Capsaicin‐Decorated Semiconducting Polymer Nanoparticles for Light‐Controlled Calcium‐Overload/Photodynamic Combination Therapy

Calcium‐overload cancer therapy has gained more and more attention owing to its good therapeutic efficacy with low side effect. However, conventional calcium‐overload therapy is achieved by introducing an additional calcium element into the tumor site by nanomedicines, which may also lead to the cal...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 19; pp. e2200152 - n/a
Main Authors Ni, Xiaoyue, Shi, Wenheng, Liu, Yaxin, Yin, Likun, Guo, Zixin, Zhou, Wen, Fan, Quli
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Calcium‐overload cancer therapy has gained more and more attention owing to its good therapeutic efficacy with low side effect. However, conventional calcium‐overload therapy is achieved by introducing an additional calcium element into the tumor site by nanomedicines, which may also lead to the calcium‐overload of normal organs, causing an undesirable side effect. To address such issues, capsaicin‐decorated semiconducting polymer nanoparticles (CSPN) are designed to modulate the calcium ion channel of cancer cells for calcium‐overload cancer therapy without adding an additional calcium element. CSPN is composed of a near‐infrared (NIR) absorbing semiconducting polymer (SP) PCPDTBT and a capsaicin‐conjugated amphiphilic copolymer, PEG‐PHEMA‐Cap. Under NIR laser irradiation, PCPDTBT can generate singlet oxygen (1O2), which not only triggers the release of capsaicin, but also induces photodynamic therapy (PDT). The released capsaicin can further activate transient receptor potential cation channel subfamily V member 1 (TRPV1) of U373 cancer cells, leading to an influx of calcium ions into cells. In addition, the intense NIR‐II fluorescence signal of CSPN makes it suitable for tumor imaging. Thus, this study develops a tumor specific nanotheranostic system for NIR‐II fluorescence imaging‐guided calcium‐overload/PDT combination therapy. Capsaicin‐decorated semiconducting polymer nanoparticles (CSPN) are designed for calcium‐overload/photodynamic combination therapy. Under laser irradiation, capsaicin will release from CSPN, which can activate transient receptor potential cation channel subfamily V member 1 (TRPV1) of U373 cancer cells, leading to calcium‐overload‐mediated cell death. Such a nanosystem can achieve efficient calcium‐overload therapy without introducing external calcium, showing minimized side effects towards normal organs.
AbstractList Calcium-overload cancer therapy has gained more and more attention owing to its good therapeutic efficacy with low side effect. However, conventional calcium-overload therapy is achieved by introducing an additional calcium element into the tumor site by nanomedicines, which may also lead to the calcium-overload of normal organs, causing an undesirable side effect. To address such issues, capsaicin-decorated semiconducting polymer nanoparticles (CSPN) are designed to modulate the calcium ion channel of cancer cells for calcium-overload cancer therapy without adding an additional calcium element. CSPN is composed of a near-infrared (NIR) absorbing semiconducting polymer (SP) PCPDTBT and a capsaicin-conjugated amphiphilic copolymer, PEG-PHEMA-Cap. Under NIR laser irradiation, PCPDTBT can generate singlet oxygen (1 O2 ), which not only triggers the release of capsaicin, but also induces photodynamic therapy (PDT). The released capsaicin can further activate transient receptor potential cation channel subfamily V member 1 (TRPV1) of U373 cancer cells, leading to an influx of calcium ions into cells. In addition, the intense NIR-II fluorescence signal of CSPN makes it suitable for tumor imaging. Thus, this study develops a tumor specific nanotheranostic system for NIR-II fluorescence imaging-guided calcium-overload/PDT combination therapy.Calcium-overload cancer therapy has gained more and more attention owing to its good therapeutic efficacy with low side effect. However, conventional calcium-overload therapy is achieved by introducing an additional calcium element into the tumor site by nanomedicines, which may also lead to the calcium-overload of normal organs, causing an undesirable side effect. To address such issues, capsaicin-decorated semiconducting polymer nanoparticles (CSPN) are designed to modulate the calcium ion channel of cancer cells for calcium-overload cancer therapy without adding an additional calcium element. CSPN is composed of a near-infrared (NIR) absorbing semiconducting polymer (SP) PCPDTBT and a capsaicin-conjugated amphiphilic copolymer, PEG-PHEMA-Cap. Under NIR laser irradiation, PCPDTBT can generate singlet oxygen (1 O2 ), which not only triggers the release of capsaicin, but also induces photodynamic therapy (PDT). The released capsaicin can further activate transient receptor potential cation channel subfamily V member 1 (TRPV1) of U373 cancer cells, leading to an influx of calcium ions into cells. In addition, the intense NIR-II fluorescence signal of CSPN makes it suitable for tumor imaging. Thus, this study develops a tumor specific nanotheranostic system for NIR-II fluorescence imaging-guided calcium-overload/PDT combination therapy.
Calcium‐overload cancer therapy has gained more and more attention owing to its good therapeutic efficacy with low side effect. However, conventional calcium‐overload therapy is achieved by introducing an additional calcium element into the tumor site by nanomedicines, which may also lead to the calcium‐overload of normal organs, causing an undesirable side effect. To address such issues, capsaicin‐decorated semiconducting polymer nanoparticles (CSPN) are designed to modulate the calcium ion channel of cancer cells for calcium‐overload cancer therapy without adding an additional calcium element. CSPN is composed of a near‐infrared (NIR) absorbing semiconducting polymer (SP) PCPDTBT and a capsaicin‐conjugated amphiphilic copolymer, PEG‐PHEMA‐Cap. Under NIR laser irradiation, PCPDTBT can generate singlet oxygen ( 1 O 2 ), which not only triggers the release of capsaicin, but also induces photodynamic therapy (PDT). The released capsaicin can further activate transient receptor potential cation channel subfamily V member 1 (TRPV1) of U373 cancer cells, leading to an influx of calcium ions into cells. In addition, the intense NIR‐II fluorescence signal of CSPN makes it suitable for tumor imaging. Thus, this study develops a tumor specific nanotheranostic system for NIR‐II fluorescence imaging‐guided calcium‐overload/PDT combination therapy.
Calcium-overload cancer therapy has gained more and more attention owing to its good therapeutic efficacy with low side effect. However, conventional calcium-overload therapy is achieved by introducing an additional calcium element into the tumor site by nanomedicines, which may also lead to the calcium-overload of normal organs, causing an undesirable side effect. To address such issues, capsaicin-decorated semiconducting polymer nanoparticles (CSPN) are designed to modulate the calcium ion channel of cancer cells for calcium-overload cancer therapy without adding an additional calcium element. CSPN is composed of a near-infrared (NIR) absorbing semiconducting polymer (SP) PCPDTBT and a capsaicin-conjugated amphiphilic copolymer, PEG-PHEMA-Cap. Under NIR laser irradiation, PCPDTBT can generate singlet oxygen ( O ), which not only triggers the release of capsaicin, but also induces photodynamic therapy (PDT). The released capsaicin can further activate transient receptor potential cation channel subfamily V member 1 (TRPV1) of U373 cancer cells, leading to an influx of calcium ions into cells. In addition, the intense NIR-II fluorescence signal of CSPN makes it suitable for tumor imaging. Thus, this study develops a tumor specific nanotheranostic system for NIR-II fluorescence imaging-guided calcium-overload/PDT combination therapy.
Calcium‐overload cancer therapy has gained more and more attention owing to its good therapeutic efficacy with low side effect. However, conventional calcium‐overload therapy is achieved by introducing an additional calcium element into the tumor site by nanomedicines, which may also lead to the calcium‐overload of normal organs, causing an undesirable side effect. To address such issues, capsaicin‐decorated semiconducting polymer nanoparticles (CSPN) are designed to modulate the calcium ion channel of cancer cells for calcium‐overload cancer therapy without adding an additional calcium element. CSPN is composed of a near‐infrared (NIR) absorbing semiconducting polymer (SP) PCPDTBT and a capsaicin‐conjugated amphiphilic copolymer, PEG‐PHEMA‐Cap. Under NIR laser irradiation, PCPDTBT can generate singlet oxygen (1O2), which not only triggers the release of capsaicin, but also induces photodynamic therapy (PDT). The released capsaicin can further activate transient receptor potential cation channel subfamily V member 1 (TRPV1) of U373 cancer cells, leading to an influx of calcium ions into cells. In addition, the intense NIR‐II fluorescence signal of CSPN makes it suitable for tumor imaging. Thus, this study develops a tumor specific nanotheranostic system for NIR‐II fluorescence imaging‐guided calcium‐overload/PDT combination therapy. Capsaicin‐decorated semiconducting polymer nanoparticles (CSPN) are designed for calcium‐overload/photodynamic combination therapy. Under laser irradiation, capsaicin will release from CSPN, which can activate transient receptor potential cation channel subfamily V member 1 (TRPV1) of U373 cancer cells, leading to calcium‐overload‐mediated cell death. Such a nanosystem can achieve efficient calcium‐overload therapy without introducing external calcium, showing minimized side effects towards normal organs.
Calcium‐overload cancer therapy has gained more and more attention owing to its good therapeutic efficacy with low side effect. However, conventional calcium‐overload therapy is achieved by introducing an additional calcium element into the tumor site by nanomedicines, which may also lead to the calcium‐overload of normal organs, causing an undesirable side effect. To address such issues, capsaicin‐decorated semiconducting polymer nanoparticles (CSPN) are designed to modulate the calcium ion channel of cancer cells for calcium‐overload cancer therapy without adding an additional calcium element. CSPN is composed of a near‐infrared (NIR) absorbing semiconducting polymer (SP) PCPDTBT and a capsaicin‐conjugated amphiphilic copolymer, PEG‐PHEMA‐Cap. Under NIR laser irradiation, PCPDTBT can generate singlet oxygen (1O2), which not only triggers the release of capsaicin, but also induces photodynamic therapy (PDT). The released capsaicin can further activate transient receptor potential cation channel subfamily V member 1 (TRPV1) of U373 cancer cells, leading to an influx of calcium ions into cells. In addition, the intense NIR‐II fluorescence signal of CSPN makes it suitable for tumor imaging. Thus, this study develops a tumor specific nanotheranostic system for NIR‐II fluorescence imaging‐guided calcium‐overload/PDT combination therapy.
Author Liu, Yaxin
Shi, Wenheng
Guo, Zixin
Zhou, Wen
Ni, Xiaoyue
Fan, Quli
Yin, Likun
Author_xml – sequence: 1
  givenname: Xiaoyue
  surname: Ni
  fullname: Ni, Xiaoyue
  organization: Nanjing University of Posts & Telecommunications
– sequence: 2
  givenname: Wenheng
  surname: Shi
  fullname: Shi, Wenheng
  organization: Nanjing University of Posts & Telecommunications
– sequence: 3
  givenname: Yaxin
  surname: Liu
  fullname: Liu, Yaxin
  organization: Nanjing University of Posts & Telecommunications
– sequence: 4
  givenname: Likun
  surname: Yin
  fullname: Yin, Likun
  organization: Nanjing University of Posts & Telecommunications
– sequence: 5
  givenname: Zixin
  surname: Guo
  fullname: Guo, Zixin
  organization: Nanjing University of Posts & Telecommunications
– sequence: 6
  givenname: Wen
  surname: Zhou
  fullname: Zhou, Wen
  email: iamwzhou@njupt.edu.cn
  organization: Nanjing University of Posts & Telecommunications
– sequence: 7
  givenname: Quli
  orcidid: 0000-0002-9387-0165
  surname: Fan
  fullname: Fan, Quli
  email: iamqlfan@njupt.edu.cn
  organization: Nanjing University of Posts & Telecommunications
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35398988$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URD_gyhFF4sJlt_Y4ycZHFD6lQCu1nCPHmXRdOXawHVBuvfTOb-SX4LJlkSohTh5ZzzNjz3tMDqyzSMhzRteMUjgNozFroACUsgIekSNWMr4qKxAH-5rRQ3IcwjWlnEG-eUIOecFFJarqiNzWcgpSK21_3vx4g8p5GbHPLnDUytl-VlHbq-zcmWVEn32W1k3SR60MhmxwPmv01TYmtXY2emdMcmtplJ7HdHn2Db1xsj8937ro-sXK1DWr3dhpK6N2NrvcopfT8pQ8HqQJ-Oz-PCFf3r29rD-smrP3H-vXzUpxymElKS-VUhUUvJM5cqqwG8TAgG7KgrNc8ZIBVun3Ba0El6Xqiq7Piw4FCOiBn5BXu76Td19nDLEddVBojLTo5tBCmQsoihxoQl8-QK_d7G16XaJKgFJsOE_Ui3tq7kbs28nrUfql_bPgBKx3gPIuBI_DHmG0vUuwvUuw3SeYhPyBoHT8vazopTb_1sRO-64NLv8Z0l58apq_7i9VOLT0
CitedBy_id crossref_primary_10_1002_admt_202401355
crossref_primary_10_1002_smtd_202201083
crossref_primary_10_1002_macp_202300229
crossref_primary_10_1002_smll_202312141
crossref_primary_10_1002_smsc_202400169
crossref_primary_10_1002_wnan_1865
crossref_primary_10_1002_adhm_202402697
crossref_primary_10_1002_smll_202205647
crossref_primary_10_1002_marc_202300496
crossref_primary_10_1016_j_jconrel_2024_10_029
crossref_primary_10_1002_adhm_202303579
crossref_primary_10_3390_bios12121126
crossref_primary_10_1002_adfm_202408594
crossref_primary_10_1016_j_addr_2023_114821
crossref_primary_10_1021_acsanm_3c00859
crossref_primary_10_1021_acsanm_2c02852
crossref_primary_10_1007_s10853_024_09793_0
crossref_primary_10_1002_adma_202401222
crossref_primary_10_1016_j_cej_2022_141225
crossref_primary_10_1186_s12951_024_02343_5
crossref_primary_10_1016_j_cej_2024_151838
crossref_primary_10_1016_j_jcis_2025_137332
crossref_primary_10_1002_adfm_202420540
crossref_primary_10_1016_j_eurpolymj_2024_113608
crossref_primary_10_3390_pharmaceutics16040479
crossref_primary_10_1016_j_colsurfb_2024_114190
crossref_primary_10_1039_D4NR04454A
crossref_primary_10_1016_j_cej_2024_157747
crossref_primary_10_1016_j_ijbiomac_2025_140116
crossref_primary_10_1016_j_ccr_2023_215050
crossref_primary_10_1002_cnma_202300384
crossref_primary_10_1039_D2CC01207C
crossref_primary_10_1016_j_cej_2023_147056
Cites_doi 10.1021/acsnano.8b02034
10.1166/jnn.2006.327
10.1002/anie.201907388
10.1039/D0CS00215A
10.1039/D0SC01721C
10.1021/acsnano.0c00043
10.1126/sciadv.aaz8400
10.1038/s41467-021-23194-w
10.1016/j.neulet.2017.08.044
10.1007/s13238-016-0353-7
10.1016/j.bioactmat.2021.05.031
10.1016/j.chempr.2019.06.003
10.1038/s41467-021-21047-0
10.1166/jbn.2016.2322
10.1039/D0CS00664E
10.1021/acsapm.1c00695
10.1002/adhm.201801113
10.1021/jacs.6b05192
10.1016/j.addr.2012.08.004
10.1007/s13770-021-00385-6
10.1002/adfm.201806818
10.2217/nnm.13.198
10.1002/adma.202003130
10.1016/j.molcel.2020.04.017
10.1016/j.drup.2015.06.002
10.1016/j.yjmcc.2009.10.026
10.1002/anie.202015379
10.1021/acs.nanolett.7b05292
10.1002/adma.202007426
10.1002/anie.201909264
10.1002/adma.201906314
10.1002/smll.202004723
10.1021/acs.nanolett.0c04778
10.1166/jbn.2014.1954
10.1073/pnas.1900502116
10.1038/nn2056
10.1039/C9CS00648F
10.1002/smll.201602807
10.1021/acsnano.8b05906
10.1016/j.ejphar.2004.07.037
10.1002/adma.202003458
10.1016/S0140-6736(76)92781-1
10.1002/adma.201806331
10.1002/adma.201706320
10.1039/C9CS00773C
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202200152
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 35398988
10_1002_smll_202200152
SMLL202200152
Genre article
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of NJUPT
  funderid: NY221088
– fundername: Natural Science Foundation of Jiangsu University
  funderid: 21KJB150022
– fundername: Research startup fund of NJUPT
  funderid: NY220149
– fundername: Natural Science Foundation of NJUPT
  grantid: NY221088
– fundername: Natural Science Foundation of Jiangsu University
  grantid: 21KJB150022
– fundername: Research startup fund of NJUPT
  grantid: NY220149
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c3032-a036ccc8253ba4e30cebf9f120765314c3612e868250893a6cb5bd45be9292d23
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 01:38:14 EDT 2025
Sat Jul 19 05:41:27 EDT 2025
Thu Apr 03 07:00:12 EDT 2025
Thu Apr 24 23:02:16 EDT 2025
Tue Jul 01 02:54:11 EDT 2025
Wed Jan 22 16:24:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords NIR-II fluorescence imaging
semiconducting polymer nanoparticles
combination therapy
photodynamic therapy
calcium-overload therapy
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3032-a036ccc8253ba4e30cebf9f120765314c3612e868250893a6cb5bd45be9292d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9387-0165
PMID 35398988
PQID 2662269733
PQPubID 1046358
PageCount 8
ParticipantIDs proquest_miscellaneous_2649255420
proquest_journals_2662269733
pubmed_primary_35398988
crossref_primary_10_1002_smll_202200152
crossref_citationtrail_10_1002_smll_202200152
wiley_primary_10_1002_smll_202200152_SMLL202200152
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 8
2017; 8
2021; 21
2004; 500
2021; 3
2019; 5
2019; 32
2018; 663
2019; 58
1976; 1
2020; 14
2006; 6
2020; 78
2008; 11
2020; 11
2020; 32
2021; 50
2016; 12
2020; 6
2018; 18
2010; 48
2021; 12
2021; 33
2022; 7
2021; 17
2017; 13
2015; 21
2020; 49
2019; 116
2019; 29
2018; 30
2016; 138
2018; 12
2014; 9
2021; 60
2012; 64
2014; 10
2022; 19
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 49
  start-page: 4234
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 78
  start-page: 1055
  year: 2020
  publication-title: Mol. Cell
– volume: 60
  start-page: 6047
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  start-page: 1835
  year: 2016
  publication-title: J. Biomed. Nanotechnol.
– volume: 5
  start-page: 2171
  year: 2019
  publication-title: Chem
– volume: 10
  start-page: 1501
  year: 2014
  publication-title: J. Biomed. Nanotechnol.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 11
  year: 2020
  publication-title: Chem. Sci.
– volume: 116
  year: 2019
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 19
  start-page: 289
  year: 2022
  publication-title: Tissue Eng. Regener. Med.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 8
  start-page: 169
  year: 2017
  publication-title: Protein Cell
– volume: 49
  start-page: 3244
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 21
  start-page: 11
  year: 2015
  publication-title: Drug Resistance Update
– volume: 9
  start-page: 2339
  year: 2014
  publication-title: Nanomedicine
– volume: 64
  start-page: 1532
  year: 2012
  publication-title: Adv. Drug Delivery Rev.
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 18
  start-page: 1498
  year: 2018
  publication-title: Nano Lett.
– volume: 12
  start-page: 6806
  year: 2018
  publication-title: ACS Nano
– volume: 3
  start-page: 4375
  year: 2021
  publication-title: ACS Appl. Polym. Mater.
– volume: 48
  start-page: 1105
  year: 2010
  publication-title: J. Mol. Cell. Cardiol.
– volume: 6
  start-page: 1159
  year: 2006
  publication-title: J. Nanosci. Nanotechnol.
– volume: 8
  year: 2019
  publication-title: Adv. Healthcare Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 138
  start-page: 9049
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 21
  start-page: 2088
  year: 2021
  publication-title: Nano Lett.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 12
  start-page: 2934
  year: 2021
  publication-title: Nat. Commun.
– volume: 11
  start-page: 255
  year: 2008
  publication-title: Nat. Neurosci.
– volume: 49
  start-page: 8065
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 14
  start-page: 2509
  year: 2020
  publication-title: ACS Nano
– volume: 32
  year: 2019
  publication-title: Adv. Mater.
– volume: 500
  start-page: 351
  year: 2004
  publication-title: Eur. J. Pharmacol.
– volume: 663
  start-page: 86
  year: 2018
  publication-title: Neurosci. Lett.
– volume: 1
  start-page: 672
  year: 1976
  publication-title: Lancet
– volume: 12
  start-page: 742
  year: 2021
  publication-title: Nat. Commun.
– volume: 13
  year: 2017
  publication-title: Small
– volume: 7
  start-page: 112
  year: 2022
  publication-title: Bioact. Mater.
– volume: 50
  start-page: 1111
  year: 2021
  publication-title: Chem. Soc. Rev.
– ident: e_1_2_7_6_1
  doi: 10.1021/acsnano.8b02034
– ident: e_1_2_7_40_1
  doi: 10.1166/jnn.2006.327
– ident: e_1_2_7_3_1
  doi: 10.1002/anie.201907388
– ident: e_1_2_7_21_1
  doi: 10.1039/D0CS00215A
– ident: e_1_2_7_26_1
  doi: 10.1039/D0SC01721C
– ident: e_1_2_7_18_1
  doi: 10.1021/acsnano.0c00043
– ident: e_1_2_7_15_1
  doi: 10.1126/sciadv.aaz8400
– ident: e_1_2_7_37_1
  doi: 10.1038/s41467-021-23194-w
– ident: e_1_2_7_11_1
  doi: 10.1016/j.neulet.2017.08.044
– ident: e_1_2_7_32_1
  doi: 10.1007/s13238-016-0353-7
– ident: e_1_2_7_45_1
  doi: 10.1016/j.bioactmat.2021.05.031
– ident: e_1_2_7_7_1
  doi: 10.1016/j.chempr.2019.06.003
– ident: e_1_2_7_23_1
  doi: 10.1038/s41467-021-21047-0
– ident: e_1_2_7_43_1
  doi: 10.1166/jbn.2016.2322
– ident: e_1_2_7_19_1
  doi: 10.1039/D0CS00664E
– ident: e_1_2_7_38_1
  doi: 10.1021/acsapm.1c00695
– ident: e_1_2_7_8_1
  doi: 10.1002/adhm.201801113
– ident: e_1_2_7_27_1
  doi: 10.1021/jacs.6b05192
– ident: e_1_2_7_13_1
  doi: 10.1016/j.addr.2012.08.004
– ident: e_1_2_7_29_1
  doi: 10.1007/s13770-021-00385-6
– ident: e_1_2_7_35_1
  doi: 10.1002/adfm.201806818
– ident: e_1_2_7_41_1
  doi: 10.2217/nnm.13.198
– ident: e_1_2_7_2_1
  doi: 10.1002/adma.202003130
– ident: e_1_2_7_5_1
  doi: 10.1016/j.molcel.2020.04.017
– ident: e_1_2_7_30_1
  doi: 10.1016/j.drup.2015.06.002
– ident: e_1_2_7_12_1
  doi: 10.1016/j.yjmcc.2009.10.026
– ident: e_1_2_7_28_1
  doi: 10.1002/anie.202015379
– ident: e_1_2_7_33_1
  doi: 10.1021/acs.nanolett.7b05292
– ident: e_1_2_7_9_1
  doi: 10.1002/adma.202007426
– ident: e_1_2_7_24_1
  doi: 10.1002/anie.201909264
– ident: e_1_2_7_36_1
  doi: 10.1002/adma.201906314
– ident: e_1_2_7_17_1
  doi: 10.1002/smll.202004723
– ident: e_1_2_7_4_1
  doi: 10.1021/acs.nanolett.0c04778
– ident: e_1_2_7_42_1
  doi: 10.1166/jbn.2014.1954
– ident: e_1_2_7_44_1
  doi: 10.1073/pnas.1900502116
– ident: e_1_2_7_31_1
  doi: 10.1038/nn2056
– ident: e_1_2_7_1_1
  doi: 10.1039/C9CS00648F
– ident: e_1_2_7_25_1
  doi: 10.1002/smll.201602807
– ident: e_1_2_7_34_1
  doi: 10.1021/acsnano.8b05906
– ident: e_1_2_7_39_1
  doi: 10.1016/j.ejphar.2004.07.037
– ident: e_1_2_7_22_1
  doi: 10.1002/adma.202003458
– ident: e_1_2_7_10_1
  doi: 10.1016/S0140-6736(76)92781-1
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.201806331
– ident: e_1_2_7_16_1
  doi: 10.1002/adma.201706320
– ident: e_1_2_7_20_1
  doi: 10.1039/C9CS00773C
SSID ssj0031247
Score 2.598138
Snippet Calcium‐overload cancer therapy has gained more and more attention owing to its good therapeutic efficacy with low side effect. However, conventional...
Calcium-overload cancer therapy has gained more and more attention owing to its good therapeutic efficacy with low side effect. However, conventional...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2200152
SubjectTerms Calcium ions
calcium‐overload therapy
Cancer
Cancer therapies
combination therapy
Copolymers
Fluorescence
Ion channels
Nanoparticles
Nanotechnology
Near infrared radiation
NIR‐II fluorescence imaging
Organs
Overloading
Photodynamic therapy
Polymers
semiconducting polymer nanoparticles
Singlet oxygen
Tumors
Title Capsaicin‐Decorated Semiconducting Polymer Nanoparticles for Light‐Controlled Calcium‐Overload/Photodynamic Combination Therapy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202200152
https://www.ncbi.nlm.nih.gov/pubmed/35398988
https://www.proquest.com/docview/2662269733
https://www.proquest.com/docview/2649255420
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFH6qeqIHoJQlpSBXQuLkTuolkzlWA1WFpotoK_UWeRtRNZNUnZlDOXHpvb-RX8J7cSZ0QAgJblmeE8d5y2f7-TPAO5XrgI5vzJVTKVdjmXKT9z3PUHtChl7TG1qNfHiUHZyrTxf64sEq_sgP0Q24kWU0_poM3Nhp7ydp6HRS0tSBoKQgTU6YErYIFX3u-KMkBq9mdxWMWZyItxasjanoLRdfjkq_Qc1l5NqEnv0nYBaVjhknVzvzmd1xX3_hc_yfr3oKj1tcyvaiIq3DSqiewdoDtsINuBua66mhmfjv3-4_ULcVcapnp5ReX1fEG4ti7KQubyfhhqHbxv54m3bHEBqzEY0DYNFhzI4vsezQlO5yPsGLx2hSZW187-RLPav9bWXwqQy9FfbcG-VhZ5H_4Dmc7388Gx7wdhcH7jA8Cm4wRjrnsCcqrVFBpi7Y8WC8K9J-hg5AOYkgK-QZCqQInkzmrLZeaRsQuQkv5AtYreoqvAKmlDApPilkxikfvN0dDFDMeqNzo0NIgC_-YuFainPaaaMsIjmzKKh5i655E3jfyV9Hco8_Sm4tlKJojXxaILZB8DroS5nAdncbzZPmXEwV6jnJEPujViJN4GVUpu5VUkvavTNPQDQq8Zc6FKeHo1F3tvkvhV7DIzqOCZtbsDq7mYc3CKpm9m1jOD8AK1IeCQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hcgAOvGkNBRYJidM27u7acY4oUAVwSkVTiZu1rwhUx66a5FBOXLjzG_klzHhtQ0AICY62Z_2cxze7428Anqos8ej45lxZFXM1lzHX2dDxFLXHp-g1naa_kaeH6eREvX6fdNWE9C9M4IfoJ9zIMhp_TQZOE9KDH6yhy0VJaweCqoIS9MKXqa13k1W96xmkJIavpr8KRi1O1Fsdb2MsBpvjN-PSb2BzE7s2wefgBpjutkPNyeneemX27KdfGB3_67luwvUWmrLnQZduwSVf3YZrPxEW3oEvY3221LQY_-3z1xeUuSJUdeyYKuzriqhjUYwd1eXFwp8z9NyYkreVdwzRMctpKgCHjkOBfIljx7q0H9cL3PkWraqstRscfahXtbuoNJ6VocPC5L3RHzYLFAh34eTg5Ww84W0jB24xQgquMUxaazEZlUYrL2PrzXw03xfxMEUfoKxEnOWzFAVixE86tSYxTiXGI3gTTsh7sFXVld8BppTQMZ7Jp9oq553ZH41QzDidZDrxPgLefcbCtizn1GyjLAI_syjo9Rb9643gWS9_Fvg9_ii522lF0dr5skB4g_h1NJQygif9YbRQWnbRla_XJEMEkIkScQTbQZv6S8lEUgPPLALR6MRf7qE4nuZ5v3X_XwY9hiuT2TQv8leHbx7AVdof6jd3YWt1vvYPEWOtzKPGir4D7WEiJA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hIiE4lDc1FFgkJE7buLtrxzmihKhAWiLaSr1Z-7JAOHbUJIdy4sKd38gvYcbrmAaEkOBoe9Zer-fxjXf2W4DnKks8Or6CK6tirgoZc531HU9Re3yKXtNpWo18eJQenKo3Z8nZpVX8gR-i--FGltH4azLwuSt6P0lDF7OSpg4EFQUl6ISvqjTOSK9H7zsCKYnRq9leBYMWJ-atNW1jLHqb7TfD0m9YcxO6NrFnfBP0uteh5OTT3mpp9uznXwgd_-e1bsF2C0zZy6BJt-GKr-7AjUt0hXfh61DPF5qm4r9_-TaivBWBqmPHVF9fV0Qci2JsWpcXM3_O0G9jQt7W3THExmxCPwKw6TCUx5fYdqhL-3E1w5Pv0KbKWrve9EO9rN1FpfGuDN0Vpu6N9rCTQIBwD07Hr06GB7zdxoFbjI-CawyS1lpMRaXRysvYelMMin0R91P0AMpKRFk-S1EAP6DUqTWJcSoxHqGbcELeh62qrvwOMKWEjvFOPtVWOe_M_mCAYsbpJNOJ9xHw9VfMbctxTlttlHlgZxY5DW_eDW8ELzr5eWD3-KPk7lop8tbKFzmCG0Svg76UETzrLqN90qSLrny9Ihmif0yUiCN4EJSpe5RMJG3fmUUgGpX4Sx_y48PJpDt6-C-NnsK16WicT14fvX0E1-l0KN7cha3l-co_RoC1NE8aG_oBkkMg3A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capsaicin-Decorated+Semiconducting+Polymer+Nanoparticles+for+Light-Controlled+Calcium-Overload%2FPhotodynamic+Combination+Therapy&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Ni%2C+Xiaoyue&rft.au=Shi%2C+Wenheng&rft.au=Liu%2C+Yaxin&rft.au=Yin%2C+Likun&rft.date=2022-05-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=18&rft.issue=19&rft.spage=e2200152&rft_id=info:doi/10.1002%2Fsmll.202200152&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon