Capsaicin‐Decorated Semiconducting Polymer Nanoparticles for Light‐Controlled Calcium‐Overload/Photodynamic Combination Therapy
Calcium‐overload cancer therapy has gained more and more attention owing to its good therapeutic efficacy with low side effect. However, conventional calcium‐overload therapy is achieved by introducing an additional calcium element into the tumor site by nanomedicines, which may also lead to the cal...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 19; pp. e2200152 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Calcium‐overload cancer therapy has gained more and more attention owing to its good therapeutic efficacy with low side effect. However, conventional calcium‐overload therapy is achieved by introducing an additional calcium element into the tumor site by nanomedicines, which may also lead to the calcium‐overload of normal organs, causing an undesirable side effect. To address such issues, capsaicin‐decorated semiconducting polymer nanoparticles (CSPN) are designed to modulate the calcium ion channel of cancer cells for calcium‐overload cancer therapy without adding an additional calcium element. CSPN is composed of a near‐infrared (NIR) absorbing semiconducting polymer (SP) PCPDTBT and a capsaicin‐conjugated amphiphilic copolymer, PEG‐PHEMA‐Cap. Under NIR laser irradiation, PCPDTBT can generate singlet oxygen (1O2), which not only triggers the release of capsaicin, but also induces photodynamic therapy (PDT). The released capsaicin can further activate transient receptor potential cation channel subfamily V member 1 (TRPV1) of U373 cancer cells, leading to an influx of calcium ions into cells. In addition, the intense NIR‐II fluorescence signal of CSPN makes it suitable for tumor imaging. Thus, this study develops a tumor specific nanotheranostic system for NIR‐II fluorescence imaging‐guided calcium‐overload/PDT combination therapy.
Capsaicin‐decorated semiconducting polymer nanoparticles (CSPN) are designed for calcium‐overload/photodynamic combination therapy. Under laser irradiation, capsaicin will release from CSPN, which can activate transient receptor potential cation channel subfamily V member 1 (TRPV1) of U373 cancer cells, leading to calcium‐overload‐mediated cell death. Such a nanosystem can achieve efficient calcium‐overload therapy without introducing external calcium, showing minimized side effects towards normal organs. |
---|---|
AbstractList | Calcium-overload cancer therapy has gained more and more attention owing to its good therapeutic efficacy with low side effect. However, conventional calcium-overload therapy is achieved by introducing an additional calcium element into the tumor site by nanomedicines, which may also lead to the calcium-overload of normal organs, causing an undesirable side effect. To address such issues, capsaicin-decorated semiconducting polymer nanoparticles (CSPN) are designed to modulate the calcium ion channel of cancer cells for calcium-overload cancer therapy without adding an additional calcium element. CSPN is composed of a near-infrared (NIR) absorbing semiconducting polymer (SP) PCPDTBT and a capsaicin-conjugated amphiphilic copolymer, PEG-PHEMA-Cap. Under NIR laser irradiation, PCPDTBT can generate singlet oxygen (1 O2 ), which not only triggers the release of capsaicin, but also induces photodynamic therapy (PDT). The released capsaicin can further activate transient receptor potential cation channel subfamily V member 1 (TRPV1) of U373 cancer cells, leading to an influx of calcium ions into cells. In addition, the intense NIR-II fluorescence signal of CSPN makes it suitable for tumor imaging. Thus, this study develops a tumor specific nanotheranostic system for NIR-II fluorescence imaging-guided calcium-overload/PDT combination therapy.Calcium-overload cancer therapy has gained more and more attention owing to its good therapeutic efficacy with low side effect. However, conventional calcium-overload therapy is achieved by introducing an additional calcium element into the tumor site by nanomedicines, which may also lead to the calcium-overload of normal organs, causing an undesirable side effect. To address such issues, capsaicin-decorated semiconducting polymer nanoparticles (CSPN) are designed to modulate the calcium ion channel of cancer cells for calcium-overload cancer therapy without adding an additional calcium element. CSPN is composed of a near-infrared (NIR) absorbing semiconducting polymer (SP) PCPDTBT and a capsaicin-conjugated amphiphilic copolymer, PEG-PHEMA-Cap. Under NIR laser irradiation, PCPDTBT can generate singlet oxygen (1 O2 ), which not only triggers the release of capsaicin, but also induces photodynamic therapy (PDT). The released capsaicin can further activate transient receptor potential cation channel subfamily V member 1 (TRPV1) of U373 cancer cells, leading to an influx of calcium ions into cells. In addition, the intense NIR-II fluorescence signal of CSPN makes it suitable for tumor imaging. Thus, this study develops a tumor specific nanotheranostic system for NIR-II fluorescence imaging-guided calcium-overload/PDT combination therapy. Calcium‐overload cancer therapy has gained more and more attention owing to its good therapeutic efficacy with low side effect. However, conventional calcium‐overload therapy is achieved by introducing an additional calcium element into the tumor site by nanomedicines, which may also lead to the calcium‐overload of normal organs, causing an undesirable side effect. To address such issues, capsaicin‐decorated semiconducting polymer nanoparticles (CSPN) are designed to modulate the calcium ion channel of cancer cells for calcium‐overload cancer therapy without adding an additional calcium element. CSPN is composed of a near‐infrared (NIR) absorbing semiconducting polymer (SP) PCPDTBT and a capsaicin‐conjugated amphiphilic copolymer, PEG‐PHEMA‐Cap. Under NIR laser irradiation, PCPDTBT can generate singlet oxygen ( 1 O 2 ), which not only triggers the release of capsaicin, but also induces photodynamic therapy (PDT). The released capsaicin can further activate transient receptor potential cation channel subfamily V member 1 (TRPV1) of U373 cancer cells, leading to an influx of calcium ions into cells. In addition, the intense NIR‐II fluorescence signal of CSPN makes it suitable for tumor imaging. Thus, this study develops a tumor specific nanotheranostic system for NIR‐II fluorescence imaging‐guided calcium‐overload/PDT combination therapy. Calcium-overload cancer therapy has gained more and more attention owing to its good therapeutic efficacy with low side effect. However, conventional calcium-overload therapy is achieved by introducing an additional calcium element into the tumor site by nanomedicines, which may also lead to the calcium-overload of normal organs, causing an undesirable side effect. To address such issues, capsaicin-decorated semiconducting polymer nanoparticles (CSPN) are designed to modulate the calcium ion channel of cancer cells for calcium-overload cancer therapy without adding an additional calcium element. CSPN is composed of a near-infrared (NIR) absorbing semiconducting polymer (SP) PCPDTBT and a capsaicin-conjugated amphiphilic copolymer, PEG-PHEMA-Cap. Under NIR laser irradiation, PCPDTBT can generate singlet oxygen ( O ), which not only triggers the release of capsaicin, but also induces photodynamic therapy (PDT). The released capsaicin can further activate transient receptor potential cation channel subfamily V member 1 (TRPV1) of U373 cancer cells, leading to an influx of calcium ions into cells. In addition, the intense NIR-II fluorescence signal of CSPN makes it suitable for tumor imaging. Thus, this study develops a tumor specific nanotheranostic system for NIR-II fluorescence imaging-guided calcium-overload/PDT combination therapy. Calcium‐overload cancer therapy has gained more and more attention owing to its good therapeutic efficacy with low side effect. However, conventional calcium‐overload therapy is achieved by introducing an additional calcium element into the tumor site by nanomedicines, which may also lead to the calcium‐overload of normal organs, causing an undesirable side effect. To address such issues, capsaicin‐decorated semiconducting polymer nanoparticles (CSPN) are designed to modulate the calcium ion channel of cancer cells for calcium‐overload cancer therapy without adding an additional calcium element. CSPN is composed of a near‐infrared (NIR) absorbing semiconducting polymer (SP) PCPDTBT and a capsaicin‐conjugated amphiphilic copolymer, PEG‐PHEMA‐Cap. Under NIR laser irradiation, PCPDTBT can generate singlet oxygen (1O2), which not only triggers the release of capsaicin, but also induces photodynamic therapy (PDT). The released capsaicin can further activate transient receptor potential cation channel subfamily V member 1 (TRPV1) of U373 cancer cells, leading to an influx of calcium ions into cells. In addition, the intense NIR‐II fluorescence signal of CSPN makes it suitable for tumor imaging. Thus, this study develops a tumor specific nanotheranostic system for NIR‐II fluorescence imaging‐guided calcium‐overload/PDT combination therapy. Capsaicin‐decorated semiconducting polymer nanoparticles (CSPN) are designed for calcium‐overload/photodynamic combination therapy. Under laser irradiation, capsaicin will release from CSPN, which can activate transient receptor potential cation channel subfamily V member 1 (TRPV1) of U373 cancer cells, leading to calcium‐overload‐mediated cell death. Such a nanosystem can achieve efficient calcium‐overload therapy without introducing external calcium, showing minimized side effects towards normal organs. Calcium‐overload cancer therapy has gained more and more attention owing to its good therapeutic efficacy with low side effect. However, conventional calcium‐overload therapy is achieved by introducing an additional calcium element into the tumor site by nanomedicines, which may also lead to the calcium‐overload of normal organs, causing an undesirable side effect. To address such issues, capsaicin‐decorated semiconducting polymer nanoparticles (CSPN) are designed to modulate the calcium ion channel of cancer cells for calcium‐overload cancer therapy without adding an additional calcium element. CSPN is composed of a near‐infrared (NIR) absorbing semiconducting polymer (SP) PCPDTBT and a capsaicin‐conjugated amphiphilic copolymer, PEG‐PHEMA‐Cap. Under NIR laser irradiation, PCPDTBT can generate singlet oxygen (1O2), which not only triggers the release of capsaicin, but also induces photodynamic therapy (PDT). The released capsaicin can further activate transient receptor potential cation channel subfamily V member 1 (TRPV1) of U373 cancer cells, leading to an influx of calcium ions into cells. In addition, the intense NIR‐II fluorescence signal of CSPN makes it suitable for tumor imaging. Thus, this study develops a tumor specific nanotheranostic system for NIR‐II fluorescence imaging‐guided calcium‐overload/PDT combination therapy. |
Author | Liu, Yaxin Shi, Wenheng Guo, Zixin Zhou, Wen Ni, Xiaoyue Fan, Quli Yin, Likun |
Author_xml | – sequence: 1 givenname: Xiaoyue surname: Ni fullname: Ni, Xiaoyue organization: Nanjing University of Posts & Telecommunications – sequence: 2 givenname: Wenheng surname: Shi fullname: Shi, Wenheng organization: Nanjing University of Posts & Telecommunications – sequence: 3 givenname: Yaxin surname: Liu fullname: Liu, Yaxin organization: Nanjing University of Posts & Telecommunications – sequence: 4 givenname: Likun surname: Yin fullname: Yin, Likun organization: Nanjing University of Posts & Telecommunications – sequence: 5 givenname: Zixin surname: Guo fullname: Guo, Zixin organization: Nanjing University of Posts & Telecommunications – sequence: 6 givenname: Wen surname: Zhou fullname: Zhou, Wen email: iamwzhou@njupt.edu.cn organization: Nanjing University of Posts & Telecommunications – sequence: 7 givenname: Quli orcidid: 0000-0002-9387-0165 surname: Fan fullname: Fan, Quli email: iamqlfan@njupt.edu.cn organization: Nanjing University of Posts & Telecommunications |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35398988$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URD_gyhFF4sJlt_Y4ycZHFD6lQCu1nCPHmXRdOXawHVBuvfTOb-SX4LJlkSohTh5ZzzNjz3tMDqyzSMhzRteMUjgNozFroACUsgIekSNWMr4qKxAH-5rRQ3IcwjWlnEG-eUIOecFFJarqiNzWcgpSK21_3vx4g8p5GbHPLnDUytl-VlHbq-zcmWVEn32W1k3SR60MhmxwPmv01TYmtXY2emdMcmtplJ7HdHn2Db1xsj8937ro-sXK1DWr3dhpK6N2NrvcopfT8pQ8HqQJ-Oz-PCFf3r29rD-smrP3H-vXzUpxymElKS-VUhUUvJM5cqqwG8TAgG7KgrNc8ZIBVun3Ba0El6Xqiq7Piw4FCOiBn5BXu76Td19nDLEddVBojLTo5tBCmQsoihxoQl8-QK_d7G16XaJKgFJsOE_Ui3tq7kbs28nrUfql_bPgBKx3gPIuBI_DHmG0vUuwvUuw3SeYhPyBoHT8vazopTb_1sRO-64NLv8Z0l58apq_7i9VOLT0 |
CitedBy_id | crossref_primary_10_1002_admt_202401355 crossref_primary_10_1002_smtd_202201083 crossref_primary_10_1002_macp_202300229 crossref_primary_10_1002_smll_202312141 crossref_primary_10_1002_smsc_202400169 crossref_primary_10_1002_wnan_1865 crossref_primary_10_1002_adhm_202402697 crossref_primary_10_1002_smll_202205647 crossref_primary_10_1002_marc_202300496 crossref_primary_10_1016_j_jconrel_2024_10_029 crossref_primary_10_1002_adhm_202303579 crossref_primary_10_3390_bios12121126 crossref_primary_10_1002_adfm_202408594 crossref_primary_10_1016_j_addr_2023_114821 crossref_primary_10_1021_acsanm_3c00859 crossref_primary_10_1021_acsanm_2c02852 crossref_primary_10_1007_s10853_024_09793_0 crossref_primary_10_1002_adma_202401222 crossref_primary_10_1016_j_cej_2022_141225 crossref_primary_10_1186_s12951_024_02343_5 crossref_primary_10_1016_j_cej_2024_151838 crossref_primary_10_1016_j_jcis_2025_137332 crossref_primary_10_1002_adfm_202420540 crossref_primary_10_1016_j_eurpolymj_2024_113608 crossref_primary_10_3390_pharmaceutics16040479 crossref_primary_10_1016_j_colsurfb_2024_114190 crossref_primary_10_1039_D4NR04454A crossref_primary_10_1016_j_cej_2024_157747 crossref_primary_10_1016_j_ijbiomac_2025_140116 crossref_primary_10_1016_j_ccr_2023_215050 crossref_primary_10_1002_cnma_202300384 crossref_primary_10_1039_D2CC01207C crossref_primary_10_1016_j_cej_2023_147056 |
Cites_doi | 10.1021/acsnano.8b02034 10.1166/jnn.2006.327 10.1002/anie.201907388 10.1039/D0CS00215A 10.1039/D0SC01721C 10.1021/acsnano.0c00043 10.1126/sciadv.aaz8400 10.1038/s41467-021-23194-w 10.1016/j.neulet.2017.08.044 10.1007/s13238-016-0353-7 10.1016/j.bioactmat.2021.05.031 10.1016/j.chempr.2019.06.003 10.1038/s41467-021-21047-0 10.1166/jbn.2016.2322 10.1039/D0CS00664E 10.1021/acsapm.1c00695 10.1002/adhm.201801113 10.1021/jacs.6b05192 10.1016/j.addr.2012.08.004 10.1007/s13770-021-00385-6 10.1002/adfm.201806818 10.2217/nnm.13.198 10.1002/adma.202003130 10.1016/j.molcel.2020.04.017 10.1016/j.drup.2015.06.002 10.1016/j.yjmcc.2009.10.026 10.1002/anie.202015379 10.1021/acs.nanolett.7b05292 10.1002/adma.202007426 10.1002/anie.201909264 10.1002/adma.201906314 10.1002/smll.202004723 10.1021/acs.nanolett.0c04778 10.1166/jbn.2014.1954 10.1073/pnas.1900502116 10.1038/nn2056 10.1039/C9CS00648F 10.1002/smll.201602807 10.1021/acsnano.8b05906 10.1016/j.ejphar.2004.07.037 10.1002/adma.202003458 10.1016/S0140-6736(76)92781-1 10.1002/adma.201806331 10.1002/adma.201706320 10.1039/C9CS00773C |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202200152 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 35398988 10_1002_smll_202200152 SMLL202200152 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of NJUPT funderid: NY221088 – fundername: Natural Science Foundation of Jiangsu University funderid: 21KJB150022 – fundername: Research startup fund of NJUPT funderid: NY220149 – fundername: Natural Science Foundation of NJUPT grantid: NY221088 – fundername: Natural Science Foundation of Jiangsu University grantid: 21KJB150022 – fundername: Research startup fund of NJUPT grantid: NY220149 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3032-a036ccc8253ba4e30cebf9f120765314c3612e868250893a6cb5bd45be9292d23 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 01:38:14 EDT 2025 Sat Jul 19 05:41:27 EDT 2025 Thu Apr 03 07:00:12 EDT 2025 Thu Apr 24 23:02:16 EDT 2025 Tue Jul 01 02:54:11 EDT 2025 Wed Jan 22 16:24:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | NIR-II fluorescence imaging semiconducting polymer nanoparticles combination therapy photodynamic therapy calcium-overload therapy |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3032-a036ccc8253ba4e30cebf9f120765314c3612e868250893a6cb5bd45be9292d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9387-0165 |
PMID | 35398988 |
PQID | 2662269733 |
PQPubID | 1046358 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2649255420 proquest_journals_2662269733 pubmed_primary_35398988 crossref_primary_10_1002_smll_202200152 crossref_citationtrail_10_1002_smll_202200152 wiley_primary_10_1002_smll_202200152_SMLL202200152 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 8 2017; 8 2021; 21 2004; 500 2021; 3 2019; 5 2019; 32 2018; 663 2019; 58 1976; 1 2020; 14 2006; 6 2020; 78 2008; 11 2020; 11 2020; 32 2021; 50 2016; 12 2020; 6 2018; 18 2010; 48 2021; 12 2021; 33 2022; 7 2021; 17 2017; 13 2015; 21 2020; 49 2019; 116 2019; 29 2018; 30 2016; 138 2018; 12 2014; 9 2021; 60 2012; 64 2014; 10 2022; 19 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 49 start-page: 4234 year: 2020 publication-title: Chem. Soc. Rev. – volume: 78 start-page: 1055 year: 2020 publication-title: Mol. Cell – volume: 60 start-page: 6047 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 12 start-page: 1835 year: 2016 publication-title: J. Biomed. Nanotechnol. – volume: 5 start-page: 2171 year: 2019 publication-title: Chem – volume: 10 start-page: 1501 year: 2014 publication-title: J. Biomed. Nanotechnol. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 11 year: 2020 publication-title: Chem. Sci. – volume: 116 year: 2019 publication-title: Proc. Natl. Acad. Sci. USA – volume: 19 start-page: 289 year: 2022 publication-title: Tissue Eng. Regener. Med. – volume: 17 year: 2021 publication-title: Small – volume: 8 start-page: 169 year: 2017 publication-title: Protein Cell – volume: 49 start-page: 3244 year: 2020 publication-title: Chem. Soc. Rev. – volume: 21 start-page: 11 year: 2015 publication-title: Drug Resistance Update – volume: 9 start-page: 2339 year: 2014 publication-title: Nanomedicine – volume: 64 start-page: 1532 year: 2012 publication-title: Adv. Drug Delivery Rev. – volume: 12 year: 2018 publication-title: ACS Nano – volume: 18 start-page: 1498 year: 2018 publication-title: Nano Lett. – volume: 12 start-page: 6806 year: 2018 publication-title: ACS Nano – volume: 3 start-page: 4375 year: 2021 publication-title: ACS Appl. Polym. Mater. – volume: 48 start-page: 1105 year: 2010 publication-title: J. Mol. Cell. Cardiol. – volume: 6 start-page: 1159 year: 2006 publication-title: J. Nanosci. Nanotechnol. – volume: 8 year: 2019 publication-title: Adv. Healthcare Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 138 start-page: 9049 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 21 start-page: 2088 year: 2021 publication-title: Nano Lett. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 12 start-page: 2934 year: 2021 publication-title: Nat. Commun. – volume: 11 start-page: 255 year: 2008 publication-title: Nat. Neurosci. – volume: 49 start-page: 8065 year: 2020 publication-title: Chem. Soc. Rev. – volume: 14 start-page: 2509 year: 2020 publication-title: ACS Nano – volume: 32 year: 2019 publication-title: Adv. Mater. – volume: 500 start-page: 351 year: 2004 publication-title: Eur. J. Pharmacol. – volume: 663 start-page: 86 year: 2018 publication-title: Neurosci. Lett. – volume: 1 start-page: 672 year: 1976 publication-title: Lancet – volume: 12 start-page: 742 year: 2021 publication-title: Nat. Commun. – volume: 13 year: 2017 publication-title: Small – volume: 7 start-page: 112 year: 2022 publication-title: Bioact. Mater. – volume: 50 start-page: 1111 year: 2021 publication-title: Chem. Soc. Rev. – ident: e_1_2_7_6_1 doi: 10.1021/acsnano.8b02034 – ident: e_1_2_7_40_1 doi: 10.1166/jnn.2006.327 – ident: e_1_2_7_3_1 doi: 10.1002/anie.201907388 – ident: e_1_2_7_21_1 doi: 10.1039/D0CS00215A – ident: e_1_2_7_26_1 doi: 10.1039/D0SC01721C – ident: e_1_2_7_18_1 doi: 10.1021/acsnano.0c00043 – ident: e_1_2_7_15_1 doi: 10.1126/sciadv.aaz8400 – ident: e_1_2_7_37_1 doi: 10.1038/s41467-021-23194-w – ident: e_1_2_7_11_1 doi: 10.1016/j.neulet.2017.08.044 – ident: e_1_2_7_32_1 doi: 10.1007/s13238-016-0353-7 – ident: e_1_2_7_45_1 doi: 10.1016/j.bioactmat.2021.05.031 – ident: e_1_2_7_7_1 doi: 10.1016/j.chempr.2019.06.003 – ident: e_1_2_7_23_1 doi: 10.1038/s41467-021-21047-0 – ident: e_1_2_7_43_1 doi: 10.1166/jbn.2016.2322 – ident: e_1_2_7_19_1 doi: 10.1039/D0CS00664E – ident: e_1_2_7_38_1 doi: 10.1021/acsapm.1c00695 – ident: e_1_2_7_8_1 doi: 10.1002/adhm.201801113 – ident: e_1_2_7_27_1 doi: 10.1021/jacs.6b05192 – ident: e_1_2_7_13_1 doi: 10.1016/j.addr.2012.08.004 – ident: e_1_2_7_29_1 doi: 10.1007/s13770-021-00385-6 – ident: e_1_2_7_35_1 doi: 10.1002/adfm.201806818 – ident: e_1_2_7_41_1 doi: 10.2217/nnm.13.198 – ident: e_1_2_7_2_1 doi: 10.1002/adma.202003130 – ident: e_1_2_7_5_1 doi: 10.1016/j.molcel.2020.04.017 – ident: e_1_2_7_30_1 doi: 10.1016/j.drup.2015.06.002 – ident: e_1_2_7_12_1 doi: 10.1016/j.yjmcc.2009.10.026 – ident: e_1_2_7_28_1 doi: 10.1002/anie.202015379 – ident: e_1_2_7_33_1 doi: 10.1021/acs.nanolett.7b05292 – ident: e_1_2_7_9_1 doi: 10.1002/adma.202007426 – ident: e_1_2_7_24_1 doi: 10.1002/anie.201909264 – ident: e_1_2_7_36_1 doi: 10.1002/adma.201906314 – ident: e_1_2_7_17_1 doi: 10.1002/smll.202004723 – ident: e_1_2_7_4_1 doi: 10.1021/acs.nanolett.0c04778 – ident: e_1_2_7_42_1 doi: 10.1166/jbn.2014.1954 – ident: e_1_2_7_44_1 doi: 10.1073/pnas.1900502116 – ident: e_1_2_7_31_1 doi: 10.1038/nn2056 – ident: e_1_2_7_1_1 doi: 10.1039/C9CS00648F – ident: e_1_2_7_25_1 doi: 10.1002/smll.201602807 – ident: e_1_2_7_34_1 doi: 10.1021/acsnano.8b05906 – ident: e_1_2_7_39_1 doi: 10.1016/j.ejphar.2004.07.037 – ident: e_1_2_7_22_1 doi: 10.1002/adma.202003458 – ident: e_1_2_7_10_1 doi: 10.1016/S0140-6736(76)92781-1 – ident: e_1_2_7_14_1 doi: 10.1002/adma.201806331 – ident: e_1_2_7_16_1 doi: 10.1002/adma.201706320 – ident: e_1_2_7_20_1 doi: 10.1039/C9CS00773C |
SSID | ssj0031247 |
Score | 2.598138 |
Snippet | Calcium‐overload cancer therapy has gained more and more attention owing to its good therapeutic efficacy with low side effect. However, conventional... Calcium-overload cancer therapy has gained more and more attention owing to its good therapeutic efficacy with low side effect. However, conventional... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2200152 |
SubjectTerms | Calcium ions calcium‐overload therapy Cancer Cancer therapies combination therapy Copolymers Fluorescence Ion channels Nanoparticles Nanotechnology Near infrared radiation NIR‐II fluorescence imaging Organs Overloading Photodynamic therapy Polymers semiconducting polymer nanoparticles Singlet oxygen Tumors |
Title | Capsaicin‐Decorated Semiconducting Polymer Nanoparticles for Light‐Controlled Calcium‐Overload/Photodynamic Combination Therapy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202200152 https://www.ncbi.nlm.nih.gov/pubmed/35398988 https://www.proquest.com/docview/2662269733 https://www.proquest.com/docview/2649255420 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFH6qeqIHoJQlpSBXQuLkTuolkzlWA1WFpotoK_UWeRtRNZNUnZlDOXHpvb-RX8J7cSZ0QAgJblmeE8d5y2f7-TPAO5XrgI5vzJVTKVdjmXKT9z3PUHtChl7TG1qNfHiUHZyrTxf64sEq_sgP0Q24kWU0_poM3Nhp7ydp6HRS0tSBoKQgTU6YErYIFX3u-KMkBq9mdxWMWZyItxasjanoLRdfjkq_Qc1l5NqEnv0nYBaVjhknVzvzmd1xX3_hc_yfr3oKj1tcyvaiIq3DSqiewdoDtsINuBua66mhmfjv3-4_ULcVcapnp5ReX1fEG4ti7KQubyfhhqHbxv54m3bHEBqzEY0DYNFhzI4vsezQlO5yPsGLx2hSZW187-RLPav9bWXwqQy9FfbcG-VhZ5H_4Dmc7388Gx7wdhcH7jA8Cm4wRjrnsCcqrVFBpi7Y8WC8K9J-hg5AOYkgK-QZCqQInkzmrLZeaRsQuQkv5AtYreoqvAKmlDApPilkxikfvN0dDFDMeqNzo0NIgC_-YuFainPaaaMsIjmzKKh5i655E3jfyV9Hco8_Sm4tlKJojXxaILZB8DroS5nAdncbzZPmXEwV6jnJEPujViJN4GVUpu5VUkvavTNPQDQq8Zc6FKeHo1F3tvkvhV7DIzqOCZtbsDq7mYc3CKpm9m1jOD8AK1IeCQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hcgAOvGkNBRYJidM27u7acY4oUAVwSkVTiZu1rwhUx66a5FBOXLjzG_klzHhtQ0AICY62Z_2cxze7428Anqos8ej45lxZFXM1lzHX2dDxFLXHp-g1naa_kaeH6eREvX6fdNWE9C9M4IfoJ9zIMhp_TQZOE9KDH6yhy0VJaweCqoIS9MKXqa13k1W96xmkJIavpr8KRi1O1Fsdb2MsBpvjN-PSb2BzE7s2wefgBpjutkPNyeneemX27KdfGB3_67luwvUWmrLnQZduwSVf3YZrPxEW3oEvY3221LQY_-3z1xeUuSJUdeyYKuzriqhjUYwd1eXFwp8z9NyYkreVdwzRMctpKgCHjkOBfIljx7q0H9cL3PkWraqstRscfahXtbuoNJ6VocPC5L3RHzYLFAh34eTg5Ww84W0jB24xQgquMUxaazEZlUYrL2PrzXw03xfxMEUfoKxEnOWzFAVixE86tSYxTiXGI3gTTsh7sFXVld8BppTQMZ7Jp9oq553ZH41QzDidZDrxPgLefcbCtizn1GyjLAI_syjo9Rb9643gWS9_Fvg9_ii522lF0dr5skB4g_h1NJQygif9YbRQWnbRla_XJEMEkIkScQTbQZv6S8lEUgPPLALR6MRf7qE4nuZ5v3X_XwY9hiuT2TQv8leHbx7AVdof6jd3YWt1vvYPEWOtzKPGir4D7WEiJA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hIiE4lDc1FFgkJE7buLtrxzmihKhAWiLaSr1Z-7JAOHbUJIdy4sKd38gvYcbrmAaEkOBoe9Zer-fxjXf2W4DnKks8Or6CK6tirgoZc531HU9Re3yKXtNpWo18eJQenKo3Z8nZpVX8gR-i--FGltH4azLwuSt6P0lDF7OSpg4EFQUl6ISvqjTOSK9H7zsCKYnRq9leBYMWJ-atNW1jLHqb7TfD0m9YcxO6NrFnfBP0uteh5OTT3mpp9uznXwgd_-e1bsF2C0zZy6BJt-GKr-7AjUt0hXfh61DPF5qm4r9_-TaivBWBqmPHVF9fV0Qci2JsWpcXM3_O0G9jQt7W3THExmxCPwKw6TCUx5fYdqhL-3E1w5Pv0KbKWrve9EO9rN1FpfGuDN0Vpu6N9rCTQIBwD07Hr06GB7zdxoFbjI-CawyS1lpMRaXRysvYelMMin0R91P0AMpKRFk-S1EAP6DUqTWJcSoxHqGbcELeh62qrvwOMKWEjvFOPtVWOe_M_mCAYsbpJNOJ9xHw9VfMbctxTlttlHlgZxY5DW_eDW8ELzr5eWD3-KPk7lop8tbKFzmCG0Svg76UETzrLqN90qSLrny9Ihmif0yUiCN4EJSpe5RMJG3fmUUgGpX4Sx_y48PJpDt6-C-NnsK16WicT14fvX0E1-l0KN7cha3l-co_RoC1NE8aG_oBkkMg3A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capsaicin-Decorated+Semiconducting+Polymer+Nanoparticles+for+Light-Controlled+Calcium-Overload%2FPhotodynamic+Combination+Therapy&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Ni%2C+Xiaoyue&rft.au=Shi%2C+Wenheng&rft.au=Liu%2C+Yaxin&rft.au=Yin%2C+Likun&rft.date=2022-05-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=18&rft.issue=19&rft.spage=e2200152&rft_id=info:doi/10.1002%2Fsmll.202200152&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |