Site‐Selective Functionalization of Carboranes at the Electron‐Rich Boron Vertex: Photocatalytic B−C Coupling via a Carboranyl Cage Radical

Functionalization of carboranes in a vertex‐specific manner is a perennial challenge. Here, we report a photocatalytic B−C coupling for the selective functionalization of carboranes at the boron site which is most distal to carbon. This reaction was achieved by the photo‐induced decarboxylation of c...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 37; pp. e202205672 - n/a
Main Authors Chen, Meng, Xu, Jingkai, Zhao, Deshi, Sun, Fangxiang, Tian, Songlin, Tu, Deshuang, Lu, Changsheng, Yan, Hong
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 12.09.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.202205672

Cover

Abstract Functionalization of carboranes in a vertex‐specific manner is a perennial challenge. Here, we report a photocatalytic B−C coupling for the selective functionalization of carboranes at the boron site which is most distal to carbon. This reaction was achieved by the photo‐induced decarboxylation of carborane carboxylic acids to generate boron vertex‐centered carboranyl radicals. Theoretical calculations also demonstrate that the reaction more easily occurs at the boron site bearing higher electron density owing to the lower energy barrier for a single‐electron transfer to generate a carboranyl radical. By using this strategy, a number of functionalized carboranes could be accessed through alkylation, alkenylation, and heteroarylation under mild conditions. Moreover, both a highly efficient blue emitter with a solid‐state luminous efficiency of 42 % and a drug candidate for boron neutron capture therapy (BNCT) containing targeting and fluorine units were obtained. A new photocatalytic strategy for the site‐selective functionalization of carboranes was demonstrated by the photo‐induced decarboxylation of carborane carboxylic acids to generate boron‐vertex‐centered carboranyl radicals. This strategy enables facile construction of highly efficient blue emitters and drug candidates for boron neutron capture therapy (BNCT).
AbstractList Functionalization of carboranes in a vertex‐specific manner is a perennial challenge. Here, we report a photocatalytic B−C coupling for the selective functionalization of carboranes at the boron site which is most distal to carbon. This reaction was achieved by the photo‐induced decarboxylation of carborane carboxylic acids to generate boron vertex‐centered carboranyl radicals. Theoretical calculations also demonstrate that the reaction more easily occurs at the boron site bearing higher electron density owing to the lower energy barrier for a single‐electron transfer to generate a carboranyl radical. By using this strategy, a number of functionalized carboranes could be accessed through alkylation, alkenylation, and heteroarylation under mild conditions. Moreover, both a highly efficient blue emitter with a solid‐state luminous efficiency of 42 % and a drug candidate for boron neutron capture therapy (BNCT) containing targeting and fluorine units were obtained.
Functionalization of carborane in a vertex-specific manner is a perennial challenge. Here, we report a photocatalytic B-C coupling for selective functionalization of carboranes at the boron site which is most distal to carbon. This reaction protocol was achieved by photo-induced decarboxylation of carborane carboxylic acids to generate boron vertex-centered carboranyl radicals. Theoretical calculations also demonstrate that the reaction more easily occurs at the boron site bearing higher electron density owing to the lower energy barrier for a single electron transfer to generate a carboranyl radical. By using this strategy, a number of functionalized carboranes through alkylation, alkenylation, and heteroarylation could be accessed under mild conditions. Moreover, both a highly efficient blue emitter with the solid-state luminous efficiency of 42% and a Boron Neutron Capture Therapy (BNCT) drug candidate containing targeting and fluorine units were obtained.
Functionalization of carboranes in a vertex‐specific manner is a perennial challenge. Here, we report a photocatalytic B−C coupling for the selective functionalization of carboranes at the boron site which is most distal to carbon. This reaction was achieved by the photo‐induced decarboxylation of carborane carboxylic acids to generate boron vertex‐centered carboranyl radicals. Theoretical calculations also demonstrate that the reaction more easily occurs at the boron site bearing higher electron density owing to the lower energy barrier for a single‐electron transfer to generate a carboranyl radical. By using this strategy, a number of functionalized carboranes could be accessed through alkylation, alkenylation, and heteroarylation under mild conditions. Moreover, both a highly efficient blue emitter with a solid‐state luminous efficiency of 42 % and a drug candidate for boron neutron capture therapy (BNCT) containing targeting and fluorine units were obtained. A new photocatalytic strategy for the site‐selective functionalization of carboranes was demonstrated by the photo‐induced decarboxylation of carborane carboxylic acids to generate boron‐vertex‐centered carboranyl radicals. This strategy enables facile construction of highly efficient blue emitters and drug candidates for boron neutron capture therapy (BNCT).
Functionalization of carboranes in a vertex-specific manner is a perennial challenge. Here, we report a photocatalytic B-C coupling for the selective functionalization of carboranes at the boron site which is most distal to carbon. This reaction was achieved by the photo-induced decarboxylation of carborane carboxylic acids to generate boron vertex-centered carboranyl radicals. Theoretical calculations also demonstrate that the reaction more easily occurs at the boron site bearing higher electron density owing to the lower energy barrier for a single-electron transfer to generate a carboranyl radical. By using this strategy, a number of functionalized carboranes could be accessed through alkylation, alkenylation, and heteroarylation under mild conditions. Moreover, both a highly efficient blue emitter with a solid-state luminous efficiency of 42 % and a drug candidate for boron neutron capture therapy (BNCT) containing targeting and fluorine units were obtained.Functionalization of carboranes in a vertex-specific manner is a perennial challenge. Here, we report a photocatalytic B-C coupling for the selective functionalization of carboranes at the boron site which is most distal to carbon. This reaction was achieved by the photo-induced decarboxylation of carborane carboxylic acids to generate boron vertex-centered carboranyl radicals. Theoretical calculations also demonstrate that the reaction more easily occurs at the boron site bearing higher electron density owing to the lower energy barrier for a single-electron transfer to generate a carboranyl radical. By using this strategy, a number of functionalized carboranes could be accessed through alkylation, alkenylation, and heteroarylation under mild conditions. Moreover, both a highly efficient blue emitter with a solid-state luminous efficiency of 42 % and a drug candidate for boron neutron capture therapy (BNCT) containing targeting and fluorine units were obtained.
Author Tu, Deshuang
Tian, Songlin
Sun, Fangxiang
Chen, Meng
Xu, Jingkai
Lu, Changsheng
Zhao, Deshi
Yan, Hong
Author_xml – sequence: 1
  givenname: Meng
  surname: Chen
  fullname: Chen, Meng
  organization: Nanjing University
– sequence: 2
  givenname: Jingkai
  orcidid: 0000-0002-7545-3608
  surname: Xu
  fullname: Xu, Jingkai
  organization: Nanjing University
– sequence: 3
  givenname: Deshi
  surname: Zhao
  fullname: Zhao, Deshi
  organization: Nanjing University
– sequence: 4
  givenname: Fangxiang
  surname: Sun
  fullname: Sun, Fangxiang
  organization: Nanjing University
– sequence: 5
  givenname: Songlin
  surname: Tian
  fullname: Tian, Songlin
  organization: Nanjing University
– sequence: 6
  givenname: Deshuang
  surname: Tu
  fullname: Tu, Deshuang
  email: tudeshuang@126.com
  organization: Nanjing University
– sequence: 7
  givenname: Changsheng
  surname: Lu
  fullname: Lu, Changsheng
  email: luchsh@nju.edu.cn
  organization: Nanjing University
– sequence: 8
  givenname: Hong
  orcidid: 0000-0003-3993-0013
  surname: Yan
  fullname: Yan, Hong
  email: hyan1965@nju.edu.cn
  organization: Nanjing University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35670361$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9rFDEcxYO02B969SgBL15mm18zmfHWDttaKCqteg2ZzHe6KdnJNpOprqcePWr_xP4lzbpthYIIgbzA5z3Ieztoo_c9IPSKkgklhO3p3sKEEcZIXkj2DG3TnNGMS8k3khacZ7LM6RbaGYaLxJclKZ6jLZ5gwgu6jX6f2Qi317_OwIGJ9grw4dgn4Xvt7A-9Eth3uNah8UH3MGAdcZwBnq744PvkPbVmhg98euCvECJ8f4c_zXz0RkftltEafHD786bGtR8Xzvbn-MpqrB8zly7Jc8CnurVGuxdos9NugJf39y76cjj9XL_PTj4eHdf7J5nhhLOs4VSIdLjp8rYAkreMsUaLghRt1VVdyTot206wiraEk67VTdMAzw1IZgQRfBe9Xecugr8cYYhqbgcDzqVf-nFQrJCCkFxWJKFvnqAXfgypoURJUkkqSFkk6vU9NTZzaNUi2LkOS_VQdgLEGjDBD0OAThkb_1Qcg7ZOUaJWm6rVpupx02SbPLE9JP_TUK0N36yD5X9otf_hePrXewdXMreP
CitedBy_id crossref_primary_10_1021_acs_accounts_2c00752
crossref_primary_10_1039_D4SC02214A
crossref_primary_10_1002_anie_202305088
crossref_primary_10_1002_ange_202305088
crossref_primary_10_1002_cjoc_202200622
crossref_primary_10_1021_acs_orglett_2c02648
crossref_primary_10_1039_D2CY01703B
crossref_primary_10_1039_D4SC08085H
crossref_primary_10_1021_jacs_4c00550
crossref_primary_10_1002_ajoc_202200630
crossref_primary_10_1021_jacs_3c00866
crossref_primary_10_1021_jacs_4c16062
crossref_primary_10_1039_D4QI02011A
crossref_primary_10_1039_D4CP03615H
crossref_primary_10_1039_D5SC00234F
crossref_primary_10_1021_acs_orglett_2c02590
crossref_primary_10_1039_D4QO01428F
crossref_primary_10_1002_adsc_202201183
crossref_primary_10_1021_acs_orglett_3c01989
crossref_primary_10_3390_molecules29163916
Cites_doi 10.1002/ange.201903920
10.1002/anie.201911819
10.1021/jacs.6b05505
10.1038/s41467-021-27441-y
10.1021/jacs.7b01889
10.1021/cr500706a
10.1002/ange.201402445
10.1021/jacs.1c00779
10.1021/acs.chemrev.8b00551
10.1002/anie.202111493
10.1038/s41586-020-2831-6
10.1002/chem.201905395
10.1021/acs.accounts.8b00267
10.1002/anie.201703862
10.1039/C5CC01331C
10.1021/acs.oprd.9b00257
10.1039/c2cs35441a
10.1002/ange.201206566
10.1016/S0022-328X(00)83405-1
10.1023/A:1020942418765
10.1002/anie.201603232
10.1002/ange.201903467
10.1002/chem.201901840
10.1002/anie.201607867
10.1002/ange.201407359
10.1038/s41467-019-09825-3
10.1002/ange.200803493
10.1002/chem.201503456
10.1038/s41586-019-1640-2
10.1002/anie.202200672
10.1002/anie.201310317
10.1002/ange.201703862
10.1021/jacs.0c03176
10.1021/ja405808t
10.1021/jacs.1c00593
10.1002/anie.201206566
10.1126/science.1138690
10.1021/ic00025a037
10.1002/ange.201603232
10.1002/ange.201607867
10.1039/C8CC08693A
10.1039/D0SC01515F
10.1016/j.tet.2017.11.005
10.1002/anie.201609656
10.1002/ijch.201900130
10.1002/tcr.201402100
10.1021/ja101845m
10.1002/ange.201913175
10.1002/ange.201705857
10.1021/acs.chemrev.0c01236
10.1002/ejic.201700553
10.1021/jacs.0c02121
10.1021/ja037279e
10.1021/acs.jmedchem.5b00258
10.1016/j.ccr.2013.02.004
10.1002/anie.201511251
10.1021/ic010493o
10.1039/C6CC06200H
10.1351/pac199163060835
10.1002/anie.201606979
10.1002/ange.201609274
10.1039/C8DT01064A
10.1021/jacs.7b12815
10.1021/acsnano.7b06600
10.1021/ic00112a023
10.1016/0022-328X(84)80161-8
10.1039/D1CS00385B
10.1021/acs.chemrev.1c00255
10.1021/acs.orglett.9b02539
10.1021/jacs.2c02329
10.1007/BF00948065
10.1021/jm800219f
10.1021/ja053050i
10.1002/ange.201915619
10.1039/C9CS00197B
10.1039/C9OB01029G
10.1002/anie.201913398
10.1021/acs.orglett.9b02129
10.1039/D0CC06557A
10.1021/acs.chemrev.6b00198
10.1021/ar500335a
10.1002/anie.201609274
10.1021/acs.inorgchem.2c00074
10.1002/ange.201916666
10.1021/jacs.6b07411
10.1016/j.ccr.2017.09.019
10.1002/anie.201903467
10.1201/b11199
10.1016/j.ccr.2017.11.006
10.1021/acsami.0c17847
10.1021/acsnano.7b09011
10.1002/anie.201705857
10.1002/ange.201310317
10.1039/D1SC00791B
10.1002/anie.201903920
10.1002/ange.202200672
10.1021/jacs.5b04576
10.1007/BF00952942
10.1002/ange.201911819
10.1021/ic00216a053
10.1021/cr200038x
10.1039/C9CS00169G
10.1039/C5CC08213G
10.1039/b709843j
10.1021/jacs.5b05665
10.1021/am406035v
10.1002/ange.202111493
10.1002/ange.201709487
10.1021/jacs.2c01668
10.1126/science.abg0781
10.1021/jacs.8b07872
10.1021/acs.accounts.1c00132
10.1021/ic800362z
10.1039/C9SC00078J
10.1021/acs.chemrev.9b00384
10.1002/ange.201511251
10.1002/ange.201606979
10.1039/C5DT03417E
10.1039/c0cc05151a
10.1002/anie.201916666
10.1039/C5DT00231A
10.1021/acs.joc.0c00312
10.1002/ange.19931050705
10.1021/cr2000866
10.1038/s41586-019-1926-4
10.1021/cr980442h
10.1002/anie.201709487
10.1002/anie.201407359
10.1351/pac199163030357
10.1002/anie.201915619
10.1002/ange.201913398
10.1021/jacs.8b11218
10.1039/C6CC01650B
10.1039/D1CC07211K
10.1021/acscentsci.1c01132
10.1002/anie.200803493
10.1021/acs.jmedchem.5b01932
10.1016/j.ccr.2014.02.016
10.1515/pac-2014-1007
10.1002/adma.201704238
10.1016/S0022-328X(01)01108-1
10.1002/ejoc.201901010
10.1126/science.1131943
10.1021/acs.orglett.7b00013
10.1039/C7TC03319B
10.1021/jacs.0c00300
10.1038/nchem.1088
10.1002/anie.199309501
10.1039/C6CS00159A
10.1039/D1GC03119H
10.1002/anie.201402445
10.1002/ange.201609656
10.1021/jacs.7b07160
10.1021/acs.accounts.1c00460
10.1002/anie.201913175
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202205672
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
PubMed

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 35670361
10_1002_anie_202205672
ANIE202205672
Genre article
Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology
  funderid: 2021YFE0114800
– fundername: National Natural Science Foundation of China
  funderid: 21820102004 and 91961104
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3032-b31441443cf5d6e05d222ba4606d9f9f82fa7df4291d030fdabbbe35ce72c4043
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 07:09:05 EDT 2025
Fri Jul 25 10:29:21 EDT 2025
Thu Apr 03 07:08:27 EDT 2025
Tue Jul 01 01:18:23 EDT 2025
Thu Apr 24 22:53:08 EDT 2025
Wed Jan 22 16:23:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 37
Keywords boron chemistry
B−C Coupling
Carboranes
Boron-Cluster Materials
Carboranyl Radicals
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3032-b31441443cf5d6e05d222ba4606d9f9f82fa7df4291d030fdabbbe35ce72c4043
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7545-3608
0000-0003-3993-0013
PMID 35670361
PQID 2709714086
PQPubID 946352
PageCount 9
ParticipantIDs proquest_miscellaneous_2674005790
proquest_journals_2709714086
pubmed_primary_35670361
crossref_citationtrail_10_1002_anie_202205672
crossref_primary_10_1002_anie_202205672
wiley_primary_10_1002_anie_202205672_ANIE202205672
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 12, 2022
PublicationDateYYYYMMDD 2022-09-12
PublicationDate_xml – month: 09
  year: 2022
  text: September 12, 2022
  day: 12
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009 2009; 48 121
2019; 10
1995; 34
2019; 17
2020; 12
2020; 11
2001; 40
2011; 111
2018; 47
1985; 24
2017; 73
2022 2022; 61 134
2015; 137
2019; 21
2019; 23
2015; 87
2019; 25
2020; 577
2016; 45
2015; 58
2020; 142
2015; 51
1993 1993; 32 105
2014; 47
2017 2017; 56 129
2021; 143
2021; 50
2011; 3
2008; 51
2017; 139
2021; 57
2021; 54
2007; 316
2007; 317
2015; 115
1991; 63
2022; 8
2002; 642
2019; 48
2005; 127
2008; 47
2021 2021; 60 133
2019; 575
2020; 26
2021; 371
2018; 12
2014; 269
2016; 22
2017; 5
2014 2014; 53 126
2021; 23
2020; 120
2019; 55
2002; 51
2020; 60
1986; 35
2020 2020; 59 132
1982; 226
2021; 121
2017; 352
2013 2013; 52 125
2015; 44
1999; 99
2019; 119
2016; 116
2003; 125
2014; 6
2015; 15
2018; 140
2011
2020; 85
1984; 267
1991; 30
2013; 42
2016; 52
2007
2017; 29
2020; 586
2016; 59
2019 2019; 58 131
2022; 144
2016 2016; 55 128
2021; 12
2022; 61
2017; 11
2010; 132
2019
2022; 58
2013; 257
2017
2019; 378
2013; 135
2016
2017; 19
2016; 138
2018; 51
2011; 47
1985; 34
e_1_2_7_108_1
e_1_2_7_3_2
e_1_2_7_127_2
e_1_2_7_104_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_123_2
e_1_2_7_83_2
e_1_2_7_100_2
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_41_2
e_1_2_7_87_2
e_1_2_7_41_3
e_1_2_7_11_2
e_1_2_7_64_2
e_1_2_7_45_2
e_1_2_7_26_1
e_1_2_7_68_2
e_1_2_7_142_1
e_1_2_7_49_2
e_1_2_7_146_2
e_1_2_7_116_2
e_1_2_7_90_2
e_1_2_7_71_2
e_1_2_7_94_2
e_1_2_7_112_1
e_1_2_7_52_2
e_1_2_7_75_2
e_1_2_7_98_2
e_1_2_7_75_3
e_1_2_7_23_2
Grimes R. N. (e_1_2_7_12_2) 2016
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_79_2
e_1_2_7_150_2
e_1_2_7_56_3
e_1_2_7_37_2
e_1_2_7_37_3
e_1_2_7_131_2
e_1_2_7_131_3
(e_1_2_7_32_3) 2022; 134
e_1_2_7_135_2
e_1_2_7_135_3
e_1_2_7_139_2
e_1_2_7_139_3
e_1_2_7_4_2
e_1_2_7_105_2
e_1_2_7_105_3
e_1_2_7_128_1
e_1_2_7_8_2
e_1_2_7_124_2
e_1_2_7_82_2
e_1_2_7_101_1
e_1_2_7_16_2
e_1_2_7_120_1
e_1_2_7_40_2
e_1_2_7_63_2
e_1_2_7_86_2
e_1_2_7_44_1
e_1_2_7_67_2
e_1_2_7_67_3
e_1_2_7_48_2
e_1_2_7_143_2
e_1_2_7_29_2
e_1_2_7_147_2
e_1_2_7_109_2
e_1_2_7_117_2
e_1_2_7_113_2
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_3
e_1_2_7_24_2
e_1_2_7_51_2
e_1_2_7_97_2
e_1_2_7_55_1
e_1_2_7_32_2
e_1_2_7_74_2
e_1_2_7_20_3
e_1_2_7_20_2
e_1_2_7_151_1
e_1_2_7_36_2
e_1_2_7_78_2
e_1_2_7_59_2
e_1_2_7_132_2
e_1_2_7_136_1
e_1_2_7_5_2
e_1_2_7_129_2
e_1_2_7_106_2
e_1_2_7_9_2
e_1_2_7_125_2
e_1_2_7_102_2
e_1_2_7_17_2
e_1_2_7_121_1
e_1_2_7_81_2
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_62_2
e_1_2_7_85_1
e_1_2_7_43_2
e_1_2_7_66_2
e_1_2_7_89_1
e_1_2_7_47_2
e_1_2_7_140_2
e_1_2_7_47_3
e_1_2_7_140_3
e_1_2_7_28_2
e_1_2_7_144_2
e_1_2_7_148_1
e_1_2_7_118_2
e_1_2_7_114_2
e_1_2_7_110_2
e_1_2_7_50_2
e_1_2_7_92_2
e_1_2_7_25_3
e_1_2_7_25_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_73_2
e_1_2_7_96_2
e_1_2_7_31_3
e_1_2_7_21_2
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_77_2
e_1_2_7_35_3
e_1_2_7_39_2
e_1_2_7_133_2
e_1_2_7_137_2
e_1_2_7_137_3
e_1_2_7_107_2
e_1_2_7_2_2
e_1_2_7_103_2
e_1_2_7_126_2
e_1_2_7_6_2
e_1_2_7_18_3
e_1_2_7_18_2
e_1_2_7_122_2
e_1_2_7_61_2
e_1_2_7_80_2
e_1_2_7_14_1
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_84_2
e_1_2_7_10_1
e_1_2_7_46_2
e_1_2_7_69_2
e_1_2_7_88_2
e_1_2_7_141_1
e_1_2_7_27_2
e_1_2_7_145_2
e_1_2_7_145_3
e_1_2_7_149_2
e_1_2_7_149_3
e_1_2_7_119_2
e_1_2_7_115_2
e_1_2_7_111_2
e_1_2_7_72_2
e_1_2_7_91_2
e_1_2_7_30_2
e_1_2_7_76_2
e_1_2_7_22_2
e_1_2_7_53_2
e_1_2_7_95_2
e_1_2_7_34_2
e_1_2_7_57_2
e_1_2_7_99_2
e_1_2_7_130_2
e_1_2_7_38_2
e_1_2_7_38_3
e_1_2_7_134_2
e_1_2_7_138_2
e_1_2_7_138_3
e_1_2_7_119_3
References_xml – year: 2011
– volume: 119
  start-page: 8262
  year: 2019
  end-page: 8290
  publication-title: Chem. Rev.
– volume: 12
  start-page: 2211
  year: 2018
  end-page: 2221
  publication-title: ACS Nano
– volume: 58 131
  start-page: 9129 9227
  year: 2019 2019
  end-page: 9133 9231
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58
  start-page: 8315
  year: 2015
  end-page: 8359
  publication-title: J. Med. Chem.
– volume: 26
  start-page: 5027
  year: 2020
  end-page: 5036
  publication-title: Chem. Eur. J.
– volume: 12
  start-page: 7146
  year: 2021
  publication-title: Nat. Commun.
– start-page: 4240
  year: 2007
  end-page: 4251
  publication-title: Dalton Trans.
– volume: 138
  start-page: 12037
  year: 2016
  end-page: 12040
  publication-title: J. Am. Chem. Soc.
– volume: 144
  start-page: 7960
  year: 2022
  end-page: 7965
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 5986
  year: 2019
  end-page: 5989
  publication-title: Org. Lett.
– volume: 58 131
  start-page: 8129 8213
  year: 2019 2019
  end-page: 8133 8217
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 52
  start-page: 1070
  year: 2016
  end-page: 1093
  publication-title: Chem. Commun.
– volume: 12
  start-page: 8411
  year: 2021
  end-page: 8423
  publication-title: Chem. Sci.
– volume: 127
  start-page: 12131
  year: 2005
  end-page: 12139
  publication-title: J. Am. Chem. Soc.
– volume: 257
  start-page: 2522
  year: 2013
  end-page: 2535
  publication-title: Coord. Chem. Rev.
– volume: 47
  start-page: 6666
  year: 2018
  end-page: 6671
  publication-title: Dalton Trans.
– volume: 48
  start-page: 3660
  year: 2019
  end-page: 3673
  publication-title: Chem. Soc. Rev.
– volume: 35
  start-page: 425
  year: 1986
  end-page: 428
  publication-title: Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.)
– volume: 642
  start-page: 16
  year: 2002
  end-page: 19
  publication-title: J. Organomet. Chem.
– volume: 56 129
  start-page: 9906 10038
  year: 2017 2017
  end-page: 9909 10041
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 4009 4038
  year: 2020 2020
  end-page: 4016 4045
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 34
  start-page: 2095
  year: 1995
  end-page: 2100
  publication-title: Inorg. Chem.
– volume: 115
  start-page: 9073
  year: 2015
  end-page: 9174
  publication-title: Chem. Rev.
– volume: 56 129
  start-page: 15073 15269
  year: 2017 2017
  end-page: 15077 15273
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 63
  start-page: 835
  year: 1991
  end-page: 838
  publication-title: Pure Appl. Chem.
– volume: 59 132
  start-page: 9841 9925
  year: 2020 2020
  end-page: 9855 9939
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 34
  start-page: 809
  year: 1985
  end-page: 812
  publication-title: Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.)
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60
  start-page: 410
  year: 2020
  end-page: 415
  publication-title: Isr. J. Chem.
– volume: 267
  start-page: 81
  year: 1984
  end-page: 91
  publication-title: J. Organomet. Chem.
– volume: 575
  start-page: 336
  year: 2019
  end-page: 340
  publication-title: Nature
– volume: 48
  start-page: 3497
  year: 2019
  end-page: 3512
  publication-title: Chem. Soc. Rev.
– volume: 51
  start-page: 1362
  year: 2002
  end-page: 1374
  publication-title: Russ. Chem. Bull.
– volume: 47
  start-page: 3571
  year: 2014
  end-page: 3579
  publication-title: Acc. Chem. Res.
– volume: 226
  start-page: 217
  year: 1982
  end-page: 222
  publication-title: J. Organomet. Chem.
– volume: 25
  start-page: 11797
  year: 2019
  end-page: 11819
  publication-title: Chem. Eur. J.
– volume: 116
  start-page: 14307
  year: 2016
  end-page: 14378
  publication-title: Chem. Rev.
– volume: 32 105
  start-page: 950 997
  year: 1993 1993
  end-page: 984 1033
  publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem.
– volume: 142
  start-page: 4586
  year: 2020
  end-page: 4591
  publication-title: J. Am. Chem. Soc.
– volume: 85
  start-page: 5019
  year: 2020
  end-page: 5026
  publication-title: J. Org. Chem.
– volume: 137
  start-page: 9273
  year: 2015
  end-page: 9280
  publication-title: J. Am. Chem. Soc.
– volume: 371
  start-page: 1232
  year: 2021
  end-page: 1240
  publication-title: Science
– volume: 6
  start-page: 4997
  year: 2014
  end-page: 5004
  publication-title: ACS Appl. Mater. Interfaces
– volume: 57
  start-page: 827
  year: 2021
  end-page: 839
  publication-title: Chem. Commun.
– volume: 142
  start-page: 9890
  year: 2020
  end-page: 9895
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 2298
  year: 2021
  end-page: 2312
  publication-title: Acc. Chem. Res.
– year: 2016
– volume: 21
  start-page: 6930
  year: 2019
  end-page: 6935
  publication-title: Org. Lett.
– volume: 5
  start-page: 10211
  year: 2017
  end-page: 10219
  publication-title: J. Mater. Chem. C
– volume: 60 133
  start-page: 25753 25957
  year: 2021 2021
  end-page: 25757 25961
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 143
  start-page: 4148
  year: 2021
  end-page: 4153
  publication-title: J. Am. Chem. Soc.
– volume: 352
  start-page: 346
  year: 2017
  end-page: 378
  publication-title: Coord. Chem. Rev.
– volume: 138
  start-page: 9081
  year: 2016
  end-page: 9084
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 16360
  year: 2018
  end-page: 16367
  publication-title: J. Am. Chem. Soc.
– volume: 40
  start-page: 6555
  year: 2001
  end-page: 6562
  publication-title: Inorg. Chem.
– volume: 48 121
  start-page: 5082 5184
  year: 2009 2009
  end-page: 5091 5193
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 135
  start-page: 12192
  year: 2013
  end-page: 12195
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 4359
  year: 2008
  end-page: 4369
  publication-title: J. Med. Chem.
– volume: 44
  start-page: 5939
  year: 2015
  end-page: 5956
  publication-title: Dalton Trans.
– volume: 59 132
  start-page: 12876 12976
  year: 2020 2020
  end-page: 12884 12984
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 61
  start-page: 5326
  year: 2022
  end-page: 5334
  publication-title: Inorg. Chem.
– volume: 55 128
  start-page: 15609 15838
  year: 2016 2016
  end-page: 15614 15843
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 111
  start-page: 7035
  year: 2011
  end-page: 7062
  publication-title: Chem. Rev.
– volume: 132
  start-page: 6578
  year: 2010
  end-page: 6587
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 4866
  year: 1991
  end-page: 4868
  publication-title: Inorg. Chem.
– volume: 53 126
  start-page: 12191 12387
  year: 2014 2014
  end-page: 12195 12391
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 56 129
  start-page: 1120 1140
  year: 2017 2017
  end-page: 1124 1144
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 317
  start-page: 1881
  year: 2007
  end-page: 1886
  publication-title: Science
– volume: 144
  start-page: 6558
  year: 2022
  end-page: 6565
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 616
  year: 2015
  end-page: 635
  publication-title: Chem. Rec.
– volume: 12
  start-page: 56372
  year: 2020
  end-page: 56384
  publication-title: ACS Appl. Mater. Interfaces
– start-page: 4369
  year: 2017
  end-page: 4377
  publication-title: Eur. J. Inorg. Chem.
– volume: 8
  start-page: 322
  year: 2022
  end-page: 331
  publication-title: ACS Cent. Sci.
– volume: 23
  start-page: 10123
  year: 2021
  end-page: 10131
  publication-title: Green Chem.
– volume: 99
  start-page: 3421
  year: 1999
  end-page: 3434
  publication-title: Chem. Rev.
– volume: 53 126
  start-page: 4489 4578
  year: 2014 2014
  end-page: 4493 4582
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55 128
  start-page: 12868 13060
  year: 2016 2016
  end-page: 12872 13064
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 52
  start-page: 6443
  year: 2016
  end-page: 6446
  publication-title: Chem. Commun.
– volume: 22
  start-page: 1888
  year: 2016
  end-page: 1898
  publication-title: Chem. Eur. J.
– volume: 17
  start-page: 6099
  year: 2019
  end-page: 6113
  publication-title: Org. Biomol. Chem.
– volume: 316
  start-page: 853
  year: 2007
  end-page: 853
  publication-title: Science
– volume: 56 129
  start-page: 11370 11528
  year: 2017 2017
  end-page: 11374 11532
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54
  start-page: 4065
  year: 2021
  end-page: 4079
  publication-title: Acc. Chem. Res.
– volume: 56 129
  start-page: 254 260
  year: 2017 2017
  end-page: 259 265
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 269
  start-page: 54
  year: 2014
  end-page: 84
  publication-title: Coord. Chem. Rev.
– volume: 142
  start-page: 8532
  year: 2020
  end-page: 8538
  publication-title: J. Am. Chem. Soc.
– volume: 143
  start-page: 5099
  year: 2021
  end-page: 5105
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 6050
  year: 2017
  end-page: 6053
  publication-title: J. Am. Chem. Soc.
– volume: 55 128
  start-page: 3166 3218
  year: 2016 2016
  end-page: 3170 3222
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 87
  start-page: 173
  year: 2015
  end-page: 179
  publication-title: Pure Appl. Chem.
– volume: 58
  start-page: 4016
  year: 2022
  end-page: 4019
  publication-title: Chem. Commun.
– volume: 125
  start-page: 14720
  year: 2003
  end-page: 14721
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 2252
  year: 2011
  end-page: 2254
  publication-title: Chem. Commun.
– volume: 140
  start-page: 13798
  year: 2018
  end-page: 13807
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 11446
  year: 2016
  end-page: 11449
  publication-title: Chem. Commun.
– volume: 24
  start-page: 3715
  year: 1985
  end-page: 3716
  publication-title: Inorg. Chem.
– volume: 42
  start-page: 3318
  year: 2013
  end-page: 3336
  publication-title: Chem. Soc. Rev.
– volume: 140
  start-page: 2957
  year: 2018
  end-page: 2970
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 8018
  year: 2015
  end-page: 8021
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 1638
  year: 2019
  end-page: 1645
  publication-title: Org. Process Res. Dev.
– volume: 59 132
  start-page: 12268 12364
  year: 2020 2020
  end-page: 12281 12377
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 63
  start-page: 357
  year: 1991
  end-page: 360
  publication-title: Pure Appl. Chem.
– volume: 59 132
  start-page: 6706 6772
  year: 2020 2020
  end-page: 6710 6776
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 12492
  year: 2017
  end-page: 12499
  publication-title: ACS Nano
– volume: 139
  start-page: 14511
  year: 2017
  end-page: 14517
  publication-title: J. Am. Chem. Soc.
– start-page: 6308
  year: 2019
  end-page: 6319
  publication-title: Eur. J. Org. Chem.
– volume: 59
  start-page: 7738
  year: 2016
  end-page: 7758
  publication-title: J. Med. Chem.
– volume: 55 128
  start-page: 7171 7287
  year: 2016 2016
  end-page: 7175 7291
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 50
  start-page: 8995
  year: 2021
  end-page: 9021
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 590
  year: 2011
  end-page: 596
  publication-title: Nat. Chem.
– volume: 586
  start-page: 714
  year: 2020
  end-page: 719
  publication-title: Nature
– volume: 47
  start-page: 7309
  year: 2008
  end-page: 7316
  publication-title: Inorg. Chem.
– volume: 121
  start-page: 13238
  year: 2021
  end-page: 13341
  publication-title: Chem. Rev.
– volume: 577
  start-page: 652
  year: 2020
  end-page: 655
  publication-title: Nature
– volume: 51
  start-page: 7257
  year: 2015
  end-page: 7260
  publication-title: Chem. Commun.
– volume: 73
  start-page: 7123
  year: 2017
  end-page: 7157
  publication-title: Tetrahedron
– volume: 10
  start-page: 1934
  year: 2019
  publication-title: Nat. Commun.
– volume: 121
  start-page: 3561
  year: 2021
  end-page: 3597
  publication-title: Chem. Rev.
– volume: 19
  start-page: 862
  year: 2017
  end-page: 865
  publication-title: Org. Lett.
– volume: 51
  start-page: 2512
  year: 2018
  end-page: 2523
  publication-title: Acc. Chem. Res.
– volume: 53 126
  start-page: 3173 3237
  year: 2014 2014
  end-page: 3177 3241
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 52 125
  start-page: 8214 8372
  year: 2013 2013
  end-page: 8264 8423
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 378
  start-page: 466
  year: 2019
  end-page: 482
  publication-title: Coord. Chem. Rev.
– volume: 111
  start-page: 5701
  year: 2011
  end-page: 5722
  publication-title: Chem. Rev.
– volume: 55
  start-page: 430
  year: 2019
  end-page: 442
  publication-title: Chem. Commun.
– volume: 120
  start-page: 7348
  year: 2020
  end-page: 7398
  publication-title: Chem. Rev.
– volume: 10
  start-page: 4177
  year: 2019
  end-page: 4184
  publication-title: Chem. Sci.
– volume: 45
  start-page: 1127
  year: 2016
  end-page: 1137
  publication-title: Dalton Trans.
– volume: 11
  start-page: 10764
  year: 2020
  end-page: 10769
  publication-title: Chem. Sci.
– volume: 45
  start-page: 5147
  year: 2016
  end-page: 5173
  publication-title: Chem. Soc. Rev.
– ident: e_1_2_7_25_3
  doi: 10.1002/ange.201903920
– ident: e_1_2_7_139_2
  doi: 10.1002/anie.201911819
– ident: e_1_2_7_98_2
  doi: 10.1021/jacs.6b05505
– ident: e_1_2_7_82_2
  doi: 10.1038/s41467-021-27441-y
– ident: e_1_2_7_114_2
  doi: 10.1021/jacs.7b01889
– ident: e_1_2_7_133_2
  doi: 10.1021/cr500706a
– ident: e_1_2_7_37_3
  doi: 10.1002/ange.201402445
– ident: e_1_2_7_77_2
  doi: 10.1021/jacs.1c00779
– ident: e_1_2_7_43_2
  doi: 10.1021/acs.chemrev.8b00551
– ident: e_1_2_7_31_2
  doi: 10.1002/anie.202111493
– ident: e_1_2_7_9_2
  doi: 10.1038/s41586-020-2831-6
– ident: e_1_2_7_28_2
  doi: 10.1002/chem.201905395
– ident: e_1_2_7_128_1
– ident: e_1_2_7_147_2
  doi: 10.1021/acs.accounts.8b00267
– ident: e_1_2_7_24_2
  doi: 10.1002/anie.201703862
– ident: e_1_2_7_91_2
  doi: 10.1039/C5CC01331C
– ident: e_1_2_7_10_1
– ident: e_1_2_7_99_2
  doi: 10.1021/acs.oprd.9b00257
– ident: e_1_2_7_127_2
  doi: 10.1039/c2cs35441a
– ident: e_1_2_7_131_3
  doi: 10.1002/ange.201206566
– ident: e_1_2_7_94_2
  doi: 10.1016/S0022-328X(00)83405-1
– ident: e_1_2_7_17_2
  doi: 10.1023/A:1020942418765
– ident: e_1_2_7_18_2
  doi: 10.1002/anie.201603232
– ident: e_1_2_7_35_3
  doi: 10.1002/ange.201903467
– ident: e_1_2_7_134_2
  doi: 10.1002/chem.201901840
– ident: e_1_2_7_75_2
  doi: 10.1002/anie.201607867
– ident: e_1_2_7_56_3
  doi: 10.1002/ange.201407359
– ident: e_1_2_7_115_2
  doi: 10.1038/s41467-019-09825-3
– ident: e_1_2_7_119_3
  doi: 10.1002/ange.200803493
– ident: e_1_2_7_150_2
  doi: 10.1002/chem.201503456
– ident: e_1_2_7_8_2
  doi: 10.1038/s41586-019-1640-2
– ident: e_1_2_7_32_2
  doi: 10.1002/anie.202200672
– ident: e_1_2_7_67_2
  doi: 10.1002/anie.201310317
– ident: e_1_2_7_24_3
  doi: 10.1002/ange.201703862
– ident: e_1_2_7_61_2
  doi: 10.1021/jacs.0c03176
– volume-title: Carboranes
  year: 2016
  ident: e_1_2_7_12_2
– ident: e_1_2_7_90_2
  doi: 10.1021/ja405808t
– ident: e_1_2_7_108_1
– ident: e_1_2_7_76_2
  doi: 10.1021/jacs.1c00593
– ident: e_1_2_7_131_2
  doi: 10.1002/anie.201206566
– ident: e_1_2_7_70_1
– ident: e_1_2_7_66_2
  doi: 10.1126/science.1138690
– ident: e_1_2_7_93_1
– ident: e_1_2_7_14_1
– ident: e_1_2_7_96_2
  doi: 10.1021/ic00025a037
– ident: e_1_2_7_18_3
  doi: 10.1002/ange.201603232
– ident: e_1_2_7_75_3
  doi: 10.1002/ange.201607867
– ident: e_1_2_7_100_2
  doi: 10.1039/C8CC08693A
– ident: e_1_2_7_78_2
  doi: 10.1039/D0SC01515F
– ident: e_1_2_7_89_1
– ident: e_1_2_7_7_2
  doi: 10.1016/j.tet.2017.11.005
– ident: e_1_2_7_20_2
  doi: 10.1002/anie.201609656
– ident: e_1_2_7_109_2
  doi: 10.1002/ijch.201900130
– ident: e_1_2_7_51_2
  doi: 10.1002/tcr.201402100
– ident: e_1_2_7_63_2
  doi: 10.1021/ja101845m
– ident: e_1_2_7_141_1
– ident: e_1_2_7_135_3
  doi: 10.1002/ange.201913175
– ident: e_1_2_7_55_1
– ident: e_1_2_7_112_1
– ident: e_1_2_7_41_3
  doi: 10.1002/ange.201705857
– ident: e_1_2_7_3_2
  doi: 10.1021/acs.chemrev.0c01236
– ident: e_1_2_7_64_2
  doi: 10.1002/ejic.201700553
– ident: e_1_2_7_80_2
  doi: 10.1021/jacs.0c02121
– ident: e_1_2_7_125_2
  doi: 10.1021/ja037279e
– ident: e_1_2_7_132_2
  doi: 10.1021/acs.jmedchem.5b00258
– ident: e_1_2_7_33_2
  doi: 10.1016/j.ccr.2013.02.004
– ident: e_1_2_7_105_2
  doi: 10.1002/anie.201511251
– ident: e_1_2_7_123_2
  doi: 10.1021/ic010493o
– ident: e_1_2_7_92_2
  doi: 10.1039/C6CC06200H
– ident: e_1_2_7_103_2
  doi: 10.1351/pac199163060835
– ident: e_1_2_7_38_2
  doi: 10.1002/anie.201606979
– ident: e_1_2_7_145_3
  doi: 10.1002/ange.201609274
– ident: e_1_2_7_42_2
  doi: 10.1039/C8DT01064A
– ident: e_1_2_7_60_2
  doi: 10.1021/jacs.7b12815
– ident: e_1_2_7_59_2
  doi: 10.1021/acsnano.7b06600
– ident: e_1_2_7_97_2
  doi: 10.1021/ic00112a023
– ident: e_1_2_7_122_2
  doi: 10.1016/0022-328X(84)80161-8
– ident: e_1_2_7_116_2
  doi: 10.1039/D1CS00385B
– ident: e_1_2_7_2_2
  doi: 10.1021/acs.chemrev.1c00255
– ident: e_1_2_7_111_2
  doi: 10.1021/acs.orglett.9b02539
– ident: e_1_2_7_107_2
  doi: 10.1021/jacs.2c02329
– ident: e_1_2_7_95_2
  doi: 10.1007/BF00948065
– ident: e_1_2_7_130_2
  doi: 10.1021/jm800219f
– ident: e_1_2_7_65_2
  doi: 10.1021/ja053050i
– ident: e_1_2_7_138_3
  doi: 10.1002/ange.201915619
– ident: e_1_2_7_26_1
– ident: e_1_2_7_46_2
  doi: 10.1039/C9CS00197B
– ident: e_1_2_7_4_2
  doi: 10.1039/C9OB01029G
– ident: e_1_2_7_140_2
  doi: 10.1002/anie.201913398
– ident: e_1_2_7_136_1
– ident: e_1_2_7_81_2
  doi: 10.1021/acs.orglett.9b02129
– ident: e_1_2_7_54_2
  doi: 10.1039/D0CC06557A
– ident: e_1_2_7_15_2
  doi: 10.1021/acs.chemrev.6b00198
– ident: e_1_2_7_34_2
  doi: 10.1021/ar500335a
– ident: e_1_2_7_145_2
  doi: 10.1002/anie.201609274
– ident: e_1_2_7_88_2
  doi: 10.1021/acs.inorgchem.2c00074
– ident: e_1_2_7_149_3
  doi: 10.1002/ange.201916666
– ident: e_1_2_7_121_1
– ident: e_1_2_7_144_2
  doi: 10.1021/jacs.6b07411
– ident: e_1_2_7_118_2
  doi: 10.1016/j.ccr.2017.09.019
– ident: e_1_2_7_35_2
  doi: 10.1002/anie.201903467
– ident: e_1_2_7_11_2
  doi: 10.1201/b11199
– ident: e_1_2_7_83_2
  doi: 10.1016/j.ccr.2017.11.006
– ident: e_1_2_7_29_2
  doi: 10.1021/acsami.0c17847
– ident: e_1_2_7_68_2
  doi: 10.1021/acsnano.7b09011
– ident: e_1_2_7_41_2
  doi: 10.1002/anie.201705857
– ident: e_1_2_7_67_3
  doi: 10.1002/ange.201310317
– ident: e_1_2_7_23_2
  doi: 10.1039/D1SC00791B
– ident: e_1_2_7_25_2
  doi: 10.1002/anie.201903920
– volume: 134
  start-page: e202200672
  year: 2022
  ident: e_1_2_7_32_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202200672
– ident: e_1_2_7_22_2
  doi: 10.1021/jacs.5b04576
– ident: e_1_2_7_102_2
  doi: 10.1007/BF00952942
– ident: e_1_2_7_139_3
  doi: 10.1002/ange.201911819
– ident: e_1_2_7_87_2
  doi: 10.1021/ic00216a053
– ident: e_1_2_7_45_2
  doi: 10.1021/cr200038x
– ident: e_1_2_7_79_2
  doi: 10.1039/C9CS00169G
– ident: e_1_2_7_19_2
  doi: 10.1039/C5CC08213G
– ident: e_1_2_7_49_2
  doi: 10.1039/b709843j
– ident: e_1_2_7_143_2
  doi: 10.1021/jacs.5b05665
– ident: e_1_2_7_151_1
  doi: 10.1021/am406035v
– ident: e_1_2_7_31_3
  doi: 10.1002/ange.202111493
– ident: e_1_2_7_137_3
  doi: 10.1002/ange.201709487
– ident: e_1_2_7_62_2
  doi: 10.1021/jacs.2c01668
– ident: e_1_2_7_113_2
  doi: 10.1126/science.abg0781
– ident: e_1_2_7_74_2
  doi: 10.1021/jacs.8b07872
– ident: e_1_2_7_6_2
  doi: 10.1021/acs.accounts.1c00132
– ident: e_1_2_7_86_2
  doi: 10.1021/ic800362z
– ident: e_1_2_7_73_2
  doi: 10.1039/C9SC00078J
– ident: e_1_2_7_5_2
  doi: 10.1021/acs.chemrev.9b00384
– ident: e_1_2_7_105_3
  doi: 10.1002/ange.201511251
– ident: e_1_2_7_38_3
  doi: 10.1002/ange.201606979
– ident: e_1_2_7_39_2
  doi: 10.1039/C5DT03417E
– ident: e_1_2_7_126_2
  doi: 10.1039/c0cc05151a
– ident: e_1_2_7_149_2
  doi: 10.1002/anie.201916666
– ident: e_1_2_7_13_2
  doi: 10.1039/C5DT00231A
– ident: e_1_2_7_85_1
– ident: e_1_2_7_110_2
  doi: 10.1021/acs.joc.0c00312
– ident: e_1_2_7_47_3
  doi: 10.1002/ange.19931050705
– ident: e_1_2_7_50_2
  doi: 10.1021/cr2000866
– ident: e_1_2_7_69_2
  doi: 10.1038/s41586-019-1926-4
– ident: e_1_2_7_148_1
– ident: e_1_2_7_48_2
  doi: 10.1021/cr980442h
– ident: e_1_2_7_1_1
– ident: e_1_2_7_137_2
  doi: 10.1002/anie.201709487
– ident: e_1_2_7_56_2
  doi: 10.1002/anie.201407359
– ident: e_1_2_7_104_2
  doi: 10.1351/pac199163030357
– ident: e_1_2_7_44_1
– ident: e_1_2_7_138_2
  doi: 10.1002/anie.201915619
– ident: e_1_2_7_140_3
  doi: 10.1002/ange.201913398
– ident: e_1_2_7_146_2
  doi: 10.1021/jacs.8b11218
– ident: e_1_2_7_40_2
  doi: 10.1039/C6CC01650B
– ident: e_1_2_7_16_2
  doi: 10.1039/D1CC07211K
– ident: e_1_2_7_72_2
  doi: 10.1021/acscentsci.1c01132
– ident: e_1_2_7_119_2
  doi: 10.1002/anie.200803493
– ident: e_1_2_7_53_2
  doi: 10.1021/acs.jmedchem.5b01932
– ident: e_1_2_7_27_2
  doi: 10.1016/j.ccr.2014.02.016
– ident: e_1_2_7_52_2
  doi: 10.1515/pac-2014-1007
– ident: e_1_2_7_58_2
  doi: 10.1002/adma.201704238
– ident: e_1_2_7_124_2
  doi: 10.1016/S0022-328X(01)01108-1
– ident: e_1_2_7_142_1
– ident: e_1_2_7_117_2
  doi: 10.1002/ejoc.201901010
– ident: e_1_2_7_129_2
  doi: 10.1126/science.1131943
– ident: e_1_2_7_120_1
  doi: 10.1021/acs.orglett.7b00013
– ident: e_1_2_7_21_2
  doi: 10.1039/C7TC03319B
– ident: e_1_2_7_106_2
  doi: 10.1021/jacs.0c00300
– ident: e_1_2_7_36_2
  doi: 10.1038/nchem.1088
– ident: e_1_2_7_47_2
  doi: 10.1002/anie.199309501
– ident: e_1_2_7_57_2
  doi: 10.1039/C6CS00159A
– ident: e_1_2_7_30_2
  doi: 10.1039/D1GC03119H
– ident: e_1_2_7_37_2
  doi: 10.1002/anie.201402445
– ident: e_1_2_7_20_3
  doi: 10.1002/ange.201609656
– ident: e_1_2_7_84_2
  doi: 10.1021/jacs.7b07160
– ident: e_1_2_7_101_1
– ident: e_1_2_7_71_2
  doi: 10.1021/acs.accounts.1c00460
– ident: e_1_2_7_135_2
  doi: 10.1002/anie.201913175
SSID ssj0028806
Score 2.5442505
Snippet Functionalization of carboranes in a vertex‐specific manner is a perennial challenge. Here, we report a photocatalytic B−C coupling for the selective...
Functionalization of carborane in a vertex-specific manner is a perennial challenge. Here, we report a photocatalytic B-C coupling for selective...
Functionalization of carboranes in a vertex-specific manner is a perennial challenge. Here, we report a photocatalytic B-C coupling for the selective...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202205672
SubjectTerms Alkylation
Boron
Boron Chemistry
Boron-Cluster Materials
B−C Coupling
Carborane
Carboranes
Carboranyl Radicals
Carboxylic acids
Coupling
Decarboxylation
Drug development
Electron density
Electron transfer
Emitters
Fluorine
Luminous efficacy
Nuclear capture
Title Site‐Selective Functionalization of Carboranes at the Electron‐Rich Boron Vertex: Photocatalytic B−C Coupling via a Carboranyl Cage Radical
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202205672
https://www.ncbi.nlm.nih.gov/pubmed/35670361
https://www.proquest.com/docview/2709714086
https://www.proquest.com/docview/2674005790
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTxQxFG8IF70oKOogmpqYcCrsdDrTHW4w7gZNJAbEcJv0E4xkxyyzBDxx5Kj-ifwlvtf5kNUYE711Mv2a9vW913Z-v0fIS6PyVAgnmTfxkAnrNVOJHDDtdS7cMHUqR3Dy271s91C8OUqPbqH4G36I_sANV0bQ17jAlT7b_Ekaighs2N8hUDSTqITjJEPy_Ff7PX8UB-Fs4EVJwjAKfcfaOOCb88XnrdJvrua85xpMz_g-UV2nmz9OPm3Mar1hvvzC5_g_X7VE7rV-Kd1uBGmZLLjJA3Kn6MLBPSTfDsA5vbn6ehAC54COpGMwic1JYovlpJWnhZqiVIECpaqm4F3SURtoB8oiip_uIGcC_eCmtbvYou9OqroKZ0iX0DLdubn-XtCimiFQ-Jief1RU9XVenkLy2NF9FS6XVsjhePS-2GVtPAdmwFByphPcvQmRGJ_azA1SC86JVgL2UDb3uR9yr6T1YCFjC7rHW6W1dklqnOQGWYAekcVJNXFPCJU-11nqvRzGRnCptbBZ7GxstcxzGacRYd18lqYlO8eYG6dlQ9PMSxzosh_oiKz3-T83NB9_zLnWiUfZLvezkkuk4hKwPYzIi_41TBDevsCQVzPIk0kRoL-DiDxuxKpvKoGawZWII8KDcPylD-X23utR_7T6L4WekruYZiEYxhpZrKcz9wzcq1o_D0voB5rbICw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOZQLb2hKASMhcXK7cZx4w60Nu9pCu0J9IG6RnwVRbaoliygnjhyBn9hfwozzQAtCSHDLJnaSdcYz3zj5viHksVF5KoSTzJt4yIT1mqlEDpj2OhdumDqVIzl5f5pNjsXz12n3NSFyYRp9iH7BDWdG8Nc4wXFBeuunaihSsCHBQ6ZoJsELXxaANjD_enbQK0hxMM-GYJQkDOvQd7qNA7613H85Lv0GNpexawg-42tEd7fdfHPybnNR603z6RdFx__6X9fJ1Raa0u3Glm6QS252k6wWXUW4W-TbIeDTi89fD0PtHHCTdAxRsVlMbOmctPK0UHM0LPChVNUUACYdtbV2oC8S-ekOyibQV25eu49P6cs3VV2FZaRzuDLdufjyvaBFtUCu8An98FZR1Z_z_BQ2Txw9UOH90m1yPB4dFRPWlnRgBmIlZzrBBE6IxPjUZm6QWsAnWglIo2zucz_kXknrIUjGFtyPt0pr7ZLUOMkNCgHdISuzaubWCJU-11nqvRzGRnCptbBZ7GxstcxzGacRYd0DLU2rd45lN07LRqmZlzjQZT_QEXnStz9rlD7-2HKjs4-ynfHvSy5RjUtAhhiRR_1heED4AgaGvFpAm0yKwP4dRORuY1f9pRI4M6CJOCI8WMdf7qHcnu6O-l_r_9LpIVmdHO3vlXu70xf3yBXcz0JtjA2yUs8X7j6grVo_CPPpB5MJJEs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLZQkYBL2WmggJGQOLmdOE484daGGbUso6qlqLfIa0FUk2rIVC0njhyBn9hfwnvOAgNCSHDLYmexn9_77OT7HiGPjcpTIZxk3sRDJqzXTCVywLTXuXDD1KkcycmvJtnWvnh-kB78xOJv9CH6BTccGcFf4wA_tn79h2goMrBhfodE0UyCE74oMoATCIt2ewEpDtbZ8IuShGEa-k62ccDXF-svhqXfsOYidA2xZ3yVqO6pm19O3q_Na71mPv4i6Pg_r3WNLLfAlG40lnSdXHDTG-Ry0eWDu0m-7gE6Pf_0ZS9kzgEnSccQE5ulxJbMSStPCzVDswIPSlVNAV7SUZtpB-oijZ9uomgCfeNmtTt9SnfeVnUVFpHO4M508_zzt4IW1RyZwof05J2iqr_m2RFsHjq6q8LXpVtkfzx6XWyxNqEDMxApOdMJTt-ESIxPbeYGqQV0ohV0XGZzn_sh90paDyEytuB8vFVaa5ekxkluUAboNlmaVlO3Qqj0uc5S7-UwNoJLrYXNYmdjq2WeyziNCOv6szSt2jkm3TgqG51mXmJDl31DR-RJX_640fn4Y8nVzjzKdrx_KLlELS4B88OIPOpPQwfh5xdo8moOZTIpAvd3EJE7jVn1t0rgyoAl4ojwYBx_eYZyY7I96vfu_kulh-TSzrNx-XJ78uIeuYKHWUiMsUqW6tnc3QeoVesHYTR9BwxEIvo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Site%E2%80%90Selective+Functionalization+of+Carboranes+at+the+Electron%E2%80%90Rich+Boron+Vertex%3A+Photocatalytic+B%E2%88%92C+Coupling+via+a+Carboranyl+Cage+Radical&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Chen%2C+Meng&rft.au=Xu%2C+Jingkai&rft.au=Zhao%2C+Deshi&rft.au=Sun%2C+Fangxiang&rft.date=2022-09-12&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=37&rft_id=info:doi/10.1002%2Fanie.202205672&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202205672
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon