Energy efficiency maximization for 5G multi-antenna receivers
In a digital communication system, the analog signal that the receiver receives with its radio frequency front end is converted into digital format by using the analog‐to‐digital converter (A/D converter, ADC). Quantisation takes place during the conversion from continuous amplitude signal to discre...
Saved in:
Published in | Transactions on emerging telecommunications technologies Vol. 26; no. 1; pp. 3 - 14 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
01.01.2015
|
Online Access | Get full text |
Cover
Loading…
Abstract | In a digital communication system, the analog signal that the receiver receives with its radio frequency front end is converted into digital format by using the analog‐to‐digital converter (A/D converter, ADC). Quantisation takes place during the conversion from continuous amplitude signal to discrete amplitude signal, leading inevitably to losses in information which are dependent on the number of bits that is used to represent each sample. Although employing a higher bit resolution reduces the quantisation error, a higher power dissipation of the ADC is incurred at the same time. This trade‐off is essential to the energy efficiency of the receiver, which is commonly measured by the number of information bits conveyed per consumed Joule of energy. We investigate, in this work, the adaptation of ADC resolutions of a multi‐antenna receiver based on instantaneous channel knowledge, with the goal of maximising receiver energy efficiency. The formulated optimisation is a combinatorial problem, and we propose several algorithms which yield near‐optimal solutions. Results from numerical simulations are presented and analysed, which provide guidelines to operation and deployment of the system. Copyright © 2014 John Wiley & Sons, Ltd.
In a digital communication system, the bit resolution employed by the analog‐to‐digital converter at the receive side critically affects the achievable data rate as well as the power consumption of the receiver. For the multi‐antenna scenario, the bit resolution of each converter associated with the multiple antennas can be jointly optimized for attaining the maximal energy efficiency of the system. Several near‐optimal algorithms are proposed to tackle the combinatorial problem with reasonable complexity. |
---|---|
AbstractList | In a digital communication system, the analog signal that the receiver receives with its radio frequency front end is converted into digital format by using the analog‐to‐digital converter (A/D converter, ADC). Quantisation takes place during the conversion from continuous amplitude signal to discrete amplitude signal, leading inevitably to losses in information which are dependent on the number of bits that is used to represent each sample. Although employing a higher bit resolution reduces the quantisation error, a higher power dissipation of the ADC is incurred at the same time. This trade‐off is essential to the energy efficiency of the receiver, which is commonly measured by the number of information bits conveyed per consumed Joule of energy. We investigate, in this work, the adaptation of ADC resolutions of a multi‐antenna receiver based on instantaneous channel knowledge, with the goal of maximising receiver energy efficiency. The formulated optimisation is a combinatorial problem, and we propose several algorithms which yield near‐optimal solutions. Results from numerical simulations are presented and analysed, which provide guidelines to operation and deployment of the system. Copyright © 2014 John Wiley & Sons, Ltd. In a digital communication system, the analog signal that the receiver receives with its radio frequency front end is converted into digital format by using the analog‐to‐digital converter (A/D converter, ADC). Quantisation takes place during the conversion from continuous amplitude signal to discrete amplitude signal, leading inevitably to losses in information which are dependent on the number of bits that is used to represent each sample. Although employing a higher bit resolution reduces the quantisation error, a higher power dissipation of the ADC is incurred at the same time. This trade‐off is essential to the energy efficiency of the receiver, which is commonly measured by the number of information bits conveyed per consumed Joule of energy. We investigate, in this work, the adaptation of ADC resolutions of a multi‐antenna receiver based on instantaneous channel knowledge, with the goal of maximising receiver energy efficiency. The formulated optimisation is a combinatorial problem, and we propose several algorithms which yield near‐optimal solutions. Results from numerical simulations are presented and analysed, which provide guidelines to operation and deployment of the system. Copyright © 2014 John Wiley & Sons, Ltd. In a digital communication system, the bit resolution employed by the analog‐to‐digital converter at the receive side critically affects the achievable data rate as well as the power consumption of the receiver. For the multi‐antenna scenario, the bit resolution of each converter associated with the multiple antennas can be jointly optimized for attaining the maximal energy efficiency of the system. Several near‐optimal algorithms are proposed to tackle the combinatorial problem with reasonable complexity. |
Author | Nossek, J. A. Bai, Q. |
Author_xml | – sequence: 1 givenname: Q. surname: Bai fullname: Bai, Q. email: Correspondence: Q. Bai, Institute for Circuit Theory and Signal Processing, Technische Universität München, Theresienstr. 90, 80333 Munich, Germany, bai@tum.de organization: Institute for Circuit Theory and Signal Processing, Technische Universität München, Theresienstr. 90, 80333 Munich, Germany – sequence: 2 givenname: J. A. surname: Nossek fullname: Nossek, J. A. organization: Institute for Circuit Theory and Signal Processing, Technische Universität München, Theresienstr. 90, 80333 Munich, Germany |
BookMark | eNp1j01LAzEQhoMoWGvBn7BHL1vzsbtpDh6k1Kq0ilARvIQ0O5HoblaSqF1_vVsroqJzmYF53heePbTtGgcIHRA8JBjTI4hxSEeCbqEeJQVJmSD59rd7Fw1CeMDd8Jzm2aiHjicO_H2bgDFWW3C6TWq1srV9U9E2LjGNT_JpUj9X0abKRXBOJR402BfwYR_tGFUFGHzuPro5nSzGZ-nsano-PpmlmmFGUy24EUD4KDMlCM005opRjJeMlCUpcY67v9KCFUtmmCmVLkzBOAOuhFAZZ310uOnVvgnBg5FP3tbKt5JguTaXnblcm3fo8BeqbfxwiV7Z6q9Augm82graf4vlZLH4ydsQYfXFK_8oC854Lm8vp3I-v76jFxmXgr0Dzf968A |
CitedBy_id | crossref_primary_10_1109_LCOMM_2017_2761378 crossref_primary_10_1109_LCOMM_2019_2940010 crossref_primary_10_1109_TCOMM_2022_3218835 crossref_primary_10_1109_TWC_2023_3289190 crossref_primary_10_3390_s21010285 crossref_primary_10_1109_LCOMM_2016_2535132 crossref_primary_10_1109_TSP_2018_2833807 crossref_primary_10_1109_JSTSP_2018_2818063 crossref_primary_10_1109_JSYST_2020_3014647 crossref_primary_10_1109_JIOT_2019_2957281 crossref_primary_10_1109_TCOMM_2017_2707099 crossref_primary_10_1002_ett_2950 crossref_primary_10_1109_LCOMM_2024_3395759 crossref_primary_10_1109_TWC_2016_2619343 crossref_primary_10_1109_LCOMM_2015_2494600 crossref_primary_10_1109_TVT_2017_2726561 crossref_primary_10_1109_TVT_2020_2963847 crossref_primary_10_1109_JSYST_2023_3341444 crossref_primary_10_1109_TWC_2018_2858242 crossref_primary_10_1109_MCOM_2018_1600731 crossref_primary_10_1109_JSTSP_2018_2813973 crossref_primary_10_1109_LCOMM_2017_2693276 crossref_primary_10_1007_s11432_021_3313_9 crossref_primary_10_1109_LSP_2020_2967997 crossref_primary_10_1109_JSAC_2016_2544604 crossref_primary_10_1109_LSP_2017_2761356 crossref_primary_10_1109_TWC_2018_2808955 crossref_primary_10_1109_ACCESS_2019_2927891 crossref_primary_10_1109_TCOMM_2023_3305528 crossref_primary_10_1109_TVT_2017_2763825 crossref_primary_10_1109_TVT_2020_2988737 crossref_primary_10_1002_ett_3212 crossref_primary_10_1109_TSP_2015_2508786 crossref_primary_10_1002_ett_4683 crossref_primary_10_1109_COMST_2023_3342775 crossref_primary_10_1109_TCOMM_2021_3071537 crossref_primary_10_1016_j_sigpro_2019_03_005 crossref_primary_10_1109_TWC_2018_2873300 crossref_primary_10_1002_ett_3549 crossref_primary_10_1109_TWC_2019_2920129 crossref_primary_10_1109_JSAC_2017_2720398 crossref_primary_10_1109_TSP_2015_2455527 crossref_primary_10_1002_ett_4530 crossref_primary_10_1002_dac_4655 crossref_primary_10_1109_OJCOMS_2020_3010514 crossref_primary_10_1109_OJCOMS_2021_3133526 crossref_primary_10_3390_sym12030406 crossref_primary_10_3390_electronics7120391 crossref_primary_10_1109_ACCESS_2021_3097444 crossref_primary_10_1002_ett_2946 crossref_primary_10_1109_ACCESS_2021_3094133 crossref_primary_10_1007_s11277_019_07007_4 crossref_primary_10_1109_ACCESS_2017_2731420 crossref_primary_10_1109_TVT_2021_3061699 crossref_primary_10_1007_s12243_022_00938_3 crossref_primary_10_1109_TWC_2017_2661749 crossref_primary_10_1109_JSAC_2017_2687278 |
Cites_doi | 10.1007/978-1-4615-3626-0 10.1109/CICC.2008.4672032 10.1109/TSP.2003.821099 10.1109/TCOMM.2009.12.080559 10.1109/35.393000 10.1109/MCOM.2004.1341263 10.1109/WSA.2011.5741951 10.1109/MCOM.2011.5783984 10.1109/ISIT.2008.4594988 10.1109/MCOM.2014.6736746 10.1109/TWC.2005.850307 10.1109/TIT.1960.1057548 10.1109/TSP.2003.818204 10.1109/TWC.2005.853882 10.1109/TWC.2006.1687757 10.1109/MCOM.2014.6736752 10.1109/ICNN.1995.488968 10.1109/PIMRC.2014.7136137 10.1109/MSP.2004.1359139 10.1109/JSAC.2012.120401 10.1109/WCNC.2014.6951974 10.1002/ett.4460100604 10.1017/CBO9780511841224 10.1109/MCOM.2014.6736761 10.1109/MCOM.2011.5783982 10.1109/TVLSI.2007.891095 10.1109/JPROC.2007.911069 |
ContentType | Journal Article |
Copyright | Copyright © 2014 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2014 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION |
DOI | 10.1002/ett.2892 |
DatabaseName | Istex CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2161-3915 |
EndPage | 14 |
ExternalDocumentID | 10_1002_ett_2892 ETT2892 ark_67375_WNG_MMQZ2J47_9 |
Genre | article |
GroupedDBID | .GA .Y3 05W 1OC 31~ 50Z 8-0 8-1 8-3 8-4 8-5 930 A03 AAEVG AAHHS AANLZ AAXRX AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZFZN BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI BSCLL D-E D-F DCZOG DPXWK DRFUL DRSTM EBS EJD F00 F01 F04 F21 G-S GODZA HGLYW IN- LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM RX1 SUPJJ V2E WIH WIK WXSBR AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADMLS AGHNM AGQPQ AGYGG CITATION |
ID | FETCH-LOGICAL-c3032-c97f9e1784fde9c3c07a3200b31dd1d0507f9ac936b3f3fdac6f6373e7a99a473 |
ISSN | 2161-3915 |
IngestDate | Tue Jul 01 05:08:54 EDT 2025 Thu Apr 24 22:53:40 EDT 2025 Wed Jan 22 17:03:11 EST 2025 Wed Oct 30 09:53:18 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3032-c97f9e1784fde9c3c07a3200b31dd1d0507f9ac936b3f3fdac6f6373e7a99a473 |
Notes | ark:/67375/WNG-MMQZ2J47-9 ArticleID:ETT2892 istex:D9EF46C921C72A327EF7D00D7E11E2266C6CC1B9 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1002_ett_2892 crossref_citationtrail_10_1002_ett_2892 wiley_primary_10_1002_ett_2892_ETT2892 istex_primary_ark_67375_WNG_MMQZ2J47_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01 January 2015 2015-01-00 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01 |
PublicationDecade | 2010 |
PublicationTitle | Transactions on emerging telecommunications technologies |
PublicationTitleAlternate | Trans. Emerging Tel. Tech |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Singh J, Dabeer O, Madhow U. On the limits of communication with low-precision analog-to-digital conversion at the receiver. IEEE Trans. on Communications 2009; 57(12): 3629-3639. Cui S, Goldsmith AJ. Energy-constrained modulation optimization. IEEE Trans. on Wireless Communications 2005; 4(5): 2349-2360. Wang C, Haider F, Gao X, You X, Yang Y, Yuan D, Aggoune HM, Haas H, Fletcher S, E Hepsaydir. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine 2014; 52(2): 122-130. Andrews JG, Claussen H, Dohler M, Rangan S, Reed MC. Femtocells: past, present, and future. IEEE Journal on Selected Areas in Communications 2012; 30(3): 497-508. Han C, Harrold T, Armour S, Krikidis I, Videv S, Grant PM, Haas H, Thompson JS, Ku I, C Wang, Le TA, Nakhai MR, Zhang J, Hanzo L. Green radio: radio techniques to enable energy-efficient wireless networks. IEEE Communications Magazine 2011; 9(4): 46-54. Wepman JA. Analog-to-digital converters and their applications in radio receivers. IEEE Comunications Magazine 1995; 33(5): 39-45. Molisch AF, Win MZ, Choi Y, Winters JH. Capacity of MIMO systems with antenna selection. IEEE Trans. on Wireless Communications 2005; 4(4): 1759-1772. Lee HS, Sodini CG. Analog-to-digital converters: digitizing the analog world. Proceedings of the IEEE 2008; 96(2): 323-334. Gharavi-Alkhansari M, Gershman AB. Fast antenna subset selection in MIMO systems. IEEE Trans. on Signal Processing 2004; 52(2): 339-347. Goldsmith A. Wireless Communications. Cambridge University Press: Cambridge, United Kingdom, 2005. Li Y, Bakkaloglu B, Chakrabarti C. A system level energy model and energy-quality evaluation for integrated transceiver front-ends. IEEE Trans. on VLSI Systems 2007; 15: 90-103. Gorokhov A, Gore DA, Paulraj AJ. Receive antenna selection for MIMO spatial multiplexing: theory and algorithms. IEEE Trans. on Signal Processing 2003; 51(11): 2796-2807. Gersho A, Gary RM. Vector Quantization and Signal Compression, Springer: Massachusetts, USA, 1992. Boccardi F, Heath RW, Lozano A, Marzetta TL. Five disruptive technology directions for 5G. IEEE Communications Magazine 2014; 52(2): 74-80. Telatar E. Capacity of multiantenna Gaussian channels. European Trans. on Telecommunications 1999; 10(6): 585-595. Cover TM, Thomas JA. Elements of Information Theory (2nd Edition). John Wiley & Sons: Hoboken, New Jersey, 2012. Dua A, Medepalli K, Paulraj AJ. Receive antenna selection in MIMO systems using convex optimization. IEEE Trans. on Wireless Communications 2006; 5(9): 2353-2357. Salkin HM, Mathur K. Foundations of Integer Programming, Chapter 8, North-Holland: Amsterdam, Netherlands, 1989. Chen Y, Zhang S, Xu S, Li GY. Fundamental tradeoffs on green wireless networks. IEEE Communications Magazine 2011; 49(6): 30-37. Larsson E, Edfors O, Tufvesson F, Marzetta T. Massive MIMO for next generation wireless systems. IEEE Communications Magazine 2014; 52(2): 186-195. Sanayei S, Nosratinia A. Antenna selection in MIMO systems. IEEE Communications Magazine 2004; 42(10): 68-73. Max J. Quantizing for minimum distortion. IEEE Trans. on Information Theory 1960; 6(1): 7-12. Tong L, Sadler BM, Dong M. Pilot-assisted wireless transmissions: general model, design criteria, and signal processing. IEEE Signal Processing Magazine 2004; 21(6): 12-25. 2004; 21 2004; 42 2012 2011 1960; 6 1995; 33 2008 2002; 2 1952 2006; 5 1995 2005 1992 2008; 96 2003; 51 2012; 30 2007; 15 2011; 9 2004; 52 2009; 57 2005; 4 1999; 10 2014 2013 2014; 52 2011; 49 1989 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 Salkin HM (e_1_2_7_29_1) 1989 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 Cover TM (e_1_2_7_23_1) 2012 |
References_xml | – reference: Boccardi F, Heath RW, Lozano A, Marzetta TL. Five disruptive technology directions for 5G. IEEE Communications Magazine 2014; 52(2): 74-80. – reference: Max J. Quantizing for minimum distortion. IEEE Trans. on Information Theory 1960; 6(1): 7-12. – reference: Larsson E, Edfors O, Tufvesson F, Marzetta T. Massive MIMO for next generation wireless systems. IEEE Communications Magazine 2014; 52(2): 186-195. – reference: Salkin HM, Mathur K. Foundations of Integer Programming, Chapter 8, North-Holland: Amsterdam, Netherlands, 1989. – reference: Chen Y, Zhang S, Xu S, Li GY. Fundamental tradeoffs on green wireless networks. IEEE Communications Magazine 2011; 49(6): 30-37. – reference: Cover TM, Thomas JA. Elements of Information Theory (2nd Edition). John Wiley & Sons: Hoboken, New Jersey, 2012. – reference: Gorokhov A, Gore DA, Paulraj AJ. Receive antenna selection for MIMO spatial multiplexing: theory and algorithms. IEEE Trans. on Signal Processing 2003; 51(11): 2796-2807. – reference: Telatar E. Capacity of multiantenna Gaussian channels. European Trans. on Telecommunications 1999; 10(6): 585-595. – reference: Dua A, Medepalli K, Paulraj AJ. Receive antenna selection in MIMO systems using convex optimization. IEEE Trans. on Wireless Communications 2006; 5(9): 2353-2357. – reference: Molisch AF, Win MZ, Choi Y, Winters JH. Capacity of MIMO systems with antenna selection. IEEE Trans. on Wireless Communications 2005; 4(4): 1759-1772. – reference: Gersho A, Gary RM. Vector Quantization and Signal Compression, Springer: Massachusetts, USA, 1992. – reference: Goldsmith A. Wireless Communications. Cambridge University Press: Cambridge, United Kingdom, 2005. – reference: Wang C, Haider F, Gao X, You X, Yang Y, Yuan D, Aggoune HM, Haas H, Fletcher S, E Hepsaydir. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine 2014; 52(2): 122-130. – reference: Sanayei S, Nosratinia A. Antenna selection in MIMO systems. IEEE Communications Magazine 2004; 42(10): 68-73. – reference: Li Y, Bakkaloglu B, Chakrabarti C. A system level energy model and energy-quality evaluation for integrated transceiver front-ends. IEEE Trans. on VLSI Systems 2007; 15: 90-103. – reference: Han C, Harrold T, Armour S, Krikidis I, Videv S, Grant PM, Haas H, Thompson JS, Ku I, C Wang, Le TA, Nakhai MR, Zhang J, Hanzo L. Green radio: radio techniques to enable energy-efficient wireless networks. IEEE Communications Magazine 2011; 9(4): 46-54. – reference: Andrews JG, Claussen H, Dohler M, Rangan S, Reed MC. Femtocells: past, present, and future. IEEE Journal on Selected Areas in Communications 2012; 30(3): 497-508. – reference: Wepman JA. Analog-to-digital converters and their applications in radio receivers. IEEE Comunications Magazine 1995; 33(5): 39-45. – reference: Tong L, Sadler BM, Dong M. Pilot-assisted wireless transmissions: general model, design criteria, and signal processing. IEEE Signal Processing Magazine 2004; 21(6): 12-25. – reference: Cui S, Goldsmith AJ. Energy-constrained modulation optimization. IEEE Trans. on Wireless Communications 2005; 4(5): 2349-2360. – reference: Lee HS, Sodini CG. Analog-to-digital converters: digitizing the analog world. Proceedings of the IEEE 2008; 96(2): 323-334. – reference: Singh J, Dabeer O, Madhow U. On the limits of communication with low-precision analog-to-digital conversion at the receiver. IEEE Trans. on Communications 2009; 57(12): 3629-3639. – reference: Gharavi-Alkhansari M, Gershman AB. Fast antenna subset selection in MIMO systems. IEEE Trans. on Signal Processing 2004; 52(2): 339-347. – volume: 49 start-page: 30 issue: 6 year: 2011 end-page: 37 article-title: Fundamental tradeoffs on green wireless networks publication-title: IEEE Communications Magazine – volume: 15 start-page: 90 year: 2007 end-page: 103 article-title: A system level energy model and energy‐quality evaluation for integrated transceiver front‐ends publication-title: IEEE Trans. on VLSI Systems – volume: 9 start-page: 46 issue: 4 year: 2011 end-page: 54 article-title: Green radio: radio techniques to enable energy‐efficient wireless networks publication-title: IEEE Communications Magazine – year: 2005 – volume: 52 start-page: 122 issue: 2 year: 2014 end-page: 130 article-title: Cellular architecture and key technologies for 5G wireless communication networks publication-title: IEEE Communications Magazine – volume: 57 start-page: 3629 issue: 12 year: 2009 end-page: 3639 article-title: On the limits of communication with low‐precision analog‐to‐digital conversion at the receiver publication-title: IEEE Trans. on Communications – volume: 21 start-page: 12 issue: 6 year: 2004 end-page: 25 article-title: Pilot‐assisted wireless transmissions: general model, design criteria, and signal processing publication-title: IEEE Signal Processing Magazine – year: 1989 – volume: 4 start-page: 1759 issue: 4 year: 2005 end-page: 1772 article-title: Capacity of MIMO systems with antenna selection publication-title: IEEE Trans. on Wireless Communications – year: 1952 – volume: 52 start-page: 74 issue: 2 year: 2014 end-page: 80 article-title: Five disruptive technology directions for 5G publication-title: IEEE Communications Magazine – start-page: 1 year: 2014 end-page: 6 – year: 1992 – volume: 30 start-page: 497 issue: 3 year: 2012 end-page: 508 article-title: Femtocells: past, present, and future publication-title: IEEE Journal on Selected Areas in Communications – year: 2014 – year: 2012 – volume: 52 start-page: 186 issue: 2 year: 2014 end-page: 195 article-title: Massive MIMO for next generation wireless systems publication-title: IEEE Communications Magazine – start-page: 105 year: 2008 end-page: 112 – volume: 33 start-page: 39 issue: 5 year: 1995 end-page: 45 article-title: Analog‐to‐digital converters and their applications in radio receivers publication-title: IEEE Comunications Magazine – start-page: 260 year: 2008 end-page: 264 – volume: 2 start-page: 1582 year: 2002 end-page: 1587 – volume: 52 start-page: 339 issue: 2 year: 2004 end-page: 347 article-title: Fast antenna subset selection in MIMO systems publication-title: IEEE Trans. on Signal Processing – start-page: 1 year: 2013 end-page: 5 – volume: 6 start-page: 7 issue: 1 year: 1960 end-page: 12 article-title: Quantizing for minimum distortion publication-title: IEEE Trans. on Information Theory – volume: 51 start-page: 2796 issue: 11 year: 2003 end-page: 2807 article-title: Receive antenna selection for MIMO spatial multiplexing: theory and algorithms publication-title: IEEE Trans. on Signal Processing – start-page: 1 year: 2011 end-page: 8 – volume: 96 start-page: 323 issue: 2 year: 2008 end-page: 334 article-title: Analog‐to‐digital converters: digitizing the analog world publication-title: Proceedings of the IEEE – start-page: 1942 year: 1995 end-page: 1948 – volume: 10 start-page: 585 issue: 6 year: 1999 end-page: 595 article-title: Capacity of multiantenna Gaussian channels publication-title: European Trans. on Telecommunications – volume: 4 start-page: 2349 issue: 5 year: 2005 end-page: 2360 article-title: Energy‐constrained modulation optimization publication-title: IEEE Trans. on Wireless Communications – volume: 5 start-page: 2353 issue: 9 year: 2006 end-page: 2357 article-title: Receive antenna selection in MIMO systems using convex optimization publication-title: IEEE Trans. on Wireless Communications – year: 2013 – volume: 42 start-page: 68 issue: 10 year: 2004 end-page: 73 article-title: Antenna selection in MIMO systems publication-title: IEEE Communications Magazine – ident: e_1_2_7_25_1 doi: 10.1007/978-1-4615-3626-0 – ident: e_1_2_7_9_1 doi: 10.1109/CICC.2008.4672032 – ident: e_1_2_7_34_1 doi: 10.1109/TSP.2003.821099 – ident: e_1_2_7_12_1 doi: 10.1109/TCOMM.2009.12.080559 – ident: e_1_2_7_8_1 doi: 10.1109/35.393000 – ident: e_1_2_7_18_1 doi: 10.1109/MCOM.2004.1341263 – ident: e_1_2_7_27_1 doi: 10.1109/WSA.2011.5741951 – ident: e_1_2_7_3_1 doi: 10.1109/MCOM.2011.5783984 – ident: e_1_2_7_11_1 doi: 10.1109/ISIT.2008.4594988 – volume-title: Elements of Information Theory year: 2012 ident: e_1_2_7_23_1 – ident: e_1_2_7_10_1 doi: 10.1109/MCOM.2014.6736746 – ident: e_1_2_7_32_1 doi: 10.1109/TWC.2005.850307 – ident: e_1_2_7_22_1 – ident: e_1_2_7_24_1 doi: 10.1109/TIT.1960.1057548 – ident: e_1_2_7_33_1 doi: 10.1109/TSP.2003.818204 – ident: e_1_2_7_5_1 doi: 10.1109/TWC.2005.853882 – ident: e_1_2_7_35_1 doi: 10.1109/TWC.2006.1687757 – ident: e_1_2_7_2_1 doi: 10.1109/MCOM.2014.6736752 – volume-title: Foundations of Integer Programming year: 1989 ident: e_1_2_7_29_1 – ident: e_1_2_7_30_1 doi: 10.1109/ICNN.1995.488968 – ident: e_1_2_7_36_1 doi: 10.1109/PIMRC.2014.7136137 – ident: e_1_2_7_16_1 – ident: e_1_2_7_20_1 doi: 10.1109/MSP.2004.1359139 – ident: e_1_2_7_13_1 – ident: e_1_2_7_21_1 – ident: e_1_2_7_6_1 doi: 10.1109/JSAC.2012.120401 – ident: e_1_2_7_17_1 doi: 10.1109/WCNC.2014.6951974 – ident: e_1_2_7_15_1 doi: 10.1002/ett.4460100604 – ident: e_1_2_7_19_1 – ident: e_1_2_7_14_1 doi: 10.1017/CBO9780511841224 – ident: e_1_2_7_7_1 doi: 10.1109/MCOM.2014.6736761 – ident: e_1_2_7_4_1 doi: 10.1109/MCOM.2011.5783982 – ident: e_1_2_7_28_1 doi: 10.1109/TVLSI.2007.891095 – ident: e_1_2_7_26_1 doi: 10.1109/JPROC.2007.911069 – ident: e_1_2_7_31_1 |
SSID | ssj0000752548 |
Score | 2.286201 |
Snippet | In a digital communication system, the analog signal that the receiver receives with its radio frequency front end is converted into digital format by using... |
SourceID | crossref wiley istex |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 3 |
Title | Energy efficiency maximization for 5G multi-antenna receivers |
URI | https://api.istex.fr/ark:/67375/WNG-MMQZ2J47-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fett.2892 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegfYEHtPEhxgYKEoKHKiG2kzh-LKx0quikiUxMvESOY0sIFtDIpGl__c52PksnDV7SyrKs9u58Pl_u9zuE3mCsiNS09JVMCvOaUfu8SIUvITYmhmFMWXzF-jg5Oo1WZ_FZX1Zk0SV1EcjrrbiS_9EqjIFeDUr2HzTbLQoD8B30C0_QMDzvpOOFA-4pSwNhMZTn4ur7eQOttBWE8dLVDPpGglUlZuDhlK3FGIalWd813L4-MKhh272oNm1yhhiSP7O6TcYPyg8_uKbWJ0GXW4azV1lHuwpm82CYW8DxRm5hI4focmJ9tRH4KIJN-oo7RGagtow1TtbB4kfG5DwmHRy9Dk76l1N3JLGqNkS7rnHemDd74zzrqgzFxQ9Ttsbi_OvxMl-vT76RVcRyfh9NCVwqyARN54frz1-6nByET3Bftk0M2__Q8hWH5H37A0YRzNRsxqvxzcaGJtkOetTcKby5M5BddE9Vj9HDAdPkE9SYitebijc0FQ9MxYuX3shUvM5UnqLTT4vs45HfdM7wJYQkxJecaa4wSyNdKi6pDJmgsHMKissSlyFcAjQXktOkoJrqUshEJ5RRxQTnImL0GZpUvyr1HHlCqljHUhAV0igtUxGWlIUJEWEaCVzgPfSulUYuG1p5093kZ-4IsUkOcsuN3PbQ627mb0elsmXOWyvQbsJtOoSJVuK3rpQvssx8vrjrivvoQb8FDtCkvrhULyHgrItXjZ3cAKIbg_o |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+efficiency+maximization+for+5G+multi-antenna+receivers&rft.jtitle=Transactions+on+emerging+telecommunications+technologies&rft.au=Bai%2C+Q.&rft.au=Nossek%2C+J.+A.&rft.date=2015-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=2161-3915&rft.eissn=2161-3915&rft.volume=26&rft.issue=1&rft.spage=3&rft.epage=14&rft_id=info:doi/10.1002%2Fett.2892&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_MMQZ2J47_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-3915&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-3915&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-3915&client=summon |