Vaccine based on folded receptor binding domain‐PreS fusion protein with potential to induce sterilizing immunity to SARS‐CoV‐2 variants

Background Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is responsible for the ongoing global COVID‐19 pandemic. One possibility to control the pandemic is to induce sterilizing immunity through the induction and maintenance of neutralizing antibodies preventing SARS‐CoV‐2 from enter...

Full description

Saved in:
Bibliographic Details
Published inAllergy (Copenhagen) Vol. 77; no. 8; pp. 2431 - 2445
Main Authors Gattinger, Pia, Kratzer, Bernhard, Tulaeva, Inna, Niespodziana, Katarzyna, Ohradanova‐Repic, Anna, Gebetsberger, Laura, Borochova, Kristina, Garner‐Spitzer, Erika, Trapin, Doris, Hofer, Gerhard, Keller, Walter, Baumgartner, Isabella, Tancevski, Ivan, Khaitov, Musa, Karaulov, Alexander, Stockinger, Hannes, Wiedermann, Ursula, Pickl, Winfried F., Valenta, Rudolf
Format Journal Article
LanguageEnglish
Published Denmark Blackwell Publishing Ltd 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is responsible for the ongoing global COVID‐19 pandemic. One possibility to control the pandemic is to induce sterilizing immunity through the induction and maintenance of neutralizing antibodies preventing SARS‐CoV‐2 from entering human cells to replicate in. Methods We report the construction and in vitro and in vivo characterization of a SARS‐CoV‐2 subunit vaccine (PreS‐RBD) based on a structurally folded recombinant fusion protein consisting of two SARS‐CoV‐2 Spike protein receptor‐binding domains (RBD) fused to the N‐ and C‐terminus of hepatitis B virus (HBV) surface antigen PreS to enable the two unrelated proteins serving as immunologic carriers for each other. Results PreS‐RBD, but not RBD alone, induced a robust and uniform RBD‐specific IgG response in rabbits. Currently available genetic SARS‐CoV‐2 vaccines induce mainly transient IgG1 responses in vaccinated subjects whereas the PreS‐RBD vaccine induced RBD‐specific IgG antibodies consisting of an early IgG1 and sustained IgG4 antibody response in a SARS‐CoV‐2 naive subject. PreS‐RBD‐specific IgG antibodies were detected in serum and mucosal secretions, reacted with SARS‐CoV‐2 variants, including the omicron variant of concern and the HBV receptor‐binding sites on PreS of currently known HBV genotypes. PreS‐RBD‐specific antibodies of the immunized subject more potently inhibited the interaction of RBD with its human receptor ACE2 and their virus‐neutralizing titers (VNTs) were higher than median VNTs in a random sample of healthy subjects fully immunized with registered SARS‐CoV‐2 vaccines or in COVID‐19 convalescent subjects. Conclusion The PreS‐RBD vaccine has the potential to serve as a combination vaccine for inducing sterilizing immunity against SARS‐CoV‐2 and HBV by stopping viral replication through the inhibition of cellular virus entry. This study reports the design and characterization of a SARS‐CoV‐2 subunit vaccine (PreS‐RBD). PreS‐RBD, but not RBD alone, induces RBD‐specific IgG1 and long‐lasting IgG4 in serum and mucosal fluids, and cross‐reacts with SARS‐CoV‐2 variants of concern. PreS‐RBD‐specific antibodies of the immunized subject more potently inhibit the interaction of RBD with angiotensin converting enzyme 2 (ACE2), and their virus‐neutralizing titers are higher than median titers in a random sample of healthy subjects fully immunized with registered SARS‐CoV‐2 vaccines or in COVID‐19 convalescent subjects.Abbreviations: COVID‐19, coronavirus disease 2019; IgG, immunoglobulin G; HBV, hepatitis B virus; RBD, receptor‐binding domain; PreS, HVB domain; SARS‐CoV‐2, severe acute respiratory syndrome coronavirus 2
AbstractList BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is responsible for the ongoing global COVID‐19 pandemic. One possibility to control the pandemic is to induce sterilizing immunity through the induction and maintenance of neutralizing antibodies preventing SARS‐CoV‐2 from entering human cells to replicate in.MethodsWe report the construction and in vitro and in vivo characterization of a SARS‐CoV‐2 subunit vaccine (PreS‐RBD) based on a structurally folded recombinant fusion protein consisting of two SARS‐CoV‐2 Spike protein receptor‐binding domains (RBD) fused to the N‐ and C‐terminus of hepatitis B virus (HBV) surface antigen PreS to enable the two unrelated proteins serving as immunologic carriers for each other.ResultsPreS‐RBD, but not RBD alone, induced a robust and uniform RBD‐specific IgG response in rabbits. Currently available genetic SARS‐CoV‐2 vaccines induce mainly transient IgG1 responses in vaccinated subjects whereas the PreS‐RBD vaccine induced RBD‐specific IgG antibodies consisting of an early IgG1 and sustained IgG4 antibody response in a SARS‐CoV‐2 naive subject. PreS‐RBD‐specific IgG antibodies were detected in serum and mucosal secretions, reacted with SARS‐CoV‐2 variants, including the omicron variant of concern and the HBV receptor‐binding sites on PreS of currently known HBV genotypes. PreS‐RBD‐specific antibodies of the immunized subject more potently inhibited the interaction of RBD with its human receptor ACE2 and their virus‐neutralizing titers (VNTs) were higher than median VNTs in a random sample of healthy subjects fully immunized with registered SARS‐CoV‐2 vaccines or in COVID‐19 convalescent subjects.ConclusionThe PreS‐RBD vaccine has the potential to serve as a combination vaccine for inducing sterilizing immunity against SARS‐CoV‐2 and HBV by stopping viral replication through the inhibition of cellular virus entry.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the ongoing global COVID-19 pandemic. One possibility to control the pandemic is to induce sterilizing immunity through the induction and maintenance of neutralizing antibodies preventing SARS-CoV-2 from entering human cells to replicate in. We report the construction and in vitro and in vivo characterization of a SARS-CoV-2 subunit vaccine (PreS-RBD) based on a structurally folded recombinant fusion protein consisting of two SARS-CoV-2 Spike protein receptor-binding domains (RBD) fused to the N- and C-terminus of hepatitis B virus (HBV) surface antigen PreS to enable the two unrelated proteins serving as immunologic carriers for each other. PreS-RBD, but not RBD alone, induced a robust and uniform RBD-specific IgG response in rabbits. Currently available genetic SARS-CoV-2 vaccines induce mainly transient IgG responses in vaccinated subjects whereas the PreS-RBD vaccine induced RBD-specific IgG antibodies consisting of an early IgG and sustained IgG antibody response in a SARS-CoV-2 naive subject. PreS-RBD-specific IgG antibodies were detected in serum and mucosal secretions, reacted with SARS-CoV-2 variants, including the omicron variant of concern and the HBV receptor-binding sites on PreS of currently known HBV genotypes. PreS-RBD-specific antibodies of the immunized subject more potently inhibited the interaction of RBD with its human receptor ACE2 and their virus-neutralizing titers (VNTs) were higher than median VNTs in a random sample of healthy subjects fully immunized with registered SARS-CoV-2 vaccines or in COVID-19 convalescent subjects. The PreS-RBD vaccine has the potential to serve as a combination vaccine for inducing sterilizing immunity against SARS-CoV-2 and HBV by stopping viral replication through the inhibition of cellular virus entry.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the ongoing global COVID-19 pandemic. One possibility to control the pandemic is to induce sterilizing immunity through the induction and maintenance of neutralizing antibodies preventing SARS-CoV-2 from entering human cells to replicate in.BACKGROUNDSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the ongoing global COVID-19 pandemic. One possibility to control the pandemic is to induce sterilizing immunity through the induction and maintenance of neutralizing antibodies preventing SARS-CoV-2 from entering human cells to replicate in.We report the construction and in vitro and in vivo characterization of a SARS-CoV-2 subunit vaccine (PreS-RBD) based on a structurally folded recombinant fusion protein consisting of two SARS-CoV-2 Spike protein receptor-binding domains (RBD) fused to the N- and C-terminus of hepatitis B virus (HBV) surface antigen PreS to enable the two unrelated proteins serving as immunologic carriers for each other.METHODSWe report the construction and in vitro and in vivo characterization of a SARS-CoV-2 subunit vaccine (PreS-RBD) based on a structurally folded recombinant fusion protein consisting of two SARS-CoV-2 Spike protein receptor-binding domains (RBD) fused to the N- and C-terminus of hepatitis B virus (HBV) surface antigen PreS to enable the two unrelated proteins serving as immunologic carriers for each other.PreS-RBD, but not RBD alone, induced a robust and uniform RBD-specific IgG response in rabbits. Currently available genetic SARS-CoV-2 vaccines induce mainly transient IgG1 responses in vaccinated subjects whereas the PreS-RBD vaccine induced RBD-specific IgG antibodies consisting of an early IgG1 and sustained IgG4 antibody response in a SARS-CoV-2 naive subject. PreS-RBD-specific IgG antibodies were detected in serum and mucosal secretions, reacted with SARS-CoV-2 variants, including the omicron variant of concern and the HBV receptor-binding sites on PreS of currently known HBV genotypes. PreS-RBD-specific antibodies of the immunized subject more potently inhibited the interaction of RBD with its human receptor ACE2 and their virus-neutralizing titers (VNTs) were higher than median VNTs in a random sample of healthy subjects fully immunized with registered SARS-CoV-2 vaccines or in COVID-19 convalescent subjects.RESULTSPreS-RBD, but not RBD alone, induced a robust and uniform RBD-specific IgG response in rabbits. Currently available genetic SARS-CoV-2 vaccines induce mainly transient IgG1 responses in vaccinated subjects whereas the PreS-RBD vaccine induced RBD-specific IgG antibodies consisting of an early IgG1 and sustained IgG4 antibody response in a SARS-CoV-2 naive subject. PreS-RBD-specific IgG antibodies were detected in serum and mucosal secretions, reacted with SARS-CoV-2 variants, including the omicron variant of concern and the HBV receptor-binding sites on PreS of currently known HBV genotypes. PreS-RBD-specific antibodies of the immunized subject more potently inhibited the interaction of RBD with its human receptor ACE2 and their virus-neutralizing titers (VNTs) were higher than median VNTs in a random sample of healthy subjects fully immunized with registered SARS-CoV-2 vaccines or in COVID-19 convalescent subjects.The PreS-RBD vaccine has the potential to serve as a combination vaccine for inducing sterilizing immunity against SARS-CoV-2 and HBV by stopping viral replication through the inhibition of cellular virus entry.CONCLUSIONThe PreS-RBD vaccine has the potential to serve as a combination vaccine for inducing sterilizing immunity against SARS-CoV-2 and HBV by stopping viral replication through the inhibition of cellular virus entry.
Background Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is responsible for the ongoing global COVID‐19 pandemic. One possibility to control the pandemic is to induce sterilizing immunity through the induction and maintenance of neutralizing antibodies preventing SARS‐CoV‐2 from entering human cells to replicate in. Methods We report the construction and in vitro and in vivo characterization of a SARS‐CoV‐2 subunit vaccine (PreS‐RBD) based on a structurally folded recombinant fusion protein consisting of two SARS‐CoV‐2 Spike protein receptor‐binding domains (RBD) fused to the N‐ and C‐terminus of hepatitis B virus (HBV) surface antigen PreS to enable the two unrelated proteins serving as immunologic carriers for each other. Results PreS‐RBD, but not RBD alone, induced a robust and uniform RBD‐specific IgG response in rabbits. Currently available genetic SARS‐CoV‐2 vaccines induce mainly transient IgG1 responses in vaccinated subjects whereas the PreS‐RBD vaccine induced RBD‐specific IgG antibodies consisting of an early IgG1 and sustained IgG4 antibody response in a SARS‐CoV‐2 naive subject. PreS‐RBD‐specific IgG antibodies were detected in serum and mucosal secretions, reacted with SARS‐CoV‐2 variants, including the omicron variant of concern and the HBV receptor‐binding sites on PreS of currently known HBV genotypes. PreS‐RBD‐specific antibodies of the immunized subject more potently inhibited the interaction of RBD with its human receptor ACE2 and their virus‐neutralizing titers (VNTs) were higher than median VNTs in a random sample of healthy subjects fully immunized with registered SARS‐CoV‐2 vaccines or in COVID‐19 convalescent subjects. Conclusion The PreS‐RBD vaccine has the potential to serve as a combination vaccine for inducing sterilizing immunity against SARS‐CoV‐2 and HBV by stopping viral replication through the inhibition of cellular virus entry. This study reports the design and characterization of a SARS‐CoV‐2 subunit vaccine (PreS‐RBD). PreS‐RBD, but not RBD alone, induces RBD‐specific IgG1 and long‐lasting IgG4 in serum and mucosal fluids, and cross‐reacts with SARS‐CoV‐2 variants of concern. PreS‐RBD‐specific antibodies of the immunized subject more potently inhibit the interaction of RBD with angiotensin converting enzyme 2 (ACE2), and their virus‐neutralizing titers are higher than median titers in a random sample of healthy subjects fully immunized with registered SARS‐CoV‐2 vaccines or in COVID‐19 convalescent subjects.Abbreviations: COVID‐19, coronavirus disease 2019; IgG, immunoglobulin G; HBV, hepatitis B virus; RBD, receptor‐binding domain; PreS, HVB domain; SARS‐CoV‐2, severe acute respiratory syndrome coronavirus 2
Author Niespodziana, Katarzyna
Hofer, Gerhard
Karaulov, Alexander
Stockinger, Hannes
Ohradanova‐Repic, Anna
Tancevski, Ivan
Valenta, Rudolf
Gebetsberger, Laura
Khaitov, Musa
Baumgartner, Isabella
Tulaeva, Inna
Kratzer, Bernhard
Wiedermann, Ursula
Borochova, Kristina
Keller, Walter
Pickl, Winfried F.
Gattinger, Pia
Garner‐Spitzer, Erika
Trapin, Doris
Author_xml – sequence: 1
  givenname: Pia
  orcidid: 0000-0001-6724-8543
  surname: Gattinger
  fullname: Gattinger, Pia
  organization: Medical University of Vienna
– sequence: 2
  givenname: Bernhard
  orcidid: 0000-0003-1091-4327
  surname: Kratzer
  fullname: Kratzer, Bernhard
  organization: Medical University of Vienna
– sequence: 3
  givenname: Inna
  orcidid: 0000-0002-5825-2687
  surname: Tulaeva
  fullname: Tulaeva, Inna
  organization: Sechenov First Moscow State Medical University
– sequence: 4
  givenname: Katarzyna
  orcidid: 0000-0003-0700-965X
  surname: Niespodziana
  fullname: Niespodziana, Katarzyna
  organization: Karl Landsteiner University of Health Sciences
– sequence: 5
  givenname: Anna
  orcidid: 0000-0002-8005-8522
  surname: Ohradanova‐Repic
  fullname: Ohradanova‐Repic, Anna
  organization: Medical University of Vienna
– sequence: 6
  givenname: Laura
  orcidid: 0000-0002-6480-6228
  surname: Gebetsberger
  fullname: Gebetsberger, Laura
  organization: Medical University of Vienna
– sequence: 7
  givenname: Kristina
  surname: Borochova
  fullname: Borochova, Kristina
  organization: Medical University of Vienna
– sequence: 8
  givenname: Erika
  orcidid: 0000-0002-5283-0458
  surname: Garner‐Spitzer
  fullname: Garner‐Spitzer, Erika
  organization: Medical University of Vienna
– sequence: 9
  givenname: Doris
  surname: Trapin
  fullname: Trapin, Doris
  organization: Medical University of Vienna
– sequence: 10
  givenname: Gerhard
  surname: Hofer
  fullname: Hofer, Gerhard
  organization: University of Stockholm
– sequence: 11
  givenname: Walter
  orcidid: 0000-0002-2261-958X
  surname: Keller
  fullname: Keller, Walter
  organization: University of Graz
– sequence: 12
  givenname: Isabella
  surname: Baumgartner
  fullname: Baumgartner, Isabella
  organization: Medical University Vienna
– sequence: 13
  givenname: Ivan
  orcidid: 0000-0001-5116-8960
  surname: Tancevski
  fullname: Tancevski, Ivan
  organization: Medical University of Innsbruck
– sequence: 14
  givenname: Musa
  orcidid: 0000-0003-4961-9640
  surname: Khaitov
  fullname: Khaitov, Musa
  organization: Pirogov Russian National Research Medical University
– sequence: 15
  givenname: Alexander
  surname: Karaulov
  fullname: Karaulov, Alexander
  organization: Sechenov First Moscow State Medical University
– sequence: 16
  givenname: Hannes
  orcidid: 0000-0001-6404-4430
  surname: Stockinger
  fullname: Stockinger, Hannes
  organization: Medical University of Vienna
– sequence: 17
  givenname: Ursula
  orcidid: 0000-0002-1302-3223
  surname: Wiedermann
  fullname: Wiedermann, Ursula
  organization: Medical University of Vienna
– sequence: 18
  givenname: Winfried F.
  orcidid: 0000-0003-0430-4952
  surname: Pickl
  fullname: Pickl, Winfried F.
  organization: Karl Landsteiner University of Health Sciences
– sequence: 19
  givenname: Rudolf
  orcidid: 0000-0001-5944-3365
  surname: Valenta
  fullname: Valenta, Rudolf
  email: rudolf.valenta@meduniwien.ac.at
  organization: NRC Institute of Immunology FMBA of Russia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35357709$$D View this record in MEDLINE/PubMed
BookMark eNp1kc-OFCEQxolZ486uHnwBQ-JFD71LN013c5xM_JdMonF0r4SGQtnQMAK9m_HkExif0SeRcWYvG4WEqsDv-1JUnaETHzwg9LQmF3VZl9K5i5pRwh6gRU35UHHO2QlakJqwqmV0OEVnKV0TQvqGk0folDLK-p7wBfp5JZWyHvAoE2gcPDbB6ZJFULDNIeLRem39F6zDJK3__ePXhwgbbOZkC7yNIYP1-Nbmr3hbcp-tdDgHXFSzApwyROvs972DnabZ27zbP2-WHzfFaxWuytngGxmt9Dk9Rg-NdAmeHOM5-vz61afV22r9_s271XJdKUooqwaqeTf2yjDoANqh6Tpa6m20Ma0yWmrWGUZbNYCEclN3WjadhtGYXtVs6Og5enHwLR_4NkPKYrJJgXPSQ5iTaLqWDaxvyB59fg-9DnP0pbpCcU7KboZCPTtS8ziBFttoJxl34q7TBbg8ACqGlCIYoWyWuTQxR2mdqInYz1KUWYq_syyKl_cUd6b_Yo_ut9bB7v-gWK7XB8UfxxezBQ
CitedBy_id crossref_primary_10_1111_all_16210
crossref_primary_10_3390_vaccines12010100
crossref_primary_10_1111_all_15593
crossref_primary_10_3389_fimmu_2025_1452814
crossref_primary_10_3390_vaccines12101123
crossref_primary_10_3389_fimmu_2022_958581
crossref_primary_10_3390_vaccines11040874
crossref_primary_10_1186_s43141_023_00472_2
crossref_primary_10_3390_vaccines12040377
crossref_primary_10_1002_nadc_20244140285
crossref_primary_10_1016_j_intimp_2024_113362
crossref_primary_10_1111_all_15502
crossref_primary_10_3390_ijms24065352
crossref_primary_10_3390_vaccines12030229
crossref_primary_10_1111_all_15406
crossref_primary_10_1002_jmv_29625
crossref_primary_10_3390_ijms24065104
crossref_primary_10_1016_j_ccell_2022_04_003
crossref_primary_10_1080_14760584_2023_2211153
crossref_primary_10_3389_fimmu_2024_1325998
crossref_primary_10_1016_j_ebiom_2023_104574
Cites_doi 10.1056/NEJMoa2110475
10.1016/j.jaci.2017.10.010
10.1111/all.14300
10.1126/science.1144603
10.1016/j.ebiom.2016.07.023
10.1056/NEJM199908123410702
10.1056/NEJMoa2104840
10.1016/j.ebiom.2016.08.022
10.1038/s41591-021-01294-w
10.1111/all.14908
10.1016/j.ebiom.2019.11.006
10.1111/all.15187
10.1016/j.ebiom.2020.102953
10.1038/s41586-020-2814-7
10.1002/jmv.27516
10.1056/NEJMc2032195
10.1038/s41598-020-78711-6
10.1038/nri1934
10.1053/j.gastro.2013.12.024
10.1016/j.ebiom.2016.07.032
10.1111/all.14714
10.1111/all.15066
10.1093/cid/ciab1041
10.1016/S0140-6736(21)02844-0
10.1111/all.15142
10.1038/s41577-020-00479-7
10.1111/all.14711
10.1016/j.jim.2010.12.008
10.1186/1743-422X-10-239
10.1016/j.imlet.2017.04.015
10.1016/j.jaci.2005.04.003
10.3201/eid2802.212422
10.1016/j.jhep.2010.10.019
10.1038/s41591-021-01556-7
10.4049/jimmunol.0713622
10.1056/NEJMoa2109908
10.1016/j.jaci.2011.02.004
10.1016/j.jaci.2018.09.039
10.1093/ehjqcco/qcab090
10.3390/jcm10245876
10.1111/all.15264
10.1111/all.14523
10.1001/jamacardio.2021.3471
10.1056/NEJMoa2105385
10.1084/jem.132.2.283
10.1016/j.jaci.2010.12.1080
10.1038/s41541-021-00369-6
10.1101/2021.12.08.21267417
10.1016/j.jaci.2017.09.052
ContentType Journal Article
Copyright 2022 The Authors. published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd.
2022 The Authors. Allergy published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd.
– notice: 2022 The Authors. Allergy published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
H94
K9.
7X8
DOI 10.1111/all.15305
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
MEDLINE - Academic
DatabaseTitleList AIDS and Cancer Research Abstracts
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1398-9995
EndPage 2445
ExternalDocumentID 35357709
10_1111_all_15305
ALL15305
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Austrian Science Fund
  funderid: DK‐W1248; P29398; P34253‐B
– fundername: Danube Allergy Research Cluster of Lower Austria
  funderid: 330950005
– fundername: Viravaxx AG
GroupedDBID .3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
23M
24P
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8F7
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAKAS
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOETA
ATUGU
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
P6G
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TR2
UB1
V9Y
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
Y6R
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7T5
H94
K9.
7X8
ID FETCH-LOGICAL-c3035-83d96b7cf5e6ee482663ece2dff4cfdad56f534c8eaef4c16da26debff7c15863
IEDL.DBID DR2
ISSN 0105-4538
1398-9995
IngestDate Thu Jul 10 23:18:25 EDT 2025
Mon Jul 14 08:19:39 EDT 2025
Mon Jul 21 06:01:28 EDT 2025
Thu Apr 24 23:03:12 EDT 2025
Tue Jul 01 02:54:29 EDT 2025
Wed Jan 22 16:23:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords COVID-19
neutralizing antibodies
SARS-CoV-2
vaccine
antibody response
sterilizing immunity
Language English
License Attribution
2022 The Authors. Allergy published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3035-83d96b7cf5e6ee482663ece2dff4cfdad56f534c8eaef4c16da26debff7c15863
Notes Funding information
This study was supported by grants from Austrian Science Fund, Grant numbers: DK‐W1248 and P29398; Viravaxx AG; and Danube Allergy Research Cluster of Lower Austria, Grant number: 330950005. AOR and HS also acknowledge funding by the Austrian Science Fund (FWF, grant number P34253‐B). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5825-2687
0000-0001-6724-8543
0000-0002-1302-3223
0000-0002-8005-8522
0000-0001-5116-8960
0000-0002-2261-958X
0000-0003-0700-965X
0000-0002-6480-6228
0000-0003-0430-4952
0000-0001-5944-3365
0000-0003-1091-4327
0000-0002-5283-0458
0000-0003-4961-9640
0000-0001-6404-4430
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fall.15305
PMID 35357709
PQID 2699090928
PQPubID 34098
PageCount 15
ParticipantIDs proquest_miscellaneous_2645857206
proquest_journals_2699090928
pubmed_primary_35357709
crossref_citationtrail_10_1111_all_15305
crossref_primary_10_1111_all_15305
wiley_primary_10_1111_all_15305_ALL15305
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationPlace Denmark
PublicationPlace_xml – name: Denmark
– name: Zurich
PublicationTitle Allergy (Copenhagen)
PublicationTitleAlternate Allergy
PublicationYear 2022
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2018; 142
2021; 27
2021; 6
2021; 21
2019; 50
2022; 94
2009; 182
2021; 28
2005; 116
1999; 341
2011; 55
2020; 59
2006; 6
2021; 384
2020; 586
2021; 385
2020; 10
2021; 74
2022; 399
2016; 11
2019; 143
1970; 132
2011; 127
2021; 76
2021; 10
2007; 317
2013; 10
2021
2017; 140
2022; 77
2017; 189
2011; 365
2014; 146
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Steindl‐Munda PE (e_1_2_9_44_1) 2021; 74
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 27
  start-page: 717
  issue: 4
  year: 2021
  end-page: 726
  article-title: Resistance of SARS‐CoV‐2 variants to neutralization by monoclonal and serum‐derived polyclonal antibodies
  publication-title: Nat Med
– volume: 399
  start-page: 234
  issue: 10321
  year: 2022
  end-page: 236
  article-title: Reduced neutralisation of SARS‐CoV‐2 omicron B.1.1.529 variant by post‐immunisation serum
  publication-title: Lancet
– year: 2021
  article-title: Neutralization of SARS‐CoV‐2 Omicron variant by sera from BNT162b2 or Coronavac vaccine recipients
  publication-title: Clin Infect Dis
– volume: 10
  start-page: 21779
  issue: 1
  year: 2020
  article-title: Structural and functional comparison of SARS‐CoV‐2‐spike receptor binding domain produced in Pichia pastoris and mammalian cells
  publication-title: Sci Rep
– volume: 11
  start-page: 58
  year: 2016
  end-page: 67
  article-title: Immunotherapy with the PreS‐based Grass pollen allergy vaccine BM32 induces antibody responses protecting against hepatitis B infection
  publication-title: EBioMedicine
– volume: 6
  start-page: 1446
  issue: 12
  year: 2021
  end-page: 1450
  article-title: Association of myocarditis with BNT162b2 messenger RNA COVID‐19 vaccine in a case series of children
  publication-title: JAMA Cardiol
– year: 2021
  article-title: SARS‐CoV‐2 Omicron has extensive but incomplete escape of Pfizer BNT162b2 elicited neutralization and requires ACE2 for infection
  publication-title: medRxiv
– volume: 77
  start-page: 1658
  issue: 6
  year: 2022
  end-page: 1660
  article-title: The form of PEG matters: PEG conjugated with lipids and not PEG alone could be the specific form involved in allergic reactions to COVID‐19 vaccines
  publication-title: Allergy
– volume: 76
  start-page: 3627
  issue: 12
  year: 2021
  end-page: 3641
  article-title: The role of allergen‐specific IgE, IgG and IgA in allergic disease
  publication-title: Allergy
– volume: 55
  start-page: 29
  issue: 1
  year: 2011
  end-page: 37
  article-title: N‐terminal myristoylation‐dependent masking of neutralizing epitopes in the preS1 attachment site of hepatitis B virus
  publication-title: J Hepatol
– volume: 6
  start-page: 761
  issue: 10
  year: 2006
  end-page: 771
  article-title: Immunological mechanisms of allergen‐specific immunotherapy
  publication-title: Nat Rev Immunol
– volume: 76
  start-page: 878
  issue: 3
  year: 2021
  end-page: 883
  article-title: Antibodies in serum of convalescent patients following mild COVID‐19 do not always prevent virus‐receptor binding
  publication-title: Allergy
– volume: 77
  start-page: 1885
  issue: 6
  year: 2022
  end-page: 1894
  article-title: Receptor binding domain‐IgG levels correlate with protection in residents facing SARS‐CoV‐2 B.1.1.7 outbreaks
  publication-title: Allergy
– volume: 6
  start-page: 104
  issue: 1
  year: 2021
  article-title: Distinguishing features of current COVID‐19 vaccines: knowns and unknowns of antigen presentation and modes of action
  publication-title: NPJ Vaccines
– volume: 132
  start-page: 283
  issue: 2
  year: 1970
  end-page: 299
  article-title: Carrier function in anti‐hapten immune responses. II. Specific properties of carrier cells capable of enhancing anti‐hapten antibody responses
  publication-title: J Exp Med
– volume: 384
  start-page: 80
  issue: 1
  year: 2021
  end-page: 82
  article-title: Durability of responses after SARS‐CoV‐2 mRNA‐1273 vaccination
  publication-title: N Engl J Med
– volume: 127
  start-page: 509
  issue: 2
  year: 2011
  end-page: 516.e5165
  article-title: Long‐term tolerance after allergen immunotherapy is accompanied by selective persistence of blocking antibodies
  publication-title: J Allergy Clin Immunol
– volume: 116
  start-page: 347
  issue: 2
  year: 2005
  end-page: 354
  article-title: Allergen‐specific nasal IgG antibodies induced by vaccination with genetically modified allergens are associated with reduced nasal allergen sensitivity
  publication-title: J Allergy Clin Immunol
– volume: 10
  start-page: 5876
  issue: 24
  year: 2021
  article-title: Autopsy findings and causality relationship between death and COVID‐19 vaccination: a systematic review
  publication-title: J Clin Med
– volume: 76
  start-page: 131
  issue: 1
  year: 2021
  end-page: 149
  article-title: Past, present, and future of allergen immunotherapy vaccines
  publication-title: Allergy
– volume: 317
  start-page: 1554
  issue: 5844
  year: 2007
  end-page: 1557
  article-title: Anti‐inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange
  publication-title: Science
– volume: 385
  start-page: 1078
  issue: 12
  year: 2021
  end-page: 1090
  article-title: Safety of the BNT162b2 mRNA Covid‐19 vaccine in a nationwide setting
  publication-title: N Engl J Med
– volume: 21
  start-page: 83
  issue: 2
  year: 2021
  end-page: 100
  article-title: A guide to vaccinology: from basic principles to new developments
  publication-title: Nat Rev Immunol
– volume: 140
  start-page: 1485
  issue: 6
  year: 2017
  end-page: 1498
  article-title: Mechanisms of allergen immunotherapy for inhaled allergens and predictive biomarkers
  publication-title: J Allergy Clin Immunol
– volume: 127
  start-page: 1562
  issue: 6
  year: 2011
  end-page: 70.e6
  article-title: A hypoallergenic cat vaccine based on Fel d 1‐derived peptides fused to hepatitis B PreS
  publication-title: J Allergy Clin Immunol
– volume: 189
  start-page: 19
  year: 2017
  end-page: 26
  article-title: Recombinant allergy vaccines based on allergen‐derived B cell epitopes
  publication-title: Immunol Lett
– volume: 74
  start-page: 522A
  year: 2021
  end-page: 523A
  article-title: VVX001 induces robust Pre‐S‐specific immunity in patients chronically infected with Hepatitis B
  publication-title: Hepatology
– volume: 50
  start-page: 421
  year: 2019
  end-page: 432
  article-title: Two years of treatment with the recombinant grass pollen allergy vaccine BM32 induces a continuously increasing allergen‐specific IgG response
  publication-title: EBioMedicine
– volume: 586
  start-page: 594
  issue: 7830
  year: 2020
  end-page: 599
  article-title: COVID‐19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses
  publication-title: Nature
– volume: 77
  start-page: 1616
  issue: 5
  year: 2022
  end-page: 1620
  article-title: Omicron: a SARS‐CoV‐2 variant of real concern
  publication-title: Allergy
– volume: 182
  start-page: 6298
  issue: 10
  year: 2009
  end-page: 6306
  article-title: A combination vaccine for allergy and rhinovirus infections based on rhinovirus‐derived surface protein VP1 and a nonallergenic peptide of the major timothy grass pollen allergen Phl p 1
  publication-title: J Immunol
– volume: 385
  start-page: 1680
  issue: 18
  year: 2021
  end-page: 1689
  article-title: Clinical features of vaccine‐induced immune thrombocytopenia and thrombosis
  publication-title: N Engl J Med
– volume: 341
  start-page: 468
  issue: 7
  year: 1999
  end-page: 475
  article-title: Long‐term clinical efficacy of grass‐pollen immunotherapy
  publication-title: N Engl J Med
– volume: 94
  start-page: 1728
  issue: 4
  year: 2022
  end-page: 1733
  article-title: Sequence analysis of the emerging SARS‐CoV‐2 variant Omicron in South Africa
  publication-title: J Med Virol
– volume: 76
  start-page: 1617
  issue: 6
  year: 2021
  end-page: 1618
  article-title: Allergic reactions to the first COVID‐19 vaccine: a potential role of polyethylene glycol?
  publication-title: Allergy
– volume: 384
  start-page: 2092
  issue: 22
  year: 2021
  end-page: 2101
  article-title: Thrombotic thrombocytopenia after ChAdOx1 nCov‐19 vaccination
  publication-title: N Engl J Med
– volume: 10
  start-page: 239
  issue: 1
  year: 2013
  article-title: Medical virology of hepatitis B: how it began and where we are now
  publication-title: Virol J
– volume: 142
  start-page: 497
  issue: 2
  year: 2018
  end-page: 509.e9
  article-title: Safety and efficacy of immunotherapy with the recombinant B‐cell epitope‐based grass pollen vaccine BM32
  publication-title: J Allergy Clin Immunol
– volume: 77
  start-page: 230
  issue: 1
  year: 2022
  end-page: 242
  article-title: Neutralization of SARS‐CoV‐2 requires antibodies against conformational receptor‐binding domain epitopes
  publication-title: Allergy
– volume: 59
  start-page: 102953
  year: 2020
  article-title: Quantification, epitope mapping and genotype cross‐reactivity of hepatitis B preS‐specific antibodies in subjects vaccinated with different dosage regimens of BM32
  publication-title: EBioMedicine
– volume: 27
  start-page: 2144
  issue: 12
  year: 2021
  end-page: 2153
  article-title: Neurological complications after first dose of COVID‐19 vaccines and SARS‐CoV‐2 infection
  publication-title: Nat Med
– volume: 28
  issue: 2
  year: 2021
  article-title: Probable transmission of SARS‐CoV‐2 omicron variant in quarantine Hotel, Hong Kong, China, November 2021
  publication-title: Emerg Infect Dis
– volume: 143
  start-page: 1067
  issue: 3
  year: 2019
  end-page: 1076
  article-title: Nasal allergen‐neutralizing IgG4 antibodies block IgE‐mediated responses: novel biomarker of subcutaneous grass pollen immunotherapy
  publication-title: J Allergy Clin Immunol
– volume: 384
  start-page: 2202
  issue: 23
  year: 2021
  end-page: 2211
  article-title: Pathologic antibodies to platelet factor 4 after ChAdOx1 nCoV‐19 vaccination
  publication-title: N Engl J Med
– year: 2021
  article-title: Myocarditis and pericarditis in adolescents after first and second doses of mRNA COVID‐19 vaccines
  publication-title: Eur Heart J Qual Care Clin Outcomes
– volume: 146
  start-page: 1070
  issue: 4
  year: 2014
  end-page: 1083
  article-title: Hepatitis B and D viruses exploit sodium taurocholate co‐transporting polypeptide for species‐specific entry into hepatocytes
  publication-title: Gastroenterology
– volume: 11
  start-page: 5
  year: 2016
  end-page: 6
  article-title: Development of an allergy immunotherapy leads to a new type of hepatitis B vaccine
  publication-title: EBioMedicine
– volume: 76
  start-page: 1922
  issue: 6
  year: 2021
  end-page: 1924
  article-title: SARS‐CoV‐2 candidate vaccines ‐ composition, mechanisms of action and stages of clinical development
  publication-title: Allergy
– volume: 11
  start-page: 43
  year: 2016
  end-page: 57
  article-title: Mechanisms, safety and efficacy of a B cell epitope‐based vaccine for immunotherapy of grass pollen allergy
  publication-title: EBioMedicine
– volume: 365
  start-page: 67
  issue: 1–2
  year: 2011
  end-page: 75
  article-title: Plasmablast‐derived polyclonal antibody response after influenza vaccination
  publication-title: J Immunol Methods
– ident: e_1_2_9_10_1
  doi: 10.1056/NEJMoa2110475
– ident: e_1_2_9_46_1
  doi: 10.1016/j.jaci.2017.10.010
– ident: e_1_2_9_49_1
  doi: 10.1111/all.14300
– ident: e_1_2_9_52_1
  doi: 10.1126/science.1144603
– ident: e_1_2_9_30_1
  doi: 10.1016/j.ebiom.2016.07.023
– ident: e_1_2_9_34_1
  doi: 10.1056/NEJM199908123410702
– ident: e_1_2_9_7_1
  doi: 10.1056/NEJMoa2104840
– ident: e_1_2_9_42_1
  doi: 10.1016/j.ebiom.2016.08.022
– ident: e_1_2_9_17_1
  doi: 10.1038/s41591-021-01294-w
– ident: e_1_2_9_47_1
  doi: 10.1111/all.14908
– ident: e_1_2_9_36_1
  doi: 10.1016/j.ebiom.2019.11.006
– ident: e_1_2_9_14_1
  doi: 10.1111/all.15187
– ident: e_1_2_9_31_1
  doi: 10.1016/j.ebiom.2020.102953
– ident: e_1_2_9_3_1
  doi: 10.1038/s41586-020-2814-7
– ident: e_1_2_9_18_1
  doi: 10.1002/jmv.27516
– volume: 74
  start-page: 522A
  year: 2021
  ident: e_1_2_9_44_1
  article-title: VVX001 induces robust Pre‐S‐specific immunity in patients chronically infected with Hepatitis B
  publication-title: Hepatology
– ident: e_1_2_9_4_1
  doi: 10.1056/NEJMc2032195
– ident: e_1_2_9_45_1
  doi: 10.1038/s41598-020-78711-6
– ident: e_1_2_9_5_1
– ident: e_1_2_9_33_1
  doi: 10.1038/nri1934
– ident: e_1_2_9_40_1
  doi: 10.1053/j.gastro.2013.12.024
– ident: e_1_2_9_41_1
  doi: 10.1016/j.ebiom.2016.07.032
– ident: e_1_2_9_2_1
  doi: 10.1111/all.14714
– ident: e_1_2_9_25_1
  doi: 10.1111/all.15066
– ident: e_1_2_9_22_1
  doi: 10.1093/cid/ciab1041
– ident: e_1_2_9_23_1
  doi: 10.1016/S0140-6736(21)02844-0
– ident: e_1_2_9_26_1
  doi: 10.1111/all.15142
– ident: e_1_2_9_27_1
  doi: 10.1038/s41577-020-00479-7
– ident: e_1_2_9_13_1
  doi: 10.1111/all.14711
– ident: e_1_2_9_48_1
  doi: 10.1016/j.jim.2010.12.008
– ident: e_1_2_9_28_1
  doi: 10.1186/1743-422X-10-239
– ident: e_1_2_9_39_1
  doi: 10.1016/j.imlet.2017.04.015
– ident: e_1_2_9_50_1
  doi: 10.1016/j.jaci.2005.04.003
– ident: e_1_2_9_19_1
  doi: 10.3201/eid2802.212422
– ident: e_1_2_9_29_1
  doi: 10.1016/j.jhep.2010.10.019
– ident: e_1_2_9_15_1
  doi: 10.1038/s41591-021-01556-7
– ident: e_1_2_9_37_1
  doi: 10.4049/jimmunol.0713622
– ident: e_1_2_9_9_1
  doi: 10.1056/NEJMoa2109908
– ident: e_1_2_9_38_1
  doi: 10.1016/j.jaci.2011.02.004
– ident: e_1_2_9_51_1
  doi: 10.1016/j.jaci.2018.09.039
– ident: e_1_2_9_12_1
  doi: 10.1093/ehjqcco/qcab090
– ident: e_1_2_9_16_1
  doi: 10.3390/jcm10245876
– ident: e_1_2_9_21_1
  doi: 10.1111/all.15264
– ident: e_1_2_9_24_1
  doi: 10.1111/all.14523
– ident: e_1_2_9_11_1
  doi: 10.1001/jamacardio.2021.3471
– ident: e_1_2_9_8_1
  doi: 10.1056/NEJMoa2105385
– ident: e_1_2_9_32_1
  doi: 10.1084/jem.132.2.283
– ident: e_1_2_9_35_1
  doi: 10.1016/j.jaci.2010.12.1080
– ident: e_1_2_9_6_1
  doi: 10.1038/s41541-021-00369-6
– ident: e_1_2_9_20_1
  doi: 10.1101/2021.12.08.21267417
– ident: e_1_2_9_43_1
  doi: 10.1016/j.jaci.2017.09.052
SSID ssj0007290
Score 2.471116
Snippet Background Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is responsible for the ongoing global COVID‐19 pandemic. One possibility to control the...
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the ongoing global COVID-19 pandemic. One possibility to control the pandemic...
BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is responsible for the ongoing global COVID‐19 pandemic. One possibility to control the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2431
SubjectTerms ACE2
Angiotensin-converting enzyme 2
Animals
Antibodies
Antibodies, Neutralizing
Antibodies, Viral
Antibody response
Binding sites
Coronaviruses
COVID-19
COVID-19 - prevention & control
COVID-19 vaccines
COVID-19 Vaccines - immunology
Fusion protein
Genotypes
Hepatitis B
Humans
Immunity
Immunoglobulin G
Mucosa
neutralizing antibodies
Pandemics
Pandemics - prevention & control
Proteins
Rabbits
SARS-CoV-2
Secretions
Severe acute respiratory syndrome coronavirus 2
Spike Glycoprotein, Coronavirus - immunology
Spike protein
sterilizing immunity
vaccine
Vaccines
Viruses
Title Vaccine based on folded receptor binding domain‐PreS fusion protein with potential to induce sterilizing immunity to SARS‐CoV‐2 variants
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fall.15305
https://www.ncbi.nlm.nih.gov/pubmed/35357709
https://www.proquest.com/docview/2699090928
https://www.proquest.com/docview/2645857206
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpDqWXvh_bpkEtPfSyy66eXnpaQkMoSQnZJuRQMHqCiWsvibfQnPoLSn9jf0ln5EebPqAUgxHWyJalGWlGmvlEyAs3DcJJMFO5tGCgaMPGxiDurTCcM5Nxn8LFDt6qvWPx5lSebpBXfSxMiw8xLLihZKTxGgXc2IufhNyU5QTENeGXoq8WKkRHP6CjdLe-AvrDWIBUd6hC6MUzlLw6F_2mYF7VV9OEs3uLvO-r2vqZnE3WjZ24y19QHP_zX26Tm50iShct59whG6G6S64fdFvt98iXE-MwRXGe87SuaKxLDykYIsMKLHVqixQRQ339wRTVt89fD8_DksY1rr_RhP9QVBTXeekK0hUMJSVtagqlgJ0oAjQUZXGJbyhSkErzCbOXi6MlvGunPoE7ox_BlkdXnfvkePf1u529cXd4w9hxhMGEXp4rq12UQYUgwIpRHOrHfIzCRW-8VFFy4bJgAjyZKW-Y8sHGqN1MZoo_IJtVXYVHhE69AEI183MbhLagcmYyRuu4mzvLrR6Rl3035q5DNscDNsq8t3CgffPUviPyfCBdtXAefyLa6nkh7yT6ImcK5m24WDYiz4ZskEXcYDFVqNdII8D60myqRuRhy0PDV7jkUuvpHCqbOOHvn88X-_sp8fjfSZ-QGwzjMpJn4hbZbM7X4SloS43dJteYONxOwvEdI3sWDw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zi9RAEG6WFdQX72N01VZ88GWGmb6SAV-GxWXUmUV2dpd9kdAnBGMyrBnBffIXiL_RX2JV59D1AJFAaJLqTidd1XWk62tCntqxF1aCm8qlAQcl0WyoNeLeCs050yl3MV1sua_mR-LViTzZIs-7XJgGH6IPuKFkxPkaBRwD0j9JuS6KEcgrAphewB29o0N18AM8KmkjLGBBDAXIdYsrhOt4-qrntdFvJuZ5izWqnL2r5G3X2WalybvRpjYje_YLjuP_vs01cqW1RemsYZ7rZMuXN8jFZfu3_Sb5cqwtliiqOkerkoaqcFCCWdKvwVmnJo9JMdRV73Vefvv89c2pX9GwwRAcjRAQeUkx1EvXUC5hNiloXVGoBRxFEaMhL_IzbCGPeSr1J7y9mh2soK3d6hjOjH4Edx5X69wiR3svDnfnw3b_hqHliIQJAz1VJrFBeuW9AEdGcegfcyEIG5x2UgXJhU299nBlopxmynkTQmInMlX8Ntkuq9LfJXTsBBCqiZsaLxIDVmcqQzCW26k13CQD8qwbx8y24Oa4x0aRdU4OfN8sft8BedKTrhtEjz8R7XTMkLVC_SFjClQ3HCwdkMf9bRBH_MeiS19tkEaAA5awsRqQOw0T9U_hksskGU-hs5EV_v74bLZYxMK9fyd9RC7ND5eLbPFy__V9cplhmkZcqLhDtuvTjX8AxlNtHkYZ-Q7N-hlT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA6lQvHF1vvaqlF88GWX2cllZvFpaV2qbkvp2tIHYcgVBqczS50V7JO_QPyN_hLPyVy0XkBkYAiTk8sk5yTnJDlfCHlmIseNADOVCQ0GSqLioVKIe8sVY7FKmQ3uYgeHcv-Evz4TZ2vkRecL0-BD9AtuKBlhvEYBX1r_k5CrohiBuCJ-6TUuoxRZeu_4B3ZU0i6wgAIx5CDWLawQHuPpk16djH7TMK8qrGHGmW2Sd11dm4Mm70erWo_M5S8wjv_5M1vkRquJ0mnDOjfJmitvkY2Ddq_9NvlyqgyGKE50llYl9VVhIQRjpFuCqU51HlxiqK3OVV5--_z16MItqF_hAhwNABB5SXGhly4hXMJYUtC6opAK-IkiQkNe5JeYQx68VOpPGL2YHi8gr93qFN4x_QjGPJ7VuUNOZi_f7u4P29sbhoYhDiZ080TqxHjhpHMczBjJoH6x9Z4bb5UV0gvGTeqUgy9jaVUsrdPeJ2YsUsnukvWyKt19QiPLgVCO7UQ7nmjQOVPhvTbMTIxmOhmQ5103ZqaFNscbNoqsM3GgfbPQvgPytCddNngefyLa6Xgha0X6QxZLmLjhidMBedJHgzDiDosqXbVCGg7mVxJHckDuNTzUl8IEE0kSTaCygRP-Xnw2nc9D4MG_kz4mG0d7s2z-6vDNNrkeo49GOKW4Q9bri5V7CJpTrR8FCfkOnckYCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vaccine+based+on+folded+receptor+binding+domain-PreS+fusion+protein+with+potential+to+induce+sterilizing+immunity+to+SARS-CoV-2+variants&rft.jtitle=Allergy+%28Copenhagen%29&rft.au=Gattinger%2C+Pia&rft.au=Kratzer%2C+Bernhard&rft.au=Tulaeva%2C+Inna&rft.au=Niespodziana%2C+Katarzyna&rft.date=2022-08-01&rft.eissn=1398-9995&rft.volume=77&rft.issue=8&rft.spage=2431&rft_id=info:doi/10.1111%2Fall.15305&rft_id=info%3Apmid%2F35357709&rft.externalDocID=35357709
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0105-4538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0105-4538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0105-4538&client=summon