.09.039 – ident: e_1_2_9_12_1 doi: 10.1093/ehjqcco/qcab090 – ident: e_1_2_9_16_1 doi: 10.3390/jcm10245876 – ident: e_1_2_9_21_1 doi: 10.1111/all.15264 – ident: e_1_2_9_24_1 doi: 10.1111/all.14523 – ident: e_1_2_9_11_1 doi: 10.1001/jamacardio.2021.3471 – ident: e_1_2_9_8_1 doi: 10.1056/NEJMoa2105385 – ident: e_1_2_9_32_1 doi: 10.1084/jem.132.2.283 – ident: e_1_2_9_35_1 doi: 10.1016/j.jaci.2010.12.1080 – ident: e_1_2_9_6_1 doi: 10.1038/s41541-021-00369-6 – ident: e_1_2_9_20_1 doi: 10.1101/2021.12.08.21267417 – ident: e_1_2_9_43_1 doi: 10.1016/j.jaci.2017.09.052 |
SSID | ssj0007290 |
Score | 2.471116 |
Snippet | Background
Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is responsible for the ongoing global COVID‐19 pandemic. One possibility to control the... Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the ongoing global COVID-19 pandemic. One possibility to control the pandemic... BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is responsible for the ongoing global COVID‐19 pandemic. One possibility to control the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2431 |
SubjectTerms | ACE2 Angiotensin-converting enzyme 2 Animals Antibodies Antibodies, Neutralizing Antibodies, Viral Antibody response Binding sites Coronaviruses COVID-19 COVID-19 - prevention & control COVID-19 vaccines COVID-19 Vaccines - immunology Fusion protein Genotypes Hepatitis B Humans Immunity Immunoglobulin G Mucosa neutralizing antibodies Pandemics Pandemics - prevention & control Proteins Rabbits SARS-CoV-2 Secretions Severe acute respiratory syndrome coronavirus 2 Spike Glycoprotein, Coronavirus - immunology Spike protein sterilizing immunity vaccine Vaccines Viruses |
Title | Vaccine based on folded receptor binding domain‐PreS fusion protein with potential to induce sterilizing immunity to SARS‐CoV‐2 variants |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fall.15305 https://www.ncbi.nlm.nih.gov/pubmed/35357709 https://www.proquest.com/docview/2699090928 https://www.proquest.com/docview/2645857206 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpDqWXvh_bpkEtPfSyy66eXnpaQkMoSQnZJuRQMHqCiWsvibfQnPoLSn9jf0ln5EebPqAUgxHWyJalGWlGmvlEyAs3DcJJMFO5tGCgaMPGxiDurTCcM5Nxn8LFDt6qvWPx5lSebpBXfSxMiw8xLLihZKTxGgXc2IufhNyU5QTENeGXoq8WKkRHP6CjdLe-AvrDWIBUd6hC6MUzlLw6F_2mYF7VV9OEs3uLvO-r2vqZnE3WjZ24y19QHP_zX26Tm50iShct59whG6G6S64fdFvt98iXE-MwRXGe87SuaKxLDykYIsMKLHVqixQRQ339wRTVt89fD8_DksY1rr_RhP9QVBTXeekK0hUMJSVtagqlgJ0oAjQUZXGJbyhSkErzCbOXi6MlvGunPoE7ox_BlkdXnfvkePf1u529cXd4w9hxhMGEXp4rq12UQYUgwIpRHOrHfIzCRW-8VFFy4bJgAjyZKW-Y8sHGqN1MZoo_IJtVXYVHhE69AEI183MbhLagcmYyRuu4mzvLrR6Rl3035q5DNscDNsq8t3CgffPUviPyfCBdtXAefyLa6nkh7yT6ImcK5m24WDYiz4ZskEXcYDFVqNdII8D60myqRuRhy0PDV7jkUuvpHCqbOOHvn88X-_sp8fjfSZ-QGwzjMpJn4hbZbM7X4SloS43dJteYONxOwvEdI3sWDw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zi9RAEG6WFdQX72N01VZ88GWGmb6SAV-GxWXUmUV2dpd9kdAnBGMyrBnBffIXiL_RX2JV59D1AJFAaJLqTidd1XWk62tCntqxF1aCm8qlAQcl0WyoNeLeCs050yl3MV1sua_mR-LViTzZIs-7XJgGH6IPuKFkxPkaBRwD0j9JuS6KEcgrAphewB29o0N18AM8KmkjLGBBDAXIdYsrhOt4-qrntdFvJuZ5izWqnL2r5G3X2WalybvRpjYje_YLjuP_vs01cqW1RemsYZ7rZMuXN8jFZfu3_Sb5cqwtliiqOkerkoaqcFCCWdKvwVmnJo9JMdRV73Vefvv89c2pX9GwwRAcjRAQeUkx1EvXUC5hNiloXVGoBRxFEaMhL_IzbCGPeSr1J7y9mh2soK3d6hjOjH4Edx5X69wiR3svDnfnw3b_hqHliIQJAz1VJrFBeuW9AEdGcegfcyEIG5x2UgXJhU299nBlopxmynkTQmInMlX8Ntkuq9LfJXTsBBCqiZsaLxIDVmcqQzCW26k13CQD8qwbx8y24Oa4x0aRdU4OfN8sft8BedKTrhtEjz8R7XTMkLVC_SFjClQ3HCwdkMf9bRBH_MeiS19tkEaAA5awsRqQOw0T9U_hksskGU-hs5EV_v74bLZYxMK9fyd9RC7ND5eLbPFy__V9cplhmkZcqLhDtuvTjX8AxlNtHkYZ-Q7N-hlT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA6lQvHF1vvaqlF88GWX2cllZvFpaV2qbkvp2tIHYcgVBqczS50V7JO_QPyN_hLPyVy0XkBkYAiTk8sk5yTnJDlfCHlmIseNADOVCQ0GSqLioVKIe8sVY7FKmQ3uYgeHcv-Evz4TZ2vkRecL0-BD9AtuKBlhvEYBX1r_k5CrohiBuCJ-6TUuoxRZeu_4B3ZU0i6wgAIx5CDWLawQHuPpk16djH7TMK8qrGHGmW2Sd11dm4Mm70erWo_M5S8wjv_5M1vkRquJ0mnDOjfJmitvkY2Ddq_9NvlyqgyGKE50llYl9VVhIQRjpFuCqU51HlxiqK3OVV5--_z16MItqF_hAhwNABB5SXGhly4hXMJYUtC6opAK-IkiQkNe5JeYQx68VOpPGL2YHi8gr93qFN4x_QjGPJ7VuUNOZi_f7u4P29sbhoYhDiZ080TqxHjhpHMczBjJoH6x9Z4bb5UV0gvGTeqUgy9jaVUsrdPeJ2YsUsnukvWyKt19QiPLgVCO7UQ7nmjQOVPhvTbMTIxmOhmQ5103ZqaFNscbNoqsM3GgfbPQvgPytCddNngefyLa6Xgha0X6QxZLmLjhidMBedJHgzDiDosqXbVCGg7mVxJHckDuNTzUl8IEE0kSTaCygRP-Xnw2nc9D4MG_kz4mG0d7s2z-6vDNNrkeo49GOKW4Q9bri5V7CJpTrR8FCfkOnckYCw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vaccine+based+on+folded+receptor+binding+domain-PreS+fusion+protein+with+potential+to+induce+sterilizing+immunity+to+SARS-CoV-2+variants&rft.jtitle=Allergy+%28Copenhagen%29&rft.au=Gattinger%2C+Pia&rft.au=Kratzer%2C+Bernhard&rft.au=Tulaeva%2C+Inna&rft.au=Niespodziana%2C+Katarzyna&rft.date=2022-08-01&rft.eissn=1398-9995&rft.volume=77&rft.issue=8&rft.spage=2431&rft_id=info:doi/10.1111%2Fall.15305&rft_id=info%3Apmid%2F35357709&rft.externalDocID=35357709 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0105-4538&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0105-4538&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0105-4538&client=summon |