Energy efficiency maximization for 5G multi-antenna receivers

In a digital communication system, the analog signal that the receiver receives with its radio frequency front end is converted into digital format by using the analog‐to‐digital converter (A/D converter, ADC). Quantisation takes place during the conversion from continuous amplitude signal to discre...

Full description

Saved in:
Bibliographic Details
Published inTransactions on emerging telecommunications technologies Vol. 26; no. 1; pp. 3 - 14
Main Authors Bai, Q., Nossek, J. A.
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 01.01.2015
Online AccessGet full text

Cover

Loading…
Abstract In a digital communication system, the analog signal that the receiver receives with its radio frequency front end is converted into digital format by using the analog‐to‐digital converter (A/D converter, ADC). Quantisation takes place during the conversion from continuous amplitude signal to discrete amplitude signal, leading inevitably to losses in information which are dependent on the number of bits that is used to represent each sample. Although employing a higher bit resolution reduces the quantisation error, a higher power dissipation of the ADC is incurred at the same time. This trade‐off is essential to the energy efficiency of the receiver, which is commonly measured by the number of information bits conveyed per consumed Joule of energy. We investigate, in this work, the adaptation of ADC resolutions of a multi‐antenna receiver based on instantaneous channel knowledge, with the goal of maximising receiver energy efficiency. The formulated optimisation is a combinatorial problem, and we propose several algorithms which yield near‐optimal solutions. Results from numerical simulations are presented and analysed, which provide guidelines to operation and deployment of the system. Copyright © 2014 John Wiley & Sons, Ltd. In a digital communication system, the bit resolution employed by the analog‐to‐digital converter at the receive side critically affects the achievable data rate as well as the power consumption of the receiver. For the multi‐antenna scenario, the bit resolution of each converter associated with the multiple antennas can be jointly optimized for attaining the maximal energy efficiency of the system. Several near‐optimal algorithms are proposed to tackle the combinatorial problem with reasonable complexity.
AbstractList In a digital communication system, the analog signal that the receiver receives with its radio frequency front end is converted into digital format by using the analog‐to‐digital converter (A/D converter, ADC). Quantisation takes place during the conversion from continuous amplitude signal to discrete amplitude signal, leading inevitably to losses in information which are dependent on the number of bits that is used to represent each sample. Although employing a higher bit resolution reduces the quantisation error, a higher power dissipation of the ADC is incurred at the same time. This trade‐off is essential to the energy efficiency of the receiver, which is commonly measured by the number of information bits conveyed per consumed Joule of energy. We investigate, in this work, the adaptation of ADC resolutions of a multi‐antenna receiver based on instantaneous channel knowledge, with the goal of maximising receiver energy efficiency. The formulated optimisation is a combinatorial problem, and we propose several algorithms which yield near‐optimal solutions. Results from numerical simulations are presented and analysed, which provide guidelines to operation and deployment of the system. Copyright © 2014 John Wiley & Sons, Ltd.
In a digital communication system, the analog signal that the receiver receives with its radio frequency front end is converted into digital format by using the analog‐to‐digital converter (A/D converter, ADC). Quantisation takes place during the conversion from continuous amplitude signal to discrete amplitude signal, leading inevitably to losses in information which are dependent on the number of bits that is used to represent each sample. Although employing a higher bit resolution reduces the quantisation error, a higher power dissipation of the ADC is incurred at the same time. This trade‐off is essential to the energy efficiency of the receiver, which is commonly measured by the number of information bits conveyed per consumed Joule of energy. We investigate, in this work, the adaptation of ADC resolutions of a multi‐antenna receiver based on instantaneous channel knowledge, with the goal of maximising receiver energy efficiency. The formulated optimisation is a combinatorial problem, and we propose several algorithms which yield near‐optimal solutions. Results from numerical simulations are presented and analysed, which provide guidelines to operation and deployment of the system. Copyright © 2014 John Wiley & Sons, Ltd. In a digital communication system, the bit resolution employed by the analog‐to‐digital converter at the receive side critically affects the achievable data rate as well as the power consumption of the receiver. For the multi‐antenna scenario, the bit resolution of each converter associated with the multiple antennas can be jointly optimized for attaining the maximal energy efficiency of the system. Several near‐optimal algorithms are proposed to tackle the combinatorial problem with reasonable complexity.
Author Nossek, J. A.
Bai, Q.
Author_xml – sequence: 1
  givenname: Q.
  surname: Bai
  fullname: Bai, Q.
  email: Correspondence: Q. Bai, Institute for Circuit Theory and Signal Processing, Technische Universität München, Theresienstr. 90, 80333 Munich, Germany, bai@tum.de
  organization: Institute for Circuit Theory and Signal Processing, Technische Universität München, Theresienstr. 90, 80333 Munich, Germany
– sequence: 2
  givenname: J. A.
  surname: Nossek
  fullname: Nossek, J. A.
  organization: Institute for Circuit Theory and Signal Processing, Technische Universität München, Theresienstr. 90, 80333 Munich, Germany
BookMark eNp1j01LAzEQhoMoWGvBn7BHL1vzsbtpDh6k1Kq0ilARvIQ0O5HoblaSqF1_vVsroqJzmYF53heePbTtGgcIHRA8JBjTI4hxSEeCbqEeJQVJmSD59rd7Fw1CeMDd8Jzm2aiHjicO_H2bgDFWW3C6TWq1srV9U9E2LjGNT_JpUj9X0abKRXBOJR402BfwYR_tGFUFGHzuPro5nSzGZ-nsano-PpmlmmFGUy24EUD4KDMlCM005opRjJeMlCUpcY67v9KCFUtmmCmVLkzBOAOuhFAZZ310uOnVvgnBg5FP3tbKt5JguTaXnblcm3fo8BeqbfxwiV7Z6q9Augm82graf4vlZLH4ydsQYfXFK_8oC854Lm8vp3I-v76jFxmXgr0Dzf968A
CitedBy_id crossref_primary_10_1109_LCOMM_2017_2761378
crossref_primary_10_1109_LCOMM_2019_2940010
crossref_primary_10_1109_TCOMM_2022_3218835
crossref_primary_10_1109_TWC_2023_3289190
crossref_primary_10_3390_s21010285
crossref_primary_10_1109_LCOMM_2016_2535132
crossref_primary_10_1109_TSP_2018_2833807
crossref_primary_10_1109_JSTSP_2018_2818063
crossref_primary_10_1109_JSYST_2020_3014647
crossref_primary_10_1109_JIOT_2019_2957281
crossref_primary_10_1109_TCOMM_2017_2707099
crossref_primary_10_1002_ett_2950
crossref_primary_10_1109_LCOMM_2024_3395759
crossref_primary_10_1109_TWC_2016_2619343
crossref_primary_10_1109_LCOMM_2015_2494600
crossref_primary_10_1109_TVT_2017_2726561
crossref_primary_10_1109_TVT_2020_2963847
crossref_primary_10_1109_JSYST_2023_3341444
crossref_primary_10_1109_TWC_2018_2858242
crossref_primary_10_1109_MCOM_2018_1600731
crossref_primary_10_1109_JSTSP_2018_2813973
crossref_primary_10_1109_LCOMM_2017_2693276
crossref_primary_10_1007_s11432_021_3313_9
crossref_primary_10_1109_LSP_2020_2967997
crossref_primary_10_1109_JSAC_2016_2544604
crossref_primary_10_1109_LSP_2017_2761356
crossref_primary_10_1109_TWC_2018_2808955
crossref_primary_10_1109_ACCESS_2019_2927891
crossref_primary_10_1109_TCOMM_2023_3305528
crossref_primary_10_1109_TVT_2017_2763825
crossref_primary_10_1109_TVT_2020_2988737
crossref_primary_10_1002_ett_3212
crossref_primary_10_1109_TSP_2015_2508786
crossref_primary_10_1002_ett_4683
crossref_primary_10_1109_COMST_2023_3342775
crossref_primary_10_1109_TCOMM_2021_3071537
crossref_primary_10_1016_j_sigpro_2019_03_005
crossref_primary_10_1109_TWC_2018_2873300
crossref_primary_10_1002_ett_3549
crossref_primary_10_1109_TWC_2019_2920129
crossref_primary_10_1109_JSAC_2017_2720398
crossref_primary_10_1109_TSP_2015_2455527
crossref_primary_10_1002_ett_4530
crossref_primary_10_1002_dac_4655
crossref_primary_10_1109_OJCOMS_2020_3010514
crossref_primary_10_1109_OJCOMS_2021_3133526
crossref_primary_10_3390_sym12030406
crossref_primary_10_3390_electronics7120391
crossref_primary_10_1109_ACCESS_2021_3097444
crossref_primary_10_1002_ett_2946
crossref_primary_10_1109_ACCESS_2021_3094133
crossref_primary_10_1007_s11277_019_07007_4
crossref_primary_10_1109_ACCESS_2017_2731420
crossref_primary_10_1109_TVT_2021_3061699
crossref_primary_10_1007_s12243_022_00938_3
crossref_primary_10_1109_TWC_2017_2661749
crossref_primary_10_1109_JSAC_2017_2687278
Cites_doi 10.1007/978-1-4615-3626-0
10.1109/CICC.2008.4672032
10.1109/TSP.2003.821099
10.1109/TCOMM.2009.12.080559
10.1109/35.393000
10.1109/MCOM.2004.1341263
10.1109/WSA.2011.5741951
10.1109/MCOM.2011.5783984
10.1109/ISIT.2008.4594988
10.1109/MCOM.2014.6736746
10.1109/TWC.2005.850307
10.1109/TIT.1960.1057548
10.1109/TSP.2003.818204
10.1109/TWC.2005.853882
10.1109/TWC.2006.1687757
10.1109/MCOM.2014.6736752
10.1109/ICNN.1995.488968
10.1109/PIMRC.2014.7136137
10.1109/MSP.2004.1359139
10.1109/JSAC.2012.120401
10.1109/WCNC.2014.6951974
10.1002/ett.4460100604
10.1017/CBO9780511841224
10.1109/MCOM.2014.6736761
10.1109/MCOM.2011.5783982
10.1109/TVLSI.2007.891095
10.1109/JPROC.2007.911069
ContentType Journal Article
Copyright Copyright © 2014 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2014 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/ett.2892
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2161-3915
EndPage 14
ExternalDocumentID 10_1002_ett_2892
ETT2892
ark_67375_WNG_MMQZ2J47_9
Genre article
GroupedDBID .GA
.Y3
05W
1OC
31~
50Z
8-0
8-1
8-3
8-4
8-5
930
A03
AAEVG
AAHHS
AANLZ
AAXRX
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZFZN
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
BSCLL
D-E
D-F
DCZOG
DPXWK
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F21
G-S
GODZA
HGLYW
IN-
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
RX1
SUPJJ
V2E
WIH
WIK
WXSBR
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADMLS
AGHNM
AGQPQ
AGYGG
CITATION
ID FETCH-LOGICAL-c3032-c97f9e1784fde9c3c07a3200b31dd1d0507f9ac936b3f3fdac6f6373e7a99a473
ISSN 2161-3915
IngestDate Tue Jul 01 05:08:54 EDT 2025
Thu Apr 24 22:53:40 EDT 2025
Wed Jan 22 17:03:11 EST 2025
Wed Oct 30 09:53:18 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3032-c97f9e1784fde9c3c07a3200b31dd1d0507f9ac936b3f3fdac6f6373e7a99a473
Notes ark:/67375/WNG-MMQZ2J47-9
ArticleID:ETT2892
istex:D9EF46C921C72A327EF7D00D7E11E2266C6CC1B9
PageCount 12
ParticipantIDs crossref_primary_10_1002_ett_2892
crossref_citationtrail_10_1002_ett_2892
wiley_primary_10_1002_ett_2892_ETT2892
istex_primary_ark_67375_WNG_MMQZ2J47_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01
January 2015
2015-01-00
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01
PublicationDecade 2010
PublicationTitle Transactions on emerging telecommunications technologies
PublicationTitleAlternate Trans. Emerging Tel. Tech
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Singh J, Dabeer O, Madhow U. On the limits of communication with low-precision analog-to-digital conversion at the receiver. IEEE Trans. on Communications 2009; 57(12): 3629-3639.
Cui S, Goldsmith AJ. Energy-constrained modulation optimization. IEEE Trans. on Wireless Communications 2005; 4(5): 2349-2360.
Wang C, Haider F, Gao X, You X, Yang Y, Yuan D, Aggoune HM, Haas H, Fletcher S, E Hepsaydir. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine 2014; 52(2): 122-130.
Andrews JG, Claussen H, Dohler M, Rangan S, Reed MC. Femtocells: past, present, and future. IEEE Journal on Selected Areas in Communications 2012; 30(3): 497-508.
Han C, Harrold T, Armour S, Krikidis I, Videv S, Grant PM, Haas H, Thompson JS, Ku I, C Wang, Le TA, Nakhai MR, Zhang J, Hanzo L. Green radio: radio techniques to enable energy-efficient wireless networks. IEEE Communications Magazine 2011; 9(4): 46-54.
Wepman JA. Analog-to-digital converters and their applications in radio receivers. IEEE Comunications Magazine 1995; 33(5): 39-45.
Molisch AF, Win MZ, Choi Y, Winters JH. Capacity of MIMO systems with antenna selection. IEEE Trans. on Wireless Communications 2005; 4(4): 1759-1772.
Lee HS, Sodini CG. Analog-to-digital converters: digitizing the analog world. Proceedings of the IEEE 2008; 96(2): 323-334.
Gharavi-Alkhansari M, Gershman AB. Fast antenna subset selection in MIMO systems. IEEE Trans. on Signal Processing 2004; 52(2): 339-347.
Goldsmith A. Wireless Communications. Cambridge University Press: Cambridge, United Kingdom, 2005.
Li Y, Bakkaloglu B, Chakrabarti C. A system level energy model and energy-quality evaluation for integrated transceiver front-ends. IEEE Trans. on VLSI Systems 2007; 15: 90-103.
Gorokhov A, Gore DA, Paulraj AJ. Receive antenna selection for MIMO spatial multiplexing: theory and algorithms. IEEE Trans. on Signal Processing 2003; 51(11): 2796-2807.
Gersho A, Gary RM. Vector Quantization and Signal Compression, Springer: Massachusetts, USA, 1992.
Boccardi F, Heath RW, Lozano A, Marzetta TL. Five disruptive technology directions for 5G. IEEE Communications Magazine 2014; 52(2): 74-80.
Telatar E. Capacity of multiantenna Gaussian channels. European Trans. on Telecommunications 1999; 10(6): 585-595.
Cover TM, Thomas JA. Elements of Information Theory (2nd Edition). John Wiley & Sons: Hoboken, New Jersey, 2012.
Dua A, Medepalli K, Paulraj AJ. Receive antenna selection in MIMO systems using convex optimization. IEEE Trans. on Wireless Communications 2006; 5(9): 2353-2357.
Salkin HM, Mathur K. Foundations of Integer Programming, Chapter 8, North-Holland: Amsterdam, Netherlands, 1989.
Chen Y, Zhang S, Xu S, Li GY. Fundamental tradeoffs on green wireless networks. IEEE Communications Magazine 2011; 49(6): 30-37.
Larsson E, Edfors O, Tufvesson F, Marzetta T. Massive MIMO for next generation wireless systems. IEEE Communications Magazine 2014; 52(2): 186-195.
Sanayei S, Nosratinia A. Antenna selection in MIMO systems. IEEE Communications Magazine 2004; 42(10): 68-73.
Max J. Quantizing for minimum distortion. IEEE Trans. on Information Theory 1960; 6(1): 7-12.
Tong L, Sadler BM, Dong M. Pilot-assisted wireless transmissions: general model, design criteria, and signal processing. IEEE Signal Processing Magazine 2004; 21(6): 12-25.
2004; 21
2004; 42
2012
2011
1960; 6
1995; 33
2008
2002; 2
1952
2006; 5
1995
2005
1992
2008; 96
2003; 51
2012; 30
2007; 15
2011; 9
2004; 52
2009; 57
2005; 4
1999; 10
2014
2013
2014; 52
2011; 49
1989
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
Salkin HM (e_1_2_7_29_1) 1989
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
Cover TM (e_1_2_7_23_1) 2012
References_xml – reference: Boccardi F, Heath RW, Lozano A, Marzetta TL. Five disruptive technology directions for 5G. IEEE Communications Magazine 2014; 52(2): 74-80.
– reference: Max J. Quantizing for minimum distortion. IEEE Trans. on Information Theory 1960; 6(1): 7-12.
– reference: Larsson E, Edfors O, Tufvesson F, Marzetta T. Massive MIMO for next generation wireless systems. IEEE Communications Magazine 2014; 52(2): 186-195.
– reference: Salkin HM, Mathur K. Foundations of Integer Programming, Chapter 8, North-Holland: Amsterdam, Netherlands, 1989.
– reference: Chen Y, Zhang S, Xu S, Li GY. Fundamental tradeoffs on green wireless networks. IEEE Communications Magazine 2011; 49(6): 30-37.
– reference: Cover TM, Thomas JA. Elements of Information Theory (2nd Edition). John Wiley & Sons: Hoboken, New Jersey, 2012.
– reference: Gorokhov A, Gore DA, Paulraj AJ. Receive antenna selection for MIMO spatial multiplexing: theory and algorithms. IEEE Trans. on Signal Processing 2003; 51(11): 2796-2807.
– reference: Telatar E. Capacity of multiantenna Gaussian channels. European Trans. on Telecommunications 1999; 10(6): 585-595.
– reference: Dua A, Medepalli K, Paulraj AJ. Receive antenna selection in MIMO systems using convex optimization. IEEE Trans. on Wireless Communications 2006; 5(9): 2353-2357.
– reference: Molisch AF, Win MZ, Choi Y, Winters JH. Capacity of MIMO systems with antenna selection. IEEE Trans. on Wireless Communications 2005; 4(4): 1759-1772.
– reference: Gersho A, Gary RM. Vector Quantization and Signal Compression, Springer: Massachusetts, USA, 1992.
– reference: Goldsmith A. Wireless Communications. Cambridge University Press: Cambridge, United Kingdom, 2005.
– reference: Wang C, Haider F, Gao X, You X, Yang Y, Yuan D, Aggoune HM, Haas H, Fletcher S, E Hepsaydir. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine 2014; 52(2): 122-130.
– reference: Sanayei S, Nosratinia A. Antenna selection in MIMO systems. IEEE Communications Magazine 2004; 42(10): 68-73.
– reference: Li Y, Bakkaloglu B, Chakrabarti C. A system level energy model and energy-quality evaluation for integrated transceiver front-ends. IEEE Trans. on VLSI Systems 2007; 15: 90-103.
– reference: Han C, Harrold T, Armour S, Krikidis I, Videv S, Grant PM, Haas H, Thompson JS, Ku I, C Wang, Le TA, Nakhai MR, Zhang J, Hanzo L. Green radio: radio techniques to enable energy-efficient wireless networks. IEEE Communications Magazine 2011; 9(4): 46-54.
– reference: Andrews JG, Claussen H, Dohler M, Rangan S, Reed MC. Femtocells: past, present, and future. IEEE Journal on Selected Areas in Communications 2012; 30(3): 497-508.
– reference: Wepman JA. Analog-to-digital converters and their applications in radio receivers. IEEE Comunications Magazine 1995; 33(5): 39-45.
– reference: Tong L, Sadler BM, Dong M. Pilot-assisted wireless transmissions: general model, design criteria, and signal processing. IEEE Signal Processing Magazine 2004; 21(6): 12-25.
– reference: Cui S, Goldsmith AJ. Energy-constrained modulation optimization. IEEE Trans. on Wireless Communications 2005; 4(5): 2349-2360.
– reference: Lee HS, Sodini CG. Analog-to-digital converters: digitizing the analog world. Proceedings of the IEEE 2008; 96(2): 323-334.
– reference: Singh J, Dabeer O, Madhow U. On the limits of communication with low-precision analog-to-digital conversion at the receiver. IEEE Trans. on Communications 2009; 57(12): 3629-3639.
– reference: Gharavi-Alkhansari M, Gershman AB. Fast antenna subset selection in MIMO systems. IEEE Trans. on Signal Processing 2004; 52(2): 339-347.
– volume: 49
  start-page: 30
  issue: 6
  year: 2011
  end-page: 37
  article-title: Fundamental tradeoffs on green wireless networks
  publication-title: IEEE Communications Magazine
– volume: 15
  start-page: 90
  year: 2007
  end-page: 103
  article-title: A system level energy model and energy‐quality evaluation for integrated transceiver front‐ends
  publication-title: IEEE Trans. on VLSI Systems
– volume: 9
  start-page: 46
  issue: 4
  year: 2011
  end-page: 54
  article-title: Green radio: radio techniques to enable energy‐efficient wireless networks
  publication-title: IEEE Communications Magazine
– year: 2005
– volume: 52
  start-page: 122
  issue: 2
  year: 2014
  end-page: 130
  article-title: Cellular architecture and key technologies for 5G wireless communication networks
  publication-title: IEEE Communications Magazine
– volume: 57
  start-page: 3629
  issue: 12
  year: 2009
  end-page: 3639
  article-title: On the limits of communication with low‐precision analog‐to‐digital conversion at the receiver
  publication-title: IEEE Trans. on Communications
– volume: 21
  start-page: 12
  issue: 6
  year: 2004
  end-page: 25
  article-title: Pilot‐assisted wireless transmissions: general model, design criteria, and signal processing
  publication-title: IEEE Signal Processing Magazine
– year: 1989
– volume: 4
  start-page: 1759
  issue: 4
  year: 2005
  end-page: 1772
  article-title: Capacity of MIMO systems with antenna selection
  publication-title: IEEE Trans. on Wireless Communications
– year: 1952
– volume: 52
  start-page: 74
  issue: 2
  year: 2014
  end-page: 80
  article-title: Five disruptive technology directions for 5G
  publication-title: IEEE Communications Magazine
– start-page: 1
  year: 2014
  end-page: 6
– year: 1992
– volume: 30
  start-page: 497
  issue: 3
  year: 2012
  end-page: 508
  article-title: Femtocells: past, present, and future
  publication-title: IEEE Journal on Selected Areas in Communications
– year: 2014
– year: 2012
– volume: 52
  start-page: 186
  issue: 2
  year: 2014
  end-page: 195
  article-title: Massive MIMO for next generation wireless systems
  publication-title: IEEE Communications Magazine
– start-page: 105
  year: 2008
  end-page: 112
– volume: 33
  start-page: 39
  issue: 5
  year: 1995
  end-page: 45
  article-title: Analog‐to‐digital converters and their applications in radio receivers
  publication-title: IEEE Comunications Magazine
– start-page: 260
  year: 2008
  end-page: 264
– volume: 2
  start-page: 1582
  year: 2002
  end-page: 1587
– volume: 52
  start-page: 339
  issue: 2
  year: 2004
  end-page: 347
  article-title: Fast antenna subset selection in MIMO systems
  publication-title: IEEE Trans. on Signal Processing
– start-page: 1
  year: 2013
  end-page: 5
– volume: 6
  start-page: 7
  issue: 1
  year: 1960
  end-page: 12
  article-title: Quantizing for minimum distortion
  publication-title: IEEE Trans. on Information Theory
– volume: 51
  start-page: 2796
  issue: 11
  year: 2003
  end-page: 2807
  article-title: Receive antenna selection for MIMO spatial multiplexing: theory and algorithms
  publication-title: IEEE Trans. on Signal Processing
– start-page: 1
  year: 2011
  end-page: 8
– volume: 96
  start-page: 323
  issue: 2
  year: 2008
  end-page: 334
  article-title: Analog‐to‐digital converters: digitizing the analog world
  publication-title: Proceedings of the IEEE
– start-page: 1942
  year: 1995
  end-page: 1948
– volume: 10
  start-page: 585
  issue: 6
  year: 1999
  end-page: 595
  article-title: Capacity of multiantenna Gaussian channels
  publication-title: European Trans. on Telecommunications
– volume: 4
  start-page: 2349
  issue: 5
  year: 2005
  end-page: 2360
  article-title: Energy‐constrained modulation optimization
  publication-title: IEEE Trans. on Wireless Communications
– volume: 5
  start-page: 2353
  issue: 9
  year: 2006
  end-page: 2357
  article-title: Receive antenna selection in MIMO systems using convex optimization
  publication-title: IEEE Trans. on Wireless Communications
– year: 2013
– volume: 42
  start-page: 68
  issue: 10
  year: 2004
  end-page: 73
  article-title: Antenna selection in MIMO systems
  publication-title: IEEE Communications Magazine
– ident: e_1_2_7_25_1
  doi: 10.1007/978-1-4615-3626-0
– ident: e_1_2_7_9_1
  doi: 10.1109/CICC.2008.4672032
– ident: e_1_2_7_34_1
  doi: 10.1109/TSP.2003.821099
– ident: e_1_2_7_12_1
  doi: 10.1109/TCOMM.2009.12.080559
– ident: e_1_2_7_8_1
  doi: 10.1109/35.393000
– ident: e_1_2_7_18_1
  doi: 10.1109/MCOM.2004.1341263
– ident: e_1_2_7_27_1
  doi: 10.1109/WSA.2011.5741951
– ident: e_1_2_7_3_1
  doi: 10.1109/MCOM.2011.5783984
– ident: e_1_2_7_11_1
  doi: 10.1109/ISIT.2008.4594988
– volume-title: Elements of Information Theory
  year: 2012
  ident: e_1_2_7_23_1
– ident: e_1_2_7_10_1
  doi: 10.1109/MCOM.2014.6736746
– ident: e_1_2_7_32_1
  doi: 10.1109/TWC.2005.850307
– ident: e_1_2_7_22_1
– ident: e_1_2_7_24_1
  doi: 10.1109/TIT.1960.1057548
– ident: e_1_2_7_33_1
  doi: 10.1109/TSP.2003.818204
– ident: e_1_2_7_5_1
  doi: 10.1109/TWC.2005.853882
– ident: e_1_2_7_35_1
  doi: 10.1109/TWC.2006.1687757
– ident: e_1_2_7_2_1
  doi: 10.1109/MCOM.2014.6736752
– volume-title: Foundations of Integer Programming
  year: 1989
  ident: e_1_2_7_29_1
– ident: e_1_2_7_30_1
  doi: 10.1109/ICNN.1995.488968
– ident: e_1_2_7_36_1
  doi: 10.1109/PIMRC.2014.7136137
– ident: e_1_2_7_16_1
– ident: e_1_2_7_20_1
  doi: 10.1109/MSP.2004.1359139
– ident: e_1_2_7_13_1
– ident: e_1_2_7_21_1
– ident: e_1_2_7_6_1
  doi: 10.1109/JSAC.2012.120401
– ident: e_1_2_7_17_1
  doi: 10.1109/WCNC.2014.6951974
– ident: e_1_2_7_15_1
  doi: 10.1002/ett.4460100604
– ident: e_1_2_7_19_1
– ident: e_1_2_7_14_1
  doi: 10.1017/CBO9780511841224
– ident: e_1_2_7_7_1
  doi: 10.1109/MCOM.2014.6736761
– ident: e_1_2_7_4_1
  doi: 10.1109/MCOM.2011.5783982
– ident: e_1_2_7_28_1
  doi: 10.1109/TVLSI.2007.891095
– ident: e_1_2_7_26_1
  doi: 10.1109/JPROC.2007.911069
– ident: e_1_2_7_31_1
SSID ssj0000752548
Score 2.286201
Snippet In a digital communication system, the analog signal that the receiver receives with its radio frequency front end is converted into digital format by using...
SourceID crossref
wiley
istex
SourceType Enrichment Source
Index Database
Publisher
StartPage 3
Title Energy efficiency maximization for 5G multi-antenna receivers
URI https://api.istex.fr/ark:/67375/WNG-MMQZ2J47-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fett.2892
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegfYEHtPEhxgYKEoKHKiG2kzh-LKx0quikiUxMvESOY0sIFtDIpGl__c52PksnDV7SyrKs9u58Pl_u9zuE3mCsiNS09JVMCvOaUfu8SIUvITYmhmFMWXzF-jg5Oo1WZ_FZX1Zk0SV1EcjrrbiS_9EqjIFeDUr2HzTbLQoD8B30C0_QMDzvpOOFA-4pSwNhMZTn4ur7eQOttBWE8dLVDPpGglUlZuDhlK3FGIalWd813L4-MKhh272oNm1yhhiSP7O6TcYPyg8_uKbWJ0GXW4azV1lHuwpm82CYW8DxRm5hI4focmJ9tRH4KIJN-oo7RGagtow1TtbB4kfG5DwmHRy9Dk76l1N3JLGqNkS7rnHemDd74zzrqgzFxQ9Ttsbi_OvxMl-vT76RVcRyfh9NCVwqyARN54frz1-6nByET3Bftk0M2__Q8hWH5H37A0YRzNRsxqvxzcaGJtkOetTcKby5M5BddE9Vj9HDAdPkE9SYitebijc0FQ9MxYuX3shUvM5UnqLTT4vs45HfdM7wJYQkxJecaa4wSyNdKi6pDJmgsHMKissSlyFcAjQXktOkoJrqUshEJ5RRxQTnImL0GZpUvyr1HHlCqljHUhAV0igtUxGWlIUJEWEaCVzgPfSulUYuG1p5093kZ-4IsUkOcsuN3PbQ627mb0elsmXOWyvQbsJtOoSJVuK3rpQvssx8vrjrivvoQb8FDtCkvrhULyHgrItXjZ3cAKIbg_o
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+efficiency+maximization+for+5G+multi-antenna+receivers&rft.jtitle=Transactions+on+emerging+telecommunications+technologies&rft.au=Bai%2C+Q.&rft.au=Nossek%2C+J.+A.&rft.date=2015-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=2161-3915&rft.eissn=2161-3915&rft.volume=26&rft.issue=1&rft.spage=3&rft.epage=14&rft_id=info:doi/10.1002%2Fett.2892&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_MMQZ2J47_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-3915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-3915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-3915&client=summon