E-Groups and E-Rings
An associative ring R is called an E-ring if the canonical homomorphism R ≅ E( R + ) is an isomorphism. Additive groups of E -rings are called E-groups . In other words, an Abelian group A is an E -group if and only if A ≅ End A and the endomorphism ring E( A ) is commutative. In this paper, we give...
Saved in:
Published in | Journal of mathematical sciences (New York, N.Y.) Vol. 256; no. 3; pp. 341 - 361 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
04.07.2021
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An associative ring
R
is called an
E-ring
if the canonical homomorphism
R
≅ E(
R
+
) is an isomorphism. Additive groups of
E
-rings are called
E-groups
. In other words, an Abelian group
A
is an
E
-group if and only if
A
≅ End
A
and the endomorphism ring E(
A
) is commutative. In this paper, we give a survey of the main results on
E
-groups and
E
-rings and also consider some of their generalizations:
ε
-closed groups,
T
-rings,
A
-rings, the groups admitting only commutative multiplications, etc. |
---|---|
AbstractList | An associative ring R is called an E-ring if the canonical homomorphism R [congruent to] E([R.sup.+]) is an isomorphism. Additive groups of E-rings are called E-groups. In other words, an Abelian group A is an E-group if and only if A [congruent to] End A and the endomorphism ring E(A) is commutative. In this paper, we give a survey of the main results on E-groups and E-rings and also consider some of their generalizations: [epsilon]-closed groups, T-rings, A-rings, the groups admitting only commutative multiplications, etc. An associative ring R is called an E-ring if the canonical homomorphism R ≅ E( R + ) is an isomorphism. Additive groups of E -rings are called E-groups . In other words, an Abelian group A is an E -group if and only if A ≅ End A and the endomorphism ring E( A ) is commutative. In this paper, we give a survey of the main results on E -groups and E -rings and also consider some of their generalizations: ε -closed groups, T -rings, A -rings, the groups admitting only commutative multiplications, etc. An associative ring R is called an E-ring if the canonical homomorphism R [congruent to] E([R.sup.+]) is an isomorphism. Additive groups of E-rings are called E-groups. In other words, an Abelian group A is an E-group if and only if A [congruent to] End A and the endomorphism ring E(A) is commutative. In this paper, we give a survey of the main results on E-groups and E-rings and also consider some of their generalizations: [epsilon]-closed groups, T-rings, A-rings, the groups admitting only commutative multiplications, etc. Keywords and phrases: Abelian group, [epsilon]-closed group, E-group, E-ring, T-ring, quotient divisible group, A-ring, endomorphism ring. AMS Subject Classification: 20Kxx An associative ring R is called an E-ring if the canonical homomorphism R ≅ E(R+) is an isomorphism. Additive groups of E-rings are called E-groups. In other words, an Abelian group A is an E-group if and only if A ≅ End A and the endomorphism ring E(A) is commutative. In this paper, we give a survey of the main results on E-groups and E-rings and also consider some of their generalizations: ε-closed groups, T-rings, A-rings, the groups admitting only commutative multiplications, etc. |
Audience | Academic |
Author | Tuganbaev, A. A. Krylov, P. A. Tsarev, A. V. |
Author_xml | – sequence: 1 givenname: P. A. surname: Krylov fullname: Krylov, P. A. email: krylov@math.tsu.ru organization: National Research Tomsk State University – sequence: 2 givenname: A. A. surname: Tuganbaev fullname: Tuganbaev, A. A. organization: Moscow Power Engineering Institute (National Research University), M. V. Lomonosov Moscow State University – sequence: 3 givenname: A. V. surname: Tsarev fullname: Tsarev, A. V. organization: Moscow Pedagogical State University |
BookMark | eNp9kcFLwzAUh4NMcJvePHkaePKQmTRNkxzHmHMgCFPPIU2TktG1M2lB_3szK4zJGDm88Pi-F_J-IzCom9oAcIfRFCPEHgNGgnKIEgwRTQmCyQUYYsoI5EzQQbwjlkBCWHoFRiFsUJQyTobgdgGXvul2YaLqYrKAa1eX4RpcWlUFc_NXx-DjafE-f4Yvr8vVfPYCNUEkgTw3JBEapTq3trBKGJwXNhNZTgxhGUsRz5lSObbCqIKmvDCksCgTSusCU07G4L6fu_PNZ2dCKzdN5-v4pExomnJBU5EcqFJVRrraNq1XeuuCljNGEI2DcBYpeIIqTW28quKyrIvtI356go-nMFunTwoPR0JkWvPVlqoLQa7e1scs71ntmxC8sVK7VrUuKl65SmIk97HJPjYZY5O_scn9b5N_6s67rfLf5yXSSyHCdWn8YZFnrB9V-Kb3 |
CitedBy_id | crossref_primary_10_1007_s13366_021_00604_0 |
Cites_doi | 10.2989/16073600009485973 10.1016/S0022-4049(03)00090-2 10.1017/S1446788700012763 10.4213/mzm11711 10.1007/BFb0094245 10.1090/conm/273/04425 10.1090/conm/087/995278 10.1007/978-1-4757-3180-4_18 10.1080/00927872.2014.896374 10.1007/978-94-017-0345-1 10.1007/978-3-0348-7591-2_18 10.1201/9780824750817.ch22 10.1081/AGB-200027758 10.1090/S0002-9939-98-04230-0 10.1007/BF01361704 10.1007/BF01420290 10.1017/S0004972700017731 10.1023/B:SIMJ.0000013022.52517.d8 10.1016/0021-8693(88)90266-9 10.4064/cm96-2-10 10.1007/BF01220893 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2021 COPYRIGHT 2021 Springer Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: COPYRIGHT 2021 Springer – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION ISR |
DOI | 10.1007/s10958-021-05430-2 |
DatabaseName | CrossRef Gale In Context: Science |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1573-8795 |
EndPage | 361 |
ExternalDocumentID | A730558316 10_1007_s10958_021_05430_2 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 642 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IEA IHE IJ- IKXTQ IOF ISR ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7R Z7U Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZWQNP ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION AEIIB ABRTQ |
ID | FETCH-LOGICAL-c3032-8be329c04cbffdfa9e1bdf696b3e3767408b7aab1f9ead548de3df069accd1583 |
IEDL.DBID | U2A |
ISSN | 1072-3374 |
IngestDate | Fri Jul 25 11:02:28 EDT 2025 Tue Jun 17 21:45:50 EDT 2025 Thu Jun 12 23:14:17 EDT 2025 Tue Jun 10 20:47:54 EDT 2025 Fri Jun 27 03:58:39 EDT 2025 Thu Apr 24 23:01:18 EDT 2025 Tue Jul 01 01:42:19 EDT 2025 Fri Feb 21 02:48:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Abelian group ring quotient divisible group endomorphism ring 20Kxx closed group group |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3032-8be329c04cbffdfa9e1bdf696b3e3767408b7aab1f9ead548de3df069accd1583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2544895492 |
PQPubID | 2043545 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2544895492 gale_infotracmisc_A730558316 gale_infotracgeneralonefile_A730558316 gale_infotracacademiconefile_A730558316 gale_incontextgauss_ISR_A730558316 crossref_citationtrail_10_1007_s10958_021_05430_2 crossref_primary_10_1007_s10958_021_05430_2 springer_journals_10_1007_s10958_021_05430_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210704 |
PublicationDateYYYYMMDD | 2021-07-04 |
PublicationDate_xml | – month: 07 year: 2021 text: 20210704 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | A Translation of Selected Russian- and Ukrainian-language Serial Publications in Mathematics |
PublicationTitle | Journal of mathematical sciences (New York, N.Y.) |
PublicationTitleAbbrev | J Math Sci |
PublicationYear | 2021 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | DugasMFeigelstockSA-RingsColloq. Math.2003962277292201036010.4064/cm96-2-10 SchultzPPeriodic homomorphism sequences of abelian groupsArch. Math.19702113213526827410.1007/BF01220893 DugasMAA-RingsCommun. Algebra2004321038533860209743310.1081/AGB-200027758 A. V. Tsarev, “T-Rings and quotient divisible groups of rank 1,” Vestn. Tomsk. Gos. Univ. Mat. Mekh., No. 4, 50–53 (2013). FuchsLAbelian Groups1960New York–Oxford–London–ParisPergamon Press0100.02803 L. Fuchs, Infinite Abelian Groups, Vol. I, Academic Press, New York (1970). GrishinAVTsarevAVε-closed groups and modulesFundam. Prikl. Mat.2012172971062904288 TimoshenkoEAT-radicals and E-radicals in the category of modulesSib. Mat. Zh.2004451201210204876310.1023/B:SIMJ.0000013022.52517.d8 TimoshenkoEATsarevAVSequences of endomorphism groups of Abelian groupsMat. Zametki20181042309317383350510.4213/mzm11711 GrishinAVStrongly indecomposable localizations of the ring of algebraic integersCommun. Algebra201543938163822336084910.1080/00927872.2014.896374 DugasMVinsonhalerCTwo-side E-ringsJ. Pure Appl. Algebra200318587102200642110.1016/S0022-4049(03)00090-2 MaderAVinsonhalerCTorsion-free E-modulesJ. Algebra1988115240141194326410.1016/0021-8693(88)90266-9 D. M. Arnold, “Finite rank torsion free abelian groups and rings,” in: Lect. Notes Math., 931, Springer-Verlag, New York (1982). BlagoveshchenskayaEIvanovGSchultzPThe Baer–Kaplansky theorem for almost completely decomposable groupsContemp. Math.20012738593181715310.1090/conm/273/04425 R. S. Pierce, “E-Modules,” in: Abelian Group Theory, Contemp. Math., 87, Am. Math. Soc., Providence, Rhode Island (1989), pp. 221–240. A. A. Fomin, “Purely free groups,” in: Abelian Groups and Modules [in Russian], Tomsk (1986), pp. 145–164. M. A. Prikhodovskii, Isomorphisms of tensor products of modules and T-modules [in Russian], Ph.D. thesis, Tomsk (2002). BeaumontRAPierceRSSubrings of algebraic number fieldsActa Sci. Math. Szeged.1961222022161448950117.02807 BeaumontRAPierceRSTorsion free ringsIll. J. Math.19615161981487060108.03802 BowshellRASchultzPUnital rings whose additive endomorphisms commuteMath. Ann.1977228319721449869110.1007/BF01420290 C. Vinsonhaler, “E-Rings and related structures,” in: NonNoetherian Commutative Ring Theory, Math. Appl., 520, Kluwer, Dordrecht (2002), pp. 387–402. WilsonGVAdditive groups of T-ringsProc. Am. Math. Soc.19879922192208707740611.20035 KrylovPATuganbaevAAIdempotent functors and localizations in the categories of modules and Abelian groupsFundam. Prikl. Mat.201016775159 DavydovaOIA quotient divisible Abelian groups of rank 1Fundam. Prikl. Mat.200713325332359994 S. Feigelstock, J. Hausen, and R. Raphael, “Groups which map onto their endomorphism rings,” in: Proc. Dublin Conf., 1998, Basel (1999), pp. 231–241. FeigelstockSFull subrings of E-ringsBull. Austr. Math. Soc.199654275280141153710.1017/S0004972700017731 R. Göbel, S. Shelah, and L. Strüngmann, Generalized E-Rings, arxiv.org/pdf/math/0404271 (2003). O. A. Karpov, “Abelian groups admitting only commutative multiplications,” to appear. KrylovPAMikhalevAVTuganbaevAAEndomorphism Rings of Abelian Groups2003Dordrecht–Boston–LondonSpringer-Verlag10.1007/978-94-017-0345-1 FominAAWicklessWQuotient divisible Abelian groupsProc. Am. Math. Soc.199812614552144382610.1090/S0002-9939-98-04230-0 BeaumontRAPierceRSIsomorphic direct summands of abelian groupsMath. Ann.19641531213716864010.1007/BF01361704 FeigelstockSAdditive groups of commutative ringsQuaest. Math.2000232241245179574110.2989/16073600009485973 FominAAAbelian groups with free subgroups of infinite index and their endomorphism groupsMat. Zametki1984362179187759431 FrigerMDOn rigid torsion-free ringsSib. Mat. Zh.19862732172198539030603.16015 L. Fuchs, Infinite Abelian Groups, Vol. II, Academic Press, New York (1973). SchultzPThe endomorphism ring of the additive group of a ringJ. Austr. Math. Soc.197315606933821810.1017/S1446788700012763 RA Beaumont (5430_CR4) 1964; 153 AV Grishin (5430_CR22) 2015; 43 M Dugas (5430_CR10) 2003; 185 RA Beaumont (5430_CR3) 1961; 5 AA Fomin (5430_CR14) 1984; 36 AA Fomin (5430_CR16) 1998; 126 GV Wilson (5430_CR36) 1987; 99 5430_CR28 5430_CR29 PA Krylov (5430_CR25) 2003 L Fuchs (5430_CR18) 1960 S Feigelstock (5430_CR11) 1996; 54 P Schultz (5430_CR30) 1970; 21 5430_CR20 5430_CR21 RA Beaumont (5430_CR2) 1961; 22 A Mader (5430_CR27) 1988; 115 5430_CR24 P Schultz (5430_CR31) 1973; 15 PA Krylov (5430_CR26) 2010; 16 5430_CR1 OI Davydova (5430_CR7) 2007; 13 RA Bowshell (5430_CR6) 1977; 228 E Blagoveshchenskaya (5430_CR5) 2001; 273 AV Grishin (5430_CR23) 2012; 17 M Dugas (5430_CR8) 2004; 32 S Feigelstock (5430_CR12) 2000; 23 5430_CR19 MD Friger (5430_CR17) 1986; 27 M Dugas (5430_CR9) 2003; 96 5430_CR34 5430_CR13 5430_CR35 EA Timoshenko (5430_CR32) 2004; 45 5430_CR15 EA Timoshenko (5430_CR33) 2018; 104 |
References_xml | – reference: TimoshenkoEATsarevAVSequences of endomorphism groups of Abelian groupsMat. Zametki20181042309317383350510.4213/mzm11711 – reference: FrigerMDOn rigid torsion-free ringsSib. Mat. Zh.19862732172198539030603.16015 – reference: L. Fuchs, Infinite Abelian Groups, Vol. I, Academic Press, New York (1970). – reference: MaderAVinsonhalerCTorsion-free E-modulesJ. Algebra1988115240141194326410.1016/0021-8693(88)90266-9 – reference: R. Göbel, S. Shelah, and L. Strüngmann, Generalized E-Rings, arxiv.org/pdf/math/0404271 (2003). – reference: GrishinAVStrongly indecomposable localizations of the ring of algebraic integersCommun. Algebra201543938163822336084910.1080/00927872.2014.896374 – reference: KrylovPAMikhalevAVTuganbaevAAEndomorphism Rings of Abelian Groups2003Dordrecht–Boston–LondonSpringer-Verlag10.1007/978-94-017-0345-1 – reference: FuchsLAbelian Groups1960New York–Oxford–London–ParisPergamon Press0100.02803 – reference: A. V. Tsarev, “T-Rings and quotient divisible groups of rank 1,” Vestn. Tomsk. Gos. Univ. Mat. Mekh., No. 4, 50–53 (2013). – reference: FominAAAbelian groups with free subgroups of infinite index and their endomorphism groupsMat. Zametki1984362179187759431 – reference: FeigelstockSAdditive groups of commutative ringsQuaest. Math.2000232241245179574110.2989/16073600009485973 – reference: KrylovPATuganbaevAAIdempotent functors and localizations in the categories of modules and Abelian groupsFundam. Prikl. Mat.201016775159 – reference: GrishinAVTsarevAVε-closed groups and modulesFundam. Prikl. Mat.2012172971062904288 – reference: WilsonGVAdditive groups of T-ringsProc. Am. Math. Soc.19879922192208707740611.20035 – reference: SchultzPPeriodic homomorphism sequences of abelian groupsArch. Math.19702113213526827410.1007/BF01220893 – reference: O. A. Karpov, “Abelian groups admitting only commutative multiplications,” to appear. – reference: FeigelstockSFull subrings of E-ringsBull. Austr. Math. Soc.199654275280141153710.1017/S0004972700017731 – reference: M. A. Prikhodovskii, Isomorphisms of tensor products of modules and T-modules [in Russian], Ph.D. thesis, Tomsk (2002). – reference: BeaumontRAPierceRSTorsion free ringsIll. J. Math.19615161981487060108.03802 – reference: DavydovaOIA quotient divisible Abelian groups of rank 1Fundam. Prikl. Mat.200713325332359994 – reference: DugasMFeigelstockSA-RingsColloq. Math.2003962277292201036010.4064/cm96-2-10 – reference: FominAAWicklessWQuotient divisible Abelian groupsProc. Am. Math. Soc.199812614552144382610.1090/S0002-9939-98-04230-0 – reference: DugasMAA-RingsCommun. Algebra2004321038533860209743310.1081/AGB-200027758 – reference: SchultzPThe endomorphism ring of the additive group of a ringJ. Austr. Math. Soc.197315606933821810.1017/S1446788700012763 – reference: R. S. Pierce, “E-Modules,” in: Abelian Group Theory, Contemp. Math., 87, Am. Math. Soc., Providence, Rhode Island (1989), pp. 221–240. – reference: C. Vinsonhaler, “E-Rings and related structures,” in: NonNoetherian Commutative Ring Theory, Math. Appl., 520, Kluwer, Dordrecht (2002), pp. 387–402. – reference: BowshellRASchultzPUnital rings whose additive endomorphisms commuteMath. Ann.1977228319721449869110.1007/BF01420290 – reference: BeaumontRAPierceRSIsomorphic direct summands of abelian groupsMath. Ann.19641531213716864010.1007/BF01361704 – reference: BeaumontRAPierceRSSubrings of algebraic number fieldsActa Sci. Math. Szeged.1961222022161448950117.02807 – reference: L. Fuchs, Infinite Abelian Groups, Vol. II, Academic Press, New York (1973). – reference: TimoshenkoEAT-radicals and E-radicals in the category of modulesSib. Mat. Zh.2004451201210204876310.1023/B:SIMJ.0000013022.52517.d8 – reference: S. Feigelstock, J. Hausen, and R. Raphael, “Groups which map onto their endomorphism rings,” in: Proc. Dublin Conf., 1998, Basel (1999), pp. 231–241. – reference: A. A. Fomin, “Purely free groups,” in: Abelian Groups and Modules [in Russian], Tomsk (1986), pp. 145–164. – reference: BlagoveshchenskayaEIvanovGSchultzPThe Baer–Kaplansky theorem for almost completely decomposable groupsContemp. Math.20012738593181715310.1090/conm/273/04425 – reference: DugasMVinsonhalerCTwo-side E-ringsJ. Pure Appl. Algebra200318587102200642110.1016/S0022-4049(03)00090-2 – reference: D. M. Arnold, “Finite rank torsion free abelian groups and rings,” in: Lect. Notes Math., 931, Springer-Verlag, New York (1982). – volume: 23 start-page: 241 issue: 2 year: 2000 ident: 5430_CR12 publication-title: Quaest. Math. doi: 10.2989/16073600009485973 – volume: 185 start-page: 87 year: 2003 ident: 5430_CR10 publication-title: J. Pure Appl. Algebra doi: 10.1016/S0022-4049(03)00090-2 – volume: 15 start-page: 60 year: 1973 ident: 5430_CR31 publication-title: J. Austr. Math. Soc. doi: 10.1017/S1446788700012763 – volume-title: Abelian Groups year: 1960 ident: 5430_CR18 – volume: 104 start-page: 309 issue: 2 year: 2018 ident: 5430_CR33 publication-title: Mat. Zametki doi: 10.4213/mzm11711 – ident: 5430_CR1 doi: 10.1007/BFb0094245 – volume: 273 start-page: 85 year: 2001 ident: 5430_CR5 publication-title: Contemp. Math. doi: 10.1090/conm/273/04425 – ident: 5430_CR28 doi: 10.1090/conm/087/995278 – ident: 5430_CR35 doi: 10.1007/978-1-4757-3180-4_18 – volume: 99 start-page: 219 issue: 2 year: 1987 ident: 5430_CR36 publication-title: Proc. Am. Math. Soc. – volume: 43 start-page: 3816 issue: 9 year: 2015 ident: 5430_CR22 publication-title: Commun. Algebra doi: 10.1080/00927872.2014.896374 – volume-title: Endomorphism Rings of Abelian Groups year: 2003 ident: 5430_CR25 doi: 10.1007/978-94-017-0345-1 – ident: 5430_CR13 doi: 10.1007/978-3-0348-7591-2_18 – volume: 36 start-page: 179 issue: 2 year: 1984 ident: 5430_CR14 publication-title: Mat. Zametki – ident: 5430_CR21 doi: 10.1201/9780824750817.ch22 – volume: 32 start-page: 3853 issue: 10 year: 2004 ident: 5430_CR8 publication-title: Commun. Algebra doi: 10.1081/AGB-200027758 – volume: 126 start-page: 45 issue: 1 year: 1998 ident: 5430_CR16 publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-98-04230-0 – volume: 17 start-page: 97 issue: 2 year: 2012 ident: 5430_CR23 publication-title: Fundam. Prikl. Mat. – volume: 153 start-page: 21 issue: 1 year: 1964 ident: 5430_CR4 publication-title: Math. Ann. doi: 10.1007/BF01361704 – volume: 13 start-page: 25 issue: 3 year: 2007 ident: 5430_CR7 publication-title: Fundam. Prikl. Mat. – volume: 228 start-page: 197 issue: 3 year: 1977 ident: 5430_CR6 publication-title: Math. Ann. doi: 10.1007/BF01420290 – volume: 54 start-page: 275 year: 1996 ident: 5430_CR11 publication-title: Bull. Austr. Math. Soc. doi: 10.1017/S0004972700017731 – ident: 5430_CR20 – volume: 16 start-page: 75 issue: 7 year: 2010 ident: 5430_CR26 publication-title: Fundam. Prikl. Mat. – volume: 45 start-page: 201 issue: 1 year: 2004 ident: 5430_CR32 publication-title: Sib. Mat. Zh. doi: 10.1023/B:SIMJ.0000013022.52517.d8 – ident: 5430_CR29 – volume: 22 start-page: 202 year: 1961 ident: 5430_CR2 publication-title: Acta Sci. Math. Szeged. – ident: 5430_CR24 – volume: 115 start-page: 401 issue: 2 year: 1988 ident: 5430_CR27 publication-title: J. Algebra doi: 10.1016/0021-8693(88)90266-9 – volume: 5 start-page: 61 issue: 1 year: 1961 ident: 5430_CR3 publication-title: Ill. J. Math. – volume: 96 start-page: 277 issue: 2 year: 2003 ident: 5430_CR9 publication-title: Colloq. Math. doi: 10.4064/cm96-2-10 – volume: 27 start-page: 217 issue: 3 year: 1986 ident: 5430_CR17 publication-title: Sib. Mat. Zh. – ident: 5430_CR19 – ident: 5430_CR34 – ident: 5430_CR15 – volume: 21 start-page: 132 year: 1970 ident: 5430_CR30 publication-title: Arch. Math. doi: 10.1007/BF01220893 |
SSID | ssj0007683 |
Score | 2.2131107 |
Snippet | An associative ring
R
is called an
E-ring
if the canonical homomorphism
R
≅ E(
R
+
) is an isomorphism. Additive groups of
E
-rings are called
E-groups
. In... An associative ring R is called an E-ring if the canonical homomorphism R [congruent to] E([R.sup.+]) is an isomorphism. Additive groups of E-rings are called... An associative ring R is called an E-ring if the canonical homomorphism R ≅ E(R+) is an isomorphism. Additive groups of E-rings are called E-groups. In other... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 341 |
SubjectTerms | Associativity Electronic discussion groups Group theory Homomorphisms Isomorphism Mathematics Mathematics and Statistics Rings (mathematics) Surveys |
Title | E-Groups and E-Rings |
URI | https://link.springer.com/article/10.1007/s10958-021-05430-2 https://www.proquest.com/docview/2544895492 |
Volume | 256 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQu8CAgIIolKpCCAawFMfOa0whpYDKUKhUJstx7C4oRaT9__jyKAQKElMGf3n4zrk723efETozLshNAjjQxKFAqu1TLLRS2BaCaOEz7dlQ7zx6dIcTdj91pmVRWFZlu1dbkrml_lLsFjg-hpQCE2ZQCxvD23Rg7m5G8cQOV_bXBNBFWr1nY0o9VpbKrH9GzR19N8o_dkdzpzPYQdtltNgLC_Xuog2V7qGt0YpqNWuhVoTz9aOsJ9KkF-ExLH3vo8kger4e4vKoAyyNDzE2KVbUDqTFZKx1okWgSJxoN3BjqoBvhVl-7AkREx0Y1ZtZRqJooi03EFImxEj4ADXSeaoOUc-lzGM-IUJ6NnNE4gPHnQokoTA10LKNSNVjLksecDiO4pV_MhiDlLiREs-lxO02ulzd81awYPyJPgVBcqCXSCF_ZSaWWcbvnsY89IBhzKfEbaOLEqTn5vVSlOUAphPASFVDnteQs4KPex2wUwOaH0XWmyvF8vJHzTgwtPmw1Wm--qpS9mfz7508-h_8GG3a-bDzsMU6qLF4X6oTE84s4i5qhv2b_gCuty8PUTcfzR8pqOg9 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6MHtSDUdGIohJj9KBNttvubvdIDAQUOCAk3Jput-ViFuPC_7ezD3AVTTz320dn2plpO_MVoVvrgvw4hAtNPAqk2pxiabTGrpTESM5M4EK982DodyfseepNi6KwtMx2L48kM0v9pdgt9DiGlAIbZlAHW8O7Y4MBDolcE7e1sr82gM7T6gMXUxqwolRm8zsq7ui7Uf5xOpo5nc4hOiiixWYrV-8R2tLJMdofrKhW0xqqtXG2f5Q2ZRI323gEW98naNJpj5-6uLjqACvrQ6xNijR1Q-UwFRkTGxlqEsXGD_2IauBbYQ6PAikjYkKrervKiDWNjeOHUqmYWAmfou1knugz1PQpCxgnRKrAZZ6MOXDc6VARCksDo-qIlD0WquABh-so3sSawRikJKyURCYl4dbRw-qZ95wF40_0DQhSAL1EAvkrM7lMU9F7HYlWAAxjnBK_ju4LkJnbzytZlAPYTgAjVQV5V0HOcj7uTcBGBWgniqo2l4oVxURNBTC0cTjqtH_9WCp73fx7J8__B79Gu93xoC_6veHLBdpzsyEYYIc10PbiY6kvbWiziK6ykfwJtknoKg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6MJkYPRkUjikqM0YM2bLdlH0eiEFAhBiXh1nT74GIW4sL_t7O7PFbRxHO_fXQ6nZm2M18RurYuyFMhXGhSp0CqHVAsjNbYFYIYETDju1Dv3O157QF7GtaHK1X8abb7_Egyq2kAlqZ4WpsoU1spfAvrAYb0AhtyUAdbI7xlzTEBvR64jYUttsF0lmLvu5hSn-VlM-vfUXBN3w30j5PS1AG19tFeHjlWG9lQH6ANHR-i3e6CdjUpoVITp3tJSVXEqtrEfdgGP0KDVvP9oY3zaw-wtP7E2qdIUzeUDpORMcqIUJNIGS_0IqqBe4U5QeQLERETWjWwKw6lqTKOFwopFbHSPkab8TjWJ6jqUeazgBAhfZfVhQqA706HklBYJhhZRmTeYy5zTnC4muKDL9mMQUrcSomnUuJuGd0tnplkjBh_oq9AkByoJmLIZRmJWZLwzlufN3xgGwso8croNgeZsf28FHlpgO0EsFMVkDcF5Cjj5l4HrBSAdtLIYvN8YHk-aRMObG0BHHvav76fD_ay-fdOnv4Pfom2Xx9b_KXTez5DO26qgT52WAVtTj9n-txGOdPoIlXkL3is7GY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=E-GROUPS+AND+E-RINGS&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Krylov%2C+P.A&rft.au=Tuganbaev%2C+A.A&rft.au=Tsarev%2C+A.V&rft.date=2021-07-04&rft.pub=Springer&rft.issn=1072-3374&rft.volume=256&rft.issue=3&rft.spage=341&rft_id=info:doi/10.1007%2Fs10958-021-05430-2&rft.externalDocID=A730558316 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon |