E-Groups and E-Rings

An associative ring R is called an E-ring if the canonical homomorphism R ≅ E( R + ) is an isomorphism. Additive groups of E -rings are called E-groups . In other words, an Abelian group A is an E -group if and only if A ≅ End A and the endomorphism ring E( A ) is commutative. In this paper, we give...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical sciences (New York, N.Y.) Vol. 256; no. 3; pp. 341 - 361
Main Authors Krylov, P. A., Tuganbaev, A. A., Tsarev, A. V.
Format Journal Article
LanguageEnglish
Published New York Springer US 04.07.2021
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An associative ring R is called an E-ring if the canonical homomorphism R ≅ E( R + ) is an isomorphism. Additive groups of E -rings are called E-groups . In other words, an Abelian group A is an E -group if and only if A ≅ End A and the endomorphism ring E( A ) is commutative. In this paper, we give a survey of the main results on E -groups and E -rings and also consider some of their generalizations: ε -closed groups, T -rings, A -rings, the groups admitting only commutative multiplications, etc.
AbstractList An associative ring R is called an E-ring if the canonical homomorphism R [congruent to] E([R.sup.+]) is an isomorphism. Additive groups of E-rings are called E-groups. In other words, an Abelian group A is an E-group if and only if A [congruent to] End A and the endomorphism ring E(A) is commutative. In this paper, we give a survey of the main results on E-groups and E-rings and also consider some of their generalizations: [epsilon]-closed groups, T-rings, A-rings, the groups admitting only commutative multiplications, etc.
An associative ring R is called an E-ring if the canonical homomorphism R ≅ E( R + ) is an isomorphism. Additive groups of E -rings are called E-groups . In other words, an Abelian group A is an E -group if and only if A ≅ End A and the endomorphism ring E( A ) is commutative. In this paper, we give a survey of the main results on E -groups and E -rings and also consider some of their generalizations: ε -closed groups, T -rings, A -rings, the groups admitting only commutative multiplications, etc.
An associative ring R is called an E-ring if the canonical homomorphism R [congruent to] E([R.sup.+]) is an isomorphism. Additive groups of E-rings are called E-groups. In other words, an Abelian group A is an E-group if and only if A [congruent to] End A and the endomorphism ring E(A) is commutative. In this paper, we give a survey of the main results on E-groups and E-rings and also consider some of their generalizations: [epsilon]-closed groups, T-rings, A-rings, the groups admitting only commutative multiplications, etc. Keywords and phrases: Abelian group, [epsilon]-closed group, E-group, E-ring, T-ring, quotient divisible group, A-ring, endomorphism ring. AMS Subject Classification: 20Kxx
An associative ring R is called an E-ring if the canonical homomorphism R ≅ E(R+) is an isomorphism. Additive groups of E-rings are called E-groups. In other words, an Abelian group A is an E-group if and only if A ≅ End A and the endomorphism ring E(A) is commutative. In this paper, we give a survey of the main results on E-groups and E-rings and also consider some of their generalizations: ε-closed groups, T-rings, A-rings, the groups admitting only commutative multiplications, etc.
Audience Academic
Author Tuganbaev, A. A.
Krylov, P. A.
Tsarev, A. V.
Author_xml – sequence: 1
  givenname: P. A.
  surname: Krylov
  fullname: Krylov, P. A.
  email: krylov@math.tsu.ru
  organization: National Research Tomsk State University
– sequence: 2
  givenname: A. A.
  surname: Tuganbaev
  fullname: Tuganbaev, A. A.
  organization: Moscow Power Engineering Institute (National Research University), M. V. Lomonosov Moscow State University
– sequence: 3
  givenname: A. V.
  surname: Tsarev
  fullname: Tsarev, A. V.
  organization: Moscow Pedagogical State University
BookMark eNp9kcFLwzAUh4NMcJvePHkaePKQmTRNkxzHmHMgCFPPIU2TktG1M2lB_3szK4zJGDm88Pi-F_J-IzCom9oAcIfRFCPEHgNGgnKIEgwRTQmCyQUYYsoI5EzQQbwjlkBCWHoFRiFsUJQyTobgdgGXvul2YaLqYrKAa1eX4RpcWlUFc_NXx-DjafE-f4Yvr8vVfPYCNUEkgTw3JBEapTq3trBKGJwXNhNZTgxhGUsRz5lSObbCqIKmvDCksCgTSusCU07G4L6fu_PNZ2dCKzdN5-v4pExomnJBU5EcqFJVRrraNq1XeuuCljNGEI2DcBYpeIIqTW28quKyrIvtI356go-nMFunTwoPR0JkWvPVlqoLQa7e1scs71ntmxC8sVK7VrUuKl65SmIk97HJPjYZY5O_scn9b5N_6s67rfLf5yXSSyHCdWn8YZFnrB9V-Kb3
CitedBy_id crossref_primary_10_1007_s13366_021_00604_0
Cites_doi 10.2989/16073600009485973
10.1016/S0022-4049(03)00090-2
10.1017/S1446788700012763
10.4213/mzm11711
10.1007/BFb0094245
10.1090/conm/273/04425
10.1090/conm/087/995278
10.1007/978-1-4757-3180-4_18
10.1080/00927872.2014.896374
10.1007/978-94-017-0345-1
10.1007/978-3-0348-7591-2_18
10.1201/9780824750817.ch22
10.1081/AGB-200027758
10.1090/S0002-9939-98-04230-0
10.1007/BF01361704
10.1007/BF01420290
10.1017/S0004972700017731
10.1023/B:SIMJ.0000013022.52517.d8
10.1016/0021-8693(88)90266-9
10.4064/cm96-2-10
10.1007/BF01220893
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2021
COPYRIGHT 2021 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: COPYRIGHT 2021 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
ISR
DOI 10.1007/s10958-021-05430-2
DatabaseName CrossRef
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList





DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1573-8795
EndPage 361
ExternalDocumentID A730558316
10_1007_s10958_021_05430_2
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZWQNP
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
AEIIB
ABRTQ
ID FETCH-LOGICAL-c3032-8be329c04cbffdfa9e1bdf696b3e3767408b7aab1f9ead548de3df069accd1583
IEDL.DBID U2A
ISSN 1072-3374
IngestDate Fri Jul 25 11:02:28 EDT 2025
Tue Jun 17 21:45:50 EDT 2025
Thu Jun 12 23:14:17 EDT 2025
Tue Jun 10 20:47:54 EDT 2025
Fri Jun 27 03:58:39 EDT 2025
Thu Apr 24 23:01:18 EDT 2025
Tue Jul 01 01:42:19 EDT 2025
Fri Feb 21 02:48:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Abelian group
ring
quotient divisible group
endomorphism ring
20Kxx
closed group
group
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3032-8be329c04cbffdfa9e1bdf696b3e3767408b7aab1f9ead548de3df069accd1583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2544895492
PQPubID 2043545
PageCount 21
ParticipantIDs proquest_journals_2544895492
gale_infotracmisc_A730558316
gale_infotracgeneralonefile_A730558316
gale_infotracacademiconefile_A730558316
gale_incontextgauss_ISR_A730558316
crossref_citationtrail_10_1007_s10958_021_05430_2
crossref_primary_10_1007_s10958_021_05430_2
springer_journals_10_1007_s10958_021_05430_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210704
PublicationDateYYYYMMDD 2021-07-04
PublicationDate_xml – month: 07
  year: 2021
  text: 20210704
  day: 04
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle A Translation of Selected Russian- and Ukrainian-language Serial Publications in Mathematics
PublicationTitle Journal of mathematical sciences (New York, N.Y.)
PublicationTitleAbbrev J Math Sci
PublicationYear 2021
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References DugasMFeigelstockSA-RingsColloq. Math.2003962277292201036010.4064/cm96-2-10
SchultzPPeriodic homomorphism sequences of abelian groupsArch. Math.19702113213526827410.1007/BF01220893
DugasMAA-RingsCommun. Algebra2004321038533860209743310.1081/AGB-200027758
A. V. Tsarev, “T-Rings and quotient divisible groups of rank 1,” Vestn. Tomsk. Gos. Univ. Mat. Mekh., No. 4, 50–53 (2013).
FuchsLAbelian Groups1960New York–Oxford–London–ParisPergamon Press0100.02803
L. Fuchs, Infinite Abelian Groups, Vol. I, Academic Press, New York (1970).
GrishinAVTsarevAVε-closed groups and modulesFundam. Prikl. Mat.2012172971062904288
TimoshenkoEAT-radicals and E-radicals in the category of modulesSib. Mat. Zh.2004451201210204876310.1023/B:SIMJ.0000013022.52517.d8
TimoshenkoEATsarevAVSequences of endomorphism groups of Abelian groupsMat. Zametki20181042309317383350510.4213/mzm11711
GrishinAVStrongly indecomposable localizations of the ring of algebraic integersCommun. Algebra201543938163822336084910.1080/00927872.2014.896374
DugasMVinsonhalerCTwo-side E-ringsJ. Pure Appl. Algebra200318587102200642110.1016/S0022-4049(03)00090-2
MaderAVinsonhalerCTorsion-free E-modulesJ. Algebra1988115240141194326410.1016/0021-8693(88)90266-9
D. M. Arnold, “Finite rank torsion free abelian groups and rings,” in: Lect. Notes Math., 931, Springer-Verlag, New York (1982).
BlagoveshchenskayaEIvanovGSchultzPThe Baer–Kaplansky theorem for almost completely decomposable groupsContemp. Math.20012738593181715310.1090/conm/273/04425
R. S. Pierce, “E-Modules,” in: Abelian Group Theory, Contemp. Math., 87, Am. Math. Soc., Providence, Rhode Island (1989), pp. 221–240.
A. A. Fomin, “Purely free groups,” in: Abelian Groups and Modules [in Russian], Tomsk (1986), pp. 145–164.
M. A. Prikhodovskii, Isomorphisms of tensor products of modules and T-modules [in Russian], Ph.D. thesis, Tomsk (2002).
BeaumontRAPierceRSSubrings of algebraic number fieldsActa Sci. Math. Szeged.1961222022161448950117.02807
BeaumontRAPierceRSTorsion free ringsIll. J. Math.19615161981487060108.03802
BowshellRASchultzPUnital rings whose additive endomorphisms commuteMath. Ann.1977228319721449869110.1007/BF01420290
C. Vinsonhaler, “E-Rings and related structures,” in: NonNoetherian Commutative Ring Theory, Math. Appl., 520, Kluwer, Dordrecht (2002), pp. 387–402.
WilsonGVAdditive groups of T-ringsProc. Am. Math. Soc.19879922192208707740611.20035
KrylovPATuganbaevAAIdempotent functors and localizations in the categories of modules and Abelian groupsFundam. Prikl. Mat.201016775159
DavydovaOIA quotient divisible Abelian groups of rank 1Fundam. Prikl. Mat.200713325332359994
S. Feigelstock, J. Hausen, and R. Raphael, “Groups which map onto their endomorphism rings,” in: Proc. Dublin Conf., 1998, Basel (1999), pp. 231–241.
FeigelstockSFull subrings of E-ringsBull. Austr. Math. Soc.199654275280141153710.1017/S0004972700017731
R. Göbel, S. Shelah, and L. Strüngmann, Generalized E-Rings, arxiv.org/pdf/math/0404271 (2003).
O. A. Karpov, “Abelian groups admitting only commutative multiplications,” to appear.
KrylovPAMikhalevAVTuganbaevAAEndomorphism Rings of Abelian Groups2003Dordrecht–Boston–LondonSpringer-Verlag10.1007/978-94-017-0345-1
FominAAWicklessWQuotient divisible Abelian groupsProc. Am. Math. Soc.199812614552144382610.1090/S0002-9939-98-04230-0
BeaumontRAPierceRSIsomorphic direct summands of abelian groupsMath. Ann.19641531213716864010.1007/BF01361704
FeigelstockSAdditive groups of commutative ringsQuaest. Math.2000232241245179574110.2989/16073600009485973
FominAAAbelian groups with free subgroups of infinite index and their endomorphism groupsMat. Zametki1984362179187759431
FrigerMDOn rigid torsion-free ringsSib. Mat. Zh.19862732172198539030603.16015
L. Fuchs, Infinite Abelian Groups, Vol. II, Academic Press, New York (1973).
SchultzPThe endomorphism ring of the additive group of a ringJ. Austr. Math. Soc.197315606933821810.1017/S1446788700012763
RA Beaumont (5430_CR4) 1964; 153
AV Grishin (5430_CR22) 2015; 43
M Dugas (5430_CR10) 2003; 185
RA Beaumont (5430_CR3) 1961; 5
AA Fomin (5430_CR14) 1984; 36
AA Fomin (5430_CR16) 1998; 126
GV Wilson (5430_CR36) 1987; 99
5430_CR28
5430_CR29
PA Krylov (5430_CR25) 2003
L Fuchs (5430_CR18) 1960
S Feigelstock (5430_CR11) 1996; 54
P Schultz (5430_CR30) 1970; 21
5430_CR20
5430_CR21
RA Beaumont (5430_CR2) 1961; 22
A Mader (5430_CR27) 1988; 115
5430_CR24
P Schultz (5430_CR31) 1973; 15
PA Krylov (5430_CR26) 2010; 16
5430_CR1
OI Davydova (5430_CR7) 2007; 13
RA Bowshell (5430_CR6) 1977; 228
E Blagoveshchenskaya (5430_CR5) 2001; 273
AV Grishin (5430_CR23) 2012; 17
M Dugas (5430_CR8) 2004; 32
S Feigelstock (5430_CR12) 2000; 23
5430_CR19
MD Friger (5430_CR17) 1986; 27
M Dugas (5430_CR9) 2003; 96
5430_CR34
5430_CR13
5430_CR35
EA Timoshenko (5430_CR32) 2004; 45
5430_CR15
EA Timoshenko (5430_CR33) 2018; 104
References_xml – reference: TimoshenkoEATsarevAVSequences of endomorphism groups of Abelian groupsMat. Zametki20181042309317383350510.4213/mzm11711
– reference: FrigerMDOn rigid torsion-free ringsSib. Mat. Zh.19862732172198539030603.16015
– reference: L. Fuchs, Infinite Abelian Groups, Vol. I, Academic Press, New York (1970).
– reference: MaderAVinsonhalerCTorsion-free E-modulesJ. Algebra1988115240141194326410.1016/0021-8693(88)90266-9
– reference: R. Göbel, S. Shelah, and L. Strüngmann, Generalized E-Rings, arxiv.org/pdf/math/0404271 (2003).
– reference: GrishinAVStrongly indecomposable localizations of the ring of algebraic integersCommun. Algebra201543938163822336084910.1080/00927872.2014.896374
– reference: KrylovPAMikhalevAVTuganbaevAAEndomorphism Rings of Abelian Groups2003Dordrecht–Boston–LondonSpringer-Verlag10.1007/978-94-017-0345-1
– reference: FuchsLAbelian Groups1960New York–Oxford–London–ParisPergamon Press0100.02803
– reference: A. V. Tsarev, “T-Rings and quotient divisible groups of rank 1,” Vestn. Tomsk. Gos. Univ. Mat. Mekh., No. 4, 50–53 (2013).
– reference: FominAAAbelian groups with free subgroups of infinite index and their endomorphism groupsMat. Zametki1984362179187759431
– reference: FeigelstockSAdditive groups of commutative ringsQuaest. Math.2000232241245179574110.2989/16073600009485973
– reference: KrylovPATuganbaevAAIdempotent functors and localizations in the categories of modules and Abelian groupsFundam. Prikl. Mat.201016775159
– reference: GrishinAVTsarevAVε-closed groups and modulesFundam. Prikl. Mat.2012172971062904288
– reference: WilsonGVAdditive groups of T-ringsProc. Am. Math. Soc.19879922192208707740611.20035
– reference: SchultzPPeriodic homomorphism sequences of abelian groupsArch. Math.19702113213526827410.1007/BF01220893
– reference: O. A. Karpov, “Abelian groups admitting only commutative multiplications,” to appear.
– reference: FeigelstockSFull subrings of E-ringsBull. Austr. Math. Soc.199654275280141153710.1017/S0004972700017731
– reference: M. A. Prikhodovskii, Isomorphisms of tensor products of modules and T-modules [in Russian], Ph.D. thesis, Tomsk (2002).
– reference: BeaumontRAPierceRSTorsion free ringsIll. J. Math.19615161981487060108.03802
– reference: DavydovaOIA quotient divisible Abelian groups of rank 1Fundam. Prikl. Mat.200713325332359994
– reference: DugasMFeigelstockSA-RingsColloq. Math.2003962277292201036010.4064/cm96-2-10
– reference: FominAAWicklessWQuotient divisible Abelian groupsProc. Am. Math. Soc.199812614552144382610.1090/S0002-9939-98-04230-0
– reference: DugasMAA-RingsCommun. Algebra2004321038533860209743310.1081/AGB-200027758
– reference: SchultzPThe endomorphism ring of the additive group of a ringJ. Austr. Math. Soc.197315606933821810.1017/S1446788700012763
– reference: R. S. Pierce, “E-Modules,” in: Abelian Group Theory, Contemp. Math., 87, Am. Math. Soc., Providence, Rhode Island (1989), pp. 221–240.
– reference: C. Vinsonhaler, “E-Rings and related structures,” in: NonNoetherian Commutative Ring Theory, Math. Appl., 520, Kluwer, Dordrecht (2002), pp. 387–402.
– reference: BowshellRASchultzPUnital rings whose additive endomorphisms commuteMath. Ann.1977228319721449869110.1007/BF01420290
– reference: BeaumontRAPierceRSIsomorphic direct summands of abelian groupsMath. Ann.19641531213716864010.1007/BF01361704
– reference: BeaumontRAPierceRSSubrings of algebraic number fieldsActa Sci. Math. Szeged.1961222022161448950117.02807
– reference: L. Fuchs, Infinite Abelian Groups, Vol. II, Academic Press, New York (1973).
– reference: TimoshenkoEAT-radicals and E-radicals in the category of modulesSib. Mat. Zh.2004451201210204876310.1023/B:SIMJ.0000013022.52517.d8
– reference: S. Feigelstock, J. Hausen, and R. Raphael, “Groups which map onto their endomorphism rings,” in: Proc. Dublin Conf., 1998, Basel (1999), pp. 231–241.
– reference: A. A. Fomin, “Purely free groups,” in: Abelian Groups and Modules [in Russian], Tomsk (1986), pp. 145–164.
– reference: BlagoveshchenskayaEIvanovGSchultzPThe Baer–Kaplansky theorem for almost completely decomposable groupsContemp. Math.20012738593181715310.1090/conm/273/04425
– reference: DugasMVinsonhalerCTwo-side E-ringsJ. Pure Appl. Algebra200318587102200642110.1016/S0022-4049(03)00090-2
– reference: D. M. Arnold, “Finite rank torsion free abelian groups and rings,” in: Lect. Notes Math., 931, Springer-Verlag, New York (1982).
– volume: 23
  start-page: 241
  issue: 2
  year: 2000
  ident: 5430_CR12
  publication-title: Quaest. Math.
  doi: 10.2989/16073600009485973
– volume: 185
  start-page: 87
  year: 2003
  ident: 5430_CR10
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/S0022-4049(03)00090-2
– volume: 15
  start-page: 60
  year: 1973
  ident: 5430_CR31
  publication-title: J. Austr. Math. Soc.
  doi: 10.1017/S1446788700012763
– volume-title: Abelian Groups
  year: 1960
  ident: 5430_CR18
– volume: 104
  start-page: 309
  issue: 2
  year: 2018
  ident: 5430_CR33
  publication-title: Mat. Zametki
  doi: 10.4213/mzm11711
– ident: 5430_CR1
  doi: 10.1007/BFb0094245
– volume: 273
  start-page: 85
  year: 2001
  ident: 5430_CR5
  publication-title: Contemp. Math.
  doi: 10.1090/conm/273/04425
– ident: 5430_CR28
  doi: 10.1090/conm/087/995278
– ident: 5430_CR35
  doi: 10.1007/978-1-4757-3180-4_18
– volume: 99
  start-page: 219
  issue: 2
  year: 1987
  ident: 5430_CR36
  publication-title: Proc. Am. Math. Soc.
– volume: 43
  start-page: 3816
  issue: 9
  year: 2015
  ident: 5430_CR22
  publication-title: Commun. Algebra
  doi: 10.1080/00927872.2014.896374
– volume-title: Endomorphism Rings of Abelian Groups
  year: 2003
  ident: 5430_CR25
  doi: 10.1007/978-94-017-0345-1
– ident: 5430_CR13
  doi: 10.1007/978-3-0348-7591-2_18
– volume: 36
  start-page: 179
  issue: 2
  year: 1984
  ident: 5430_CR14
  publication-title: Mat. Zametki
– ident: 5430_CR21
  doi: 10.1201/9780824750817.ch22
– volume: 32
  start-page: 3853
  issue: 10
  year: 2004
  ident: 5430_CR8
  publication-title: Commun. Algebra
  doi: 10.1081/AGB-200027758
– volume: 126
  start-page: 45
  issue: 1
  year: 1998
  ident: 5430_CR16
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-98-04230-0
– volume: 17
  start-page: 97
  issue: 2
  year: 2012
  ident: 5430_CR23
  publication-title: Fundam. Prikl. Mat.
– volume: 153
  start-page: 21
  issue: 1
  year: 1964
  ident: 5430_CR4
  publication-title: Math. Ann.
  doi: 10.1007/BF01361704
– volume: 13
  start-page: 25
  issue: 3
  year: 2007
  ident: 5430_CR7
  publication-title: Fundam. Prikl. Mat.
– volume: 228
  start-page: 197
  issue: 3
  year: 1977
  ident: 5430_CR6
  publication-title: Math. Ann.
  doi: 10.1007/BF01420290
– volume: 54
  start-page: 275
  year: 1996
  ident: 5430_CR11
  publication-title: Bull. Austr. Math. Soc.
  doi: 10.1017/S0004972700017731
– ident: 5430_CR20
– volume: 16
  start-page: 75
  issue: 7
  year: 2010
  ident: 5430_CR26
  publication-title: Fundam. Prikl. Mat.
– volume: 45
  start-page: 201
  issue: 1
  year: 2004
  ident: 5430_CR32
  publication-title: Sib. Mat. Zh.
  doi: 10.1023/B:SIMJ.0000013022.52517.d8
– ident: 5430_CR29
– volume: 22
  start-page: 202
  year: 1961
  ident: 5430_CR2
  publication-title: Acta Sci. Math. Szeged.
– ident: 5430_CR24
– volume: 115
  start-page: 401
  issue: 2
  year: 1988
  ident: 5430_CR27
  publication-title: J. Algebra
  doi: 10.1016/0021-8693(88)90266-9
– volume: 5
  start-page: 61
  issue: 1
  year: 1961
  ident: 5430_CR3
  publication-title: Ill. J. Math.
– volume: 96
  start-page: 277
  issue: 2
  year: 2003
  ident: 5430_CR9
  publication-title: Colloq. Math.
  doi: 10.4064/cm96-2-10
– volume: 27
  start-page: 217
  issue: 3
  year: 1986
  ident: 5430_CR17
  publication-title: Sib. Mat. Zh.
– ident: 5430_CR19
– ident: 5430_CR34
– ident: 5430_CR15
– volume: 21
  start-page: 132
  year: 1970
  ident: 5430_CR30
  publication-title: Arch. Math.
  doi: 10.1007/BF01220893
SSID ssj0007683
Score 2.2131107
Snippet An associative ring R is called an E-ring if the canonical homomorphism R ≅ E( R + ) is an isomorphism. Additive groups of E -rings are called E-groups . In...
An associative ring R is called an E-ring if the canonical homomorphism R [congruent to] E([R.sup.+]) is an isomorphism. Additive groups of E-rings are called...
An associative ring R is called an E-ring if the canonical homomorphism R ≅ E(R+) is an isomorphism. Additive groups of E-rings are called E-groups. In other...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 341
SubjectTerms Associativity
Electronic discussion groups
Group theory
Homomorphisms
Isomorphism
Mathematics
Mathematics and Statistics
Rings (mathematics)
Surveys
Title E-Groups and E-Rings
URI https://link.springer.com/article/10.1007/s10958-021-05430-2
https://www.proquest.com/docview/2544895492
Volume 256
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQu8CAgIIolKpCCAawFMfOa0whpYDKUKhUJstx7C4oRaT9__jyKAQKElMGf3n4zrk723efETozLshNAjjQxKFAqu1TLLRS2BaCaOEz7dlQ7zx6dIcTdj91pmVRWFZlu1dbkrml_lLsFjg-hpQCE2ZQCxvD23Rg7m5G8cQOV_bXBNBFWr1nY0o9VpbKrH9GzR19N8o_dkdzpzPYQdtltNgLC_Xuog2V7qGt0YpqNWuhVoTz9aOsJ9KkF-ExLH3vo8kger4e4vKoAyyNDzE2KVbUDqTFZKx1okWgSJxoN3BjqoBvhVl-7AkREx0Y1ZtZRqJooi03EFImxEj4ADXSeaoOUc-lzGM-IUJ6NnNE4gPHnQokoTA10LKNSNVjLksecDiO4pV_MhiDlLiREs-lxO02ulzd81awYPyJPgVBcqCXSCF_ZSaWWcbvnsY89IBhzKfEbaOLEqTn5vVSlOUAphPASFVDnteQs4KPex2wUwOaH0XWmyvF8vJHzTgwtPmw1Wm--qpS9mfz7508-h_8GG3a-bDzsMU6qLF4X6oTE84s4i5qhv2b_gCuty8PUTcfzR8pqOg9
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6MHtSDUdGIohJj9KBNttvubvdIDAQUOCAk3Jput-ViFuPC_7ezD3AVTTz320dn2plpO_MVoVvrgvw4hAtNPAqk2pxiabTGrpTESM5M4EK982DodyfseepNi6KwtMx2L48kM0v9pdgt9DiGlAIbZlAHW8O7Y4MBDolcE7e1sr82gM7T6gMXUxqwolRm8zsq7ui7Uf5xOpo5nc4hOiiixWYrV-8R2tLJMdofrKhW0xqqtXG2f5Q2ZRI323gEW98naNJpj5-6uLjqACvrQ6xNijR1Q-UwFRkTGxlqEsXGD_2IauBbYQ6PAikjYkKrervKiDWNjeOHUqmYWAmfou1knugz1PQpCxgnRKrAZZ6MOXDc6VARCksDo-qIlD0WquABh-so3sSawRikJKyURCYl4dbRw-qZ95wF40_0DQhSAL1EAvkrM7lMU9F7HYlWAAxjnBK_ju4LkJnbzytZlAPYTgAjVQV5V0HOcj7uTcBGBWgniqo2l4oVxURNBTC0cTjqtH_9WCp73fx7J8__B79Gu93xoC_6veHLBdpzsyEYYIc10PbiY6kvbWiziK6ykfwJtknoKg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6MJkYPRkUjikqM0YM2bLdlH0eiEFAhBiXh1nT74GIW4sL_t7O7PFbRxHO_fXQ6nZm2M18RurYuyFMhXGhSp0CqHVAsjNbYFYIYETDju1Dv3O157QF7GtaHK1X8abb7_Egyq2kAlqZ4WpsoU1spfAvrAYb0AhtyUAdbI7xlzTEBvR64jYUttsF0lmLvu5hSn-VlM-vfUXBN3w30j5PS1AG19tFeHjlWG9lQH6ANHR-i3e6CdjUpoVITp3tJSVXEqtrEfdgGP0KDVvP9oY3zaw-wtP7E2qdIUzeUDpORMcqIUJNIGS_0IqqBe4U5QeQLERETWjWwKw6lqTKOFwopFbHSPkab8TjWJ6jqUeazgBAhfZfVhQqA706HklBYJhhZRmTeYy5zTnC4muKDL9mMQUrcSomnUuJuGd0tnplkjBh_oq9AkByoJmLIZRmJWZLwzlufN3xgGwso8croNgeZsf28FHlpgO0EsFMVkDcF5Cjj5l4HrBSAdtLIYvN8YHk-aRMObG0BHHvav76fD_ay-fdOnv4Pfom2Xx9b_KXTez5DO26qgT52WAVtTj9n-txGOdPoIlXkL3is7GY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=E-GROUPS+AND+E-RINGS&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Krylov%2C+P.A&rft.au=Tuganbaev%2C+A.A&rft.au=Tsarev%2C+A.V&rft.date=2021-07-04&rft.pub=Springer&rft.issn=1072-3374&rft.volume=256&rft.issue=3&rft.spage=341&rft_id=info:doi/10.1007%2Fs10958-021-05430-2&rft.externalDocID=A730558316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon