Accelerating the integration of ChatGPT and other large‐scale AI models into biomedical research and healthcare

Large‐scale artificial intelligence (AI) models such as ChatGPT have the potential to improve performance on many benchmarks and real‐world tasks. However, it is difficult to develop and maintain these models because of their complexity and resource requirements. As a result, they are still inaccess...

Full description

Saved in:
Bibliographic Details
Published inMedComm - Future medicine Vol. 2; no. 2
Main Authors Wang, Ding‐Qiao, Feng, Long‐Yu, Ye, Jin‐Guo, Zou, Jin‐Gen, Zheng, Ying‐Feng
Format Journal Article
LanguageEnglish
Published London John Wiley & Sons, Inc 01.06.2023
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Large‐scale artificial intelligence (AI) models such as ChatGPT have the potential to improve performance on many benchmarks and real‐world tasks. However, it is difficult to develop and maintain these models because of their complexity and resource requirements. As a result, they are still inaccessible to healthcare industries and clinicians. This situation might soon be changed because of advancements in graphics processing unit (GPU) programming and parallel computing. More importantly, leveraging existing large‐scale AIs such as GPT‐4 and Med‐PaLM and integrating them into multiagent models (e.g., Visual‐ChatGPT) will facilitate real‐world implementations. This review aims to raise awareness of the potential applications of these models in healthcare. We provide a general overview of several advanced large‐scale AI models, including language models, vision‐language models, graph learning models, language‐conditioned multiagent models, and multimodal embodied models. We discuss their potential medical applications in addition to the challenges and future directions. Importantly, we stress the need to align these models with human values and goals, such as using reinforcement learning from human feedback, to ensure that they provide accurate and personalized insights that support human decision‐making and improve healthcare outcomes. This review provides an overview of large‐scale AI models, including language models (e.g., ChatGPT), vision‐language models, and language‐conditioned multiagent models, and discusses their potential applications in medicine, as well as their limitations and future trends. We also propose how large‐scale AI models can be integrated into various scenarios of clinical applications.
AbstractList Large‐scale artificial intelligence (AI) models such as ChatGPT have the potential to improve performance on many benchmarks and real‐world tasks. However, it is difficult to develop and maintain these models because of their complexity and resource requirements. As a result, they are still inaccessible to healthcare industries and clinicians. This situation might soon be changed because of advancements in graphics processing unit (GPU) programming and parallel computing. More importantly, leveraging existing large‐scale AIs such as GPT‐4 and Med‐PaLM and integrating them into multiagent models (e.g., Visual‐ChatGPT) will facilitate real‐world implementations. This review aims to raise awareness of the potential applications of these models in healthcare. We provide a general overview of several advanced large‐scale AI models, including language models, vision‐language models, graph learning models, language‐conditioned multiagent models, and multimodal embodied models. We discuss their potential medical applications in addition to the challenges and future directions. Importantly, we stress the need to align these models with human values and goals, such as using reinforcement learning from human feedback, to ensure that they provide accurate and personalized insights that support human decision‐making and improve healthcare outcomes.
Large‐scale artificial intelligence (AI) models such as ChatGPT have the potential to improve performance on many benchmarks and real‐world tasks. However, it is difficult to develop and maintain these models because of their complexity and resource requirements. As a result, they are still inaccessible to healthcare industries and clinicians. This situation might soon be changed because of advancements in graphics processing unit (GPU) programming and parallel computing. More importantly, leveraging existing large‐scale AIs such as GPT‐4 and Med‐PaLM and integrating them into multiagent models (e.g., Visual‐ChatGPT) will facilitate real‐world implementations. This review aims to raise awareness of the potential applications of these models in healthcare. We provide a general overview of several advanced large‐scale AI models, including language models, vision‐language models, graph learning models, language‐conditioned multiagent models, and multimodal embodied models. We discuss their potential medical applications in addition to the challenges and future directions. Importantly, we stress the need to align these models with human values and goals, such as using reinforcement learning from human feedback, to ensure that they provide accurate and personalized insights that support human decision‐making and improve healthcare outcomes. This review provides an overview of large‐scale AI models, including language models (e.g., ChatGPT), vision‐language models, and language‐conditioned multiagent models, and discusses their potential applications in medicine, as well as their limitations and future trends. We also propose how large‐scale AI models can be integrated into various scenarios of clinical applications.
Abstract Large‐scale artificial intelligence (AI) models such as ChatGPT have the potential to improve performance on many benchmarks and real‐world tasks. However, it is difficult to develop and maintain these models because of their complexity and resource requirements. As a result, they are still inaccessible to healthcare industries and clinicians. This situation might soon be changed because of advancements in graphics processing unit (GPU) programming and parallel computing. More importantly, leveraging existing large‐scale AIs such as GPT‐4 and Med‐PaLM and integrating them into multiagent models (e.g., Visual‐ChatGPT) will facilitate real‐world implementations. This review aims to raise awareness of the potential applications of these models in healthcare. We provide a general overview of several advanced large‐scale AI models, including language models, vision‐language models, graph learning models, language‐conditioned multiagent models, and multimodal embodied models. We discuss their potential medical applications in addition to the challenges and future directions. Importantly, we stress the need to align these models with human values and goals, such as using reinforcement learning from human feedback, to ensure that they provide accurate and personalized insights that support human decision‐making and improve healthcare outcomes.
Author Ye, Jin‐Guo
Feng, Long‐Yu
Zou, Jin‐Gen
Zheng, Ying‐Feng
Wang, Ding‐Qiao
Author_xml – sequence: 1
  givenname: Ding‐Qiao
  surname: Wang
  fullname: Wang, Ding‐Qiao
  organization: Sun Yat‐Sen University
– sequence: 2
  givenname: Long‐Yu
  surname: Feng
  fullname: Feng, Long‐Yu
  organization: Sun Yat‐Sen University
– sequence: 3
  givenname: Jin‐Guo
  surname: Ye
  fullname: Ye, Jin‐Guo
  organization: Sun Yat‐Sen University
– sequence: 4
  givenname: Jin‐Gen
  surname: Zou
  fullname: Zou, Jin‐Gen
  organization: Beijing Institute of Technology
– sequence: 5
  givenname: Ying‐Feng
  orcidid: 0000-0002-9952-6445
  surname: Zheng
  fullname: Zheng, Ying‐Feng
  email: zhyfeng@mail.sysu.edu.cn
  organization: Sun Yat‐Sen University
BookMark eNp1kc1u1DAUhS1UJEqpeAVLLFigFMdO_LMcjfozUhEsytq6ca4nHmXi1naFuuMReEaehGSmSAjExvb1_c7R0b2vyckUJyTkbc0uasb4xz16ftGIF-SUK2kq2bTy5I_3K3Ke847NpFaCK35KHlbO4YgJSpi2tAxIw1Rwu9RxotHT9QDl-ssdhamnce4nOkLa4s_vP7KDEelqQ_exxzEvwki7EPfYh7lFE2aE5IaDdEAYy-Ag4Rvy0sOY8fz5PiNfry7v1jfV7efrzXp1WznBhKi6jjMGptYCOgZMeK-FMvPR9I2STKJuW_SgjGtbDnXPea-Z0b30aLgEIc7I5ujbR9jZ-xT2kJ5shGAPHzFtLaQS3Ii2670TmkllQDbaOI2ae8dc13ZKGN_NXu-OXvcpPjxiLnYXH9M0x7eCGaZVy1s9U9WRcinmnNBbF8phkCVBGG3N7LIkuyzJNkvC93_xv1P-S344kt_CiE__w-ynyys-078AIwqiCg
CitedBy_id crossref_primary_10_1016_j_socimp_2024_100040
crossref_primary_10_1051_itmconf_20246000004
crossref_primary_10_1097_JCMA_0000000000000961
crossref_primary_10_1038_s41591_024_03359_y
crossref_primary_10_1002_slct_202304359
crossref_primary_10_1111_medu_15402
crossref_primary_10_1016_j_compbiomed_2024_108709
crossref_primary_10_1016_j_imu_2023_101304
crossref_primary_10_1007_s10639_024_12960_0
crossref_primary_10_1016_j_glmedi_2024_100081
crossref_primary_10_1016_j_jtcvs_2025_01_022
crossref_primary_10_2196_58041
crossref_primary_10_1002_aisy_202400429
crossref_primary_10_1016_j_ipm_2024_103743
crossref_primary_10_3389_fdmed_2024_1456208
crossref_primary_10_7759_cureus_57795
crossref_primary_10_1097_JS9_0000000000001875
crossref_primary_10_1124_molpharm_124_000871
crossref_primary_10_1109_MC_2023_3285414
crossref_primary_10_2196_56764
crossref_primary_10_3390_biomedinformatics4020062
crossref_primary_10_1016_j_inffus_2025_103033
crossref_primary_10_1109_RBME_2024_3496744
crossref_primary_10_1007_s44267_024_00065_8
crossref_primary_10_1016_j_jksuci_2024_101933
crossref_primary_10_1080_13658816_2024_2397441
crossref_primary_10_1108_JMTM_02_2024_0075
crossref_primary_10_4236_ojbm_2024_121009
crossref_primary_10_1002_mef2_49
crossref_primary_10_5423_RPD_2024_30_1_99
crossref_primary_10_1016_j_jdent_2024_104840
crossref_primary_10_33393_ao_2023_2618
crossref_primary_10_1002_mco2_70031
crossref_primary_10_1007_s43681_025_00672_1
crossref_primary_10_1111_dom_15463
crossref_primary_10_1186_s12859_024_06008_w
crossref_primary_10_1002_mco2_769
crossref_primary_10_1016_j_metrad_2023_100022
crossref_primary_10_3389_fpubh_2024_1457131
crossref_primary_10_1016_j_heliyon_2024_e31397
crossref_primary_10_1038_s41551_023_01045_x
crossref_primary_10_1007_s00266_023_03660_0
crossref_primary_10_1089_tmj_2023_0704
crossref_primary_10_1093_jamiaopen_ooae109
crossref_primary_10_1002_mco2_70043
crossref_primary_10_1111_bcp_16215
crossref_primary_10_1002_hsr2_1684
crossref_primary_10_1016_j_omtn_2023_06_019
crossref_primary_10_1016_j_metrad_2023_100034
crossref_primary_10_1097_ICU_0000000000001035
crossref_primary_10_1016_j_neucom_2024_127324
Cites_doi 10.1001/jama.2020.12067
10.1038/s41598-022-15496-w
10.18653/v1/2020.emnlp-main.743
10.1007/978-1-4842-4470-8_2
10.1109/ICACCS54159.2022.9785166
10.1109/JBHI.2022.3207502
10.5220/0010341906590666
10.1186/s13321-023-00694-z
10.1016/j.ophtha.2022.02.017
10.1021/acs.jmedchem.2c00991
10.1197/jamia.M2562
10.1016/j.jbi.2021.103982
10.1038/s42256-022-00580-7
10.1056/NEJMp1703370
10.1093/bioinformatics/btac020
10.1093/bioinformatics/btz682
10.1016/j.aiopen.2021.01.001
10.1097/SLA.0000000000002665
10.1609/aaai.v33i01.33014602
10.1038/s41586-020-2669-y
10.1038/s41586-021-03819-2
10.1038/s41467-020-19784-9
10.1145/3307339.3342186
10.1109/MSP.2017.2765202
10.1145/3394486.3406703
10.3390/biom12111709
10.1016/S2589-7500(20)30275-2
10.1038/s41592-021-01252-x
10.1162/neco.1997.9.8.1735
10.1016/j.cmpb.2014.09.005
10.1038/s42256-022-00499-z
10.1038/s41467-022-32007-7
10.1093/bib/bbab564
10.1371/journal.pdig.0000198
10.1016/j.compmedimag.2009.07.007
10.1093/bioadv/vbac023
10.1002/aisy.202000071
10.1093/bioinformatics/btab083
10.1016/j.artmed.2021.102032
10.48550/arXiv.2206.07682
10.1038/s41746-020-00322-2
10.1093/bib/bbad079
10.3390/s20072033
10.1109/IROS51168.2021.9636627
10.1109/MCAS.2006.1688199
10.1109/TETCI.2022.3141105
10.1177/1050651920958507
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Sichuan International Medical Exchange & Promotion Association (SCIMEA).
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Sichuan International Medical Exchange & Promotion Association (SCIMEA).
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1002/mef2.43
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2769-6456
EndPage n/a
ExternalDocumentID oai_doaj_org_article_bdfc380679a6489c8e82fc0cb5b739fb
10_1002_mef2_43
MEF243
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 82171034
– fundername: National Key R&D Program of China
  funderid: 2022YFC2502802
– fundername: The High‐level Hospital Construction Project, Zhongshan Ophthalmic Center, Sun Yat‐sen University
  funderid: 303010303058; 303020107; 303020108
GroupedDBID 0R~
24P
7X7
8FI
8FJ
ABUWG
ACCMX
ADPDF
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
EBS
FYUFA
GROUPED_DOAJ
HMCUK
M~E
PIMPY
TEORI
UKHRP
AAYXX
CITATION
PHGZM
PHGZT
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
COVID
DWQXO
K9.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
WIN
PUEGO
ID FETCH-LOGICAL-c3033-bb200a9183ab0a03ff8379f834d47606e855efa79c552a1d22d8098d6fe926a33
IEDL.DBID 7X7
ISSN 2769-6456
IngestDate Wed Aug 27 01:32:09 EDT 2025
Wed Aug 13 11:14:24 EDT 2025
Thu Apr 24 23:04:07 EDT 2025
Tue Jul 01 02:56:18 EDT 2025
Wed Jan 22 16:22:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3033-bb200a9183ab0a03ff8379f834d47606e855efa79c552a1d22d8098d6fe926a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9952-6445
OpenAccessLink https://www.proquest.com/docview/3090875258?pq-origsite=%requestingapplication%
PQID 3090875258
PQPubID 6860392
PageCount 28
ParticipantIDs doaj_primary_oai_doaj_org_article_bdfc380679a6489c8e82fc0cb5b739fb
proquest_journals_3090875258
crossref_citationtrail_10_1002_mef2_43
crossref_primary_10_1002_mef2_43
wiley_primary_10_1002_mef2_43_MEF243
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
20230601
2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle MedComm - Future medicine
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2022; 2212
2022; 2211
2022; 2210
2023; 2303
2020; 20
2023; 2302
2016; 1606
2022; 23
2020; 324
2019; 19
2017; 1707
2022; 26
2023; 2
2022; 65
2020; 11
1997; 9
2017; 9
2022; 2204
2022; 2203
2021; 35
2022; 2202
2017; 30
2022; 2201
2021; 37
2022; 162
2023; 24
2020; 3
2020; 2
2020; 1
2017; 70
2021; 113
2021; 596
2022; 2209
2022; 2207
2022; 2205
2022; 129
2022; 126
2022; 38
2018; 35
2010; 34
2014; 117
2021; 2104
2020; 2010
2019; 1904
2021; 2106
2021; 3
2023; 2206
2021; 2108
2017; 2017
2023; 15
2019; 33
2019; 32
2019; 1909
2019; 269
2008; 15
2020; 36
2006; 6
2020; 585
2020; 33
2015; 151511
2020; 2004
2017; 377
2018; 1810
2020; 2006
2021; 2110
2021; 2112
2013; 1301
2022; 182
2023
2022
2022; 4
2021
2022; 6
2020
2021; 18
2021; 139
2022; 12
2022; 13
2019
2022; 2
2020; 21
Wang Y (e_1_2_16_96_1) 2022; 2210
Schulman J (e_1_2_16_35_1) 2017; 1707
Zeng A (e_1_2_16_99_1) 2022; 2204
e_1_2_16_46_1
Wang X (e_1_2_16_28_1) 2022; 2203
e_1_2_16_69_1
e_1_2_16_42_1
e_1_2_16_65_1
Wei J (e_1_2_16_25_1) 2022; 2201
e_1_2_16_120_1
Rampášek L (e_1_2_16_87_1) 2022
Brown T (e_1_2_16_20_1) 2020; 33
Dosovitskiy A (e_1_2_16_23_1) 2020; 2010
Raffel C (e_1_2_16_41_1) 2020; 21
Madani A (e_1_2_16_57_1) 2020; 2004
Chowdhery A (e_1_2_16_6_1) 2022; 2204
Price W (e_1_2_16_119_1) 2019; 33
Vaswani A (e_1_2_16_15_1) 2017; 30
e_1_2_16_30_1
e_1_2_16_53_1
e_1_2_16_76_1
e_1_2_16_105_1
Hoffmann J (e_1_2_16_5_1) 2022; 2203
Arora S (e_1_2_16_29_1) 2022; 2210
Dwivedi VP (e_1_2_16_86_1) 2020
Huang H (e_1_2_16_75_1) 2022
e_1_2_16_109_1
e_1_2_16_95_1
e_1_2_16_72_1
e_1_2_16_91_1
e_1_2_16_9_1
Chen D (e_1_2_16_88_1) 2022; 162
Wu C (e_1_2_16_102_1) 2023; 2303
Naughton J. (e_1_2_16_124_1) 2017; 9
Radford A (e_1_2_16_62_1) 2021; 139
e_1_2_16_68_1
e_1_2_16_118_1
Brohan A (e_1_2_16_101_1) 2022; 2212
e_1_2_16_60_1
Bai Y (e_1_2_16_33_1) 2022; 2212
e_1_2_16_114_1
Ramesh A (e_1_2_16_61_1) 2021; 139
Verkuil R (e_1_2_16_52_1) 2022; 12
Dong L (e_1_2_16_38_1) 2019; 32
e_1_2_16_121_1
Wang B (e_1_2_16_8_1) 2021; 2110
Qiu S (e_1_2_16_81_1) 2022
Bian Z (e_1_2_16_113_1) 2021; 2110
Kojima T (e_1_2_16_27_1) 2022; 2205
e_1_2_16_14_1
e_1_2_16_56_1
e_1_2_16_37_1
e_1_2_16_98_1
Mialon G (e_1_2_16_89_1) 2021; 2106
Driess D (e_1_2_16_112_1) 2023; 2303
e_1_2_16_10_1
e_1_2_16_125_1
e_1_2_16_106_1
Alon U (e_1_2_16_84_1) 2020; 2006
e_1_2_16_4_1
Alayrac J‐B (e_1_2_16_64_1) 2022; 2204
Kazerouni A (e_1_2_16_12_1) 2022; 2211
Singhal K (e_1_2_16_47_1) 2022; 2212
Wang C (e_1_2_16_71_1) 2017; 2017
e_1_2_16_48_1
Glaese A (e_1_2_16_32_1) 2022; 2209
e_1_2_16_44_1
Chen X (e_1_2_16_94_1) 2022
Bai Y (e_1_2_16_34_1) 2022; 2204
e_1_2_16_115_1
e_1_2_16_40_1
e_1_2_16_82_1
e_1_2_16_122_1
Devlin J (e_1_2_16_19_1) 2018; 1810
Huang K (e_1_2_16_43_1) 2019; 1904
Gilmer J (e_1_2_16_80_1) 2017; 70
O'Shea K (e_1_2_16_18_1) 2015; 151511
Lester B (e_1_2_16_21_1) 2021; 2104
Huang S (e_1_2_16_111_1) 2023
e_1_2_16_17_1
e_1_2_16_36_1
e_1_2_16_59_1
e_1_2_16_78_1
e_1_2_16_55_1
e_1_2_16_74_1
e_1_2_16_103_1
e_1_2_16_97_1
e_1_2_16_70_1
e_1_2_16_51_1
e_1_2_16_107_1
Heinzinger M (e_1_2_16_39_1) 2019; 19
e_1_2_16_93_1
Ouyang L (e_1_2_16_31_1) 2022; 2203
e_1_2_16_110_1
Taylor R (e_1_2_16_116_1) 2022; 2211
Rajbhandari S (e_1_2_16_126_1) 2022
e_1_2_16_3_1
Mikolov T (e_1_2_16_22_1) 2013; 1301
Bommasani R (e_1_2_16_7_1) 2021; 2108
Liévin V (e_1_2_16_45_1) 2022; 2207
Wang M (e_1_2_16_79_1) 2019; 1909
e_1_2_16_24_1
Ho J (e_1_2_16_11_1) 2020; 33
Ahn M (e_1_2_16_100_1) 2022; 2204
e_1_2_16_2_1
Doersch C (e_1_2_16_13_1) 2016; 1606
Perez E (e_1_2_16_117_1) 2022
e_1_2_16_123_1
Liu W (e_1_2_16_49_1) 2022
Gao Z (e_1_2_16_90_1) 2022; 2202
Yun S (e_1_2_16_85_1) 2019; 32
e_1_2_16_16_1
e_1_2_16_58_1
e_1_2_16_77_1
e_1_2_16_104_1
Zhang Z (e_1_2_16_26_1) 2023; 2302
e_1_2_16_54_1
Eslami S (e_1_2_16_66_1) 2021; 2112
e_1_2_16_73_1
e_1_2_16_108_1
Zhang Y (e_1_2_16_67_1) 2022; 182
e_1_2_16_92_1
e_1_2_16_50_1
Xu K (e_1_2_16_83_1) 2021; 139
Jia C (e_1_2_16_63_1) 2021; 139
References_xml – volume: 139
  start-page: 8748
  year: 2021
  end-page: 8763
  article-title: Learning transferable visual models from natural language supervision
  publication-title: Proc Mach Learn Res
– volume: 2201
  year: 2022
  article-title: Chain of thought prompting elicits reasoning in large language models
  publication-title: arXiv
– volume: 24
  issue: 2
  year: 2023
  article-title: MHTAN‐DTI: metapath‐based hierarchical transformer and attention network for drug–target interaction prediction
  publication-title: Brief Bioinform
– year: 2022
  article-title: Red teaming language models with language models
  publication-title: arXiv
– volume: 2205
  year: 2022
  article-title: Large language models are zero‐shot reasoners
  publication-title: arXiv
– volume: 3
  start-page: e115
  issue: 2
  year: 2021
  end-page: e123
  article-title: Ethical issues in using ambient intelligence in health‐care settings
  publication-title: Lancet Digit Health
– volume: 6
  start-page: 21
  issue: 3
  year: 2006
  end-page: 45
  article-title: Ensemble based systems in decision making
  publication-title: IEEE Circuits Syst Mag
– volume: 19
  year: 2019
  article-title: Modeling the language of life–deep learning protein sequences
  publication-title: Biorxiv
– volume: 2106
  year: 2021
  article-title: Graphit: encoding graph structure in transformers
  publication-title: arXiv
– volume: 12
  issue: 1
  year: 2022
  article-title: Prediction of postoperative cardiac events in multiple surgical cohorts using a multimodal and integrative decision support system
  publication-title: Sci Rep
– volume: 2203
  year: 2022
  article-title: Training compute‐optimal large language models
  publication-title: arXiv
– volume: 585
  start-page: 193
  issue: 7824
  year: 2020
  end-page: 202
  article-title: Illuminating the dark spaces of healthcare with ambient intelligence
  publication-title: Nature
– volume: 1606
  year: 2016
  article-title: Tutorial on variational autoencoders
  publication-title: arXiv
– volume: 12
  year: 2022
  article-title: Language models generalize beyond natural proteins
  publication-title: bioRxiv
– volume: 2204
  year: 2022
  article-title: Do as I can, not as I say: grounding language in robotic affordances
  publication-title: arXiv
– volume: 37
  start-page: 2112
  issue: 15
  year: 2021
  end-page: 2120
  article-title: DNABERT: pre‐trained bidirectional encoder representations from transformers model for DNA‐language in genome
  publication-title: Bioinformatics
– year: 2022
– volume: 2010
  year: 2020
  article-title: An image is worth 16 × 16 words: transformers for image recognition at scale
  publication-title: arXiv
– start-page: 101
  year: 2022
  end-page: 117
– volume: 151511
  year: 2015
  article-title: An introduction to convolutional neural networks
  publication-title: arXiv
– volume: 36
  start-page: 1234
  issue: 4
  year: 2020
  end-page: 1240
  article-title: BioBERT: a pre‐trained biomedical language representation model for biomedical text mining
  publication-title: Bioinformatics
– volume: 23
  issue: 2
  year: 2022
  article-title: AlphaFold2‐aware protein–DNA binding site prediction using graph transformer
  publication-title: Brief Bioinform
– year: 2019
– volume: 377
  start-page: 904
  issue: 10
  year: 2017
  end-page: 906
  article-title: The HITECH era and the path forward
  publication-title: N Engl J Med
– volume: 65
  start-page: 10691
  issue: 15
  year: 2022
  end-page: 10706
  article-title: Boosting protein–ligand binding pose prediction and virtual screening based on residue–atom distance likelihood potential and graph transformer
  publication-title: J Med Chem
– volume: 269
  start-page: 1059
  issue: 6
  year: 2019
  end-page: 1063
  article-title: Validating the electronic cardiac arrest risk triage (eCART) score for risk stratification of surgical inpatients in the postoperative setting: retrospective cohort study
  publication-title: Ann Surg
– volume: 11
  issue: 1
  year: 2020
  article-title: Training confounder‐free deep learning models for medical applications
  publication-title: Nat Commun
– volume: 2
  issue: 1
  year: 2022
  article-title: Prediction of RNA–protein interactions using a nucleotide language model
  publication-title: Bioinform Adv
– volume: 2204
  year: 2022
  article-title: Flamingo: a visual language model for few‐shot learning
  publication-title: arXiv
– volume: 35
  start-page: 53
  issue: 1
  year: 2018
  end-page: 65
  article-title: Generative adversarial networks: an overview
  publication-title: IEEE Signal Process Mag
– volume: 1707
  year: 2017
  article-title: Proximal policy optimization algorithms
  publication-title: arXiv
– volume: 162
  start-page: 3469
  year: 2022
  end-page: 3489
  article-title: Structure‐aware transformer for graph representation learning
  publication-title: Proc Mach Learn Res
– volume: 2004
  year: 2020
  article-title: Progen: language modeling for protein generation
  publication-title: arXiv
– start-page: 7
  year: 2019
  end-page: 10
– volume: 182
  start-page: 2
  year: 2022
  end-page: 25
  article-title: Contrastive learning of medical visual representations from paired images and text
  publication-title: Proc Mach Learn Res
– year: 2022
  article-title: Recipe for a general, powerful, scalable graph transformer
  publication-title: arXiv
– volume: 2006
  year: 2020
  article-title: On the bottleneck of graph neural networks and its practical implications
  publication-title: arXiv
– volume: 6
  start-page: 230
  issue: 2
  year: 2022
  end-page: 244
  article-title: A survey of embodied AI: from simulators to research tasks
  publication-title: IEEE Trans Emerg Top Comput Intell
– volume: 113
  year: 2021
  article-title: Multimodal tensor‐based method for integrative and continuous patient monitoring during postoperative cardiac care
  publication-title: Artif Intell Med
– volume: 2303
  year: 2023
  article-title: PaLM‐E: an embodied multimodal language model
  publication-title: arXiv
– volume: 4
  start-page: 1256
  issue: 12
  year: 2022
  end-page: 1264
  article-title: Large‐scale chemical language representations capture molecular structure and properties
  publication-title: Nat Mach Intell
– volume: 1810
  year: 2018
  article-title: Bert: pre‐training of deep bidirectional transformers for language understanding
  publication-title: arXiv
– volume: 30
  start-page: 1
  year: 2017
  end-page: 11
  article-title: Attention is all you need
  publication-title: Adv Neural Inf Process Syst
– volume: 2203
  year: 2022
  article-title: Training language models to follow instructions with human feedback
  publication-title: arXiv
– volume: 15
  start-page: 24
  issue: 1
  year: 2023
  article-title: DrugEx v3: scaffold‐constrained drug design with graph transformer‐based reinforcement learning
  publication-title: J Cheminf
– volume: 15
  start-page: 1
  issue: 1
  year: 2008
  end-page: 7
  article-title: Early experiences with personal health records
  publication-title: J Am Med Inform Assoc
– volume: 2207
  year: 2022
  article-title: Can large language models reason about medical questions?
  publication-title: arXiv
– volume: 1301
  year: 2013
  article-title: Efficient estimation of word representations in vector space
  publication-title: arXiv
– start-page: 447
  year: 2022
  end-page: 459
– volume: 2110
  year: 2021
  article-title: Colossal‐AI: a unified deep learning system for large‐scale parallel training
  publication-title: arXiv
– start-page: 18332
  year: 2022
  end-page: 18346
  article-title: Deepspeed‐moe: advancing mixture‐of‐experts inference and training to power next‐generation ai scale
  publication-title: Int Conf Mach Learn
– volume: 2110
  year: 2021
  article-title: Pre‐trained language models in biomedical domain: a survey from multiscale perspective
  publication-title: arXiv
– volume: 3
  start-page: 115
  issue: 1
  year: 2020
  article-title: CheXaid: deep learning assistance for physician diagnosis of tuberculosis using chest x‐rays in patients with HIV
  publication-title: NPJ Digit Med
– volume: 2206
  year: 2023
  article-title: Emergent abilities of large language models
  publication-title: arXiv
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 8
  article-title: Multimodal gait analysis based on wearable inertial and microphone sensors
  publication-title: IEEE
– volume: 26
  start-page: 6070
  issue: 12
  year: 2022
  end-page: 6080
  article-title: Multi‐modal understanding and generation for medical images and text via vision‐language pre‐training
  publication-title: IEEE J Biomed Health Inform
– volume: 12
  start-page: 1709
  issue: 11
  year: 2022
  article-title: GOProFormer: a multi‐modal transformer method for gene ontology protein function prediction
  publication-title: Biomolecules
– volume: 32
  start-page: 1
  year: 2019
  end-page: 13
  article-title: Unified language model pre‐training for natural language understanding and generation
  publication-title: Adv Neural Inf Process Syst
– volume: 38
  start-page: 2102
  issue: 8
  year: 2022
  end-page: 2110
  article-title: ProteinBERT: a universal deep‐learning model of protein sequence and function
  publication-title: Bioinformatics
– volume: 2
  issue: 7
  year: 2020
  article-title: Robotics, smart wearable technologies, and autonomous intelligent systems for healthcare during the COVID‐19 pandemic: an analysis of the state of the art and future vision
  publication-title: Adv Intell Syst
– year: 2021
– volume: 2112
  year: 2021
  article-title: Does clip benefit visual question answering in the medical domain as much as it does in the general domain?
  publication-title: arXiv
– volume: 139
  start-page: 11592
  year: 2021
  end-page: 11602
  article-title: Optimization of graph neural networks: implicit acceleration by skip connections and more depth
  publication-title: Proc Mach Learn Res
– volume: 33
  start-page: 1877
  year: 2020
  end-page: 1901
  article-title: Language models are few‐shot learners
  publication-title: Adv Neural Inf Process Syst
– volume: 2204
  year: 2022
  article-title: Training a helpful and harmless assistant with reinforcement learning from human feedback
  publication-title: arXiv
– volume: 2204
  year: 2022
  article-title: PaLM: scaling language modeling with pathways
  publication-title: arXiv
– volume: 32
  start-page: 1
  year: 2019
  end-page: 11
  article-title: Graph transformer networks
  publication-title: Adv Neural Inf Process Syst
– volume: 9
  start-page: 9
  year: 2017
  article-title: Giving Google our private NHS data is simply illegal
  publication-title: The Guardian
– volume: 2104
  year: 2021
  article-title: The power of scale for parameter‐efficient prompt tuning
  publication-title: arXiv
– volume: 21
  start-page: 5485
  issue: 1
  year: 2020
  end-page: 5551
  article-title: Exploring the limits of transfer learning with a unified text‐to‐text transformer
  publication-title: J Mach Learn Res
– volume: 2302
  year: 2023
  article-title: Multimodal chain‐of‐thought reasoning in language models
  publication-title: arXiv
– volume: 139
  start-page: 4904
  year: 2021
  end-page: 4916
  article-title: Scaling up visual and vision‐language representation learning with noisy text supervision
  publication-title: Proc Mach Learn Res
– volume: 129
  start-page: 781
  issue: 7
  year: 2022
  end-page: 791
  article-title: Policy‐driven, multimodal deep learning for predicting visual fields from the optic disc and OCT imaging
  publication-title: Ophthalmology
– volume: 2210
  year: 2022
  article-title: MechRetro is a chemical‐mechanism‐driven graph learning framework for interpretable retrosynthesis prediction and pathway planning
  publication-title: arXiv
– volume: 2211
  year: 2022
  article-title: Galactica: a large language model for science
  publication-title: arXiv
– volume: 2212
  year: 2022
  article-title: Constitutional AI: harmlessness from AI feedback
  publication-title: arXiv
– volume: 70
  start-page: 1263
  year: 2017
  end-page: 1272
  article-title: Neural message passing for quantum chemistry
  publication-title: Proc Mach Learn Res
– volume: 33
  start-page: 65
  year: 2019
  article-title: Medical AI and contextual bias
  publication-title: Harv JL & Tech
– year: 2022
  article-title: DProQ: a gated‐graph transformer for protein complex structure assessment
  publication-title: bioRxiv
– volume: 2211
  year: 2022
  article-title: Diffusion models for medical image analysis: a comprehensive survey
  publication-title: arXiv
– volume: 2
  issue: 2
  year: 2023
  article-title: Performance of ChatGPT on USMLE: potential for AI‐assisted medical education using large language models
  publication-title: PLOS Digit Health
– volume: 2202
  year: 2022
  article-title: AlphaDesign: a graph protein design method and benchmark on AlphaFoldDB
  publication-title: arXiv
– start-page: 665
  year: 2022
  end-page: 674
– volume: 2108
  year: 2021
  article-title: On the opportunities and risks of foundation models
  publication-title: arXiv
– volume: 35
  start-page: 35
  issue: 1
  year: 2021
  end-page: 40
  article-title: The WHO health alert: communicating a global pandemic with WhatsApp
  publication-title: J Bus Tech Commun
– volume: 2209
  year: 2022
  article-title: Improving alignment of dialogue agents via targeted human judgements
  publication-title: arXiv
– volume: 117
  start-page: 489
  issue: 3
  year: 2014
  end-page: 501
  article-title: Human fall detection on embedded platform using depth maps and wireless accelerometer
  publication-title: Comput Methods Programs Biomed
– volume: 2210
  year: 2022
  article-title: Ask me anything: a simple strategy for prompting language models
  publication-title: arXiv
– volume: 139
  start-page: 8821
  year: 2021
  end-page: 8831
  article-title: Zero‐shot text‐to‐image generation
  publication-title: Proc Mach Learn Res
– volume: 2303
  year: 2023
  article-title: Visual ChatGPT: talking, drawing and editing with visual foundation models
  publication-title: arXiv
– volume: 33
  start-page: 6840
  year: 2020
  end-page: 6851
  article-title: Denoising diffusion probabilistic models
  publication-title: Adv Neural Inf Process Syst
– volume: 34
  start-page: 33
  issue: 1
  year: 2010
  end-page: 45
  article-title: From medical images to minimally invasive intervention: computer assistance for robotic surgery
  publication-title: Comput Med Imag Graph
– volume: 4
  start-page: 521
  issue: 6
  year: 2022
  end-page: 532
  article-title: Controllable protein design with language models
  publication-title: Nat Mach Intell
– volume: 2204
  year: 2022
  article-title: Socratic models: composing zero‐shot multimodal reasoning with language
  publication-title: arXiv
– volume: 1909
  year: 2019
  article-title: Deep graph library: a graph‐centric, highly‐performant package for graph neural networks
  publication-title: arXiv
– year: 2023
  article-title: Language is not all you need: aligning perception with language models
  publication-title: arXiv
– volume: 13
  start-page: 4348
  issue: 1
  year: 2022
  article-title: ProtGPT2 is a deep unsupervised language model for protein design
  publication-title: Nat Commun
– volume: 2203
  year: 2022
  article-title: Self‐consistency improves chain of thought reasoning in language models
  publication-title: arXiv
– volume: 324
  start-page: 1212
  issue: 12
  year: 2020
  end-page: 1213
  article-title: Geographic distribution of US cohorts used to train deep learning algorithms
  publication-title: JAMA
– volume: 1
  start-page: 57
  year: 2020
  end-page: 81
  article-title: Graph neural networks: a review of methods and applications
  publication-title: AI open
– volume: 2212
  year: 2022
  article-title: Rt‐1: robotics transformer for real‐world control at scale
  publication-title: arXiv
– year: 2020
– year: 2023
– volume: 1904
  year: 2019
  article-title: Clinicalbert: modeling clinical notes and predicting hospital readmission
  publication-title: arXiv
– volume: 20
  start-page: 2033
  issue: 7
  year: 2020
  article-title: Wearable cardiorespiratory monitoring employing a multimodal digital patch stethoscope: estimation of ECG, PEP, LVET and respiration using a 55 mm single‐lead ECG and phonocardiogram
  publication-title: Sensors
– volume: 18
  start-page: 1196
  issue: 10
  year: 2021
  end-page: 1203
  article-title: Effective gene expression prediction from sequence by integrating long‐range interactions
  publication-title: Nat Methods
– year: 2020
  article-title: A generalization of transformer networks to graphs
  publication-title: arXiv
– volume: 2212
  year: 2022
  article-title: Large language models encode clinical knowledge
  publication-title: arXiv
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  article-title: Long short‐term memory
  publication-title: Neural Comput
– volume: 596
  start-page: 583
  issue: 7873
  year: 2021
  end-page: 589
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
– volume: 126
  year: 2022
  article-title: AMMU: a survey of transformer‐based biomedical pretrained language models
  publication-title: J Biomed Inf
– volume: 2212
  year: 2022
  ident: e_1_2_16_101_1
  article-title: Rt‐1: robotics transformer for real‐world control at scale
  publication-title: arXiv
– volume: 32
  start-page: 1
  year: 2019
  ident: e_1_2_16_38_1
  article-title: Unified language model pre‐training for natural language understanding and generation
  publication-title: Adv Neural Inf Process Syst
– volume: 2203
  year: 2022
  ident: e_1_2_16_31_1
  article-title: Training language models to follow instructions with human feedback
  publication-title: arXiv
– volume: 2209
  year: 2022
  ident: e_1_2_16_32_1
  article-title: Improving alignment of dialogue agents via targeted human judgements
  publication-title: arXiv
– volume: 33
  start-page: 6840
  year: 2020
  ident: e_1_2_16_11_1
  article-title: Denoising diffusion probabilistic models
  publication-title: Adv Neural Inf Process Syst
– volume: 33
  start-page: 1877
  year: 2020
  ident: e_1_2_16_20_1
  article-title: Language models are few‐shot learners
  publication-title: Adv Neural Inf Process Syst
– volume: 30
  start-page: 1
  year: 2017
  ident: e_1_2_16_15_1
  article-title: Attention is all you need
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_2_16_121_1
  doi: 10.1001/jama.2020.12067
– ident: e_1_2_16_69_1
  doi: 10.1038/s41598-022-15496-w
– volume: 2303
  year: 2023
  ident: e_1_2_16_112_1
  article-title: PaLM‐E: an embodied multimodal language model
  publication-title: arXiv
– volume: 2204
  year: 2022
  ident: e_1_2_16_34_1
  article-title: Training a helpful and harmless assistant with reinforcement learning from human feedback
  publication-title: arXiv
– ident: e_1_2_16_48_1
  doi: 10.18653/v1/2020.emnlp-main.743
– ident: e_1_2_16_115_1
  doi: 10.1007/978-1-4842-4470-8_2
– ident: e_1_2_16_105_1
– volume: 32
  start-page: 1
  year: 2019
  ident: e_1_2_16_85_1
  article-title: Graph transformer networks
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_2_16_107_1
  doi: 10.1109/ICACCS54159.2022.9785166
– ident: e_1_2_16_65_1
  doi: 10.1109/JBHI.2022.3207502
– volume: 2303
  year: 2023
  ident: e_1_2_16_102_1
  article-title: Visual ChatGPT: talking, drawing and editing with visual foundation models
  publication-title: arXiv
– volume: 1904
  year: 2019
  ident: e_1_2_16_43_1
  article-title: Clinicalbert: modeling clinical notes and predicting hospital readmission
  publication-title: arXiv
– ident: e_1_2_16_76_1
  doi: 10.5220/0010341906590666
– volume: 2108
  year: 2021
  ident: e_1_2_16_7_1
  article-title: On the opportunities and risks of foundation models
  publication-title: arXiv
– year: 2022
  ident: e_1_2_16_94_1
  article-title: DProQ: a gated‐graph transformer for protein complex structure assessment
  publication-title: bioRxiv
– volume: 2211
  year: 2022
  ident: e_1_2_16_12_1
  article-title: Diffusion models for medical image analysis: a comprehensive survey
  publication-title: arXiv
– ident: e_1_2_16_95_1
  doi: 10.1186/s13321-023-00694-z
– ident: e_1_2_16_78_1
  doi: 10.1016/j.ophtha.2022.02.017
– ident: e_1_2_16_92_1
  doi: 10.1021/acs.jmedchem.2c00991
– volume: 70
  start-page: 1263
  year: 2017
  ident: e_1_2_16_80_1
  article-title: Neural message passing for quantum chemistry
  publication-title: Proc Mach Learn Res
– volume: 139
  start-page: 4904
  year: 2021
  ident: e_1_2_16_63_1
  article-title: Scaling up visual and vision‐language representation learning with noisy text supervision
  publication-title: Proc Mach Learn Res
– volume: 2017
  start-page: 1
  year: 2017
  ident: e_1_2_16_71_1
  article-title: Multimodal gait analysis based on wearable inertial and microphone sensors
  publication-title: IEEE
– volume: 2006
  year: 2020
  ident: e_1_2_16_84_1
  article-title: On the bottleneck of graph neural networks and its practical implications
  publication-title: arXiv
– ident: e_1_2_16_123_1
  doi: 10.1197/jamia.M2562
– volume: 1606
  year: 2016
  ident: e_1_2_16_13_1
  article-title: Tutorial on variational autoencoders
  publication-title: arXiv
– ident: e_1_2_16_9_1
  doi: 10.1016/j.jbi.2021.103982
– volume: 2210
  year: 2022
  ident: e_1_2_16_29_1
  article-title: Ask me anything: a simple strategy for prompting language models
  publication-title: arXiv
– volume: 182
  start-page: 2
  year: 2022
  ident: e_1_2_16_67_1
  article-title: Contrastive learning of medical visual representations from paired images and text
  publication-title: Proc Mach Learn Res
– volume: 151511
  year: 2015
  ident: e_1_2_16_18_1
  article-title: An introduction to convolutional neural networks
  publication-title: arXiv
– volume: 19
  year: 2019
  ident: e_1_2_16_39_1
  article-title: Modeling the language of life–deep learning protein sequences
  publication-title: Biorxiv
– volume: 1909
  year: 2019
  ident: e_1_2_16_79_1
  article-title: Deep graph library: a graph‐centric, highly‐performant package for graph neural networks
  publication-title: arXiv
– year: 2022
  ident: e_1_2_16_117_1
  article-title: Red teaming language models with language models
  publication-title: arXiv
– volume: 2110
  year: 2021
  ident: e_1_2_16_8_1
  article-title: Pre‐trained language models in biomedical domain: a survey from multiscale perspective
  publication-title: arXiv
– volume: 33
  start-page: 65
  year: 2019
  ident: e_1_2_16_119_1
  article-title: Medical AI and contextual bias
  publication-title: Harv JL & Tech
– volume: 2202
  year: 2022
  ident: e_1_2_16_90_1
  article-title: AlphaDesign: a graph protein design method and benchmark on AlphaFoldDB
  publication-title: arXiv
– ident: e_1_2_16_60_1
  doi: 10.1038/s42256-022-00580-7
– ident: e_1_2_16_122_1
  doi: 10.1056/NEJMp1703370
– ident: e_1_2_16_37_1
– ident: e_1_2_16_2_1
– volume: 1810
  year: 2018
  ident: e_1_2_16_19_1
  article-title: Bert: pre‐training of deep bidirectional transformers for language understanding
  publication-title: arXiv
– ident: e_1_2_16_54_1
  doi: 10.1093/bioinformatics/btac020
– volume: 2211
  year: 2022
  ident: e_1_2_16_116_1
  article-title: Galactica: a large language model for science
  publication-title: arXiv
– ident: e_1_2_16_42_1
  doi: 10.1093/bioinformatics/btz682
– ident: e_1_2_16_16_1
  doi: 10.1016/j.aiopen.2021.01.001
– volume: 2204
  year: 2022
  ident: e_1_2_16_64_1
  article-title: Flamingo: a visual language model for few‐shot learning
  publication-title: arXiv
– volume: 9
  start-page: 9
  year: 2017
  ident: e_1_2_16_124_1
  article-title: Giving Google our private NHS data is simply illegal
  publication-title: The Guardian
– ident: e_1_2_16_68_1
  doi: 10.1097/SLA.0000000000002665
– ident: e_1_2_16_82_1
  doi: 10.1609/aaai.v33i01.33014602
– ident: e_1_2_16_44_1
– ident: e_1_2_16_74_1
  doi: 10.1038/s41586-020-2669-y
– ident: e_1_2_16_104_1
– volume: 139
  start-page: 8748
  year: 2021
  ident: e_1_2_16_62_1
  article-title: Learning transferable visual models from natural language supervision
  publication-title: Proc Mach Learn Res
– ident: e_1_2_16_55_1
  doi: 10.1038/s41586-021-03819-2
– start-page: 447
  volume-title: MedDG: An Entity‐Centric Medical Consultation Dataset for Entity‐Aware Medical Dialogue Generation
  year: 2022
  ident: e_1_2_16_49_1
– ident: e_1_2_16_125_1
  doi: 10.1038/s41467-020-19784-9
– volume: 1707
  year: 2017
  ident: e_1_2_16_35_1
  article-title: Proximal policy optimization algorithms
  publication-title: arXiv
– volume: 139
  start-page: 11592
  year: 2021
  ident: e_1_2_16_83_1
  article-title: Optimization of graph neural networks: implicit acceleration by skip connections and more depth
  publication-title: Proc Mach Learn Res
– ident: e_1_2_16_59_1
  doi: 10.1145/3307339.3342186
– ident: e_1_2_16_14_1
  doi: 10.1109/MSP.2017.2765202
– volume: 12
  year: 2022
  ident: e_1_2_16_52_1
  article-title: Language models generalize beyond natural proteins
  publication-title: bioRxiv
– volume: 2204
  year: 2022
  ident: e_1_2_16_99_1
  article-title: Socratic models: composing zero‐shot multimodal reasoning with language
  publication-title: arXiv
– volume: 21
  start-page: 5485
  issue: 1
  year: 2020
  ident: e_1_2_16_41_1
  article-title: Exploring the limits of transfer learning with a unified text‐to‐text transformer
  publication-title: J Mach Learn Res
– ident: e_1_2_16_114_1
  doi: 10.1145/3394486.3406703
– ident: e_1_2_16_91_1
  doi: 10.3390/biom12111709
– volume: 2203
  year: 2022
  ident: e_1_2_16_28_1
  article-title: Self‐consistency improves chain of thought reasoning in language models
  publication-title: arXiv
– start-page: 18332
  year: 2022
  ident: e_1_2_16_126_1
  article-title: Deepspeed‐moe: advancing mixture‐of‐experts inference and training to power next‐generation ai scale
  publication-title: Int Conf Mach Learn
– ident: e_1_2_16_120_1
  doi: 10.1016/S2589-7500(20)30275-2
– volume: 2207
  year: 2022
  ident: e_1_2_16_45_1
  article-title: Can large language models reason about medical questions?
  publication-title: arXiv
– ident: e_1_2_16_30_1
– volume: 2212
  year: 2022
  ident: e_1_2_16_47_1
  article-title: Large language models encode clinical knowledge
  publication-title: arXiv
– volume: 2112
  year: 2021
  ident: e_1_2_16_66_1
  article-title: Does clip benefit visual question answering in the medical domain as much as it does in the general domain?
  publication-title: arXiv
– volume: 2204
  year: 2022
  ident: e_1_2_16_100_1
  article-title: Do as I can, not as I say: grounding language in robotic affordances
  publication-title: arXiv
– volume: 2110
  year: 2021
  ident: e_1_2_16_113_1
  article-title: Colossal‐AI: a unified deep learning system for large‐scale parallel training
  publication-title: arXiv
– volume: 162
  start-page: 3469
  year: 2022
  ident: e_1_2_16_88_1
  article-title: Structure‐aware transformer for graph representation learning
  publication-title: Proc Mach Learn Res
– ident: e_1_2_16_51_1
  doi: 10.1038/s41592-021-01252-x
– ident: e_1_2_16_17_1
  doi: 10.1162/neco.1997.9.8.1735
– volume: 2203
  year: 2022
  ident: e_1_2_16_5_1
  article-title: Training compute‐optimal large language models
  publication-title: arXiv
– ident: e_1_2_16_70_1
  doi: 10.1016/j.cmpb.2014.09.005
– ident: e_1_2_16_53_1
  doi: 10.1038/s42256-022-00499-z
– volume: 2004
  year: 2020
  ident: e_1_2_16_57_1
  article-title: Progen: language modeling for protein generation
  publication-title: arXiv
– start-page: 665
  volume-title: Personalized Diagnostic Tool for Thyroid Cancer Classification using Multi‐View Ultrasound
  year: 2022
  ident: e_1_2_16_75_1
– ident: e_1_2_16_10_1
– volume: 2212
  year: 2022
  ident: e_1_2_16_33_1
  article-title: Constitutional AI: harmlessness from AI feedback
  publication-title: arXiv
– ident: e_1_2_16_56_1
  doi: 10.1038/s41467-022-32007-7
– ident: e_1_2_16_93_1
  doi: 10.1093/bib/bbab564
– ident: e_1_2_16_24_1
– ident: e_1_2_16_46_1
  doi: 10.1371/journal.pdig.0000198
– volume: 1301
  year: 2013
  ident: e_1_2_16_22_1
  article-title: Efficient estimation of word representations in vector space
  publication-title: arXiv
– volume: 2302
  year: 2023
  ident: e_1_2_16_26_1
  article-title: Multimodal chain‐of‐thought reasoning in language models
  publication-title: arXiv
– ident: e_1_2_16_110_1
  doi: 10.1016/j.compmedimag.2009.07.007
– volume: 2010
  year: 2020
  ident: e_1_2_16_23_1
  article-title: An image is worth 16 × 16 words: transformers for image recognition at scale
  publication-title: arXiv
– volume: 2204
  year: 2022
  ident: e_1_2_16_6_1
  article-title: PaLM: scaling language modeling with pathways
  publication-title: arXiv
– ident: e_1_2_16_40_1
  doi: 10.1093/bioadv/vbac023
– ident: e_1_2_16_108_1
– volume: 139
  start-page: 8821
  year: 2021
  ident: e_1_2_16_61_1
  article-title: Zero‐shot text‐to‐image generation
  publication-title: Proc Mach Learn Res
– ident: e_1_2_16_103_1
  doi: 10.1002/aisy.202000071
– volume: 2106
  year: 2021
  ident: e_1_2_16_89_1
  article-title: Graphit: encoding graph structure in transformers
  publication-title: arXiv
– ident: e_1_2_16_50_1
  doi: 10.1093/bioinformatics/btab083
– ident: e_1_2_16_72_1
  doi: 10.1016/j.artmed.2021.102032
– ident: e_1_2_16_3_1
– ident: e_1_2_16_4_1
  doi: 10.48550/arXiv.2206.07682
– ident: e_1_2_16_77_1
  doi: 10.1038/s41746-020-00322-2
– year: 2023
  ident: e_1_2_16_111_1
  article-title: Language is not all you need: aligning perception with language models
  publication-title: arXiv
– ident: e_1_2_16_97_1
  doi: 10.1093/bib/bbad079
– volume: 2205
  year: 2022
  ident: e_1_2_16_27_1
  article-title: Large language models are zero‐shot reasoners
  publication-title: arXiv
– ident: e_1_2_16_73_1
  doi: 10.3390/s20072033
– year: 2020
  ident: e_1_2_16_86_1
  article-title: A generalization of transformer networks to graphs
  publication-title: arXiv
– volume: 2201
  year: 2022
  ident: e_1_2_16_25_1
  article-title: Chain of thought prompting elicits reasoning in large language models
  publication-title: arXiv
– start-page: 101
  volume-title: Optimizing Sparse Matrix Multiplications for Graph Neural Networks
  year: 2022
  ident: e_1_2_16_81_1
– ident: e_1_2_16_109_1
  doi: 10.1109/IROS51168.2021.9636627
– year: 2022
  ident: e_1_2_16_87_1
  article-title: Recipe for a general, powerful, scalable graph transformer
  publication-title: arXiv
– ident: e_1_2_16_98_1
  doi: 10.1109/MCAS.2006.1688199
– ident: e_1_2_16_36_1
  doi: 10.1109/TETCI.2022.3141105
– volume: 2210
  year: 2022
  ident: e_1_2_16_96_1
  article-title: MechRetro is a chemical‐mechanism‐driven graph learning framework for interpretable retrosynthesis prediction and pathway planning
  publication-title: arXiv
– ident: e_1_2_16_58_1
– ident: e_1_2_16_106_1
  doi: 10.1177/1050651920958507
– volume: 2104
  year: 2021
  ident: e_1_2_16_21_1
  article-title: The power of scale for parameter‐efficient prompt tuning
  publication-title: arXiv
– ident: e_1_2_16_118_1
SSID ssj0002873272
Score 2.530948
SecondaryResourceType review_article
Snippet Large‐scale artificial intelligence (AI) models such as ChatGPT have the potential to improve performance on many benchmarks and real‐world tasks. However, it...
Abstract Large‐scale artificial intelligence (AI) models such as ChatGPT have the potential to improve performance on many benchmarks and real‐world tasks....
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Artificial intelligence
Biomedical research
Chatbots
ChatGPT
Clinical outcomes
Datasets
Deep learning
Electronic health records
GPT‐4
healthcare
Language
Large language models
medicine
Neural networks
Workloads
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Sg3gRn1hf5FC8rU2TzSY5Vml9QMWDQm8hT4voVm29-xP8jf4Sk-y2tIh48bKH3QwMM5OdmWTmGwBaxjqHvFCZLYjKcmNYpoxFGXUaOVEoTFRsTh7cFJf3-fWQDhdGfcWasAoeuBJcW1tvCI_HHarIuTDccewNMppqRoTX8e8bfN5CMvWYjowYwQxXXbIRZbT97Dw-zcmS-0ko_Uuh5WKAmjxMfwOs16Eh7FYsbYIVV26B1UF9-b0NXrvGBCcRVVY-wBC4wRnWQ5AtHHt4PlLTi9s7qEoLU2MVfIp13l8fn5OgCQe7VzANvplEwjGsOu-jkmAN-TNKpKN5SdgOuO_37s4vs3piQmZIHMqmdTB6JcI2VRopRLwP-acIj9zmLKQqjlPqvGLCUIpVx2JsORLcFt4JXChCdkGjHJduD0DPmaPGFMirQC2sQtRawTohvfJUd3wTnMwEKU0NJx6nWjzJCggZyyhxmZMmgPOFLxWCxs8lZ1ET888R8jq9CIYga0OQfxlCExzO9CjrfTiRBIkI2Y8pb4JW0u1vPMhBr49zsv8frByAtTiVvqooOwSN6du7Owqxy1QfJzP9BkaF8Dk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSIgL4im2LciHiluo16_Yx6XqUpAW9dBKvVnjV_dQstDd3vkJ_EZ-ST1ONrRCSFxySDxS5C8Tz9gz30fIQYgpsWyhiVpAI0NoGwiRNSp5lqwGLgCbkxdf9cm5_HKhLu5IffX8EOOGG3pG_V-jg4NfH_4hDf2WMv8gxUPyCBtrsZqPy9Nxe6UkAoJX6SbeatvoEif0LbNofTjY3luLKmX_vTjzbrRal5v5M_J0iBPprAf2OXmQuhfk8WI4CX9JfsxCKCsG4tdd0hLF0S3xQ5lousr0aAmbT6dnFLpIa5cVvcKi798_f60LLInOPtOqgrNGwxXt2_ARMTrw_yyr6XKsD3tFzufHZ0cnzSCf0ASBCm3eFw8AW3wWPAMmci7JqC0XGWVb8pZklEoZWhuU4jCNnEfDrIk6J8s1CPGa7HSrLr0hNJs2qRA0y1CsbQSmYrTttORaWflpnpD324l0YeAWR4mLK9ezInOHM-6kmBA6Dvze02n8PeQjIjE-Rv7remN1fekGd3I-5iAMboKBlsYGkwzPgQWvfCts9hOyv8XRDU65doJZ5O_nykzIQcX2X-_gFsdzLsXu_w3bI09QhL4vINsnO5vrm_S2hCob_65-lLd9H-dX
  priority: 102
  providerName: Wiley-Blackwell
Title Accelerating the integration of ChatGPT and other large‐scale AI models into biomedical research and healthcare
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmef2.43
https://www.proquest.com/docview/3090875258
https://doaj.org/article/bdfc380679a6489c8e82fc0cb5b739fb
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELZoKyEuiKcIlMiHittSx49d-4TSKqEgpYpQK-Vm-dkc2t22Sa8VP4HfyC_B43UCFYKLD7v2auVvbM-MZ75B6MD5EEhUpvI1MxV3rqmM86QSwZKgakOZgeTk2Wl9cs6_LsSiONxWJaxysyfmjdp3Dnzkh4woIF-nQn66vqmgahTcrpYSGjtoD6jLQKqbRbP1sSRrgNGG9rmywDV6eBUi_cjZg0Moc_U_UDD_VFPzOTN9hp4WBRGPe0Sfo0ehfYEez8oV-Et0M3YuHRUAXHuBk_qGN4wPaYZxF_Hx0qw_z8-waT3O6VX4EqK9f37_sUp4BDz-gnP5mxUM7HCffw9Q4UL8s8xDl9vAsFfofDo5Oz6pSt2EyjEozWZtEn2j0mI1lhjCYkxWqEoN97xJBkuQQoRoGuWEoGbkKfWSKOnrGBStDWOv0W7bteENwlE2QThXk2jSaOUNEd6rZpSMrCjsKA7Qh81EaldIxaG2xaXu6ZCphhnXnA0Q3na87nk0_u5yBEhsXwPxdX7Q3V7oso609dExCd4vU3OpnAySRkecFbZhKtoB2t_gqMtqXOnfsjNABxnbf_2Dnk2mlLO3___KO_QEqs73EWP7aHd9exfeJ91kbYdoh_L5MIvhEO0dTU7n34bZzk_t7H7yC7kE614
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqIgGXil-xtIAPhVuo144T-1ChpXTZpd2Kw1bam_Fv91CStrsI9cYj8CR9qD4JHidZqBDceskhsaPI88Xz45n5ENq2znsSpM5cwXSWW1tm2jqScW-Il4WmTENx8uSoGB3nn2Z8toauuloYSKvs9sS0UbvaQox8hxEJzdcpF-_OzjNgjYLT1Y5Co4HFgb_8Hl22xe74Q5Tva0qH-9O9UdayCmSWAXGZMREYWkYoa0M0YSFEH03GS-7yMprzXnDugy6l5ZzqvqPUCSKFK4KXtNAQAI1b_p2oeAk4e-WsXMV0ovfBaEmb2lzobbrz1Qf6Nmc3lF7iBrhh0P5pFie9NnyANlqDFA8aBD1Ea756hO5O2iP3x-h8YG1UTQCU6gRHcxF3HSaiRHEd8N5cLz9-nmJdOZzKufApZJdf__i5iPL3eDDGiW5nARNr3NT7AzRw22honqbOV4loT9DxrazoU7Re1ZV_hnAQpefWFiToOFs6TbhzsuxHpy5w0w899KZbSGXbJubApXGqmvbLVMGKq5z1EF4NPGv6dvw95D1IYvUYGm2nG_XFiWr_W2VcsExAtE0XuZBWeEGDJdZwUzIZTA9tdXJU7d-_UL-x2kPbSbb_-gY12R_SnD3__1teoXuj6eRQHY6PDjbRfWC8b7LVttD68uKbfxHtoqV5mcCI0ZfbRv8vKEAiNw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07bxQxEB5FQYpoEE9xIYCLQLfE59euC4ojyZEjXHRFIqUzfuaKsBdyF0V0_AT-Bn-LX4LtfUCEkGjSbLFrS5Znxv5mduYbgG3rvMdB6sIJqgtmbVlo63DBvcFeCk2oTsXJ0yNxcMI-nPLTNfjR1cI0_BB9wC1ZRj6vk4FfuLDzmzT0sw_kDev6Vh_6r9fRW1u-nexF0b4iZLx_vHtQtA0FCktTzzJjok5oGbVYG6wxDSG6ZzI-mGNlRPK-4twHXUrLOdFDR4irsKycCF4SoVPsM572d9KvxZQ9RtisD-dEx4OS3CqKlEIWIuKSpkQ3rXanXeuNuy-3CLiBa_9Ex_l6G9-Hey0uRaNGkR7Amq8fwsa0_fP-CL6MrI03VNKX-gxF1Ig6ookoWLQIaHeuV-9nx0jXDuWqLnSeksx_fvu-jGrg0WiCctedZZq4QE3Zf9IQ1PINzfPUeZ-P9hhObmV3n8B6vaj9U0ChKj23VuCg42zpNObOyXIYfbvAzTAM4HW3kcq2XOappca5aliYiUo7rhgdAOoHXjT0HX8PeZck0X9OfNv5xeLyTLXmq4wLllYp6KYFq6StfEWCxdZwU1IZzAC2Ojmq9hBYKopl6hdAeDWA7Szbf61BTffHhNHN_xv2EjZme2P1cXJ0-Azukoi6mty1LVhfXV755xElrcyLrJ8IPt22QfwCSOcing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+the+integration+of+ChatGPT+and+other+large%E2%80%90scale+AI+models+into+biomedical+research+and+healthcare&rft.jtitle=MedComm+-+Future+medicine&rft.au=Wang%2C+Ding%E2%80%90Qiao&rft.au=Feng%2C+Long%E2%80%90Yu&rft.au=Ye%2C+Jin%E2%80%90Guo&rft.au=Zou%2C+Jin%E2%80%90Gen&rft.date=2023-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2769-6456&rft.volume=2&rft.issue=2&rft_id=info:doi/10.1002%2Fmef2.43
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2769-6456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2769-6456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2769-6456&client=summon