Site‐Selective Functionalization of Carboranes at the Electron‐Rich Boron Vertex: Photocatalytic B−C Coupling via a Carboranyl Cage Radical
Functionalization of carboranes in a vertex‐specific manner is a perennial challenge. Here, we report a photocatalytic B−C coupling for the selective functionalization of carboranes at the boron site which is most distal to carbon. This reaction was achieved by the photo‐induced decarboxylation of c...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 37; pp. e202205672 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
12.09.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.202205672 |
Cover
Abstract | Functionalization of carboranes in a vertex‐specific manner is a perennial challenge. Here, we report a photocatalytic B−C coupling for the selective functionalization of carboranes at the boron site which is most distal to carbon. This reaction was achieved by the photo‐induced decarboxylation of carborane carboxylic acids to generate boron vertex‐centered carboranyl radicals. Theoretical calculations also demonstrate that the reaction more easily occurs at the boron site bearing higher electron density owing to the lower energy barrier for a single‐electron transfer to generate a carboranyl radical. By using this strategy, a number of functionalized carboranes could be accessed through alkylation, alkenylation, and heteroarylation under mild conditions. Moreover, both a highly efficient blue emitter with a solid‐state luminous efficiency of 42 % and a drug candidate for boron neutron capture therapy (BNCT) containing targeting and fluorine units were obtained.
A new photocatalytic strategy for the site‐selective functionalization of carboranes was demonstrated by the photo‐induced decarboxylation of carborane carboxylic acids to generate boron‐vertex‐centered carboranyl radicals. This strategy enables facile construction of highly efficient blue emitters and drug candidates for boron neutron capture therapy (BNCT). |
---|---|
AbstractList | Functionalization of carboranes in a vertex‐specific manner is a perennial challenge. Here, we report a photocatalytic B−C coupling for the selective functionalization of carboranes at the boron site which is most distal to carbon. This reaction was achieved by the photo‐induced decarboxylation of carborane carboxylic acids to generate boron vertex‐centered carboranyl radicals. Theoretical calculations also demonstrate that the reaction more easily occurs at the boron site bearing higher electron density owing to the lower energy barrier for a single‐electron transfer to generate a carboranyl radical. By using this strategy, a number of functionalized carboranes could be accessed through alkylation, alkenylation, and heteroarylation under mild conditions. Moreover, both a highly efficient blue emitter with a solid‐state luminous efficiency of 42 % and a drug candidate for boron neutron capture therapy (BNCT) containing targeting and fluorine units were obtained. Functionalization of carborane in a vertex-specific manner is a perennial challenge. Here, we report a photocatalytic B-C coupling for selective functionalization of carboranes at the boron site which is most distal to carbon. This reaction protocol was achieved by photo-induced decarboxylation of carborane carboxylic acids to generate boron vertex-centered carboranyl radicals. Theoretical calculations also demonstrate that the reaction more easily occurs at the boron site bearing higher electron density owing to the lower energy barrier for a single electron transfer to generate a carboranyl radical. By using this strategy, a number of functionalized carboranes through alkylation, alkenylation, and heteroarylation could be accessed under mild conditions. Moreover, both a highly efficient blue emitter with the solid-state luminous efficiency of 42% and a Boron Neutron Capture Therapy (BNCT) drug candidate containing targeting and fluorine units were obtained. Functionalization of carboranes in a vertex‐specific manner is a perennial challenge. Here, we report a photocatalytic B−C coupling for the selective functionalization of carboranes at the boron site which is most distal to carbon. This reaction was achieved by the photo‐induced decarboxylation of carborane carboxylic acids to generate boron vertex‐centered carboranyl radicals. Theoretical calculations also demonstrate that the reaction more easily occurs at the boron site bearing higher electron density owing to the lower energy barrier for a single‐electron transfer to generate a carboranyl radical. By using this strategy, a number of functionalized carboranes could be accessed through alkylation, alkenylation, and heteroarylation under mild conditions. Moreover, both a highly efficient blue emitter with a solid‐state luminous efficiency of 42 % and a drug candidate for boron neutron capture therapy (BNCT) containing targeting and fluorine units were obtained. A new photocatalytic strategy for the site‐selective functionalization of carboranes was demonstrated by the photo‐induced decarboxylation of carborane carboxylic acids to generate boron‐vertex‐centered carboranyl radicals. This strategy enables facile construction of highly efficient blue emitters and drug candidates for boron neutron capture therapy (BNCT). Functionalization of carboranes in a vertex-specific manner is a perennial challenge. Here, we report a photocatalytic B-C coupling for the selective functionalization of carboranes at the boron site which is most distal to carbon. This reaction was achieved by the photo-induced decarboxylation of carborane carboxylic acids to generate boron vertex-centered carboranyl radicals. Theoretical calculations also demonstrate that the reaction more easily occurs at the boron site bearing higher electron density owing to the lower energy barrier for a single-electron transfer to generate a carboranyl radical. By using this strategy, a number of functionalized carboranes could be accessed through alkylation, alkenylation, and heteroarylation under mild conditions. Moreover, both a highly efficient blue emitter with a solid-state luminous efficiency of 42 % and a drug candidate for boron neutron capture therapy (BNCT) containing targeting and fluorine units were obtained.Functionalization of carboranes in a vertex-specific manner is a perennial challenge. Here, we report a photocatalytic B-C coupling for the selective functionalization of carboranes at the boron site which is most distal to carbon. This reaction was achieved by the photo-induced decarboxylation of carborane carboxylic acids to generate boron vertex-centered carboranyl radicals. Theoretical calculations also demonstrate that the reaction more easily occurs at the boron site bearing higher electron density owing to the lower energy barrier for a single-electron transfer to generate a carboranyl radical. By using this strategy, a number of functionalized carboranes could be accessed through alkylation, alkenylation, and heteroarylation under mild conditions. Moreover, both a highly efficient blue emitter with a solid-state luminous efficiency of 42 % and a drug candidate for boron neutron capture therapy (BNCT) containing targeting and fluorine units were obtained. |
Author | Tu, Deshuang Tian, Songlin Sun, Fangxiang Chen, Meng Xu, Jingkai Lu, Changsheng Zhao, Deshi Yan, Hong |
Author_xml | – sequence: 1 givenname: Meng surname: Chen fullname: Chen, Meng organization: Nanjing University – sequence: 2 givenname: Jingkai orcidid: 0000-0002-7545-3608 surname: Xu fullname: Xu, Jingkai organization: Nanjing University – sequence: 3 givenname: Deshi surname: Zhao fullname: Zhao, Deshi organization: Nanjing University – sequence: 4 givenname: Fangxiang surname: Sun fullname: Sun, Fangxiang organization: Nanjing University – sequence: 5 givenname: Songlin surname: Tian fullname: Tian, Songlin organization: Nanjing University – sequence: 6 givenname: Deshuang surname: Tu fullname: Tu, Deshuang email: tudeshuang@126.com organization: Nanjing University – sequence: 7 givenname: Changsheng surname: Lu fullname: Lu, Changsheng email: luchsh@nju.edu.cn organization: Nanjing University – sequence: 8 givenname: Hong orcidid: 0000-0003-3993-0013 surname: Yan fullname: Yan, Hong email: hyan1965@nju.edu.cn organization: Nanjing University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35670361$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9rFDEcxYO02B969SgBL15mm18zmfHWDttaKCqteg2ZzHe6KdnJNpOprqcePWr_xP4lzbpthYIIgbzA5z3Ieztoo_c9IPSKkgklhO3p3sKEEcZIXkj2DG3TnNGMS8k3khacZ7LM6RbaGYaLxJclKZ6jLZ5gwgu6jX6f2Qi317_OwIGJ9grw4dgn4Xvt7A-9Eth3uNah8UH3MGAdcZwBnq744PvkPbVmhg98euCvECJ8f4c_zXz0RkftltEafHD786bGtR8Xzvbn-MpqrB8zly7Jc8CnurVGuxdos9NugJf39y76cjj9XL_PTj4eHdf7J5nhhLOs4VSIdLjp8rYAkreMsUaLghRt1VVdyTot206wiraEk67VTdMAzw1IZgQRfBe9Xecugr8cYYhqbgcDzqVf-nFQrJCCkFxWJKFvnqAXfgypoURJUkkqSFkk6vU9NTZzaNUi2LkOS_VQdgLEGjDBD0OAThkb_1Qcg7ZOUaJWm6rVpupx02SbPLE9JP_TUK0N36yD5X9otf_hePrXewdXMreP |
CitedBy_id | crossref_primary_10_1021_acs_accounts_2c00752 crossref_primary_10_1039_D4SC02214A crossref_primary_10_1002_anie_202305088 crossref_primary_10_1002_ange_202305088 crossref_primary_10_1002_cjoc_202200622 crossref_primary_10_1021_acs_orglett_2c02648 crossref_primary_10_1039_D2CY01703B crossref_primary_10_1039_D4SC08085H crossref_primary_10_1021_jacs_4c00550 crossref_primary_10_1002_ajoc_202200630 crossref_primary_10_1021_jacs_3c00866 crossref_primary_10_1021_jacs_4c16062 crossref_primary_10_1039_D4QI02011A crossref_primary_10_1039_D4CP03615H crossref_primary_10_1039_D5SC00234F crossref_primary_10_1021_acs_orglett_2c02590 crossref_primary_10_1039_D4QO01428F crossref_primary_10_1002_adsc_202201183 crossref_primary_10_1021_acs_orglett_3c01989 crossref_primary_10_3390_molecules29163916 |
Cites_doi | 10.1002/ange.201903920 10.1002/anie.201911819 10.1021/jacs.6b05505 10.1038/s41467-021-27441-y 10.1021/jacs.7b01889 10.1021/cr500706a 10.1002/ange.201402445 10.1021/jacs.1c00779 10.1021/acs.chemrev.8b00551 10.1002/anie.202111493 10.1038/s41586-020-2831-6 10.1002/chem.201905395 10.1021/acs.accounts.8b00267 10.1002/anie.201703862 10.1039/C5CC01331C 10.1021/acs.oprd.9b00257 10.1039/c2cs35441a 10.1002/ange.201206566 10.1016/S0022-328X(00)83405-1 10.1023/A:1020942418765 10.1002/anie.201603232 10.1002/ange.201903467 10.1002/chem.201901840 10.1002/anie.201607867 10.1002/ange.201407359 10.1038/s41467-019-09825-3 10.1002/ange.200803493 10.1002/chem.201503456 10.1038/s41586-019-1640-2 10.1002/anie.202200672 10.1002/anie.201310317 10.1002/ange.201703862 10.1021/jacs.0c03176 10.1021/ja405808t 10.1021/jacs.1c00593 10.1002/anie.201206566 10.1126/science.1138690 10.1021/ic00025a037 10.1002/ange.201603232 10.1002/ange.201607867 10.1039/C8CC08693A 10.1039/D0SC01515F 10.1016/j.tet.2017.11.005 10.1002/anie.201609656 10.1002/ijch.201900130 10.1002/tcr.201402100 10.1021/ja101845m 10.1002/ange.201913175 10.1002/ange.201705857 10.1021/acs.chemrev.0c01236 10.1002/ejic.201700553 10.1021/jacs.0c02121 10.1021/ja037279e 10.1021/acs.jmedchem.5b00258 10.1016/j.ccr.2013.02.004 10.1002/anie.201511251 10.1021/ic010493o 10.1039/C6CC06200H 10.1351/pac199163060835 10.1002/anie.201606979 10.1002/ange.201609274 10.1039/C8DT01064A 10.1021/jacs.7b12815 10.1021/acsnano.7b06600 10.1021/ic00112a023 10.1016/0022-328X(84)80161-8 10.1039/D1CS00385B 10.1021/acs.chemrev.1c00255 10.1021/acs.orglett.9b02539 10.1021/jacs.2c02329 10.1007/BF00948065 10.1021/jm800219f 10.1021/ja053050i 10.1002/ange.201915619 10.1039/C9CS00197B 10.1039/C9OB01029G 10.1002/anie.201913398 10.1021/acs.orglett.9b02129 10.1039/D0CC06557A 10.1021/acs.chemrev.6b00198 10.1021/ar500335a 10.1002/anie.201609274 10.1021/acs.inorgchem.2c00074 10.1002/ange.201916666 10.1021/jacs.6b07411 10.1016/j.ccr.2017.09.019 10.1002/anie.201903467 10.1201/b11199 10.1016/j.ccr.2017.11.006 10.1021/acsami.0c17847 10.1021/acsnano.7b09011 10.1002/anie.201705857 10.1002/ange.201310317 10.1039/D1SC00791B 10.1002/anie.201903920 10.1002/ange.202200672 10.1021/jacs.5b04576 10.1007/BF00952942 10.1002/ange.201911819 10.1021/ic00216a053 10.1021/cr200038x 10.1039/C9CS00169G 10.1039/C5CC08213G 10.1039/b709843j 10.1021/jacs.5b05665 10.1021/am406035v 10.1002/ange.202111493 10.1002/ange.201709487 10.1021/jacs.2c01668 10.1126/science.abg0781 10.1021/jacs.8b07872 10.1021/acs.accounts.1c00132 10.1021/ic800362z 10.1039/C9SC00078J 10.1021/acs.chemrev.9b00384 10.1002/ange.201511251 10.1002/ange.201606979 10.1039/C5DT03417E 10.1039/c0cc05151a 10.1002/anie.201916666 10.1039/C5DT00231A 10.1021/acs.joc.0c00312 10.1002/ange.19931050705 10.1021/cr2000866 10.1038/s41586-019-1926-4 10.1021/cr980442h 10.1002/anie.201709487 10.1002/anie.201407359 10.1351/pac199163030357 10.1002/anie.201915619 10.1002/ange.201913398 10.1021/jacs.8b11218 10.1039/C6CC01650B 10.1039/D1CC07211K 10.1021/acscentsci.1c01132 10.1002/anie.200803493 10.1021/acs.jmedchem.5b01932 10.1016/j.ccr.2014.02.016 10.1515/pac-2014-1007 10.1002/adma.201704238 10.1016/S0022-328X(01)01108-1 10.1002/ejoc.201901010 10.1126/science.1131943 10.1021/acs.orglett.7b00013 10.1039/C7TC03319B 10.1021/jacs.0c00300 10.1038/nchem.1088 10.1002/anie.199309501 10.1039/C6CS00159A 10.1039/D1GC03119H 10.1002/anie.201402445 10.1002/ange.201609656 10.1021/jacs.7b07160 10.1021/acs.accounts.1c00460 10.1002/anie.201913175 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202205672 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 35670361 10_1002_anie_202205672 ANIE202205672 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Ministry of Science and Technology funderid: 2021YFE0114800 – fundername: National Natural Science Foundation of China funderid: 21820102004 and 91961104 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3032-b31441443cf5d6e05d222ba4606d9f9f82fa7df4291d030fdabbbe35ce72c4043 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 07:09:05 EDT 2025 Fri Jul 25 10:29:21 EDT 2025 Thu Apr 03 07:08:27 EDT 2025 Tue Jul 01 01:18:23 EDT 2025 Thu Apr 24 22:53:08 EDT 2025 Wed Jan 22 16:23:10 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Keywords | boron chemistry B−C Coupling Carboranes Boron-Cluster Materials Carboranyl Radicals |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3032-b31441443cf5d6e05d222ba4606d9f9f82fa7df4291d030fdabbbe35ce72c4043 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7545-3608 0000-0003-3993-0013 |
PMID | 35670361 |
PQID | 2709714086 |
PQPubID | 946352 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2674005790 proquest_journals_2709714086 pubmed_primary_35670361 crossref_citationtrail_10_1002_anie_202205672 crossref_primary_10_1002_anie_202205672 wiley_primary_10_1002_anie_202205672_ANIE202205672 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 12, 2022 |
PublicationDateYYYYMMDD | 2022-09-12 |
PublicationDate_xml | – month: 09 year: 2022 text: September 12, 2022 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2009 2009; 48 121 2019; 10 1995; 34 2019; 17 2020; 12 2020; 11 2001; 40 2011; 111 2018; 47 1985; 24 2017; 73 2022 2022; 61 134 2015; 137 2019; 21 2019; 23 2015; 87 2019; 25 2020; 577 2016; 45 2015; 58 2020; 142 2015; 51 1993 1993; 32 105 2014; 47 2017 2017; 56 129 2021; 143 2021; 50 2011; 3 2008; 51 2017; 139 2021; 57 2021; 54 2007; 316 2007; 317 2015; 115 1991; 63 2022; 8 2002; 642 2019; 48 2005; 127 2008; 47 2021 2021; 60 133 2019; 575 2020; 26 2021; 371 2018; 12 2014; 269 2016; 22 2017; 5 2014 2014; 53 126 2021; 23 2020; 120 2019; 55 2002; 51 2020; 60 1986; 35 2020 2020; 59 132 1982; 226 2021; 121 2017; 352 2013 2013; 52 125 2015; 44 1999; 99 2019; 119 2016; 116 2003; 125 2014; 6 2015; 15 2018; 140 2011 2020; 85 1984; 267 1991; 30 2013; 42 2016; 52 2007 2017; 29 2020; 586 2016; 59 2019 2019; 58 131 2022; 144 2016 2016; 55 128 2021; 12 2022; 61 2017; 11 2010; 132 2019 2022; 58 2013; 257 2017 2019; 378 2013; 135 2016 2017; 19 2016; 138 2018; 51 2011; 47 1985; 34 e_1_2_7_108_1 e_1_2_7_3_2 e_1_2_7_127_2 e_1_2_7_104_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_123_2 e_1_2_7_83_2 e_1_2_7_100_2 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_41_2 e_1_2_7_87_2 e_1_2_7_41_3 e_1_2_7_11_2 e_1_2_7_64_2 e_1_2_7_45_2 e_1_2_7_26_1 e_1_2_7_68_2 e_1_2_7_142_1 e_1_2_7_49_2 e_1_2_7_146_2 e_1_2_7_116_2 e_1_2_7_90_2 e_1_2_7_71_2 e_1_2_7_94_2 e_1_2_7_112_1 e_1_2_7_52_2 e_1_2_7_75_2 e_1_2_7_98_2 e_1_2_7_75_3 e_1_2_7_23_2 Grimes R. N. (e_1_2_7_12_2) 2016 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_79_2 e_1_2_7_150_2 e_1_2_7_56_3 e_1_2_7_37_2 e_1_2_7_37_3 e_1_2_7_131_2 e_1_2_7_131_3 (e_1_2_7_32_3) 2022; 134 e_1_2_7_135_2 e_1_2_7_135_3 e_1_2_7_139_2 e_1_2_7_139_3 e_1_2_7_4_2 e_1_2_7_105_2 e_1_2_7_105_3 e_1_2_7_128_1 e_1_2_7_8_2 e_1_2_7_124_2 e_1_2_7_82_2 e_1_2_7_101_1 e_1_2_7_16_2 e_1_2_7_120_1 e_1_2_7_40_2 e_1_2_7_63_2 e_1_2_7_86_2 e_1_2_7_44_1 e_1_2_7_67_2 e_1_2_7_67_3 e_1_2_7_48_2 e_1_2_7_143_2 e_1_2_7_29_2 e_1_2_7_147_2 e_1_2_7_109_2 e_1_2_7_117_2 e_1_2_7_113_2 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_3 e_1_2_7_24_2 e_1_2_7_51_2 e_1_2_7_97_2 e_1_2_7_55_1 e_1_2_7_32_2 e_1_2_7_74_2 e_1_2_7_20_3 e_1_2_7_20_2 e_1_2_7_151_1 e_1_2_7_36_2 e_1_2_7_78_2 e_1_2_7_59_2 e_1_2_7_132_2 e_1_2_7_136_1 e_1_2_7_5_2 e_1_2_7_129_2 e_1_2_7_106_2 e_1_2_7_9_2 e_1_2_7_125_2 e_1_2_7_102_2 e_1_2_7_17_2 e_1_2_7_121_1 e_1_2_7_81_2 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_62_2 e_1_2_7_85_1 e_1_2_7_43_2 e_1_2_7_66_2 e_1_2_7_89_1 e_1_2_7_47_2 e_1_2_7_140_2 e_1_2_7_47_3 e_1_2_7_140_3 e_1_2_7_28_2 e_1_2_7_144_2 e_1_2_7_148_1 e_1_2_7_118_2 e_1_2_7_114_2 e_1_2_7_110_2 e_1_2_7_50_2 e_1_2_7_92_2 e_1_2_7_25_3 e_1_2_7_25_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_73_2 e_1_2_7_96_2 e_1_2_7_31_3 e_1_2_7_21_2 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_77_2 e_1_2_7_35_3 e_1_2_7_39_2 e_1_2_7_133_2 e_1_2_7_137_2 e_1_2_7_137_3 e_1_2_7_107_2 e_1_2_7_2_2 e_1_2_7_103_2 e_1_2_7_126_2 e_1_2_7_6_2 e_1_2_7_18_3 e_1_2_7_18_2 e_1_2_7_122_2 e_1_2_7_61_2 e_1_2_7_80_2 e_1_2_7_14_1 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_84_2 e_1_2_7_10_1 e_1_2_7_46_2 e_1_2_7_69_2 e_1_2_7_88_2 e_1_2_7_141_1 e_1_2_7_27_2 e_1_2_7_145_2 e_1_2_7_145_3 e_1_2_7_149_2 e_1_2_7_149_3 e_1_2_7_119_2 e_1_2_7_115_2 e_1_2_7_111_2 e_1_2_7_72_2 e_1_2_7_91_2 e_1_2_7_30_2 e_1_2_7_76_2 e_1_2_7_22_2 e_1_2_7_53_2 e_1_2_7_95_2 e_1_2_7_34_2 e_1_2_7_57_2 e_1_2_7_99_2 e_1_2_7_130_2 e_1_2_7_38_2 e_1_2_7_38_3 e_1_2_7_134_2 e_1_2_7_138_2 e_1_2_7_138_3 e_1_2_7_119_3 |
References_xml | – year: 2011 – volume: 119 start-page: 8262 year: 2019 end-page: 8290 publication-title: Chem. Rev. – volume: 12 start-page: 2211 year: 2018 end-page: 2221 publication-title: ACS Nano – volume: 58 131 start-page: 9129 9227 year: 2019 2019 end-page: 9133 9231 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 start-page: 8315 year: 2015 end-page: 8359 publication-title: J. Med. Chem. – volume: 26 start-page: 5027 year: 2020 end-page: 5036 publication-title: Chem. Eur. J. – volume: 12 start-page: 7146 year: 2021 publication-title: Nat. Commun. – start-page: 4240 year: 2007 end-page: 4251 publication-title: Dalton Trans. – volume: 138 start-page: 12037 year: 2016 end-page: 12040 publication-title: J. Am. Chem. Soc. – volume: 144 start-page: 7960 year: 2022 end-page: 7965 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 5986 year: 2019 end-page: 5989 publication-title: Org. Lett. – volume: 58 131 start-page: 8129 8213 year: 2019 2019 end-page: 8133 8217 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 52 start-page: 1070 year: 2016 end-page: 1093 publication-title: Chem. Commun. – volume: 12 start-page: 8411 year: 2021 end-page: 8423 publication-title: Chem. Sci. – volume: 127 start-page: 12131 year: 2005 end-page: 12139 publication-title: J. Am. Chem. Soc. – volume: 257 start-page: 2522 year: 2013 end-page: 2535 publication-title: Coord. Chem. Rev. – volume: 47 start-page: 6666 year: 2018 end-page: 6671 publication-title: Dalton Trans. – volume: 48 start-page: 3660 year: 2019 end-page: 3673 publication-title: Chem. Soc. Rev. – volume: 35 start-page: 425 year: 1986 end-page: 428 publication-title: Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.) – volume: 642 start-page: 16 year: 2002 end-page: 19 publication-title: J. Organomet. Chem. – volume: 56 129 start-page: 9906 10038 year: 2017 2017 end-page: 9909 10041 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 4009 4038 year: 2020 2020 end-page: 4016 4045 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 34 start-page: 2095 year: 1995 end-page: 2100 publication-title: Inorg. Chem. – volume: 115 start-page: 9073 year: 2015 end-page: 9174 publication-title: Chem. Rev. – volume: 56 129 start-page: 15073 15269 year: 2017 2017 end-page: 15077 15273 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 63 start-page: 835 year: 1991 end-page: 838 publication-title: Pure Appl. Chem. – volume: 59 132 start-page: 9841 9925 year: 2020 2020 end-page: 9855 9939 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 34 start-page: 809 year: 1985 end-page: 812 publication-title: Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.) – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 start-page: 410 year: 2020 end-page: 415 publication-title: Isr. J. Chem. – volume: 267 start-page: 81 year: 1984 end-page: 91 publication-title: J. Organomet. Chem. – volume: 575 start-page: 336 year: 2019 end-page: 340 publication-title: Nature – volume: 48 start-page: 3497 year: 2019 end-page: 3512 publication-title: Chem. Soc. Rev. – volume: 51 start-page: 1362 year: 2002 end-page: 1374 publication-title: Russ. Chem. Bull. – volume: 47 start-page: 3571 year: 2014 end-page: 3579 publication-title: Acc. Chem. Res. – volume: 226 start-page: 217 year: 1982 end-page: 222 publication-title: J. Organomet. Chem. – volume: 25 start-page: 11797 year: 2019 end-page: 11819 publication-title: Chem. Eur. J. – volume: 116 start-page: 14307 year: 2016 end-page: 14378 publication-title: Chem. Rev. – volume: 32 105 start-page: 950 997 year: 1993 1993 end-page: 984 1033 publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem. – volume: 142 start-page: 4586 year: 2020 end-page: 4591 publication-title: J. Am. Chem. Soc. – volume: 85 start-page: 5019 year: 2020 end-page: 5026 publication-title: J. Org. Chem. – volume: 137 start-page: 9273 year: 2015 end-page: 9280 publication-title: J. Am. Chem. Soc. – volume: 371 start-page: 1232 year: 2021 end-page: 1240 publication-title: Science – volume: 6 start-page: 4997 year: 2014 end-page: 5004 publication-title: ACS Appl. Mater. Interfaces – volume: 57 start-page: 827 year: 2021 end-page: 839 publication-title: Chem. Commun. – volume: 142 start-page: 9890 year: 2020 end-page: 9895 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 2298 year: 2021 end-page: 2312 publication-title: Acc. Chem. Res. – year: 2016 – volume: 21 start-page: 6930 year: 2019 end-page: 6935 publication-title: Org. Lett. – volume: 5 start-page: 10211 year: 2017 end-page: 10219 publication-title: J. Mater. Chem. C – volume: 60 133 start-page: 25753 25957 year: 2021 2021 end-page: 25757 25961 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 143 start-page: 4148 year: 2021 end-page: 4153 publication-title: J. Am. Chem. Soc. – volume: 352 start-page: 346 year: 2017 end-page: 378 publication-title: Coord. Chem. Rev. – volume: 138 start-page: 9081 year: 2016 end-page: 9084 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 16360 year: 2018 end-page: 16367 publication-title: J. Am. Chem. Soc. – volume: 40 start-page: 6555 year: 2001 end-page: 6562 publication-title: Inorg. Chem. – volume: 48 121 start-page: 5082 5184 year: 2009 2009 end-page: 5091 5193 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 135 start-page: 12192 year: 2013 end-page: 12195 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 4359 year: 2008 end-page: 4369 publication-title: J. Med. Chem. – volume: 44 start-page: 5939 year: 2015 end-page: 5956 publication-title: Dalton Trans. – volume: 59 132 start-page: 12876 12976 year: 2020 2020 end-page: 12884 12984 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 61 start-page: 5326 year: 2022 end-page: 5334 publication-title: Inorg. Chem. – volume: 55 128 start-page: 15609 15838 year: 2016 2016 end-page: 15614 15843 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 111 start-page: 7035 year: 2011 end-page: 7062 publication-title: Chem. Rev. – volume: 132 start-page: 6578 year: 2010 end-page: 6587 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 4866 year: 1991 end-page: 4868 publication-title: Inorg. Chem. – volume: 53 126 start-page: 12191 12387 year: 2014 2014 end-page: 12195 12391 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 56 129 start-page: 1120 1140 year: 2017 2017 end-page: 1124 1144 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 317 start-page: 1881 year: 2007 end-page: 1886 publication-title: Science – volume: 144 start-page: 6558 year: 2022 end-page: 6565 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 616 year: 2015 end-page: 635 publication-title: Chem. Rec. – volume: 12 start-page: 56372 year: 2020 end-page: 56384 publication-title: ACS Appl. Mater. Interfaces – start-page: 4369 year: 2017 end-page: 4377 publication-title: Eur. J. Inorg. Chem. – volume: 8 start-page: 322 year: 2022 end-page: 331 publication-title: ACS Cent. Sci. – volume: 23 start-page: 10123 year: 2021 end-page: 10131 publication-title: Green Chem. – volume: 99 start-page: 3421 year: 1999 end-page: 3434 publication-title: Chem. Rev. – volume: 53 126 start-page: 4489 4578 year: 2014 2014 end-page: 4493 4582 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 128 start-page: 12868 13060 year: 2016 2016 end-page: 12872 13064 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 52 start-page: 6443 year: 2016 end-page: 6446 publication-title: Chem. Commun. – volume: 22 start-page: 1888 year: 2016 end-page: 1898 publication-title: Chem. Eur. J. – volume: 17 start-page: 6099 year: 2019 end-page: 6113 publication-title: Org. Biomol. Chem. – volume: 316 start-page: 853 year: 2007 end-page: 853 publication-title: Science – volume: 56 129 start-page: 11370 11528 year: 2017 2017 end-page: 11374 11532 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 54 start-page: 4065 year: 2021 end-page: 4079 publication-title: Acc. Chem. Res. – volume: 56 129 start-page: 254 260 year: 2017 2017 end-page: 259 265 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 269 start-page: 54 year: 2014 end-page: 84 publication-title: Coord. Chem. Rev. – volume: 142 start-page: 8532 year: 2020 end-page: 8538 publication-title: J. Am. Chem. Soc. – volume: 143 start-page: 5099 year: 2021 end-page: 5105 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 6050 year: 2017 end-page: 6053 publication-title: J. Am. Chem. Soc. – volume: 55 128 start-page: 3166 3218 year: 2016 2016 end-page: 3170 3222 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 87 start-page: 173 year: 2015 end-page: 179 publication-title: Pure Appl. Chem. – volume: 58 start-page: 4016 year: 2022 end-page: 4019 publication-title: Chem. Commun. – volume: 125 start-page: 14720 year: 2003 end-page: 14721 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 2252 year: 2011 end-page: 2254 publication-title: Chem. Commun. – volume: 140 start-page: 13798 year: 2018 end-page: 13807 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 11446 year: 2016 end-page: 11449 publication-title: Chem. Commun. – volume: 24 start-page: 3715 year: 1985 end-page: 3716 publication-title: Inorg. Chem. – volume: 42 start-page: 3318 year: 2013 end-page: 3336 publication-title: Chem. Soc. Rev. – volume: 140 start-page: 2957 year: 2018 end-page: 2970 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 8018 year: 2015 end-page: 8021 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 1638 year: 2019 end-page: 1645 publication-title: Org. Process Res. Dev. – volume: 59 132 start-page: 12268 12364 year: 2020 2020 end-page: 12281 12377 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 63 start-page: 357 year: 1991 end-page: 360 publication-title: Pure Appl. Chem. – volume: 59 132 start-page: 6706 6772 year: 2020 2020 end-page: 6710 6776 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 12492 year: 2017 end-page: 12499 publication-title: ACS Nano – volume: 139 start-page: 14511 year: 2017 end-page: 14517 publication-title: J. Am. Chem. Soc. – start-page: 6308 year: 2019 end-page: 6319 publication-title: Eur. J. Org. Chem. – volume: 59 start-page: 7738 year: 2016 end-page: 7758 publication-title: J. Med. Chem. – volume: 55 128 start-page: 7171 7287 year: 2016 2016 end-page: 7175 7291 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 50 start-page: 8995 year: 2021 end-page: 9021 publication-title: Chem. Soc. Rev. – volume: 3 start-page: 590 year: 2011 end-page: 596 publication-title: Nat. Chem. – volume: 586 start-page: 714 year: 2020 end-page: 719 publication-title: Nature – volume: 47 start-page: 7309 year: 2008 end-page: 7316 publication-title: Inorg. Chem. – volume: 121 start-page: 13238 year: 2021 end-page: 13341 publication-title: Chem. Rev. – volume: 577 start-page: 652 year: 2020 end-page: 655 publication-title: Nature – volume: 51 start-page: 7257 year: 2015 end-page: 7260 publication-title: Chem. Commun. – volume: 73 start-page: 7123 year: 2017 end-page: 7157 publication-title: Tetrahedron – volume: 10 start-page: 1934 year: 2019 publication-title: Nat. Commun. – volume: 121 start-page: 3561 year: 2021 end-page: 3597 publication-title: Chem. Rev. – volume: 19 start-page: 862 year: 2017 end-page: 865 publication-title: Org. Lett. – volume: 51 start-page: 2512 year: 2018 end-page: 2523 publication-title: Acc. Chem. Res. – volume: 53 126 start-page: 3173 3237 year: 2014 2014 end-page: 3177 3241 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 52 125 start-page: 8214 8372 year: 2013 2013 end-page: 8264 8423 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 378 start-page: 466 year: 2019 end-page: 482 publication-title: Coord. Chem. Rev. – volume: 111 start-page: 5701 year: 2011 end-page: 5722 publication-title: Chem. Rev. – volume: 55 start-page: 430 year: 2019 end-page: 442 publication-title: Chem. Commun. – volume: 120 start-page: 7348 year: 2020 end-page: 7398 publication-title: Chem. Rev. – volume: 10 start-page: 4177 year: 2019 end-page: 4184 publication-title: Chem. Sci. – volume: 45 start-page: 1127 year: 2016 end-page: 1137 publication-title: Dalton Trans. – volume: 11 start-page: 10764 year: 2020 end-page: 10769 publication-title: Chem. Sci. – volume: 45 start-page: 5147 year: 2016 end-page: 5173 publication-title: Chem. Soc. Rev. – ident: e_1_2_7_25_3 doi: 10.1002/ange.201903920 – ident: e_1_2_7_139_2 doi: 10.1002/anie.201911819 – ident: e_1_2_7_98_2 doi: 10.1021/jacs.6b05505 – ident: e_1_2_7_82_2 doi: 10.1038/s41467-021-27441-y – ident: e_1_2_7_114_2 doi: 10.1021/jacs.7b01889 – ident: e_1_2_7_133_2 doi: 10.1021/cr500706a – ident: e_1_2_7_37_3 doi: 10.1002/ange.201402445 – ident: e_1_2_7_77_2 doi: 10.1021/jacs.1c00779 – ident: e_1_2_7_43_2 doi: 10.1021/acs.chemrev.8b00551 – ident: e_1_2_7_31_2 doi: 10.1002/anie.202111493 – ident: e_1_2_7_9_2 doi: 10.1038/s41586-020-2831-6 – ident: e_1_2_7_28_2 doi: 10.1002/chem.201905395 – ident: e_1_2_7_128_1 – ident: e_1_2_7_147_2 doi: 10.1021/acs.accounts.8b00267 – ident: e_1_2_7_24_2 doi: 10.1002/anie.201703862 – ident: e_1_2_7_91_2 doi: 10.1039/C5CC01331C – ident: e_1_2_7_10_1 – ident: e_1_2_7_99_2 doi: 10.1021/acs.oprd.9b00257 – ident: e_1_2_7_127_2 doi: 10.1039/c2cs35441a – ident: e_1_2_7_131_3 doi: 10.1002/ange.201206566 – ident: e_1_2_7_94_2 doi: 10.1016/S0022-328X(00)83405-1 – ident: e_1_2_7_17_2 doi: 10.1023/A:1020942418765 – ident: e_1_2_7_18_2 doi: 10.1002/anie.201603232 – ident: e_1_2_7_35_3 doi: 10.1002/ange.201903467 – ident: e_1_2_7_134_2 doi: 10.1002/chem.201901840 – ident: e_1_2_7_75_2 doi: 10.1002/anie.201607867 – ident: e_1_2_7_56_3 doi: 10.1002/ange.201407359 – ident: e_1_2_7_115_2 doi: 10.1038/s41467-019-09825-3 – ident: e_1_2_7_119_3 doi: 10.1002/ange.200803493 – ident: e_1_2_7_150_2 doi: 10.1002/chem.201503456 – ident: e_1_2_7_8_2 doi: 10.1038/s41586-019-1640-2 – ident: e_1_2_7_32_2 doi: 10.1002/anie.202200672 – ident: e_1_2_7_67_2 doi: 10.1002/anie.201310317 – ident: e_1_2_7_24_3 doi: 10.1002/ange.201703862 – ident: e_1_2_7_61_2 doi: 10.1021/jacs.0c03176 – volume-title: Carboranes year: 2016 ident: e_1_2_7_12_2 – ident: e_1_2_7_90_2 doi: 10.1021/ja405808t – ident: e_1_2_7_108_1 – ident: e_1_2_7_76_2 doi: 10.1021/jacs.1c00593 – ident: e_1_2_7_131_2 doi: 10.1002/anie.201206566 – ident: e_1_2_7_70_1 – ident: e_1_2_7_66_2 doi: 10.1126/science.1138690 – ident: e_1_2_7_93_1 – ident: e_1_2_7_14_1 – ident: e_1_2_7_96_2 doi: 10.1021/ic00025a037 – ident: e_1_2_7_18_3 doi: 10.1002/ange.201603232 – ident: e_1_2_7_75_3 doi: 10.1002/ange.201607867 – ident: e_1_2_7_100_2 doi: 10.1039/C8CC08693A – ident: e_1_2_7_78_2 doi: 10.1039/D0SC01515F – ident: e_1_2_7_89_1 – ident: e_1_2_7_7_2 doi: 10.1016/j.tet.2017.11.005 – ident: e_1_2_7_20_2 doi: 10.1002/anie.201609656 – ident: e_1_2_7_109_2 doi: 10.1002/ijch.201900130 – ident: e_1_2_7_51_2 doi: 10.1002/tcr.201402100 – ident: e_1_2_7_63_2 doi: 10.1021/ja101845m – ident: e_1_2_7_141_1 – ident: e_1_2_7_135_3 doi: 10.1002/ange.201913175 – ident: e_1_2_7_55_1 – ident: e_1_2_7_112_1 – ident: e_1_2_7_41_3 doi: 10.1002/ange.201705857 – ident: e_1_2_7_3_2 doi: 10.1021/acs.chemrev.0c01236 – ident: e_1_2_7_64_2 doi: 10.1002/ejic.201700553 – ident: e_1_2_7_80_2 doi: 10.1021/jacs.0c02121 – ident: e_1_2_7_125_2 doi: 10.1021/ja037279e – ident: e_1_2_7_132_2 doi: 10.1021/acs.jmedchem.5b00258 – ident: e_1_2_7_33_2 doi: 10.1016/j.ccr.2013.02.004 – ident: e_1_2_7_105_2 doi: 10.1002/anie.201511251 – ident: e_1_2_7_123_2 doi: 10.1021/ic010493o – ident: e_1_2_7_92_2 doi: 10.1039/C6CC06200H – ident: e_1_2_7_103_2 doi: 10.1351/pac199163060835 – ident: e_1_2_7_38_2 doi: 10.1002/anie.201606979 – ident: e_1_2_7_145_3 doi: 10.1002/ange.201609274 – ident: e_1_2_7_42_2 doi: 10.1039/C8DT01064A – ident: e_1_2_7_60_2 doi: 10.1021/jacs.7b12815 – ident: e_1_2_7_59_2 doi: 10.1021/acsnano.7b06600 – ident: e_1_2_7_97_2 doi: 10.1021/ic00112a023 – ident: e_1_2_7_122_2 doi: 10.1016/0022-328X(84)80161-8 – ident: e_1_2_7_116_2 doi: 10.1039/D1CS00385B – ident: e_1_2_7_2_2 doi: 10.1021/acs.chemrev.1c00255 – ident: e_1_2_7_111_2 doi: 10.1021/acs.orglett.9b02539 – ident: e_1_2_7_107_2 doi: 10.1021/jacs.2c02329 – ident: e_1_2_7_95_2 doi: 10.1007/BF00948065 – ident: e_1_2_7_130_2 doi: 10.1021/jm800219f – ident: e_1_2_7_65_2 doi: 10.1021/ja053050i – ident: e_1_2_7_138_3 doi: 10.1002/ange.201915619 – ident: e_1_2_7_26_1 – ident: e_1_2_7_46_2 doi: 10.1039/C9CS00197B – ident: e_1_2_7_4_2 doi: 10.1039/C9OB01029G – ident: e_1_2_7_140_2 doi: 10.1002/anie.201913398 – ident: e_1_2_7_136_1 – ident: e_1_2_7_81_2 doi: 10.1021/acs.orglett.9b02129 – ident: e_1_2_7_54_2 doi: 10.1039/D0CC06557A – ident: e_1_2_7_15_2 doi: 10.1021/acs.chemrev.6b00198 – ident: e_1_2_7_34_2 doi: 10.1021/ar500335a – ident: e_1_2_7_145_2 doi: 10.1002/anie.201609274 – ident: e_1_2_7_88_2 doi: 10.1021/acs.inorgchem.2c00074 – ident: e_1_2_7_149_3 doi: 10.1002/ange.201916666 – ident: e_1_2_7_121_1 – ident: e_1_2_7_144_2 doi: 10.1021/jacs.6b07411 – ident: e_1_2_7_118_2 doi: 10.1016/j.ccr.2017.09.019 – ident: e_1_2_7_35_2 doi: 10.1002/anie.201903467 – ident: e_1_2_7_11_2 doi: 10.1201/b11199 – ident: e_1_2_7_83_2 doi: 10.1016/j.ccr.2017.11.006 – ident: e_1_2_7_29_2 doi: 10.1021/acsami.0c17847 – ident: e_1_2_7_68_2 doi: 10.1021/acsnano.7b09011 – ident: e_1_2_7_41_2 doi: 10.1002/anie.201705857 – ident: e_1_2_7_67_3 doi: 10.1002/ange.201310317 – ident: e_1_2_7_23_2 doi: 10.1039/D1SC00791B – ident: e_1_2_7_25_2 doi: 10.1002/anie.201903920 – volume: 134 start-page: e202200672 year: 2022 ident: e_1_2_7_32_3 publication-title: Angew. Chem. doi: 10.1002/ange.202200672 – ident: e_1_2_7_22_2 doi: 10.1021/jacs.5b04576 – ident: e_1_2_7_102_2 doi: 10.1007/BF00952942 – ident: e_1_2_7_139_3 doi: 10.1002/ange.201911819 – ident: e_1_2_7_87_2 doi: 10.1021/ic00216a053 – ident: e_1_2_7_45_2 doi: 10.1021/cr200038x – ident: e_1_2_7_79_2 doi: 10.1039/C9CS00169G – ident: e_1_2_7_19_2 doi: 10.1039/C5CC08213G – ident: e_1_2_7_49_2 doi: 10.1039/b709843j – ident: e_1_2_7_143_2 doi: 10.1021/jacs.5b05665 – ident: e_1_2_7_151_1 doi: 10.1021/am406035v – ident: e_1_2_7_31_3 doi: 10.1002/ange.202111493 – ident: e_1_2_7_137_3 doi: 10.1002/ange.201709487 – ident: e_1_2_7_62_2 doi: 10.1021/jacs.2c01668 – ident: e_1_2_7_113_2 doi: 10.1126/science.abg0781 – ident: e_1_2_7_74_2 doi: 10.1021/jacs.8b07872 – ident: e_1_2_7_6_2 doi: 10.1021/acs.accounts.1c00132 – ident: e_1_2_7_86_2 doi: 10.1021/ic800362z – ident: e_1_2_7_73_2 doi: 10.1039/C9SC00078J – ident: e_1_2_7_5_2 doi: 10.1021/acs.chemrev.9b00384 – ident: e_1_2_7_105_3 doi: 10.1002/ange.201511251 – ident: e_1_2_7_38_3 doi: 10.1002/ange.201606979 – ident: e_1_2_7_39_2 doi: 10.1039/C5DT03417E – ident: e_1_2_7_126_2 doi: 10.1039/c0cc05151a – ident: e_1_2_7_149_2 doi: 10.1002/anie.201916666 – ident: e_1_2_7_13_2 doi: 10.1039/C5DT00231A – ident: e_1_2_7_85_1 – ident: e_1_2_7_110_2 doi: 10.1021/acs.joc.0c00312 – ident: e_1_2_7_47_3 doi: 10.1002/ange.19931050705 – ident: e_1_2_7_50_2 doi: 10.1021/cr2000866 – ident: e_1_2_7_69_2 doi: 10.1038/s41586-019-1926-4 – ident: e_1_2_7_148_1 – ident: e_1_2_7_48_2 doi: 10.1021/cr980442h – ident: e_1_2_7_1_1 – ident: e_1_2_7_137_2 doi: 10.1002/anie.201709487 – ident: e_1_2_7_56_2 doi: 10.1002/anie.201407359 – ident: e_1_2_7_104_2 doi: 10.1351/pac199163030357 – ident: e_1_2_7_44_1 – ident: e_1_2_7_138_2 doi: 10.1002/anie.201915619 – ident: e_1_2_7_140_3 doi: 10.1002/ange.201913398 – ident: e_1_2_7_146_2 doi: 10.1021/jacs.8b11218 – ident: e_1_2_7_40_2 doi: 10.1039/C6CC01650B – ident: e_1_2_7_16_2 doi: 10.1039/D1CC07211K – ident: e_1_2_7_72_2 doi: 10.1021/acscentsci.1c01132 – ident: e_1_2_7_119_2 doi: 10.1002/anie.200803493 – ident: e_1_2_7_53_2 doi: 10.1021/acs.jmedchem.5b01932 – ident: e_1_2_7_27_2 doi: 10.1016/j.ccr.2014.02.016 – ident: e_1_2_7_52_2 doi: 10.1515/pac-2014-1007 – ident: e_1_2_7_58_2 doi: 10.1002/adma.201704238 – ident: e_1_2_7_124_2 doi: 10.1016/S0022-328X(01)01108-1 – ident: e_1_2_7_142_1 – ident: e_1_2_7_117_2 doi: 10.1002/ejoc.201901010 – ident: e_1_2_7_129_2 doi: 10.1126/science.1131943 – ident: e_1_2_7_120_1 doi: 10.1021/acs.orglett.7b00013 – ident: e_1_2_7_21_2 doi: 10.1039/C7TC03319B – ident: e_1_2_7_106_2 doi: 10.1021/jacs.0c00300 – ident: e_1_2_7_36_2 doi: 10.1038/nchem.1088 – ident: e_1_2_7_47_2 doi: 10.1002/anie.199309501 – ident: e_1_2_7_57_2 doi: 10.1039/C6CS00159A – ident: e_1_2_7_30_2 doi: 10.1039/D1GC03119H – ident: e_1_2_7_37_2 doi: 10.1002/anie.201402445 – ident: e_1_2_7_20_3 doi: 10.1002/ange.201609656 – ident: e_1_2_7_84_2 doi: 10.1021/jacs.7b07160 – ident: e_1_2_7_101_1 – ident: e_1_2_7_71_2 doi: 10.1021/acs.accounts.1c00460 – ident: e_1_2_7_135_2 doi: 10.1002/anie.201913175 |
SSID | ssj0028806 |
Score | 2.5442505 |
Snippet | Functionalization of carboranes in a vertex‐specific manner is a perennial challenge. Here, we report a photocatalytic B−C coupling for the selective... Functionalization of carborane in a vertex-specific manner is a perennial challenge. Here, we report a photocatalytic B-C coupling for selective... Functionalization of carboranes in a vertex-specific manner is a perennial challenge. Here, we report a photocatalytic B-C coupling for the selective... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202205672 |
SubjectTerms | Alkylation Boron Boron Chemistry Boron-Cluster Materials B−C Coupling Carborane Carboranes Carboranyl Radicals Carboxylic acids Coupling Decarboxylation Drug development Electron density Electron transfer Emitters Fluorine Luminous efficacy Nuclear capture |
Title | Site‐Selective Functionalization of Carboranes at the Electron‐Rich Boron Vertex: Photocatalytic B−C Coupling via a Carboranyl Cage Radical |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202205672 https://www.ncbi.nlm.nih.gov/pubmed/35670361 https://www.proquest.com/docview/2709714086 https://www.proquest.com/docview/2674005790 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTxQxFG8IF70oKOogmpqYcCrsdDrTHW4w7gZNJAbEcJv0E4xkxyyzBDxx5Kj-ifwlvtf5kNUYE711Mv2a9vW913Z-v0fIS6PyVAgnmTfxkAnrNVOJHDDtdS7cMHUqR3Dy271s91C8OUqPbqH4G36I_sANV0bQ17jAlT7b_Ekaighs2N8hUDSTqITjJEPy_Ff7PX8UB-Fs4EVJwjAKfcfaOOCb88XnrdJvrua85xpMz_g-UV2nmz9OPm3Mar1hvvzC5_g_X7VE7rV-Kd1uBGmZLLjJA3Kn6MLBPSTfDsA5vbn6ehAC54COpGMwic1JYovlpJWnhZqiVIECpaqm4F3SURtoB8oiip_uIGcC_eCmtbvYou9OqroKZ0iX0DLdubn-XtCimiFQ-Jief1RU9XVenkLy2NF9FS6XVsjhePS-2GVtPAdmwFByphPcvQmRGJ_azA1SC86JVgL2UDb3uR9yr6T1YCFjC7rHW6W1dklqnOQGWYAekcVJNXFPCJU-11nqvRzGRnCptbBZ7GxstcxzGacRYd18lqYlO8eYG6dlQ9PMSxzosh_oiKz3-T83NB9_zLnWiUfZLvezkkuk4hKwPYzIi_41TBDevsCQVzPIk0kRoL-DiDxuxKpvKoGawZWII8KDcPylD-X23utR_7T6L4WekruYZiEYxhpZrKcz9wzcq1o_D0voB5rbICw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOZQLb2hKASMhcXK7cZx4w60Nu9pCu0J9IG6RnwVRbaoliygnjhyBn9hfwozzQAtCSHDLJnaSdcYz3zj5viHksVF5KoSTzJt4yIT1mqlEDpj2OhdumDqVIzl5f5pNjsXz12n3NSFyYRp9iH7BDWdG8Nc4wXFBeuunaihSsCHBQ6ZoJsELXxaANjD_enbQK0hxMM-GYJQkDOvQd7qNA7613H85Lv0GNpexawg-42tEd7fdfHPybnNR603z6RdFx__6X9fJ1Raa0u3Glm6QS252k6wWXUW4W-TbIeDTi89fD0PtHHCTdAxRsVlMbOmctPK0UHM0LPChVNUUACYdtbV2oC8S-ekOyibQV25eu49P6cs3VV2FZaRzuDLdufjyvaBFtUCu8An98FZR1Z_z_BQ2Txw9UOH90m1yPB4dFRPWlnRgBmIlZzrBBE6IxPjUZm6QWsAnWglIo2zucz_kXknrIUjGFtyPt0pr7ZLUOMkNCgHdISuzaubWCJU-11nqvRzGRnCptbBZ7GxstcxzGacRYd0DLU2rd45lN07LRqmZlzjQZT_QEXnStz9rlD7-2HKjs4-ynfHvSy5RjUtAhhiRR_1heED4AgaGvFpAm0yKwP4dRORuY1f9pRI4M6CJOCI8WMdf7qHcnu6O-l_r_9LpIVmdHO3vlXu70xf3yBXcz0JtjA2yUs8X7j6grVo_CPPpB5MJJEs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLZQkYBL2WmggJGQOLmdOE484daGGbUso6qlqLfIa0FUk2rIVC0njhyBn9hfwnvOAgNCSHDLYmexn9_77OT7HiGPjcpTIZxk3sRDJqzXTCVywLTXuXDD1KkcycmvJtnWvnh-kB78xOJv9CH6BTccGcFf4wA_tn79h2goMrBhfodE0UyCE74oMoATCIt2ewEpDtbZ8IuShGEa-k62ccDXF-svhqXfsOYidA2xZ3yVqO6pm19O3q_Na71mPv4i6Pg_r3WNLLfAlG40lnSdXHDTG-Ry0eWDu0m-7gE6Pf_0ZS9kzgEnSccQE5ulxJbMSStPCzVDswIPSlVNAV7SUZtpB-oijZ9uomgCfeNmtTt9SnfeVnUVFpHO4M508_zzt4IW1RyZwof05J2iqr_m2RFsHjq6q8LXpVtkfzx6XWyxNqEDMxApOdMJTt-ESIxPbeYGqQV0ohV0XGZzn_sh90paDyEytuB8vFVaa5ekxkluUAboNlmaVlO3Qqj0uc5S7-UwNoJLrYXNYmdjq2WeyziNCOv6szSt2jkm3TgqG51mXmJDl31DR-RJX_640fn4Y8nVzjzKdrx_KLlELS4B88OIPOpPQwfh5xdo8moOZTIpAvd3EJE7jVn1t0rgyoAl4ojwYBx_eYZyY7I96vfu_kulh-TSzrNx-XJ78uIeuYKHWUiMsUqW6tnc3QeoVesHYTR9BwxEIvo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Site%E2%80%90Selective+Functionalization+of+Carboranes+at+the+Electron%E2%80%90Rich+Boron+Vertex%3A+Photocatalytic+B%E2%88%92C+Coupling+via+a+Carboranyl+Cage+Radical&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Chen%2C+Meng&rft.au=Xu%2C+Jingkai&rft.au=Zhao%2C+Deshi&rft.au=Sun%2C+Fangxiang&rft.date=2022-09-12&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=37&rft_id=info:doi/10.1002%2Fanie.202205672&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202205672 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |