Mechanism of multi-metal(loid) methylation and hydride generation by methylcobalamin and cob(I)alamin: a side reaction of methanogenesis
Metal(loid)s are subject to many transformation processes in the environment, such as oxidation, reduction, methylation and hydride generation, predominantly accomplished by prokaryotes. Since these widespread processes affect the bioavailability and toxicity of metal(loid)s to a large extent, the i...
Saved in:
Published in | Applied organometallic chemistry Vol. 26; no. 2; pp. 94 - 101 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.02.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal(loid)s are subject to many transformation processes in the environment, such as oxidation, reduction, methylation and hydride generation, predominantly accomplished by prokaryotes. Since these widespread processes affect the bioavailability and toxicity of metal(loid)s to a large extent, the investigation of their formation is of high relevance. Methanogenic Archaea are capable of methylating and hydrogenating Group 15 and 16 metal(loid)s arsenic, selenium, antimony, tellurium, and bismuth due to side reactions between central methanogenic cofactors, methylcobalamin (CH3Cob(III)) and cob(I)alamin (Cob(I)). Here, we present systematic mechanistic studies on methylation and hydride generation of Group 15 and 16 metal(loid)s by CH3Cob(III) and Cob(I). Pentavalent arsenical species showed neither methylation nor reduction as determined by using a newly developed oxidation state specific hydride generation technique, which allows direct determination of tri‐ and pentavalent arsenic species in a single batch. In contrast, efficient methylation of trivalent species without a change in oxidation state indicated that the methyl transfer does not proceed via a Challenger‐like oxidative methylation, but via a non‐oxidative methylation. Our findings also point towards a similar mechanism for antimony, bismuth, selenium, and tellurium. Overall, we suggest that the transfer of a methyl group does not involve a free reactive species, such as a radical, but instead is transferred either in a concerted nucleophilic substitution or in a caged radical mechanism. For hydride generation, we propose the intermediate formation of hydridocobalamin, transferring a hydride ion to the metal(loid)s. Copyright © 2012 John Wiley & Sons, Ltd.
Systematic mechanistic studies on methylation and hydride generation of Group 15 and 16 metal(loid)s by CH3Cob(III) and Cob(I) are presented. Efficient methylation of trivalent arsenic species without a change in oxidation state indicated that the methyl transfer does proceed via a non‐oxidative methylation. Our findings also point towards a similar mechanism for antimony, bismuth, selenium, and tellurium and indicate that the methyl group is transferred either in a concerted nucleophilic substitution or in caged radical mechanism |
---|---|
AbstractList | Metal(loid)s are subject to many transformation processes in the environment, such as oxidation, reduction, methylation and hydride generation, predominantly accomplished by prokaryotes. Since these widespread processes affect the bioavailability and toxicity of metal(loid)s to a large extent, the investigation of their formation is of high relevance. Methanogenic Archaea are capable of methylating and hydrogenating Group 15 and 16 metal(loid)s arsenic, selenium, antimony, tellurium, and bismuth due to side reactions between central methanogenic cofactors, methylcobalamin (CH
3
Cob(III)) and cob(I)alamin (Cob(I)). Here, we present systematic mechanistic studies on methylation and hydride generation of Group 15 and 16 metal(loid)s by CH
3
Cob(III) and Cob(I). Pentavalent arsenical species showed neither methylation nor reduction as determined by using a newly developed oxidation state specific hydride generation technique, which allows direct determination of tri‐ and pentavalent arsenic species in a single batch. In contrast, efficient methylation of trivalent species without a change in oxidation state indicated that the methyl transfer does not proceed via a Challenger‐like oxidative methylation, but via a non‐oxidative methylation. Our findings also point towards a similar mechanism for antimony, bismuth, selenium, and tellurium. Overall, we suggest that the transfer of a methyl group does not involve a free reactive species, such as a radical, but instead is transferred either in a concerted nucleophilic substitution or in a caged radical mechanism. For hydride generation, we propose the intermediate formation of hydridocobalamin, transferring a hydride ion to the metal(loid)s. Copyright © 2012 John Wiley & Sons, Ltd. Metal(loid)s are subject to many transformation processes in the environment, such as oxidation, reduction, methylation and hydride generation, predominantly accomplished by prokaryotes. Since these widespread processes affect the bioavailability and toxicity of metal(loid)s to a large extent, the investigation of their formation is of high relevance. Methanogenic Archaea are capable of methylating and hydrogenating Group 15 and 16 metal(loid)s arsenic, selenium, antimony, tellurium, and bismuth due to side reactions between central methanogenic cofactors, methylcobalamin (CH3Cob(III)) and cob(I)alamin (Cob(I)). Here, we present systematic mechanistic studies on methylation and hydride generation of Group 15 and 16 metal(loid)s by CH3Cob(III) and Cob(I). Pentavalent arsenical species showed neither methylation nor reduction as determined by using a newly developed oxidation state specific hydride generation technique, which allows direct determination of tri‐ and pentavalent arsenic species in a single batch. In contrast, efficient methylation of trivalent species without a change in oxidation state indicated that the methyl transfer does not proceed via a Challenger‐like oxidative methylation, but via a non‐oxidative methylation. Our findings also point towards a similar mechanism for antimony, bismuth, selenium, and tellurium. Overall, we suggest that the transfer of a methyl group does not involve a free reactive species, such as a radical, but instead is transferred either in a concerted nucleophilic substitution or in a caged radical mechanism. For hydride generation, we propose the intermediate formation of hydridocobalamin, transferring a hydride ion to the metal(loid)s. Copyright © 2012 John Wiley & Sons, Ltd. Systematic mechanistic studies on methylation and hydride generation of Group 15 and 16 metal(loid)s by CH3Cob(III) and Cob(I) are presented. Efficient methylation of trivalent arsenic species without a change in oxidation state indicated that the methyl transfer does proceed via a non‐oxidative methylation. Our findings also point towards a similar mechanism for antimony, bismuth, selenium, and tellurium and indicate that the methyl group is transferred either in a concerted nucleophilic substitution or in caged radical mechanism |
Author | Thomas, Frank Hensel, Reinhard Schulte, Marcel Sven Wuerfel, Oliver Diaz-Bone, Roland Arturo |
Author_xml | – sequence: 1 givenname: Oliver surname: Wuerfel fullname: Wuerfel, Oliver email: oliver.wuerfel@uni-due.de, oliver.wuerfel@uni-due.de organization: Department of Instrumental Analytical Chemistry, University of Duisburg-Essen, 45141, Essen, Germany – sequence: 2 givenname: Frank surname: Thomas fullname: Thomas, Frank organization: Department of Microbiology I, University of Duisburg-Essen, 45141, Essen, Germany – sequence: 3 givenname: Marcel Sven surname: Schulte fullname: Schulte, Marcel Sven organization: Department of Instrumental Analytical Chemistry, University of Duisburg-Essen, 45141, Essen, Germany – sequence: 4 givenname: Reinhard surname: Hensel fullname: Hensel, Reinhard organization: Department of Microbiology I, University of Duisburg-Essen, 45141, Essen, Germany – sequence: 5 givenname: Roland Arturo surname: Diaz-Bone fullname: Diaz-Bone, Roland Arturo organization: Department of Instrumental Analytical Chemistry, University of Duisburg-Essen, 45141, Essen, Germany |
BookMark | eNp1kMtOwzAQRS1UJEpB4hOybBcp4zjOg10pUEC0bHjtrInjUEMeyA6C_AGfTdIgJBCsbI_OuSPfXTIoq1IRckBhSgG8Q6zk1Is8ukWGFOLYhZDFAzIEL4hcLwC-Q3atfQKAOKD-kHwslVxjqW3hVJlTvOa1dgtVYz7OK51OnPa-bnKsdVU6WKbOukmNTpXzqEpl-nHSfFGySjDHQvdk-xpfTPrBkYOO7TSjUG6kblkrYVl1SVbbPbKdYW7V_tc5Irdnpzfzc_fqenExn125kgGjLg_TmKMvJYc48iPFA44y8VgaxpxxjFmUsDTIIJNZQLkXQYTgU9_3kYc8ySI2IuM-V5rKWqMy8WJ0gaYRFETXoGgbFF2DLTr9hUpdb_5cG9T5X4LbC286V82_wWJ2Pf_Ja1ur928ezbMIQhZycb9aiNXD8SWDuxOxZJ9zsZRG |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2021_151696 crossref_primary_10_1016_j_jenvman_2019_02_060 crossref_primary_10_1021_acs_est_2c08814 crossref_primary_10_1016_j_jhazmat_2024_134230 crossref_primary_10_1016_j_scitotenv_2019_135123 crossref_primary_10_1016_j_mencom_2023_02_032 crossref_primary_10_1021_es300499a crossref_primary_10_1039_c3ja50021g crossref_primary_10_1021_es503869k crossref_primary_10_1007_s11270_013_1848_y crossref_primary_10_1039_c3em00105a crossref_primary_10_1016_j_gca_2024_10_012 crossref_primary_10_1021_acs_est_0c03908 |
Cites_doi | 10.1016/j.taap.2007.09.011 10.1039/dt9830002223 10.1002/aoc.375 10.1016/j.syapm.2008.02.001 10.1021/ac8027307 10.1006/taap.2001.9226 10.1016/j.sab.2007.11.037 10.1007/s002040000134 10.1021/ic00209a011 10.1016/S0006-3061(00)80155-6 10.1039/b407388f 10.3109/10409239209082570 10.1021/ic50036a005 10.1126/science.877556 10.1016/S0039-9140(02)00268-0 10.1080/03067310601170415 10.1248/jhs.49.171 10.1073/pnas.0506836103 10.1016/j.jorganchem.2008.12.002 10.1021/ja01026a021 10.1074/jbc.271.31.18725 10.1128/AEM.06406-11 10.1080/15287390500196230 10.1039/b715243d 10.1128/MMBR.66.2.250-271.2002 10.1126/science.208.4443.500 10.1021/cr010210 10.1016/0304-4165(66)90331-X 10.1007/s00204-004-0620-x 10.1111/j.1432-1033.1994.00945.x |
ContentType | Journal Article |
Copyright | Copyright © 2012 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2012 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION |
DOI | 10.1002/aoc.2821 |
DatabaseName | Istex CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1099-0739 |
EndPage | 101 |
ExternalDocumentID | 10_1002_aoc_2821 AOC2821 ark_67375_WNG_NXBJ30VD_M |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BTSUX BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M21 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWK RX1 RYL SAMSI SUPJJ TUS UB1 V8K W8V W99 WBFHL WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YCJ ZZTAW ~IA ~WT AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX CITATION |
ID | FETCH-LOGICAL-c3031-57d95a4cc509848e565acb23d79535a938b3d6f0fcf6152808a041444a575bf83 |
IEDL.DBID | DR2 |
ISSN | 0268-2605 |
IngestDate | Thu Apr 24 23:00:08 EDT 2025 Tue Jul 01 03:20:58 EDT 2025 Wed Aug 20 07:25:40 EDT 2025 Wed Oct 30 09:50:31 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3031-57d95a4cc509848e565acb23d79535a938b3d6f0fcf6152808a041444a575bf83 |
Notes | ark:/67375/WNG-NXBJ30VD-M ArticleID:AOC2821 istex:54940DACDD937FE9FC3F2A163C6521B0ED7DBAB0 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1002_aoc_2821 crossref_citationtrail_10_1002_aoc_2821 wiley_primary_10_1002_aoc_2821_AOC2821 istex_primary_ark_67375_WNG_NXBJ30VD_M |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-02 February 2012 2012-02-00 |
PublicationDateYYYYMMDD | 2012-02-01 |
PublicationDate_xml | – month: 02 year: 2012 text: 2012-02 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK |
PublicationTitle | Applied organometallic chemistry |
PublicationTitleAlternate | Appl. Organometal. Chem |
PublicationYear | 2012 |
Publisher | John Wiley & Sons, Ltd |
Publisher_xml | – name: John Wiley & Sons, Ltd |
References | O. Wuerfel, R. A. Diaz-Bone, M. Stephan, M. A. Jochmann, Anal. Chem. 2009, 81, 4312. M. Styblo, L. M. Del Razo, L. Vega, D. R. Germolec, E. L. LeCluyse, G. A. Hamilton, W. Reed, C. Wang, W. R. Cullen, D. J. Thomas, Arch. Toxicol. 2000, 74, 289. R. L. Birke, Q. Huang, T. Spataru, D. K. Gosser, J. Am. Chem. Soc. 2006, 128, 1922. T. G. Chasteen, R. Bentley, Chem. Rev. 2003, 103, 1. J. S. Thayer, Appl. Organomet. Chem. 2002, 16, 677. L. M. Del Razo, M. Styblo, W. R. Cullen, D. J. Thomas, Toxicol. Appl. Pharmacol. 2001, 174, 282. G. M. LeClerc, D. A. Grahame, J. Biol. Chem. 1996, 271, 18725. J. U. Kreft, B. Schink, Eur. J. Biochem. 1994, 226, 945. R. Bentley, T. G. Chasteen, Microbiol. Mol. Biol. Rev. 2002, 66, 250. J. G. Ferry, Crit. Rev. Biochem. Mol. Biol. 1992, 27, 473. R. A. Diaz-Bone, M. Hitzke, J. Anal. Atom. Spectrom. 2008, 23, 861. Y. Ohta, K. T. Suzuki, Toxicol. Appl. Pharmacol. 2008, 226, 169. J. Meyer, K. Michalke, T. Kouril, R. Hensel, Syst. Appl. Microbiol. 2008, 31, 81. R. M. Kellett, T. G. Spiro, Inorg. Chem. 1985, 24, 2373. J. Qin, B. P. Rosen, Y. Zhang, G. J. Wang, S. Franke, C. Rensing, Proc. Natl Acad. Sci. USA 2006, 103, 2075. P. J. Craig, F. Glockling, The Biological Alkylation of Heavy Elements, Royal Society of Chemistry, London, 1988. F. Thomas, R. A. Diaz-Bone, O. Wuerfel, B. Huber, K. Weidenbach, R. A. Schmitz, R. Hensel, Appl. Environ. Microbiol. 2011, 8669. B. K. Mandal, K. T. Suzuki, Talanta 2002, 58, 201. K. Nakamura, Y. Hisaeda, L. Pan, H. Yamauchi, J. Organomet. Chem. 2009, 694, 916. W. Ridley, L. Dizikes, J. Wood, Science 1977, 197, 329. A. R. Kumar, P. Riyazuddin, Int. J. Environ. Anal. Chem. 2007, 87, 469. T. Matousek, A. Hernandez-Zavala, M. Svoboda, L. Langrova, B. M. Adair, Z. Drobna, D. J. Thomas, M. Styblo, J. Dedina, Spectrochim. Acta B 2008, 63, 396. G. N. Schrauzer, J. W. Sibert, R. J. Windgassen, J. Am. Chem. Soc. 1968, 90, 6681. R. H. Yamada, S. Shimizu, S. Fukui, Biochim. Biophys. Acta 1966, 124, 195. S. M. Chemaly, R. A. Hasty, J. M. Pratt, J. Chem. Soc. Dalton Trans. 1983, 2223. T. Sakurai, J. Health Sci. 2003, 49, 171. V. Devesa, L. M. Del Razo, B. Adair, Z. Drobna, S. B. Waters, M. F. Hughes, M. Styblo, D. J. Thomas, J. Anal. Atom. Spectrom. 2004, 19, 1460. G. N. Schrauzer, J. A. Seck, R. J. Holland, T. M. Beckham, E. M. Rubin, J. W. Sibert, Bioinorg. Chem. 1973, 2, 93. R. A. Yokel, S. M. Lasley, D. C. Dorman, J. Toxicol, Environ. Health B Crit. Rev. 2006, 9, 63. D. C. Reamer, W. H. Zoller, Science 1980, 208, 500. T. Hayakawa, Y. Kobayashi, X. Cui, S. Hirano, Arch. Toxicol. 2005, 79, 183. A. Merijani, R. A. Zingaro, Inorg. Chem. 1966, 5, 187. 2002; 16 2002; 58 2009; 81 2011 2006; 9 1966; 5 2009; 694 2006 2008; 226 2008; 31 1985; 24 1994; 226 1980; 208 2001; 174 1966; 124 2004; 19 2000; 74 2002; 66 1996; 271 2008; 23 2003; 49 1968; 90 1983 2008; 63 1992; 27 2003; 103 2007; 87 1973; 2 2005; 79 1977; 197 2006; 103 1988 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 Birke R. L. (e_1_2_6_31_1) 2006 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 Craig P. J. (e_1_2_6_15_1) 1988 e_1_2_6_26_1 |
References_xml | – reference: A. Merijani, R. A. Zingaro, Inorg. Chem. 1966, 5, 187. – reference: P. J. Craig, F. Glockling, The Biological Alkylation of Heavy Elements, Royal Society of Chemistry, London, 1988. – reference: J. G. Ferry, Crit. Rev. Biochem. Mol. Biol. 1992, 27, 473. – reference: T. Sakurai, J. Health Sci. 2003, 49, 171. – reference: K. Nakamura, Y. Hisaeda, L. Pan, H. Yamauchi, J. Organomet. Chem. 2009, 694, 916. – reference: V. Devesa, L. M. Del Razo, B. Adair, Z. Drobna, S. B. Waters, M. F. Hughes, M. Styblo, D. J. Thomas, J. Anal. Atom. Spectrom. 2004, 19, 1460. – reference: Y. Ohta, K. T. Suzuki, Toxicol. Appl. Pharmacol. 2008, 226, 169. – reference: T. Matousek, A. Hernandez-Zavala, M. Svoboda, L. Langrova, B. M. Adair, Z. Drobna, D. J. Thomas, M. Styblo, J. Dedina, Spectrochim. Acta B 2008, 63, 396. – reference: R. L. Birke, Q. Huang, T. Spataru, D. K. Gosser, J. Am. Chem. Soc. 2006, 128, 1922. – reference: R. H. Yamada, S. Shimizu, S. Fukui, Biochim. Biophys. Acta 1966, 124, 195. – reference: A. R. Kumar, P. Riyazuddin, Int. J. Environ. Anal. Chem. 2007, 87, 469. – reference: J. S. Thayer, Appl. Organomet. Chem. 2002, 16, 677. – reference: W. Ridley, L. Dizikes, J. Wood, Science 1977, 197, 329. – reference: L. M. Del Razo, M. Styblo, W. R. Cullen, D. J. Thomas, Toxicol. Appl. Pharmacol. 2001, 174, 282. – reference: S. M. Chemaly, R. A. Hasty, J. M. Pratt, J. Chem. Soc. Dalton Trans. 1983, 2223. – reference: R. Bentley, T. G. Chasteen, Microbiol. Mol. Biol. Rev. 2002, 66, 250. – reference: T. Hayakawa, Y. Kobayashi, X. Cui, S. Hirano, Arch. Toxicol. 2005, 79, 183. – reference: G. N. Schrauzer, J. W. Sibert, R. J. Windgassen, J. Am. Chem. Soc. 1968, 90, 6681. – reference: M. Styblo, L. M. Del Razo, L. Vega, D. R. Germolec, E. L. LeCluyse, G. A. Hamilton, W. Reed, C. Wang, W. R. Cullen, D. J. Thomas, Arch. Toxicol. 2000, 74, 289. – reference: T. G. Chasteen, R. Bentley, Chem. Rev. 2003, 103, 1. – reference: B. K. Mandal, K. T. Suzuki, Talanta 2002, 58, 201. – reference: O. Wuerfel, R. A. Diaz-Bone, M. Stephan, M. A. Jochmann, Anal. Chem. 2009, 81, 4312. – reference: J. U. Kreft, B. Schink, Eur. J. Biochem. 1994, 226, 945. – reference: G. M. LeClerc, D. A. Grahame, J. Biol. Chem. 1996, 271, 18725. – reference: D. C. Reamer, W. H. Zoller, Science 1980, 208, 500. – reference: F. Thomas, R. A. Diaz-Bone, O. Wuerfel, B. Huber, K. Weidenbach, R. A. Schmitz, R. Hensel, Appl. Environ. Microbiol. 2011, 8669. – reference: R. M. Kellett, T. G. Spiro, Inorg. Chem. 1985, 24, 2373. – reference: G. N. Schrauzer, J. A. Seck, R. J. Holland, T. M. Beckham, E. M. Rubin, J. W. Sibert, Bioinorg. Chem. 1973, 2, 93. – reference: R. A. Yokel, S. M. Lasley, D. C. Dorman, J. Toxicol, Environ. Health B Crit. Rev. 2006, 9, 63. – reference: R. A. Diaz-Bone, M. Hitzke, J. Anal. Atom. Spectrom. 2008, 23, 861. – reference: J. Qin, B. P. Rosen, Y. Zhang, G. J. Wang, S. Franke, C. Rensing, Proc. Natl Acad. Sci. USA 2006, 103, 2075. – reference: J. Meyer, K. Michalke, T. Kouril, R. Hensel, Syst. Appl. Microbiol. 2008, 31, 81. – start-page: 2223 year: 1983 publication-title: J. Chem. Soc. Dalton Trans. – volume: 103 start-page: 1 year: 2003 publication-title: Chem. Rev. – volume: 271 start-page: 18725 year: 1996 publication-title: J. Biol. Chem. – volume: 226 start-page: 169 year: 2008 publication-title: Toxicol. Appl. Pharmacol. – volume: 58 start-page: 201 year: 2002 publication-title: Talanta – volume: 23 start-page: 861 year: 2008 publication-title: J. Anal. Atom. Spectrom. – volume: 31 start-page: 81 year: 2008 publication-title: Syst. Appl. Microbiol. – volume: 2 start-page: 93 year: 1973 publication-title: Bioinorg. Chem. – volume: 63 start-page: 396 year: 2008 publication-title: Spectrochim. Acta B – volume: 124 start-page: 195 year: 1966 publication-title: Biochim. Biophys. Acta – volume: 49 start-page: 171 year: 2003 publication-title: J. Health Sci. – volume: 27 start-page: 473 year: 1992 publication-title: Crit. Rev. Biochem. Mol. Biol. – volume: 19 start-page: 1460 year: 2004 publication-title: J. Anal. Atom. Spectrom. – volume: 9 start-page: 63 year: 2006 publication-title: Environ. Health B Crit. Rev. – volume: 226 start-page: 945 year: 1994 publication-title: Eur. J. Biochem. – volume: 79 start-page: 183 year: 2005 publication-title: Arch. Toxicol. – volume: 90 start-page: 6681 year: 1968 publication-title: J. Am. Chem. Soc. – start-page: 8669 year: 2011 publication-title: Appl. Environ. Microbiol. – volume: 81 start-page: 4312 year: 2009 publication-title: Anal. Chem. – volume: 66 start-page: 250 year: 2002 publication-title: Microbiol. Mol. Biol. Rev. – volume: 87 start-page: 469 year: 2007 publication-title: Int. J. Environ. Anal. Chem. – volume: 74 start-page: 289 year: 2000 publication-title: Arch. Toxicol. – volume: 197 start-page: 329 year: 1977 publication-title: Science – volume: 694 start-page: 916 year: 2009 publication-title: J. Organomet. Chem. – volume: 174 start-page: 282 year: 2001 publication-title: Toxicol. Appl. Pharmacol. – year: 1988 – volume: 103 start-page: 2075 year: 2006 publication-title: Proc. Natl Acad. Sci. USA – volume: 24 start-page: 2373 year: 1985 publication-title: Inorg. Chem. – start-page: 128 year: 2006 publication-title: J. Am. Chem. Soc – volume: 16 start-page: 677 year: 2002 publication-title: Appl. Organomet. Chem. – volume: 208 start-page: 500 year: 1980 publication-title: Science – volume: 5 start-page: 187 year: 1966 publication-title: Inorg. Chem. – ident: e_1_2_6_13_1 doi: 10.1016/j.taap.2007.09.011 – ident: e_1_2_6_32_1 doi: 10.1039/dt9830002223 – ident: e_1_2_6_2_1 doi: 10.1002/aoc.375 – ident: e_1_2_6_18_1 doi: 10.1016/j.syapm.2008.02.001 – ident: e_1_2_6_22_1 doi: 10.1021/ac8027307 – ident: e_1_2_6_24_1 doi: 10.1006/taap.2001.9226 – ident: e_1_2_6_26_1 doi: 10.1016/j.sab.2007.11.037 – volume-title: The Biological Alkylation of Heavy Elements year: 1988 ident: e_1_2_6_15_1 – ident: e_1_2_6_4_1 doi: 10.1007/s002040000134 – ident: e_1_2_6_33_1 doi: 10.1021/ic00209a011 – ident: e_1_2_6_11_1 doi: 10.1016/S0006-3061(00)80155-6 – ident: e_1_2_6_25_1 doi: 10.1039/b407388f – ident: e_1_2_6_17_1 doi: 10.3109/10409239209082570 – start-page: 128 year: 2006 ident: e_1_2_6_31_1 publication-title: J. Am. Chem. Soc – ident: e_1_2_6_23_1 doi: 10.1021/ic50036a005 – ident: e_1_2_6_10_1 doi: 10.1126/science.877556 – ident: e_1_2_6_6_1 doi: 10.1016/S0039-9140(02)00268-0 – ident: e_1_2_6_21_1 doi: 10.1080/03067310601170415 – ident: e_1_2_6_5_1 doi: 10.1248/jhs.49.171 – ident: e_1_2_6_14_1 doi: 10.1073/pnas.0506836103 – ident: e_1_2_6_9_1 doi: 10.1016/j.jorganchem.2008.12.002 – ident: e_1_2_6_16_1 doi: 10.1021/ja01026a021 – ident: e_1_2_6_28_1 doi: 10.1074/jbc.271.31.18725 – ident: e_1_2_6_19_1 doi: 10.1128/AEM.06406-11 – ident: e_1_2_6_3_1 doi: 10.1080/15287390500196230 – ident: e_1_2_6_27_1 doi: 10.1039/b715243d – ident: e_1_2_6_7_1 doi: 10.1128/MMBR.66.2.250-271.2002 – ident: e_1_2_6_29_1 doi: 10.1126/science.208.4443.500 – ident: e_1_2_6_12_1 doi: 10.1021/cr010210 – ident: e_1_2_6_30_1 doi: 10.1016/0304-4165(66)90331-X – ident: e_1_2_6_8_1 doi: 10.1007/s00204-004-0620-x – ident: e_1_2_6_20_1 doi: 10.1111/j.1432-1033.1994.00945.x |
SSID | ssj0009614 |
Score | 2.025082 |
Snippet | Metal(loid)s are subject to many transformation processes in the environment, such as oxidation, reduction, methylation and hydride generation, predominantly... |
SourceID | crossref wiley istex |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 94 |
SubjectTerms | cob(I)alamin hydride generation metalloids methylation mechanism methylcobalamin |
Title | Mechanism of multi-metal(loid) methylation and hydride generation by methylcobalamin and cob(I)alamin: a side reaction of methanogenesis |
URI | https://api.istex.fr/ark:/67375/WNG-NXBJ30VD-M/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faoc.2821 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PTxQxFG4IHPAiKBoRNTUxCIdZZqftTIcbriKQ7JoY0U04TNpOixvYHcMuicuJMyf-Rv4S32tnlmAwIZ4m03zTafrzey-v3yPknVCCGdfmEVewBXLJWSSdSSNYd7mTJmHa-zu6vXTvkB_0Rb-OqsS7MEEfYuZww5Xh92tc4EqPt25FQ1VlWmAvoOWDoVrIh77eKkflaZD1TlKYCEDZG93ZONlqPrxzEi1gp_6-y1D9EbO7RI6axoXIkpPW-US3zMVfuo3_1_pl8rhmnnQnTJUnZM6OnpLFTpPwbYVcdS1eAx6Mh7Ry1Eca3lxeDy3Q843TalBuUkw3PQ3Bc1SNSvpzisnZLT322tW-WE9rlEGhETUcBCS8bexvhoJtqigmCaXAV_2tCv87iz78CmsaD8bPyOHup2-dvahO1RAZOAPbkcjKXChuDPAPyaUFmqiMTliZ5YIJlTOpWZm62BkHFCqRsVQxB1uOK6CL2kn2nMyPqpF9QSjjjKWyDZazzbnNEw0ENdNApGLhVGqyVfK-GbbC1DrmmE7jtAgKzEkBfVtg366StzPkr6DdcQ9m3Y_8DKDOTjDWLRPFj97notf_cMDi7x-LLgD9eP6zpmLnSwefLx8KXCOPgH0lIQT8FZmfnJ3b18BwJvqNn8t_ADau9_0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELaq9lAuvBHlaSQE7WHTzdre9cKppJS0NEFCLeSAZNleu43aZFGTSoQTZ078Rn4JM3Y2VRFIiNNqrVmv5ec3o_H3EfJUaMGsb_OEa9gCueQskd7mCay70kubMRPiHb1-3j3kewMxWCIvm7swkR9iEXDDlRH2a1zgGJDevGAN1bVtgcMArs8KCnojcf72-wvuqDKPxN5ZDlMBQHvDPJtmm82Xl86iFezWL5cxajhkdq6RT03zYm7JSet8alr262_Mjf_Z_uvk6hx80q04W26QJTe-SVY7jebbLfK95_Am8HAyorWnIdnw57cfIwcIff20HlYbFBWnZzF_jupxRY9nqM_u6FGgrw7FZja3ssg1okfDaAlv67sbseAF1RR1QilA1nCxIvzOYRi_xpomw8ltcrjz-qDTTeZqDYmFY7CdiKIqhebWAgSRXDpAitqajFVFKZjQJZOGVblPvfWAojKZSp1ycOe4BsRovGR3yPK4Hru7hDLOWC7b4Dy7krsyM4BRCwNYKhVe57ZYI8-bcVN2TmWOihqnKpIwZwr6VmHfrpEnC8vPkb7jDzbPwtAvDPTZCaa7FUJ97L9R_cGrPZZ-2FY9MAwD-tea1Na7Dj7v_avhY7LaPejtq_3d_tv75AqAsSxmhD8gy9Ozc_cQAM_UPAoT-xevEfwZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQJgEvbNy0C2xGQrA9pEtjO3F421rKNmhBiEGlPVi2Y7NqazOtnbTytGee-I37JTu2k05DICGeolgnjuXrd46Ovw-hl0wyom2TRlTCFkg5JRG3Oo1g3eWW64QoH-_o9tLdA7rfZ_0qq9LdhQn8ELOAm1sZfr92C_y0sFs3pKGy1A3wF8DzmadpnDvZhvbnG-qoPA283kkKMwEwe008Gydb9Ze3jqJ516sXtyGqP2M6C-iwbl1ILTlunE9UQ__4jbjx_5q_iB5U0BNvh7nyEN0xo0foXqtWfHuMfnaNuwc8GA9xabFPNby6_DU0gM83TspBsYmd3vQ0ZM9hOSrw0dSpsxv83ZNX-2I1ray0YxqRw0GwhLeNvc1Q8AZL7FRCMQBWf63C_864IH7pahoPxk_QQeftl9ZuVGk1RBoOwWbEsiJnkmoNAIRTbgAnSq0SUmQ5I0zmhCtSpDa22gKGSnjMZUzBmaMS8KKynDxFc6NyZJYQJpSQlDfBdTY5NXmiAKFmCpBUzKxMdbaMXtfDJnRFZO70NE5EoGBOBPStcH27jF7MLE8DeccfbF75kZ8ZyLNjl-yWMfGt9070-jv7JP7aFl0w9OP515rE9seWe678q-E6uvup3REf9nrvV9F9QGJJSAd_huYmZ-fmOaCdiVrz0_oaxg76yA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+multi%E2%80%90metal%28loid%29+methylation+and+hydride+generation+by+methylcobalamin+and+cob%28I%29alamin%3A+a+side+reaction+of+methanogenesis&rft.jtitle=Applied+organometallic+chemistry&rft.au=Wuerfel%2C+Oliver&rft.au=Thomas%2C+Frank&rft.au=Schulte%2C+Marcel+Sven&rft.au=Hensel%2C+Reinhard&rft.date=2012-02-01&rft.issn=0268-2605&rft.eissn=1099-0739&rft.volume=26&rft.issue=2&rft.spage=94&rft.epage=101&rft_id=info:doi/10.1002%2Faoc.2821&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aoc_2821 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-2605&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-2605&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-2605&client=summon |