3D‐printed degradable hydroxyapatite bioactive ceramics for skull regeneration
Hydroxyapatite (HA) bioceramics have been extensively employed as bone tissue scaffolds owing to their biodegradability and osteoinductivity. In our work, HA, a significant component of natural bone tissue used as the raw material to produce porous scaffolds employing three‐dimensional (3D)‐printing...
Saved in:
Published in | MedComm - Biomaterials and applications Vol. 2; no. 2 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
John Wiley & Sons, Inc
01.06.2023
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydroxyapatite (HA) bioceramics have been extensively employed as bone tissue scaffolds owing to their biodegradability and osteoinductivity. In our work, HA, a significant component of natural bone tissue used as the raw material to produce porous scaffolds employing three‐dimensional (3D)‐printing technology. Physical and chemical properties, porosity, and compression resistance of the scaffolds were investigated in vitro. The scaffold was confirmed to have a large number of interconnected pore structures on the surface and inside HA scaffolds showed good cell compatibility and cell adhesion in cell text. To analyze the effect of the scaffold on bone repair and regeneration in vivo, the large‐size defect of beagle skull was repaired with a 3D printing group and an autologous bone group (ABG) for 8 months. Images and histological analysis of the 3D printing group indicated better integration with adjacent tissues. However, there were obvious gaps in the ABG, which indicates weak bone regeneration ability of this group due to unmatched implant dimension. Immunohistochemistry and immunofluorescence results showed that 3D‐printed scaffolds had a highly vascularized structure. This study indicates that 3D‐printed bioceramics scaffolds that are osteoinductivity and biodegradable have great potential in maxillofacial bone regeneration.
Diagram of the three‐dimensional printing of bioceramics. |
---|---|
AbstractList | Abstract Hydroxyapatite (HA) bioceramics have been extensively employed as bone tissue scaffolds owing to their biodegradability and osteoinductivity. In our work, HA, a significant component of natural bone tissue used as the raw material to produce porous scaffolds employing three‐dimensional (3D)‐printing technology. Physical and chemical properties, porosity, and compression resistance of the scaffolds were investigated in vitro. The scaffold was confirmed to have a large number of interconnected pore structures on the surface and inside HA scaffolds showed good cell compatibility and cell adhesion in cell text. To analyze the effect of the scaffold on bone repair and regeneration in vivo, the large‐size defect of beagle skull was repaired with a 3D printing group and an autologous bone group (ABG) for 8 months. Images and histological analysis of the 3D printing group indicated better integration with adjacent tissues. However, there were obvious gaps in the ABG, which indicates weak bone regeneration ability of this group due to unmatched implant dimension. Immunohistochemistry and immunofluorescence results showed that 3D‐printed scaffolds had a highly vascularized structure. This study indicates that 3D‐printed bioceramics scaffolds that are osteoinductivity and biodegradable have great potential in maxillofacial bone regeneration. Hydroxyapatite (HA) bioceramics have been extensively employed as bone tissue scaffolds owing to their biodegradability and osteoinductivity. In our work, HA, a significant component of natural bone tissue used as the raw material to produce porous scaffolds employing three‐dimensional (3D)‐printing technology. Physical and chemical properties, porosity, and compression resistance of the scaffolds were investigated in vitro. The scaffold was confirmed to have a large number of interconnected pore structures on the surface and inside HA scaffolds showed good cell compatibility and cell adhesion in cell text. To analyze the effect of the scaffold on bone repair and regeneration in vivo, the large‐size defect of beagle skull was repaired with a 3D printing group and an autologous bone group (ABG) for 8 months. Images and histological analysis of the 3D printing group indicated better integration with adjacent tissues. However, there were obvious gaps in the ABG, which indicates weak bone regeneration ability of this group due to unmatched implant dimension. Immunohistochemistry and immunofluorescence results showed that 3D‐printed scaffolds had a highly vascularized structure. This study indicates that 3D‐printed bioceramics scaffolds that are osteoinductivity and biodegradable have great potential in maxillofacial bone regeneration. Hydroxyapatite (HA) bioceramics have been extensively employed as bone tissue scaffolds owing to their biodegradability and osteoinductivity. In our work, HA, a significant component of natural bone tissue used as the raw material to produce porous scaffolds employing three‐dimensional (3D)‐printing technology. Physical and chemical properties, porosity, and compression resistance of the scaffolds were investigated in vitro. The scaffold was confirmed to have a large number of interconnected pore structures on the surface and inside HA scaffolds showed good cell compatibility and cell adhesion in cell text. To analyze the effect of the scaffold on bone repair and regeneration in vivo, the large‐size defect of beagle skull was repaired with a 3D printing group and an autologous bone group (ABG) for 8 months. Images and histological analysis of the 3D printing group indicated better integration with adjacent tissues. However, there were obvious gaps in the ABG, which indicates weak bone regeneration ability of this group due to unmatched implant dimension. Immunohistochemistry and immunofluorescence results showed that 3D‐printed scaffolds had a highly vascularized structure. This study indicates that 3D‐printed bioceramics scaffolds that are osteoinductivity and biodegradable have great potential in maxillofacial bone regeneration. Diagram of the three‐dimensional printing of bioceramics. |
Author | Feng, Pin Kong, Qingquan Zhang, Xingdong Zhou, Changchun Fan, Yujiang Liu, Ming Gui, Xingyu Zhang, Boqing Zhou, Zhigang Su, Zixuan Fan, Chen Dong, Zhihong |
Author_xml | – sequence: 1 givenname: Xingyu surname: Gui fullname: Gui, Xingyu organization: Sichuan University – sequence: 2 givenname: Boqing surname: Zhang fullname: Zhang, Boqing organization: Sichuan University – sequence: 3 givenname: Zixuan surname: Su fullname: Su, Zixuan organization: Sichuan University – sequence: 4 givenname: Zhigang surname: Zhou fullname: Zhou, Zhigang organization: West China Hospital, Sichuan University – sequence: 5 givenname: Zhihong surname: Dong fullname: Dong, Zhihong organization: Chengdu University – sequence: 6 givenname: Pin surname: Feng fullname: Feng, Pin organization: Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.) – sequence: 7 givenname: Chen surname: Fan fullname: Fan, Chen organization: Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.) – sequence: 8 givenname: Ming surname: Liu fullname: Liu, Ming email: liuminglm15@163.com organization: West China Hospital, Sichuan University – sequence: 9 givenname: Qingquan surname: Kong fullname: Kong, Qingquan organization: Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.) – sequence: 10 givenname: Changchun orcidid: 0000-0001-9706-3224 surname: Zhou fullname: Zhou, Changchun email: changchunzhou@scu.edu.cn organization: Sichuan University – sequence: 11 givenname: Yujiang surname: Fan fullname: Fan, Yujiang organization: Sichuan University – sequence: 12 givenname: Xingdong surname: Zhang fullname: Zhang, Xingdong organization: Sichuan University |
BookMark | eNp10UtOHDEQBmALESkwQblCSyxYoCZ22_3wkkcgSERhESR2VtkuDx562oPbQ5gdR8gZc5IYJkgIlJWt0le_qlTbZHMIAxLymdEDRmn1Za6hOhBsg2xVbSPLRvDrzVf_j2RnHGc0S1lRUTdb5JKf_Hn8vYh-SGgLi9MIFnSPxc3KxvCwggUkn7DQPoBJ_h4LgxHm3oyFC7EYb5d9X0Sc4pDLyYfhE_ngoB9x5987IVenX38efysvfpydHx9elIZTzkrmOpBGCxTaaK5bDS3YtnYObcdF3RpJWWXQNk3FZdPUHeoa29wjrOaOaT4h5-tcG2Cm8gJziCsVwKvnQohTBTF506OyQramo1DLzgrHHKCVzmipG9F1uqU5a3edtYjhboljUrOwjEMeX3EqK17TTsisyrUyMYxjRKeMT887pwi-V4yqpxuopxsowbLfe-Nfpnwv99fyl-9x9T-mvh8dVln_BffImJU |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2024_134483 crossref_primary_10_1016_j_mtnano_2024_100519 crossref_primary_10_1021_acsbiomaterials_4c00457 crossref_primary_10_1002_smtd_202300843 crossref_primary_10_1016_j_bioadv_2024_213760 crossref_primary_10_3390_nano14020152 crossref_primary_10_1002_mco2_753 crossref_primary_10_1016_j_bioactmat_2024_07_029 crossref_primary_10_1016_j_ceramint_2024_11_092 crossref_primary_10_1016_j_mtbio_2023_100871 crossref_primary_10_1166_jbt_2024_3350 |
Cites_doi | 10.1016/j.msec.2016.08.055 10.3389/fphys.2017.00956 10.1515/ntrev-2021-0083 10.1016/j.ijbiomac.2016.08.046 10.3390/polym12112631 10.1002/adfm.202008687 10.1039/c3bm60058k 10.1021/acsami.6b14782 10.3390/polym14061266 10.1016/j.bioactmat.2021.03.043 10.1097/MOO.0000000000000373 10.1016/j.compositesb.2021.109192 10.1016/S1005-0302(11)60087-X 10.1016/j.biomaterials.2022.121431 10.1111/j.1600-051X.2008.01318.x 10.1021/acsami.0c00553 10.1016/j.cej.2021.130961 10.1016/j.actbio.2020.07.006 10.1021/acsbiomaterials.8b00521 10.1039/C7TB02487H 10.1016/j.actbio.2021.05.056 10.1002/adhm.201901134 10.1002/adhm.201700919 10.3390/ma12172683 10.1016/j.ceramint.2019.05.144 10.1016/j.ijbiomac.2013.04.004 10.1038/s41598-020-64757-z 10.1002/jbm.a.35828 10.1097/SCS.0000000000003025 10.1016/j.matdes.2021.109957 10.1016/j.jeurceramsoc.2018.11.013 10.1016/j.matdes.2021.109490 10.1016/j.ceramint.2019.07.096 10.1016/j.coche.2020.05.007 10.1016/j.actbio.2017.07.033 10.1177/2041731419896449 10.1016/j.msec.2019.109858 10.1515/ntrev-2014-0013 10.1016/j.jeurceramsoc.2020.07.028 10.1088/1758-5082/6/3/035013 10.1002/pc.27174 10.1016/j.msec.2020.111158 10.1016/j.actbio.2018.11.003 10.1016/j.msec.2017.08.039 10.1016/j.progsolidstchem.2004.07.001 10.1016/j.biomaterials.2008.09.032 10.1016/j.msec.2016.04.101 10.1002/adma.201907142 10.1016/j.pjnns.2017.02.007 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Sichuan International Medical Exchange & Promotion Association (SCIMEA). 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Sichuan International Medical Exchange & Promotion Association (SCIMEA). – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1002/mba2.41 |
DatabaseName | Wiley Online Library Open Access - NZ CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection ProQuest Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2769-643X |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_d497c80a598d4f1faed9fcb9b6488b70 10_1002_mba2_41 MBA241 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 31971251; 81171731 – fundername: Sichuan Science and Technology Program funderid: 2022YFG0066; 2023YFQ0053 |
GroupedDBID | 0R~ 24P ABJCF ACCMX ADPDF AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR BGLVJ CCPQU EBS GROUPED_DOAJ HCIFZ KB. M~E PDBOC PIMPY TEORI AAYXX CITATION OVD PHGZM PHGZT 8FE 8FG AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC D1I DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS WIN PUEGO |
ID | FETCH-LOGICAL-c3031-1f8a9cb4e4bcb3b7ba7ad75ffed83457c9012ced662396658eb5e78a94db3f1b3 |
IEDL.DBID | DOA |
ISSN | 2769-643X |
IngestDate | Wed Aug 27 01:30:01 EDT 2025 Wed Aug 13 04:39:37 EDT 2025 Tue Jul 01 00:46:49 EDT 2025 Thu Apr 24 23:12:23 EDT 2025 Wed Jan 22 16:20:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3031-1f8a9cb4e4bcb3b7ba7ad75ffed83457c9012ced662396658eb5e78a94db3f1b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9706-3224 |
OpenAccessLink | https://doaj.org/article/d497c80a598d4f1faed9fcb9b6488b70 |
PQID | 3092350849 |
PQPubID | 6853473 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d497c80a598d4f1faed9fcb9b6488b70 proquest_journals_3092350849 crossref_citationtrail_10_1002_mba2_41 crossref_primary_10_1002_mba2_41 wiley_primary_10_1002_mba2_41_MBA241 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2023 2023-06-00 20230601 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | MedComm - Biomaterials and applications |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2021; 209 2017; 5 2017; 8 2013; 1 2021; 201 2019; 12 2008; 35 2020; 12 2020; 11 2016; 104 2018; 82 2020; 10 2017; 9 2018; 7 2004; 32 2022; 283 2013; 58 2021; 31 2014; 3 2018; 4 2017; 70 2020; 9 2011; 27 2014; 6 2021; 6 2017; 60 2017; 25 2020; 40 2021; 224 2019; 39 2019; 103 2016; 93 2020; 32 2022; 44 2017; 51 2009; 30 2021; 10 2019; 83 2019; 45 2020; 28 2022; 57 2020; 116 2022; 14 2020; 24 2021; 130 2020; 114 2022; 427 2016; 27 2016; 66 e_1_2_11_32_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 e_1_2_11_20_1 e_1_2_11_45_1 Hussain R (e_1_2_11_8_1) 2020; 24 e_1_2_11_47_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_50_1 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_46_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 Vasylenko K (e_1_2_11_29_1) 2022; 57 |
References_xml | – volume: 27 start-page: 431 issue: 5 year: 2011 end-page: 436 article-title: Preparation and characterization of porous calcium phosphate bioceramics publication-title: J Mater Sci Technol – volume: 30 start-page: 208 issue: 2 year: 2009 end-page: 216 article-title: Minimally invasive maxillofacial vertical bone augmentation using brushite based cements publication-title: Biomaterials – volume: 83 start-page: 435 year: 2019 end-page: 455 article-title: Mineralization in micropores of calcium phosphate scaffolds publication-title: Acta Biomater – volume: 25 start-page: 291 issue: 4 year: 2017 end-page: 299 article-title: 3D printing: current use in facial plastic and reconstructive surgery publication-title: Curr Opin Otolaryngol Head Neck Surg – volume: 28 start-page: 152 year: 2020 end-page: 157 article-title: A review on 3D printing techniques for medical applications publication-title: Curr Opin Chem Eng – volume: 45 start-page: 16226 issue: 13 year: 2019 end-page: 16233 article-title: Evolution of the microstructural and mechanical properties of hydroxyapatite bioceramics with varying sintering temperature publication-title: Ceram Int – volume: 82 start-page: 217 year: 2018 end-page: 224 article-title: Hierarchically porous structure, mechanical strength and cell biological behaviors of calcium phosphate composite scaffolds prepared by combination of extrusion and porogen burnout technique and enhanced by gelatin publication-title: Mater Sci Eng C – volume: 4 start-page: 3317 issue: 9 year: 2018 end-page: 3326 article-title: Poly(ε‐caprolactone)/hydroxyapatite 3D honeycomb scaffolds for a cellular microenvironment adapted to maxillofacial bone reconstruction publication-title: ACS Biomater Sci Eng – volume: 283 year: 2022 article-title: Biomaterial‐induced pathway modulation for bone regeneration publication-title: Biomaterials – volume: 3 start-page: 527 issue: 6 year: 2014 end-page: 552 article-title: Physical and biological characteristics of nanohydroxyapatite and bioactive glasses used for bone tissue engineering publication-title: Nanotechnol Rev – volume: 70 start-page: 913 issue: Pt 1 year: 2017 end-page: 929 article-title: A current overview of materials and strategies for potential use in maxillofacial tissue regeneration publication-title: Mater Sci Eng C – volume: 11 year: 2020 article-title: Clinical study of octacalcium phosphate and collagen composite in oral and maxillofacial surgery publication-title: J Tissue Eng – volume: 44 start-page: 1343 issue: 2 year: 2022 end-page: 1359 article-title: The effect of pore size and layout on mechanical and biological properties of 3D‐printed bone scaffolds with gradient porosity publication-title: Polym Compos – volume: 93 start-page: 276 issue: Pt A year: 2016 end-page: 289 article-title: Nano‐hydroxyapatite/β‐CD/chitosan nanocomposite for potential applications in bone tissue engineering publication-title: Int J Biol Macromol – volume: 57 issue: 3 year: 2022 article-title: Determination of the activation energies of phase transition for calcium orthophosphates based on powder X‐ray diffraction data publication-title: Cryst – volume: 58 start-page: 275 year: 2013 end-page: 280 article-title: Fabrication and characterization of novel diopside/silk fibroin nanocomposite scaffolds for potential application in maxillofacial bone regeneration publication-title: Int J Biol Macromol – volume: 14 start-page: 1266 issue: 6 year: 2022 article-title: Adaptive mechanism for designing a personalized cranial implant and its 3D printing using PEEK publication-title: Polymers – volume: 32 start-page: 1 issue: 1‐2 year: 2004 end-page: 31 article-title: Calcium phosphates as substitution of bone tissues publication-title: Prog Solid State Chem – volume: 116 year: 2020 article-title: Injectable hydrogel‐loaded nano‐hydroxyapatite that improves bone regeneration and alveolar ridge promotion publication-title: Mater Sci Eng C – volume: 31 issue: 44 year: 2021 article-title: Engineered vascularized flaps, composed of polymeric soft tissue and live bone, repair complex tibial defects publication-title: Adv Funct Mater – volume: 114 start-page: 407 year: 2020 end-page: 420 article-title: Controlled release of soy isoflavones from multifunctional 3D printed bone tissue engineering scaffolds publication-title: Acta Biomater – volume: 24 start-page: 2093 issue: 7 year: 2020 end-page: 2106 article-title: Contribution of augmented reality to minimally invasive computer‐assisted cranial base surgery publication-title: IEEE J Biomed Health Inform – volume: 39 start-page: 661 issue: 4 year: 2019 end-page: 687 article-title: 3D printing of ceramics: a review publication-title: J Eur Ceram Soc – volume: 6 issue: 3 year: 2014 article-title: Biomimetic fabrication of a three‐level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering publication-title: Biofabrication – volume: 9 issue: 4 year: 2020 article-title: Adhesive hydrogels for maxillofacial tissue regeneration using minimally invasive procedures publication-title: Adv Healthc Mater – volume: 35 start-page: 985 issue: 11 year: 2008 end-page: 991 article-title: Bone formation at recombinant human bone morphogenetic protein‐2‐coated titanium implants in the posterior mandible (type II bone) in dogs publication-title: J Clin Periodontol – volume: 8 start-page: 956 year: 2017 article-title: Calvarial suture‐derived stem cells and their contribution to cranial bone repair publication-title: Front Physiol – volume: 10 start-page: 1359 issue: 1 year: 2021 end-page: 1373 article-title: Fabrication and properties of PLA/nano‐HA composite scaffolds with balanced mechanical properties and biological functions for bone tissue engineering application publication-title: Nanotechnol Rev – volume: 10 start-page: 7914 issue: 1 year: 2020 article-title: Bone‐like structure by modified freeze casting publication-title: Sci Rep – volume: 60 start-page: 81 year: 2017 end-page: 92 article-title: In vitro degradation of calcium phosphates: effect of multiscale porosity, textural properties and composition publication-title: Acta Biomater – volume: 12 start-page: 27889 issue: 25 year: 2020 end-page: 27904 article-title: Targeting local osteogenic and ancillary cells by mechanobiologically optimized magnesium scaffolds for orbital bone reconstruction in canines publication-title: ACS Appl Mater Interfaces – volume: 9 start-page: 6816 issue: 8 year: 2017 end-page: 6828 article-title: Nano‐hydroxyapatite bone substitute functionalized with bone active molecules for enhanced cranial bone regeneration publication-title: ACS Appl Mater Interfaces – volume: 209 year: 2021 article-title: A sandwich‐like structure composite electrospun membrane of polylactic acid/nano‐hydroxyapatite and polyvinyl alcohol/sodium alginate/nano‐hydroxyapatite for skull defect repair publication-title: Mater Des – volume: 130 start-page: 485 year: 2021 end-page: 496 article-title: Effects of nanocrystalline hydroxyapatite concentration and skeletal site on bone and cartilage formation in rats publication-title: Acta Biomater – volume: 27 start-page: 2061 issue: 8 year: 2016 end-page: 2072 article-title: Cranioplasty: review of materials publication-title: J Craniofac Surg – volume: 427 year: 2022 article-title: 3D printed calcium phosphate scaffolds with controlled release of osteogenic drugs for bone regeneration publication-title: Chem Eng J – volume: 45 start-page: 21051 issue: 17 year: 2019 end-page: 21061 article-title: Current advances in bone tissue engineering concerning ceramic and bioglass scaffolds: a review publication-title: Ceram Int – volume: 201 year: 2021 article-title: 3D printed bone tissue regenerative PLA/HA scaffolds with comprehensive performance optimizations publication-title: Mater Des – volume: 1 start-page: 1012 issue: 10 year: 2013 end-page: 1028 article-title: Applications of nanostructured calcium phosphate in tissue engineering publication-title: Biomater Sci – volume: 224 year: 2021 article-title: 3D printing of PLA/n‐HA composite scaffolds with customized mechanical properties and biological functions for bone tissue engineering publication-title: Compos Part B – volume: 32 issue: 17 year: 2020 article-title: Nanomaterial patterning in 3D printing publication-title: Adv Mater – volume: 7 issue: 6 year: 2018 article-title: Biomimetic tissue‐engineered bone substitutes for maxillofacial and craniofacial repair: the potential of cell sheet technologies publication-title: Adv Healthc Mater – volume: 66 start-page: 315 year: 2016 end-page: 322 article-title: Materials and techniques used in cranioplasty fixation: a review publication-title: Mater Sci Eng C – volume: 51 start-page: 214 issue: 3 year: 2017 end-page: 220 article-title: Reconstruction of large cranial defects with poly‐methyl‐methacrylate (PMMA) using a rapid prototyping model and a new technique for intraoperative implant modeling publication-title: Neurol Neurochir Pol – volume: 103 year: 2019 article-title: Advanced biomaterials for repairing and reconstruction of mandibular defects publication-title: Mater Sci Eng C – volume: 12 start-page: 2683 issue: 17 year: 2019 article-title: Hydroxyapatite and fluorapatite in conservative dentistry and oral implantology—a review publication-title: Materials – volume: 12 start-page: 2631 issue: 11 year: 2020 article-title: Biomimetic polyurethane 3D scaffolds based on polytetrahydrofuran glycol and polyethylene glycol for soft tissue engineering publication-title: Polymers – volume: 40 start-page: 6095 issue: 15 year: 2020 end-page: 6106 article-title: A thermodynamic approach to surface modification of calcium phosphate implants by phosphate evaporation and condensation publication-title: J Eur Ceram Soc – volume: 5 start-page: 9148 issue: 46 year: 2017 end-page: 9156 article-title: Controlled synthesis and transformation of nano‐hydroxyapatite with tailored morphologies for biomedical applications publication-title: J Mater Chem B – volume: 6 start-page: 4110 issue: 11 year: 2021 end-page: 4140 article-title: Bone physiological microenvironment and healing mechanism: basis for future bone‐tissue engineering scaffolds publication-title: Bioact Mater – volume: 104 start-page: 2833 issue: 11 year: 2016 end-page: 2842 article-title: Effect of resorption rate and osteoconductivity of biodegradable calcium phosphate materials on the acquisition of natural bone strength in the repaired bone publication-title: J Biomed Mater Res A – ident: e_1_2_11_9_1 doi: 10.1016/j.msec.2016.08.055 – ident: e_1_2_11_34_1 doi: 10.3389/fphys.2017.00956 – ident: e_1_2_11_17_1 doi: 10.1515/ntrev-2021-0083 – ident: e_1_2_11_37_1 doi: 10.1016/j.ijbiomac.2016.08.046 – ident: e_1_2_11_38_1 doi: 10.3390/polym12112631 – ident: e_1_2_11_24_1 doi: 10.1002/adfm.202008687 – ident: e_1_2_11_19_1 doi: 10.1039/c3bm60058k – ident: e_1_2_11_30_1 doi: 10.1021/acsami.6b14782 – ident: e_1_2_11_50_1 doi: 10.3390/polym14061266 – volume: 57 issue: 3 year: 2022 ident: e_1_2_11_29_1 article-title: Determination of the activation energies of phase transition for calcium orthophosphates based on powder X‐ray diffraction data publication-title: Cryst – ident: e_1_2_11_5_1 doi: 10.1016/j.bioactmat.2021.03.043 – ident: e_1_2_11_33_1 doi: 10.1097/MOO.0000000000000373 – ident: e_1_2_11_16_1 doi: 10.1016/j.compositesb.2021.109192 – ident: e_1_2_11_23_1 doi: 10.1016/S1005-0302(11)60087-X – ident: e_1_2_11_15_1 doi: 10.1016/j.biomaterials.2022.121431 – ident: e_1_2_11_14_1 doi: 10.1111/j.1600-051X.2008.01318.x – ident: e_1_2_11_2_1 doi: 10.1021/acsami.0c00553 – ident: e_1_2_11_25_1 doi: 10.1016/j.cej.2021.130961 – ident: e_1_2_11_45_1 doi: 10.1016/j.actbio.2020.07.006 – ident: e_1_2_11_6_1 doi: 10.1021/acsbiomaterials.8b00521 – ident: e_1_2_11_46_1 doi: 10.1039/C7TB02487H – ident: e_1_2_11_21_1 doi: 10.1016/j.actbio.2021.05.056 – ident: e_1_2_11_12_1 doi: 10.1002/adhm.201901134 – ident: e_1_2_11_11_1 doi: 10.1002/adhm.201700919 – ident: e_1_2_11_26_1 doi: 10.3390/ma12172683 – ident: e_1_2_11_47_1 doi: 10.1016/j.ceramint.2019.05.144 – ident: e_1_2_11_7_1 doi: 10.1016/j.ijbiomac.2013.04.004 – ident: e_1_2_11_39_1 doi: 10.1038/s41598-020-64757-z – ident: e_1_2_11_31_1 doi: 10.1002/jbm.a.35828 – ident: e_1_2_11_51_1 doi: 10.1097/SCS.0000000000003025 – ident: e_1_2_11_35_1 doi: 10.1016/j.matdes.2021.109957 – ident: e_1_2_11_40_1 doi: 10.1016/j.jeurceramsoc.2018.11.013 – ident: e_1_2_11_4_1 doi: 10.1016/j.matdes.2021.109490 – ident: e_1_2_11_27_1 doi: 10.1016/j.ceramint.2019.07.096 – ident: e_1_2_11_43_1 doi: 10.1016/j.coche.2020.05.007 – ident: e_1_2_11_22_1 doi: 10.1016/j.actbio.2017.07.033 – ident: e_1_2_11_10_1 doi: 10.1177/2041731419896449 – ident: e_1_2_11_3_1 doi: 10.1016/j.msec.2019.109858 – ident: e_1_2_11_18_1 doi: 10.1515/ntrev-2014-0013 – ident: e_1_2_11_41_1 doi: 10.1016/j.jeurceramsoc.2020.07.028 – ident: e_1_2_11_20_1 doi: 10.1088/1758-5082/6/3/035013 – ident: e_1_2_11_52_1 doi: 10.1002/pc.27174 – ident: e_1_2_11_36_1 doi: 10.1016/j.msec.2020.111158 – ident: e_1_2_11_44_1 doi: 10.1016/j.actbio.2018.11.003 – volume: 24 start-page: 2093 issue: 7 year: 2020 ident: e_1_2_11_8_1 article-title: Contribution of augmented reality to minimally invasive computer‐assisted cranial base surgery publication-title: IEEE J Biomed Health Inform – ident: e_1_2_11_32_1 doi: 10.1016/j.msec.2017.08.039 – ident: e_1_2_11_28_1 doi: 10.1016/j.progsolidstchem.2004.07.001 – ident: e_1_2_11_13_1 doi: 10.1016/j.biomaterials.2008.09.032 – ident: e_1_2_11_48_1 doi: 10.1016/j.msec.2016.04.101 – ident: e_1_2_11_42_1 doi: 10.1002/adma.201907142 – ident: e_1_2_11_49_1 doi: 10.1016/j.pjnns.2017.02.007 |
SSID | ssj0002920456 |
Score | 2.34781 |
Snippet | Hydroxyapatite (HA) bioceramics have been extensively employed as bone tissue scaffolds owing to their biodegradability and osteoinductivity. In our work, HA,... Abstract Hydroxyapatite (HA) bioceramics have been extensively employed as bone tissue scaffolds owing to their biodegradability and osteoinductivity. In our... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | 3-D printers 3D printing autogenous Bioceramics Biocompatibility Biomedical materials bone repair Bones Calcium phosphates Cell adhesion Ceramics Chemical properties Design Hydroxyapatite Image compression Immunofluorescence In vivo methods and tests Mechanical properties Pore size Porous materials Raw materials Regeneration (physiology) Scaffolds Sintering Skull Three dimensional printing Transplants & implants Trauma |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7BcimHir7ULQ_5gLilbDZO7JwQy0OoEgghkPZmefygVcsu7G4PvfET-I38EmYS7wKq2mviRNGMPfN5Mv4-gO1ondYoQ6Ysl24s6gwpsWS5tbKufKQdGZcGTs-qkyv5bVgOU8Ftmtoq5zGxCdR-7LhGvlv0CIoQmpD13u1dxqpR_Hc1SWgswwqFYK07sDI4Oju_WFRZWItJNhKufVXVGaXfYXtylplHd2_Q9r_K_FVKapj7X8HNl6C1yTrHa_A2wUWx3_r3HSyF0XtYfUEi-AHOi8PH-weuzxF4FJ7JHzyfhxLf_3juUbHcMz0LAn-MbRPchAsTVqGfCgKsYvqTNqFiEq4b_ml200e4Oj66PDjJkk5C5igBkV2jtrUjg0t0WKBCq6xXZYzB60KWylHO77vgK4I6tLspdcAyKHpGeixijsUn6IzGo_AZRM-zAEyFgXY6MmqHPiKWtoyuQJTSdmFnbirjEok4a1n8Mi39cd-wTY3MuyAWA29b3oy_hwzY1ovbTHTdXBhPrk1aN8bLWjnds2WtvYx5tMHX0WGNFUUeVL0ubMw9ZdLqm5rnudKF7cZ7__oGczrYJwzz5f9vWYc3rDLfdohtQGc2-R02CYvMcCtNuCd1EuEL priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access - NZ dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5SL3oQn1hf5FC8rba72U326BMRlB4s9BYyeaiorbT14M2f4G_0lziTXWtFBK-7CSyTncw3w8z3MdYKxioFwifSUOnGgEoAA0vSMUaUhQuYkVFp4Oq6uOiJy37en5H6qvghpgU38ox4X5ODGxgffpOGPoFJD2hkfZ4Ga6mbLxXdaXmFRJhE1G5NZVEmGHf71cgs7T6s9_6IRZGy_wfOnEWrMdycL7OlGifyo-pgV9icH6yyxRn2wDXWzU4_3t6pMIeokTtifXA0CMXvXh01pxhqlp54DvdDE281bv2I5OfHHJEqHz9g9slH_jYST9P5rLPe-dnNyUVSCyQkFiMPGjQoU1q0tAALGUgw0jiZh-CdykQuLQb71HpXIMbBtCZXHnIvcY9wkIUOZBusMRgO_CbjbUfKLwV4THFEUBZcAMhNHmwGIIRpsv0vU2lbs4eTiMWjrniPU0021aLTZHy68LkizPi95JhsPX1NDNfxwXB0q2uH0U6U0qq2yUvlROgE410ZLJRQ4JUDst1kO18npWu3G-usjXgVIacom6wVT--vb9BXx0cIXrb-t2ybLZDMfNUitsMak9GL30UwMoG9-Nt9ApWV3jo priority: 102 providerName: Wiley-Blackwell |
Title | 3D‐printed degradable hydroxyapatite bioactive ceramics for skull regeneration |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmba2.41 https://www.proquest.com/docview/3092350849 https://doaj.org/article/d497c80a598d4f1faed9fcb9b6488b70 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9tAEB0VeoEDogVEaBrtAfVmEsdre31MaFJUKShCIOW22tkPQECCknDgUvET-I39JZ2xDQpCVS-97MFeS6OZ9c6b1ex7AIfBWKVQ-ig3fHRjUEVIiSWKjZFF5gJVZHw0MDrNTi7kz0k6WZH64p6wih64clzbySK3qmPSQjkZ4mC8K4LFAjNaepiX1TrlvJViivdg1mAiaFDdkmWW0fYdmu6RjN-kn5Kl_w20XAWoZYYZbsNWDQ1FrzLpE3zw08-wuUIYuAPj5Pvvp2c-iyOgKBwTPTi--ySuHh33oxjuj156gdczU25kwvo5K84vBIFTsbihglPM_WXJNc0h2YWL4eD8-CSqNREiS8mGfBiUKSw5V6LFBHM0uXF5GoJ3KpFpbim_d613GcEaqmRS5TH1OX0jHSYhxmQP1qezqd8H0XEs9pKhp6pGBmXRBcTUpMEmiFKaBnx7cZW2NWE461bc6orquKvZp1rGDRCvE-8rjoz3U_rs69fXTGpdPqBQ6zrU-l-hbkDzJVK6_tMWOukQRCWUKYsGHJbR-5sNetTvEV45-B-mfIEN1p2vesaasL6cP_ivhE6W2IK1rhzTqIY_WvCxPzgdn7XKxUnj6NfgDzrr66w |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAOiF-xUMCHwi10kzhxckCopSxb2q04tNLejMc_BbXslt1FqDcegSfhoXgSZpxkaYXg1mviWJY9nvlmMjMfwHowtqpQ-kQZDt0YrBIkw5Kkxsi6dIE8Mg4NjPbL4aF8Ny7GK_Czq4XhtMpOJ0ZF7aaWY-QbeZ-gCKEJWb86_ZIwaxT_Xe0oNBqx2PVn38hlm7_c2abzfZZlgzcHr4dJyyqQWFLXtIpQmdrS8iRazFGhUcapIgTvqlwWypKFzKx3JQED8gWKymPhFX0jHeYhxZzmvQJXZU6WnCvTB2-XMR1mfpKRMDZTZZ2QsR83dbrc53TjM5rshUwvGMDIE3AB3J6HyNHGDW7BzRacis1Gmm7Dip_cgRvnWhbehff59q_vPzgaSFBVOG414bj6Snw8c5wRYzhDe-EFfpqaqEqF9TPmvJ8Lgsdifkwur5j5o9jtmoXiHhxeyv7dh9XJdOIfgOg7ppsp0ZNfJUNl0QXEwhTB5ohSmh4877ZK27ZlOTNnnOim2XKmeU-1THsglgNPmy4dfw_Z4r1evua22vHBdHak21uqnayVrfqmqCsnQxqMd3WwWGNJeg5Vvwdr3Unp9q7P9R_J7MF6PL1_rUGPtjYJMT38_yxP4drwYLSn93b2dx_Bdea3b3LT1mB1MfvqHxMKWuCTKHoCPly2rP8GnCYd0g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VIiF6QPyKQAEfCrel2V3v2nvg0BKiltIqByrlZjz-KYiSVEkQ6o1H4DV4LZ6EGe8mtEJIXHrddaKRPT_fzI6_AdiK1mmNMmTKcunGos6QAkuWWyub2kfKyLg0cHhU7x3Lt-NqvAY_l3dhWn6IVcGNLSP5azbwMx-3_5CGfkFbvJR51095EM6_UbY2f7U_oKN9XhTDN-9f72XdQIHMkacmAaK2jSPJJDosUaFV1qsqxuB1KSvlKDgWLviaMAGlAZUOWAVFv5Eey5hjSf97Da7zp0XuHivkaFXO4aFPMs2KLVTdZBTnx-0VXZZ2u5P1UuxLIwIu4dqL6DiFt-FtuNXhUrHTKtIdWAuTu7Bxga3wHozKwa_vP7gQSChVeGaZ8HzxSnw899wMY7k5exEEfpra5EWFCzMedz8XhIzF_DNlu2IWThLRNevDfTi-kv17AOuT6SQ8BNH3PGmmxkAplYzaoY-Ila2iKxGltD14sdwq4zq2ch6acWpanuXC8J4amfdArBaetQQdfy_Z5b1evWZG7fRgOjsxnYEaLxvldN9WjfYy5tEG30SHDdbk4lD1e7C5PCnTmfnclH3CxwRxZdODrXR6_5LBHO7uEFh69H_LnsGN0WBo3u0fHTyGmzzhvu1O24T1xexreEI4aIFPkwYK-HDVKv8bwO8cMQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D%E2%80%90printed+degradable+hydroxyapatite+bioactive+ceramics+for+skull+regeneration&rft.jtitle=MedComm+-+Biomaterials+and+applications&rft.au=Gui%2C+Xingyu&rft.au=Zhang%2C+Boqing&rft.au=Su%2C+Zixuan&rft.au=Zhou%2C+Zhigang&rft.date=2023-06-01&rft.issn=2769-643X&rft.eissn=2769-643X&rft.volume=2&rft.issue=2&rft_id=info:doi/10.1002%2Fmba2.41&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mba2_41 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2769-643X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2769-643X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2769-643X&client=summon |