Mechanism of multi-metal(loid) methylation and hydride generation by methylcobalamin and cob(I)alamin: a side reaction of methanogenesis

Metal(loid)s are subject to many transformation processes in the environment, such as oxidation, reduction, methylation and hydride generation, predominantly accomplished by prokaryotes. Since these widespread processes affect the bioavailability and toxicity of metal(loid)s to a large extent, the i...

Full description

Saved in:
Bibliographic Details
Published inApplied organometallic chemistry Vol. 26; no. 2; pp. 94 - 101
Main Authors Wuerfel, Oliver, Thomas, Frank, Schulte, Marcel Sven, Hensel, Reinhard, Diaz-Bone, Roland Arturo
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.02.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal(loid)s are subject to many transformation processes in the environment, such as oxidation, reduction, methylation and hydride generation, predominantly accomplished by prokaryotes. Since these widespread processes affect the bioavailability and toxicity of metal(loid)s to a large extent, the investigation of their formation is of high relevance. Methanogenic Archaea are capable of methylating and hydrogenating Group 15 and 16 metal(loid)s arsenic, selenium, antimony, tellurium, and bismuth due to side reactions between central methanogenic cofactors, methylcobalamin (CH3Cob(III)) and cob(I)alamin (Cob(I)). Here, we present systematic mechanistic studies on methylation and hydride generation of Group 15 and 16 metal(loid)s by CH3Cob(III) and Cob(I). Pentavalent arsenical species showed neither methylation nor reduction as determined by using a newly developed oxidation state specific hydride generation technique, which allows direct determination of tri‐ and pentavalent arsenic species in a single batch. In contrast, efficient methylation of trivalent species without a change in oxidation state indicated that the methyl transfer does not proceed via a Challenger‐like oxidative methylation, but via a non‐oxidative methylation. Our findings also point towards a similar mechanism for antimony, bismuth, selenium, and tellurium. Overall, we suggest that the transfer of a methyl group does not involve a free reactive species, such as a radical, but instead is transferred either in a concerted nucleophilic substitution or in a caged radical mechanism. For hydride generation, we propose the intermediate formation of hydridocobalamin, transferring a hydride ion to the metal(loid)s. Copyright © 2012 John Wiley & Sons, Ltd. Systematic mechanistic studies on methylation and hydride generation of Group 15 and 16 metal(loid)s by CH3Cob(III) and Cob(I) are presented. Efficient methylation of trivalent arsenic species without a change in oxidation state indicated that the methyl transfer does proceed via a non‐oxidative methylation. Our findings also point towards a similar mechanism for antimony, bismuth, selenium, and tellurium and indicate that the methyl group is transferred either in a concerted nucleophilic substitution or in caged radical mechanism
AbstractList Metal(loid)s are subject to many transformation processes in the environment, such as oxidation, reduction, methylation and hydride generation, predominantly accomplished by prokaryotes. Since these widespread processes affect the bioavailability and toxicity of metal(loid)s to a large extent, the investigation of their formation is of high relevance. Methanogenic Archaea are capable of methylating and hydrogenating Group 15 and 16 metal(loid)s arsenic, selenium, antimony, tellurium, and bismuth due to side reactions between central methanogenic cofactors, methylcobalamin (CH 3 Cob(III)) and cob(I)alamin (Cob(I)). Here, we present systematic mechanistic studies on methylation and hydride generation of Group 15 and 16 metal(loid)s by CH 3 Cob(III) and Cob(I). Pentavalent arsenical species showed neither methylation nor reduction as determined by using a newly developed oxidation state specific hydride generation technique, which allows direct determination of tri‐ and pentavalent arsenic species in a single batch. In contrast, efficient methylation of trivalent species without a change in oxidation state indicated that the methyl transfer does not proceed via a Challenger‐like oxidative methylation, but via a non‐oxidative methylation. Our findings also point towards a similar mechanism for antimony, bismuth, selenium, and tellurium. Overall, we suggest that the transfer of a methyl group does not involve a free reactive species, such as a radical, but instead is transferred either in a concerted nucleophilic substitution or in a caged radical mechanism. For hydride generation, we propose the intermediate formation of hydridocobalamin, transferring a hydride ion to the metal(loid)s. Copyright © 2012 John Wiley & Sons, Ltd.
Metal(loid)s are subject to many transformation processes in the environment, such as oxidation, reduction, methylation and hydride generation, predominantly accomplished by prokaryotes. Since these widespread processes affect the bioavailability and toxicity of metal(loid)s to a large extent, the investigation of their formation is of high relevance. Methanogenic Archaea are capable of methylating and hydrogenating Group 15 and 16 metal(loid)s arsenic, selenium, antimony, tellurium, and bismuth due to side reactions between central methanogenic cofactors, methylcobalamin (CH3Cob(III)) and cob(I)alamin (Cob(I)). Here, we present systematic mechanistic studies on methylation and hydride generation of Group 15 and 16 metal(loid)s by CH3Cob(III) and Cob(I). Pentavalent arsenical species showed neither methylation nor reduction as determined by using a newly developed oxidation state specific hydride generation technique, which allows direct determination of tri‐ and pentavalent arsenic species in a single batch. In contrast, efficient methylation of trivalent species without a change in oxidation state indicated that the methyl transfer does not proceed via a Challenger‐like oxidative methylation, but via a non‐oxidative methylation. Our findings also point towards a similar mechanism for antimony, bismuth, selenium, and tellurium. Overall, we suggest that the transfer of a methyl group does not involve a free reactive species, such as a radical, but instead is transferred either in a concerted nucleophilic substitution or in a caged radical mechanism. For hydride generation, we propose the intermediate formation of hydridocobalamin, transferring a hydride ion to the metal(loid)s. Copyright © 2012 John Wiley & Sons, Ltd. Systematic mechanistic studies on methylation and hydride generation of Group 15 and 16 metal(loid)s by CH3Cob(III) and Cob(I) are presented. Efficient methylation of trivalent arsenic species without a change in oxidation state indicated that the methyl transfer does proceed via a non‐oxidative methylation. Our findings also point towards a similar mechanism for antimony, bismuth, selenium, and tellurium and indicate that the methyl group is transferred either in a concerted nucleophilic substitution or in caged radical mechanism
Author Thomas, Frank
Hensel, Reinhard
Schulte, Marcel Sven
Wuerfel, Oliver
Diaz-Bone, Roland Arturo
Author_xml – sequence: 1
  givenname: Oliver
  surname: Wuerfel
  fullname: Wuerfel, Oliver
  email: oliver.wuerfel@uni-due.de, oliver.wuerfel@uni-due.de
  organization: Department of Instrumental Analytical Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
– sequence: 2
  givenname: Frank
  surname: Thomas
  fullname: Thomas, Frank
  organization: Department of Microbiology I, University of Duisburg-Essen, 45141, Essen, Germany
– sequence: 3
  givenname: Marcel Sven
  surname: Schulte
  fullname: Schulte, Marcel Sven
  organization: Department of Instrumental Analytical Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
– sequence: 4
  givenname: Reinhard
  surname: Hensel
  fullname: Hensel, Reinhard
  organization: Department of Microbiology I, University of Duisburg-Essen, 45141, Essen, Germany
– sequence: 5
  givenname: Roland Arturo
  surname: Diaz-Bone
  fullname: Diaz-Bone, Roland Arturo
  organization: Department of Instrumental Analytical Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
BookMark eNp1kMtOwzAQRS1UJEpB4hOybBcp4zjOg10pUEC0bHjtrInjUEMeyA6C_AGfTdIgJBCsbI_OuSPfXTIoq1IRckBhSgG8Q6zk1Is8ukWGFOLYhZDFAzIEL4hcLwC-Q3atfQKAOKD-kHwslVxjqW3hVJlTvOa1dgtVYz7OK51OnPa-bnKsdVU6WKbOukmNTpXzqEpl-nHSfFGySjDHQvdk-xpfTPrBkYOO7TSjUG6kblkrYVl1SVbbPbKdYW7V_tc5Irdnpzfzc_fqenExn125kgGjLg_TmKMvJYc48iPFA44y8VgaxpxxjFmUsDTIIJNZQLkXQYTgU9_3kYc8ySI2IuM-V5rKWqMy8WJ0gaYRFETXoGgbFF2DLTr9hUpdb_5cG9T5X4LbC286V82_wWJ2Pf_Ja1ur928ezbMIQhZycb9aiNXD8SWDuxOxZJ9zsZRG
CitedBy_id crossref_primary_10_1016_j_scitotenv_2021_151696
crossref_primary_10_1016_j_jenvman_2019_02_060
crossref_primary_10_1021_acs_est_2c08814
crossref_primary_10_1016_j_jhazmat_2024_134230
crossref_primary_10_1016_j_scitotenv_2019_135123
crossref_primary_10_1016_j_mencom_2023_02_032
crossref_primary_10_1021_es300499a
crossref_primary_10_1039_c3ja50021g
crossref_primary_10_1021_es503869k
crossref_primary_10_1007_s11270_013_1848_y
crossref_primary_10_1039_c3em00105a
crossref_primary_10_1016_j_gca_2024_10_012
crossref_primary_10_1021_acs_est_0c03908
Cites_doi 10.1016/j.taap.2007.09.011
10.1039/dt9830002223
10.1002/aoc.375
10.1016/j.syapm.2008.02.001
10.1021/ac8027307
10.1006/taap.2001.9226
10.1016/j.sab.2007.11.037
10.1007/s002040000134
10.1021/ic00209a011
10.1016/S0006-3061(00)80155-6
10.1039/b407388f
10.3109/10409239209082570
10.1021/ic50036a005
10.1126/science.877556
10.1016/S0039-9140(02)00268-0
10.1080/03067310601170415
10.1248/jhs.49.171
10.1073/pnas.0506836103
10.1016/j.jorganchem.2008.12.002
10.1021/ja01026a021
10.1074/jbc.271.31.18725
10.1128/AEM.06406-11
10.1080/15287390500196230
10.1039/b715243d
10.1128/MMBR.66.2.250-271.2002
10.1126/science.208.4443.500
10.1021/cr010210
10.1016/0304-4165(66)90331-X
10.1007/s00204-004-0620-x
10.1111/j.1432-1033.1994.00945.x
ContentType Journal Article
Copyright Copyright © 2012 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2012 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/aoc.2821
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1099-0739
EndPage 101
ExternalDocumentID 10_1002_aoc_2821
AOC2821
ark_67375_WNG_NXBJ30VD_M
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BTSUX
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M21
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWK
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V8K
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YCJ
ZZTAW
~IA
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
CITATION
ID FETCH-LOGICAL-c3031-57d95a4cc509848e565acb23d79535a938b3d6f0fcf6152808a041444a575bf83
IEDL.DBID DR2
ISSN 0268-2605
IngestDate Thu Apr 24 23:00:08 EDT 2025
Tue Jul 01 03:20:58 EDT 2025
Wed Aug 20 07:25:40 EDT 2025
Wed Oct 30 09:50:31 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3031-57d95a4cc509848e565acb23d79535a938b3d6f0fcf6152808a041444a575bf83
Notes ark:/67375/WNG-NXBJ30VD-M
ArticleID:AOC2821
istex:54940DACDD937FE9FC3F2A163C6521B0ED7DBAB0
PageCount 8
ParticipantIDs crossref_primary_10_1002_aoc_2821
crossref_citationtrail_10_1002_aoc_2821
wiley_primary_10_1002_aoc_2821_AOC2821
istex_primary_ark_67375_WNG_NXBJ30VD_M
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-02
February 2012
2012-02-00
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle Applied organometallic chemistry
PublicationTitleAlternate Appl. Organometal. Chem
PublicationYear 2012
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References O. Wuerfel, R. A. Diaz-Bone, M. Stephan, M. A. Jochmann, Anal. Chem. 2009, 81, 4312.
M. Styblo, L. M. Del Razo, L. Vega, D. R. Germolec, E. L. LeCluyse, G. A. Hamilton, W. Reed, C. Wang, W. R. Cullen, D. J. Thomas, Arch. Toxicol. 2000, 74, 289.
R. L. Birke, Q. Huang, T. Spataru, D. K. Gosser, J. Am. Chem. Soc. 2006, 128, 1922.
T. G. Chasteen, R. Bentley, Chem. Rev. 2003, 103, 1.
J. S. Thayer, Appl. Organomet. Chem. 2002, 16, 677.
L. M. Del Razo, M. Styblo, W. R. Cullen, D. J. Thomas, Toxicol. Appl. Pharmacol. 2001, 174, 282.
G. M. LeClerc, D. A. Grahame, J. Biol. Chem. 1996, 271, 18725.
J. U. Kreft, B. Schink, Eur. J. Biochem. 1994, 226, 945.
R. Bentley, T. G. Chasteen, Microbiol. Mol. Biol. Rev. 2002, 66, 250.
J. G. Ferry, Crit. Rev. Biochem. Mol. Biol. 1992, 27, 473.
R. A. Diaz-Bone, M. Hitzke, J. Anal. Atom. Spectrom. 2008, 23, 861.
Y. Ohta, K. T. Suzuki, Toxicol. Appl. Pharmacol. 2008, 226, 169.
J. Meyer, K. Michalke, T. Kouril, R. Hensel, Syst. Appl. Microbiol. 2008, 31, 81.
R. M. Kellett, T. G. Spiro, Inorg. Chem. 1985, 24, 2373.
J. Qin, B. P. Rosen, Y. Zhang, G. J. Wang, S. Franke, C. Rensing, Proc. Natl Acad. Sci. USA 2006, 103, 2075.
P. J. Craig, F. Glockling, The Biological Alkylation of Heavy Elements, Royal Society of Chemistry, London, 1988.
F. Thomas, R. A. Diaz-Bone, O. Wuerfel, B. Huber, K. Weidenbach, R. A. Schmitz, R. Hensel, Appl. Environ. Microbiol. 2011, 8669.
B. K. Mandal, K. T. Suzuki, Talanta 2002, 58, 201.
K. Nakamura, Y. Hisaeda, L. Pan, H. Yamauchi, J. Organomet. Chem. 2009, 694, 916.
W. Ridley, L. Dizikes, J. Wood, Science 1977, 197, 329.
A. R. Kumar, P. Riyazuddin, Int. J. Environ. Anal. Chem. 2007, 87, 469.
T. Matousek, A. Hernandez-Zavala, M. Svoboda, L. Langrova, B. M. Adair, Z. Drobna, D. J. Thomas, M. Styblo, J. Dedina, Spectrochim. Acta B 2008, 63, 396.
G. N. Schrauzer, J. W. Sibert, R. J. Windgassen, J. Am. Chem. Soc. 1968, 90, 6681.
R. H. Yamada, S. Shimizu, S. Fukui, Biochim. Biophys. Acta 1966, 124, 195.
S. M. Chemaly, R. A. Hasty, J. M. Pratt, J. Chem. Soc. Dalton Trans. 1983, 2223.
T. Sakurai, J. Health Sci. 2003, 49, 171.
V. Devesa, L. M. Del Razo, B. Adair, Z. Drobna, S. B. Waters, M. F. Hughes, M. Styblo, D. J. Thomas, J. Anal. Atom. Spectrom. 2004, 19, 1460.
G. N. Schrauzer, J. A. Seck, R. J. Holland, T. M. Beckham, E. M. Rubin, J. W. Sibert, Bioinorg. Chem. 1973, 2, 93.
R. A. Yokel, S. M. Lasley, D. C. Dorman, J. Toxicol, Environ. Health B Crit. Rev. 2006, 9, 63.
D. C. Reamer, W. H. Zoller, Science 1980, 208, 500.
T. Hayakawa, Y. Kobayashi, X. Cui, S. Hirano, Arch. Toxicol. 2005, 79, 183.
A. Merijani, R. A. Zingaro, Inorg. Chem. 1966, 5, 187.
2002; 16
2002; 58
2009; 81
2011
2006; 9
1966; 5
2009; 694
2006
2008; 226
2008; 31
1985; 24
1994; 226
1980; 208
2001; 174
1966; 124
2004; 19
2000; 74
2002; 66
1996; 271
2008; 23
2003; 49
1968; 90
1983
2008; 63
1992; 27
2003; 103
2007; 87
1973; 2
2005; 79
1977; 197
2006; 103
1988
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
Birke R. L. (e_1_2_6_31_1) 2006
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
Craig P. J. (e_1_2_6_15_1) 1988
e_1_2_6_26_1
References_xml – reference: A. Merijani, R. A. Zingaro, Inorg. Chem. 1966, 5, 187.
– reference: P. J. Craig, F. Glockling, The Biological Alkylation of Heavy Elements, Royal Society of Chemistry, London, 1988.
– reference: J. G. Ferry, Crit. Rev. Biochem. Mol. Biol. 1992, 27, 473.
– reference: T. Sakurai, J. Health Sci. 2003, 49, 171.
– reference: K. Nakamura, Y. Hisaeda, L. Pan, H. Yamauchi, J. Organomet. Chem. 2009, 694, 916.
– reference: V. Devesa, L. M. Del Razo, B. Adair, Z. Drobna, S. B. Waters, M. F. Hughes, M. Styblo, D. J. Thomas, J. Anal. Atom. Spectrom. 2004, 19, 1460.
– reference: Y. Ohta, K. T. Suzuki, Toxicol. Appl. Pharmacol. 2008, 226, 169.
– reference: T. Matousek, A. Hernandez-Zavala, M. Svoboda, L. Langrova, B. M. Adair, Z. Drobna, D. J. Thomas, M. Styblo, J. Dedina, Spectrochim. Acta B 2008, 63, 396.
– reference: R. L. Birke, Q. Huang, T. Spataru, D. K. Gosser, J. Am. Chem. Soc. 2006, 128, 1922.
– reference: R. H. Yamada, S. Shimizu, S. Fukui, Biochim. Biophys. Acta 1966, 124, 195.
– reference: A. R. Kumar, P. Riyazuddin, Int. J. Environ. Anal. Chem. 2007, 87, 469.
– reference: J. S. Thayer, Appl. Organomet. Chem. 2002, 16, 677.
– reference: W. Ridley, L. Dizikes, J. Wood, Science 1977, 197, 329.
– reference: L. M. Del Razo, M. Styblo, W. R. Cullen, D. J. Thomas, Toxicol. Appl. Pharmacol. 2001, 174, 282.
– reference: S. M. Chemaly, R. A. Hasty, J. M. Pratt, J. Chem. Soc. Dalton Trans. 1983, 2223.
– reference: R. Bentley, T. G. Chasteen, Microbiol. Mol. Biol. Rev. 2002, 66, 250.
– reference: T. Hayakawa, Y. Kobayashi, X. Cui, S. Hirano, Arch. Toxicol. 2005, 79, 183.
– reference: G. N. Schrauzer, J. W. Sibert, R. J. Windgassen, J. Am. Chem. Soc. 1968, 90, 6681.
– reference: M. Styblo, L. M. Del Razo, L. Vega, D. R. Germolec, E. L. LeCluyse, G. A. Hamilton, W. Reed, C. Wang, W. R. Cullen, D. J. Thomas, Arch. Toxicol. 2000, 74, 289.
– reference: T. G. Chasteen, R. Bentley, Chem. Rev. 2003, 103, 1.
– reference: B. K. Mandal, K. T. Suzuki, Talanta 2002, 58, 201.
– reference: O. Wuerfel, R. A. Diaz-Bone, M. Stephan, M. A. Jochmann, Anal. Chem. 2009, 81, 4312.
– reference: J. U. Kreft, B. Schink, Eur. J. Biochem. 1994, 226, 945.
– reference: G. M. LeClerc, D. A. Grahame, J. Biol. Chem. 1996, 271, 18725.
– reference: D. C. Reamer, W. H. Zoller, Science 1980, 208, 500.
– reference: F. Thomas, R. A. Diaz-Bone, O. Wuerfel, B. Huber, K. Weidenbach, R. A. Schmitz, R. Hensel, Appl. Environ. Microbiol. 2011, 8669.
– reference: R. M. Kellett, T. G. Spiro, Inorg. Chem. 1985, 24, 2373.
– reference: G. N. Schrauzer, J. A. Seck, R. J. Holland, T. M. Beckham, E. M. Rubin, J. W. Sibert, Bioinorg. Chem. 1973, 2, 93.
– reference: R. A. Yokel, S. M. Lasley, D. C. Dorman, J. Toxicol, Environ. Health B Crit. Rev. 2006, 9, 63.
– reference: R. A. Diaz-Bone, M. Hitzke, J. Anal. Atom. Spectrom. 2008, 23, 861.
– reference: J. Qin, B. P. Rosen, Y. Zhang, G. J. Wang, S. Franke, C. Rensing, Proc. Natl Acad. Sci. USA 2006, 103, 2075.
– reference: J. Meyer, K. Michalke, T. Kouril, R. Hensel, Syst. Appl. Microbiol. 2008, 31, 81.
– start-page: 2223
  year: 1983
  publication-title: J. Chem. Soc. Dalton Trans.
– volume: 103
  start-page: 1
  year: 2003
  publication-title: Chem. Rev.
– volume: 271
  start-page: 18725
  year: 1996
  publication-title: J. Biol. Chem.
– volume: 226
  start-page: 169
  year: 2008
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 58
  start-page: 201
  year: 2002
  publication-title: Talanta
– volume: 23
  start-page: 861
  year: 2008
  publication-title: J. Anal. Atom. Spectrom.
– volume: 31
  start-page: 81
  year: 2008
  publication-title: Syst. Appl. Microbiol.
– volume: 2
  start-page: 93
  year: 1973
  publication-title: Bioinorg. Chem.
– volume: 63
  start-page: 396
  year: 2008
  publication-title: Spectrochim. Acta B
– volume: 124
  start-page: 195
  year: 1966
  publication-title: Biochim. Biophys. Acta
– volume: 49
  start-page: 171
  year: 2003
  publication-title: J. Health Sci.
– volume: 27
  start-page: 473
  year: 1992
  publication-title: Crit. Rev. Biochem. Mol. Biol.
– volume: 19
  start-page: 1460
  year: 2004
  publication-title: J. Anal. Atom. Spectrom.
– volume: 9
  start-page: 63
  year: 2006
  publication-title: Environ. Health B Crit. Rev.
– volume: 226
  start-page: 945
  year: 1994
  publication-title: Eur. J. Biochem.
– volume: 79
  start-page: 183
  year: 2005
  publication-title: Arch. Toxicol.
– volume: 90
  start-page: 6681
  year: 1968
  publication-title: J. Am. Chem. Soc.
– start-page: 8669
  year: 2011
  publication-title: Appl. Environ. Microbiol.
– volume: 81
  start-page: 4312
  year: 2009
  publication-title: Anal. Chem.
– volume: 66
  start-page: 250
  year: 2002
  publication-title: Microbiol. Mol. Biol. Rev.
– volume: 87
  start-page: 469
  year: 2007
  publication-title: Int. J. Environ. Anal. Chem.
– volume: 74
  start-page: 289
  year: 2000
  publication-title: Arch. Toxicol.
– volume: 197
  start-page: 329
  year: 1977
  publication-title: Science
– volume: 694
  start-page: 916
  year: 2009
  publication-title: J. Organomet. Chem.
– volume: 174
  start-page: 282
  year: 2001
  publication-title: Toxicol. Appl. Pharmacol.
– year: 1988
– volume: 103
  start-page: 2075
  year: 2006
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 24
  start-page: 2373
  year: 1985
  publication-title: Inorg. Chem.
– start-page: 128
  year: 2006
  publication-title: J. Am. Chem. Soc
– volume: 16
  start-page: 677
  year: 2002
  publication-title: Appl. Organomet. Chem.
– volume: 208
  start-page: 500
  year: 1980
  publication-title: Science
– volume: 5
  start-page: 187
  year: 1966
  publication-title: Inorg. Chem.
– ident: e_1_2_6_13_1
  doi: 10.1016/j.taap.2007.09.011
– ident: e_1_2_6_32_1
  doi: 10.1039/dt9830002223
– ident: e_1_2_6_2_1
  doi: 10.1002/aoc.375
– ident: e_1_2_6_18_1
  doi: 10.1016/j.syapm.2008.02.001
– ident: e_1_2_6_22_1
  doi: 10.1021/ac8027307
– ident: e_1_2_6_24_1
  doi: 10.1006/taap.2001.9226
– ident: e_1_2_6_26_1
  doi: 10.1016/j.sab.2007.11.037
– volume-title: The Biological Alkylation of Heavy Elements
  year: 1988
  ident: e_1_2_6_15_1
– ident: e_1_2_6_4_1
  doi: 10.1007/s002040000134
– ident: e_1_2_6_33_1
  doi: 10.1021/ic00209a011
– ident: e_1_2_6_11_1
  doi: 10.1016/S0006-3061(00)80155-6
– ident: e_1_2_6_25_1
  doi: 10.1039/b407388f
– ident: e_1_2_6_17_1
  doi: 10.3109/10409239209082570
– start-page: 128
  year: 2006
  ident: e_1_2_6_31_1
  publication-title: J. Am. Chem. Soc
– ident: e_1_2_6_23_1
  doi: 10.1021/ic50036a005
– ident: e_1_2_6_10_1
  doi: 10.1126/science.877556
– ident: e_1_2_6_6_1
  doi: 10.1016/S0039-9140(02)00268-0
– ident: e_1_2_6_21_1
  doi: 10.1080/03067310601170415
– ident: e_1_2_6_5_1
  doi: 10.1248/jhs.49.171
– ident: e_1_2_6_14_1
  doi: 10.1073/pnas.0506836103
– ident: e_1_2_6_9_1
  doi: 10.1016/j.jorganchem.2008.12.002
– ident: e_1_2_6_16_1
  doi: 10.1021/ja01026a021
– ident: e_1_2_6_28_1
  doi: 10.1074/jbc.271.31.18725
– ident: e_1_2_6_19_1
  doi: 10.1128/AEM.06406-11
– ident: e_1_2_6_3_1
  doi: 10.1080/15287390500196230
– ident: e_1_2_6_27_1
  doi: 10.1039/b715243d
– ident: e_1_2_6_7_1
  doi: 10.1128/MMBR.66.2.250-271.2002
– ident: e_1_2_6_29_1
  doi: 10.1126/science.208.4443.500
– ident: e_1_2_6_12_1
  doi: 10.1021/cr010210
– ident: e_1_2_6_30_1
  doi: 10.1016/0304-4165(66)90331-X
– ident: e_1_2_6_8_1
  doi: 10.1007/s00204-004-0620-x
– ident: e_1_2_6_20_1
  doi: 10.1111/j.1432-1033.1994.00945.x
SSID ssj0009614
Score 2.025082
Snippet Metal(loid)s are subject to many transformation processes in the environment, such as oxidation, reduction, methylation and hydride generation, predominantly...
SourceID crossref
wiley
istex
SourceType Enrichment Source
Index Database
Publisher
StartPage 94
SubjectTerms cob(I)alamin
hydride generation
metalloids
methylation mechanism
methylcobalamin
Title Mechanism of multi-metal(loid) methylation and hydride generation by methylcobalamin and cob(I)alamin: a side reaction of methanogenesis
URI https://api.istex.fr/ark:/67375/WNG-NXBJ30VD-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faoc.2821
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PTxQxFG4IHPAiKBoRNTUxCIdZZqftTIcbriKQ7JoY0U04TNpOixvYHcMuicuJMyf-Rv4S32tnlmAwIZ4m03zTafrzey-v3yPknVCCGdfmEVewBXLJWSSdSSNYd7mTJmHa-zu6vXTvkB_0Rb-OqsS7MEEfYuZww5Xh92tc4EqPt25FQ1VlWmAvoOWDoVrIh77eKkflaZD1TlKYCEDZG93ZONlqPrxzEi1gp_6-y1D9EbO7RI6axoXIkpPW-US3zMVfuo3_1_pl8rhmnnQnTJUnZM6OnpLFTpPwbYVcdS1eAx6Mh7Ry1Eca3lxeDy3Q843TalBuUkw3PQ3Bc1SNSvpzisnZLT322tW-WE9rlEGhETUcBCS8bexvhoJtqigmCaXAV_2tCv87iz78CmsaD8bPyOHup2-dvahO1RAZOAPbkcjKXChuDPAPyaUFmqiMTliZ5YIJlTOpWZm62BkHFCqRsVQxB1uOK6CL2kn2nMyPqpF9QSjjjKWyDZazzbnNEw0ENdNApGLhVGqyVfK-GbbC1DrmmE7jtAgKzEkBfVtg366StzPkr6DdcQ9m3Y_8DKDOTjDWLRPFj97notf_cMDi7x-LLgD9eP6zpmLnSwefLx8KXCOPgH0lIQT8FZmfnJ3b18BwJvqNn8t_ADau9_0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELaq9lAuvBHlaSQE7WHTzdre9cKppJS0NEFCLeSAZNleu43aZFGTSoQTZ078Rn4JM3Y2VRFIiNNqrVmv5ec3o_H3EfJUaMGsb_OEa9gCueQskd7mCay70kubMRPiHb1-3j3kewMxWCIvm7swkR9iEXDDlRH2a1zgGJDevGAN1bVtgcMArs8KCnojcf72-wvuqDKPxN5ZDlMBQHvDPJtmm82Xl86iFezWL5cxajhkdq6RT03zYm7JSet8alr262_Mjf_Z_uvk6hx80q04W26QJTe-SVY7jebbLfK95_Am8HAyorWnIdnw57cfIwcIff20HlYbFBWnZzF_jupxRY9nqM_u6FGgrw7FZja3ssg1okfDaAlv67sbseAF1RR1QilA1nCxIvzOYRi_xpomw8ltcrjz-qDTTeZqDYmFY7CdiKIqhebWAgSRXDpAitqajFVFKZjQJZOGVblPvfWAojKZSp1ycOe4BsRovGR3yPK4Hru7hDLOWC7b4Dy7krsyM4BRCwNYKhVe57ZYI8-bcVN2TmWOihqnKpIwZwr6VmHfrpEnC8vPkb7jDzbPwtAvDPTZCaa7FUJ97L9R_cGrPZZ-2FY9MAwD-tea1Na7Dj7v_avhY7LaPejtq_3d_tv75AqAsSxmhD8gy9Ozc_cQAM_UPAoT-xevEfwZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQJgEvbNy0C2xGQrA9pEtjO3F421rKNmhBiEGlPVi2Y7NqazOtnbTytGee-I37JTu2k05DICGeolgnjuXrd46Ovw-hl0wyom2TRlTCFkg5JRG3Oo1g3eWW64QoH-_o9tLdA7rfZ_0qq9LdhQn8ELOAm1sZfr92C_y0sFs3pKGy1A3wF8DzmadpnDvZhvbnG-qoPA283kkKMwEwe008Gydb9Ze3jqJ516sXtyGqP2M6C-iwbl1ILTlunE9UQ__4jbjx_5q_iB5U0BNvh7nyEN0xo0foXqtWfHuMfnaNuwc8GA9xabFPNby6_DU0gM83TspBsYmd3vQ0ZM9hOSrw0dSpsxv83ZNX-2I1ray0YxqRw0GwhLeNvc1Q8AZL7FRCMQBWf63C_864IH7pahoPxk_QQeftl9ZuVGk1RBoOwWbEsiJnkmoNAIRTbgAnSq0SUmQ5I0zmhCtSpDa22gKGSnjMZUzBmaMS8KKynDxFc6NyZJYQJpSQlDfBdTY5NXmiAKFmCpBUzKxMdbaMXtfDJnRFZO70NE5EoGBOBPStcH27jF7MLE8DeccfbF75kZ8ZyLNjl-yWMfGt9070-jv7JP7aFl0w9OP515rE9seWe678q-E6uvup3REf9nrvV9F9QGJJSAd_huYmZ-fmOaCdiVrz0_oaxg76yA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+multi%E2%80%90metal%28loid%29+methylation+and+hydride+generation+by+methylcobalamin+and+cob%28I%29alamin%3A+a+side+reaction+of+methanogenesis&rft.jtitle=Applied+organometallic+chemistry&rft.au=Wuerfel%2C+Oliver&rft.au=Thomas%2C+Frank&rft.au=Schulte%2C+Marcel+Sven&rft.au=Hensel%2C+Reinhard&rft.date=2012-02-01&rft.issn=0268-2605&rft.eissn=1099-0739&rft.volume=26&rft.issue=2&rft.spage=94&rft.epage=101&rft_id=info:doi/10.1002%2Faoc.2821&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aoc_2821
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-2605&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-2605&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-2605&client=summon