3D‐printed degradable hydroxyapatite bioactive ceramics for skull regeneration

Hydroxyapatite (HA) bioceramics have been extensively employed as bone tissue scaffolds owing to their biodegradability and osteoinductivity. In our work, HA, a significant component of natural bone tissue used as the raw material to produce porous scaffolds employing three‐dimensional (3D)‐printing...

Full description

Saved in:
Bibliographic Details
Published inMedComm - Biomaterials and applications Vol. 2; no. 2
Main Authors Gui, Xingyu, Zhang, Boqing, Su, Zixuan, Zhou, Zhigang, Dong, Zhihong, Feng, Pin, Fan, Chen, Liu, Ming, Kong, Qingquan, Zhou, Changchun, Fan, Yujiang, Zhang, Xingdong
Format Journal Article
LanguageEnglish
Published London John Wiley & Sons, Inc 01.06.2023
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydroxyapatite (HA) bioceramics have been extensively employed as bone tissue scaffolds owing to their biodegradability and osteoinductivity. In our work, HA, a significant component of natural bone tissue used as the raw material to produce porous scaffolds employing three‐dimensional (3D)‐printing technology. Physical and chemical properties, porosity, and compression resistance of the scaffolds were investigated in vitro. The scaffold was confirmed to have a large number of interconnected pore structures on the surface and inside HA scaffolds showed good cell compatibility and cell adhesion in cell text. To analyze the effect of the scaffold on bone repair and regeneration in vivo, the large‐size defect of beagle skull was repaired with a 3D printing group and an autologous bone group (ABG) for 8 months. Images and histological analysis of the 3D printing group indicated better integration with adjacent tissues. However, there were obvious gaps in the ABG, which indicates weak bone regeneration ability of this group due to unmatched implant dimension. Immunohistochemistry and immunofluorescence results showed that 3D‐printed scaffolds had a highly vascularized structure. This study indicates that 3D‐printed bioceramics scaffolds that are osteoinductivity and biodegradable have great potential in maxillofacial bone regeneration. Diagram of the three‐dimensional printing of bioceramics.
AbstractList Abstract Hydroxyapatite (HA) bioceramics have been extensively employed as bone tissue scaffolds owing to their biodegradability and osteoinductivity. In our work, HA, a significant component of natural bone tissue used as the raw material to produce porous scaffolds employing three‐dimensional (3D)‐printing technology. Physical and chemical properties, porosity, and compression resistance of the scaffolds were investigated in vitro. The scaffold was confirmed to have a large number of interconnected pore structures on the surface and inside HA scaffolds showed good cell compatibility and cell adhesion in cell text. To analyze the effect of the scaffold on bone repair and regeneration in vivo, the large‐size defect of beagle skull was repaired with a 3D printing group and an autologous bone group (ABG) for 8 months. Images and histological analysis of the 3D printing group indicated better integration with adjacent tissues. However, there were obvious gaps in the ABG, which indicates weak bone regeneration ability of this group due to unmatched implant dimension. Immunohistochemistry and immunofluorescence results showed that 3D‐printed scaffolds had a highly vascularized structure. This study indicates that 3D‐printed bioceramics scaffolds that are osteoinductivity and biodegradable have great potential in maxillofacial bone regeneration.
Hydroxyapatite (HA) bioceramics have been extensively employed as bone tissue scaffolds owing to their biodegradability and osteoinductivity. In our work, HA, a significant component of natural bone tissue used as the raw material to produce porous scaffolds employing three‐dimensional (3D)‐printing technology. Physical and chemical properties, porosity, and compression resistance of the scaffolds were investigated in vitro. The scaffold was confirmed to have a large number of interconnected pore structures on the surface and inside HA scaffolds showed good cell compatibility and cell adhesion in cell text. To analyze the effect of the scaffold on bone repair and regeneration in vivo, the large‐size defect of beagle skull was repaired with a 3D printing group and an autologous bone group (ABG) for 8 months. Images and histological analysis of the 3D printing group indicated better integration with adjacent tissues. However, there were obvious gaps in the ABG, which indicates weak bone regeneration ability of this group due to unmatched implant dimension. Immunohistochemistry and immunofluorescence results showed that 3D‐printed scaffolds had a highly vascularized structure. This study indicates that 3D‐printed bioceramics scaffolds that are osteoinductivity and biodegradable have great potential in maxillofacial bone regeneration.
Hydroxyapatite (HA) bioceramics have been extensively employed as bone tissue scaffolds owing to their biodegradability and osteoinductivity. In our work, HA, a significant component of natural bone tissue used as the raw material to produce porous scaffolds employing three‐dimensional (3D)‐printing technology. Physical and chemical properties, porosity, and compression resistance of the scaffolds were investigated in vitro. The scaffold was confirmed to have a large number of interconnected pore structures on the surface and inside HA scaffolds showed good cell compatibility and cell adhesion in cell text. To analyze the effect of the scaffold on bone repair and regeneration in vivo, the large‐size defect of beagle skull was repaired with a 3D printing group and an autologous bone group (ABG) for 8 months. Images and histological analysis of the 3D printing group indicated better integration with adjacent tissues. However, there were obvious gaps in the ABG, which indicates weak bone regeneration ability of this group due to unmatched implant dimension. Immunohistochemistry and immunofluorescence results showed that 3D‐printed scaffolds had a highly vascularized structure. This study indicates that 3D‐printed bioceramics scaffolds that are osteoinductivity and biodegradable have great potential in maxillofacial bone regeneration. Diagram of the three‐dimensional printing of bioceramics.
Author Feng, Pin
Kong, Qingquan
Zhang, Xingdong
Zhou, Changchun
Fan, Yujiang
Liu, Ming
Gui, Xingyu
Zhang, Boqing
Zhou, Zhigang
Su, Zixuan
Fan, Chen
Dong, Zhihong
Author_xml – sequence: 1
  givenname: Xingyu
  surname: Gui
  fullname: Gui, Xingyu
  organization: Sichuan University
– sequence: 2
  givenname: Boqing
  surname: Zhang
  fullname: Zhang, Boqing
  organization: Sichuan University
– sequence: 3
  givenname: Zixuan
  surname: Su
  fullname: Su, Zixuan
  organization: Sichuan University
– sequence: 4
  givenname: Zhigang
  surname: Zhou
  fullname: Zhou, Zhigang
  organization: West China Hospital, Sichuan University
– sequence: 5
  givenname: Zhihong
  surname: Dong
  fullname: Dong, Zhihong
  organization: Chengdu University
– sequence: 6
  givenname: Pin
  surname: Feng
  fullname: Feng, Pin
  organization: Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.)
– sequence: 7
  givenname: Chen
  surname: Fan
  fullname: Fan, Chen
  organization: Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.)
– sequence: 8
  givenname: Ming
  surname: Liu
  fullname: Liu, Ming
  email: liuminglm15@163.com
  organization: West China Hospital, Sichuan University
– sequence: 9
  givenname: Qingquan
  surname: Kong
  fullname: Kong, Qingquan
  organization: Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.)
– sequence: 10
  givenname: Changchun
  orcidid: 0000-0001-9706-3224
  surname: Zhou
  fullname: Zhou, Changchun
  email: changchunzhou@scu.edu.cn
  organization: Sichuan University
– sequence: 11
  givenname: Yujiang
  surname: Fan
  fullname: Fan, Yujiang
  organization: Sichuan University
– sequence: 12
  givenname: Xingdong
  surname: Zhang
  fullname: Zhang, Xingdong
  organization: Sichuan University
BookMark eNp10UtOHDEQBmALESkwQblCSyxYoCZ22_3wkkcgSERhESR2VtkuDx562oPbQ5gdR8gZc5IYJkgIlJWt0le_qlTbZHMIAxLymdEDRmn1Za6hOhBsg2xVbSPLRvDrzVf_j2RnHGc0S1lRUTdb5JKf_Hn8vYh-SGgLi9MIFnSPxc3KxvCwggUkn7DQPoBJ_h4LgxHm3oyFC7EYb5d9X0Sc4pDLyYfhE_ngoB9x5987IVenX38efysvfpydHx9elIZTzkrmOpBGCxTaaK5bDS3YtnYObcdF3RpJWWXQNk3FZdPUHeoa29wjrOaOaT4h5-tcG2Cm8gJziCsVwKvnQohTBTF506OyQramo1DLzgrHHKCVzmipG9F1uqU5a3edtYjhboljUrOwjEMeX3EqK17TTsisyrUyMYxjRKeMT887pwi-V4yqpxuopxsowbLfe-Nfpnwv99fyl-9x9T-mvh8dVln_BffImJU
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2024_134483
crossref_primary_10_1016_j_mtnano_2024_100519
crossref_primary_10_1021_acsbiomaterials_4c00457
crossref_primary_10_1002_smtd_202300843
crossref_primary_10_1016_j_bioadv_2024_213760
crossref_primary_10_3390_nano14020152
crossref_primary_10_1002_mco2_753
crossref_primary_10_1016_j_bioactmat_2024_07_029
crossref_primary_10_1016_j_ceramint_2024_11_092
crossref_primary_10_1016_j_mtbio_2023_100871
crossref_primary_10_1166_jbt_2024_3350
Cites_doi 10.1016/j.msec.2016.08.055
10.3389/fphys.2017.00956
10.1515/ntrev-2021-0083
10.1016/j.ijbiomac.2016.08.046
10.3390/polym12112631
10.1002/adfm.202008687
10.1039/c3bm60058k
10.1021/acsami.6b14782
10.3390/polym14061266
10.1016/j.bioactmat.2021.03.043
10.1097/MOO.0000000000000373
10.1016/j.compositesb.2021.109192
10.1016/S1005-0302(11)60087-X
10.1016/j.biomaterials.2022.121431
10.1111/j.1600-051X.2008.01318.x
10.1021/acsami.0c00553
10.1016/j.cej.2021.130961
10.1016/j.actbio.2020.07.006
10.1021/acsbiomaterials.8b00521
10.1039/C7TB02487H
10.1016/j.actbio.2021.05.056
10.1002/adhm.201901134
10.1002/adhm.201700919
10.3390/ma12172683
10.1016/j.ceramint.2019.05.144
10.1016/j.ijbiomac.2013.04.004
10.1038/s41598-020-64757-z
10.1002/jbm.a.35828
10.1097/SCS.0000000000003025
10.1016/j.matdes.2021.109957
10.1016/j.jeurceramsoc.2018.11.013
10.1016/j.matdes.2021.109490
10.1016/j.ceramint.2019.07.096
10.1016/j.coche.2020.05.007
10.1016/j.actbio.2017.07.033
10.1177/2041731419896449
10.1016/j.msec.2019.109858
10.1515/ntrev-2014-0013
10.1016/j.jeurceramsoc.2020.07.028
10.1088/1758-5082/6/3/035013
10.1002/pc.27174
10.1016/j.msec.2020.111158
10.1016/j.actbio.2018.11.003
10.1016/j.msec.2017.08.039
10.1016/j.progsolidstchem.2004.07.001
10.1016/j.biomaterials.2008.09.032
10.1016/j.msec.2016.04.101
10.1002/adma.201907142
10.1016/j.pjnns.2017.02.007
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Sichuan International Medical Exchange & Promotion Association (SCIMEA).
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Sichuan International Medical Exchange & Promotion Association (SCIMEA).
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1002/mba2.41
DatabaseName Wiley Online Library Open Access - NZ
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
ProQuest Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Materials Science Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2769-643X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_d497c80a598d4f1faed9fcb9b6488b70
10_1002_mba2_41
MBA241
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 31971251; 81171731
– fundername: Sichuan Science and Technology Program
  funderid: 2022YFG0066; 2023YFQ0053
GroupedDBID 0R~
24P
ABJCF
ACCMX
ADPDF
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
BGLVJ
CCPQU
EBS
GROUPED_DOAJ
HCIFZ
KB.
M~E
PDBOC
PIMPY
TEORI
AAYXX
CITATION
OVD
PHGZM
PHGZT
8FE
8FG
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
D1I
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
WIN
PUEGO
ID FETCH-LOGICAL-c3031-1f8a9cb4e4bcb3b7ba7ad75ffed83457c9012ced662396658eb5e78a94db3f1b3
IEDL.DBID DOA
ISSN 2769-643X
IngestDate Wed Aug 27 01:30:01 EDT 2025
Wed Aug 13 04:39:37 EDT 2025
Tue Jul 01 00:46:49 EDT 2025
Thu Apr 24 23:12:23 EDT 2025
Wed Jan 22 16:20:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3031-1f8a9cb4e4bcb3b7ba7ad75ffed83457c9012ced662396658eb5e78a94db3f1b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9706-3224
OpenAccessLink https://doaj.org/article/d497c80a598d4f1faed9fcb9b6488b70
PQID 3092350849
PQPubID 6853473
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_d497c80a598d4f1faed9fcb9b6488b70
proquest_journals_3092350849
crossref_citationtrail_10_1002_mba2_41
crossref_primary_10_1002_mba2_41
wiley_primary_10_1002_mba2_41_MBA241
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
20230601
2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle MedComm - Biomaterials and applications
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2021; 209
2017; 5
2017; 8
2013; 1
2021; 201
2019; 12
2008; 35
2020; 12
2020; 11
2016; 104
2018; 82
2020; 10
2017; 9
2018; 7
2004; 32
2022; 283
2013; 58
2021; 31
2014; 3
2018; 4
2017; 70
2020; 9
2011; 27
2014; 6
2021; 6
2017; 60
2017; 25
2020; 40
2021; 224
2019; 39
2019; 103
2016; 93
2020; 32
2022; 44
2017; 51
2009; 30
2021; 10
2019; 83
2019; 45
2020; 28
2022; 57
2020; 116
2022; 14
2020; 24
2021; 130
2020; 114
2022; 427
2016; 27
2016; 66
e_1_2_11_32_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_20_1
e_1_2_11_45_1
Hussain R (e_1_2_11_8_1) 2020; 24
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_46_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
Vasylenko K (e_1_2_11_29_1) 2022; 57
References_xml – volume: 27
  start-page: 431
  issue: 5
  year: 2011
  end-page: 436
  article-title: Preparation and characterization of porous calcium phosphate bioceramics
  publication-title: J Mater Sci Technol
– volume: 30
  start-page: 208
  issue: 2
  year: 2009
  end-page: 216
  article-title: Minimally invasive maxillofacial vertical bone augmentation using brushite based cements
  publication-title: Biomaterials
– volume: 83
  start-page: 435
  year: 2019
  end-page: 455
  article-title: Mineralization in micropores of calcium phosphate scaffolds
  publication-title: Acta Biomater
– volume: 25
  start-page: 291
  issue: 4
  year: 2017
  end-page: 299
  article-title: 3D printing: current use in facial plastic and reconstructive surgery
  publication-title: Curr Opin Otolaryngol Head Neck Surg
– volume: 28
  start-page: 152
  year: 2020
  end-page: 157
  article-title: A review on 3D printing techniques for medical applications
  publication-title: Curr Opin Chem Eng
– volume: 45
  start-page: 16226
  issue: 13
  year: 2019
  end-page: 16233
  article-title: Evolution of the microstructural and mechanical properties of hydroxyapatite bioceramics with varying sintering temperature
  publication-title: Ceram Int
– volume: 82
  start-page: 217
  year: 2018
  end-page: 224
  article-title: Hierarchically porous structure, mechanical strength and cell biological behaviors of calcium phosphate composite scaffolds prepared by combination of extrusion and porogen burnout technique and enhanced by gelatin
  publication-title: Mater Sci Eng C
– volume: 4
  start-page: 3317
  issue: 9
  year: 2018
  end-page: 3326
  article-title: Poly(ε‐caprolactone)/hydroxyapatite 3D honeycomb scaffolds for a cellular microenvironment adapted to maxillofacial bone reconstruction
  publication-title: ACS Biomater Sci Eng
– volume: 283
  year: 2022
  article-title: Biomaterial‐induced pathway modulation for bone regeneration
  publication-title: Biomaterials
– volume: 3
  start-page: 527
  issue: 6
  year: 2014
  end-page: 552
  article-title: Physical and biological characteristics of nanohydroxyapatite and bioactive glasses used for bone tissue engineering
  publication-title: Nanotechnol Rev
– volume: 70
  start-page: 913
  issue: Pt 1
  year: 2017
  end-page: 929
  article-title: A current overview of materials and strategies for potential use in maxillofacial tissue regeneration
  publication-title: Mater Sci Eng C
– volume: 11
  year: 2020
  article-title: Clinical study of octacalcium phosphate and collagen composite in oral and maxillofacial surgery
  publication-title: J Tissue Eng
– volume: 44
  start-page: 1343
  issue: 2
  year: 2022
  end-page: 1359
  article-title: The effect of pore size and layout on mechanical and biological properties of 3D‐printed bone scaffolds with gradient porosity
  publication-title: Polym Compos
– volume: 93
  start-page: 276
  issue: Pt A
  year: 2016
  end-page: 289
  article-title: Nano‐hydroxyapatite/β‐CD/chitosan nanocomposite for potential applications in bone tissue engineering
  publication-title: Int J Biol Macromol
– volume: 57
  issue: 3
  year: 2022
  article-title: Determination of the activation energies of phase transition for calcium orthophosphates based on powder X‐ray diffraction data
  publication-title: Cryst
– volume: 58
  start-page: 275
  year: 2013
  end-page: 280
  article-title: Fabrication and characterization of novel diopside/silk fibroin nanocomposite scaffolds for potential application in maxillofacial bone regeneration
  publication-title: Int J Biol Macromol
– volume: 14
  start-page: 1266
  issue: 6
  year: 2022
  article-title: Adaptive mechanism for designing a personalized cranial implant and its 3D printing using PEEK
  publication-title: Polymers
– volume: 32
  start-page: 1
  issue: 1‐2
  year: 2004
  end-page: 31
  article-title: Calcium phosphates as substitution of bone tissues
  publication-title: Prog Solid State Chem
– volume: 116
  year: 2020
  article-title: Injectable hydrogel‐loaded nano‐hydroxyapatite that improves bone regeneration and alveolar ridge promotion
  publication-title: Mater Sci Eng C
– volume: 31
  issue: 44
  year: 2021
  article-title: Engineered vascularized flaps, composed of polymeric soft tissue and live bone, repair complex tibial defects
  publication-title: Adv Funct Mater
– volume: 114
  start-page: 407
  year: 2020
  end-page: 420
  article-title: Controlled release of soy isoflavones from multifunctional 3D printed bone tissue engineering scaffolds
  publication-title: Acta Biomater
– volume: 24
  start-page: 2093
  issue: 7
  year: 2020
  end-page: 2106
  article-title: Contribution of augmented reality to minimally invasive computer‐assisted cranial base surgery
  publication-title: IEEE J Biomed Health Inform
– volume: 39
  start-page: 661
  issue: 4
  year: 2019
  end-page: 687
  article-title: 3D printing of ceramics: a review
  publication-title: J Eur Ceram Soc
– volume: 6
  issue: 3
  year: 2014
  article-title: Biomimetic fabrication of a three‐level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering
  publication-title: Biofabrication
– volume: 9
  issue: 4
  year: 2020
  article-title: Adhesive hydrogels for maxillofacial tissue regeneration using minimally invasive procedures
  publication-title: Adv Healthc Mater
– volume: 35
  start-page: 985
  issue: 11
  year: 2008
  end-page: 991
  article-title: Bone formation at recombinant human bone morphogenetic protein‐2‐coated titanium implants in the posterior mandible (type II bone) in dogs
  publication-title: J Clin Periodontol
– volume: 8
  start-page: 956
  year: 2017
  article-title: Calvarial suture‐derived stem cells and their contribution to cranial bone repair
  publication-title: Front Physiol
– volume: 10
  start-page: 1359
  issue: 1
  year: 2021
  end-page: 1373
  article-title: Fabrication and properties of PLA/nano‐HA composite scaffolds with balanced mechanical properties and biological functions for bone tissue engineering application
  publication-title: Nanotechnol Rev
– volume: 10
  start-page: 7914
  issue: 1
  year: 2020
  article-title: Bone‐like structure by modified freeze casting
  publication-title: Sci Rep
– volume: 60
  start-page: 81
  year: 2017
  end-page: 92
  article-title: In vitro degradation of calcium phosphates: effect of multiscale porosity, textural properties and composition
  publication-title: Acta Biomater
– volume: 12
  start-page: 27889
  issue: 25
  year: 2020
  end-page: 27904
  article-title: Targeting local osteogenic and ancillary cells by mechanobiologically optimized magnesium scaffolds for orbital bone reconstruction in canines
  publication-title: ACS Appl Mater Interfaces
– volume: 9
  start-page: 6816
  issue: 8
  year: 2017
  end-page: 6828
  article-title: Nano‐hydroxyapatite bone substitute functionalized with bone active molecules for enhanced cranial bone regeneration
  publication-title: ACS Appl Mater Interfaces
– volume: 209
  year: 2021
  article-title: A sandwich‐like structure composite electrospun membrane of polylactic acid/nano‐hydroxyapatite and polyvinyl alcohol/sodium alginate/nano‐hydroxyapatite for skull defect repair
  publication-title: Mater Des
– volume: 130
  start-page: 485
  year: 2021
  end-page: 496
  article-title: Effects of nanocrystalline hydroxyapatite concentration and skeletal site on bone and cartilage formation in rats
  publication-title: Acta Biomater
– volume: 27
  start-page: 2061
  issue: 8
  year: 2016
  end-page: 2072
  article-title: Cranioplasty: review of materials
  publication-title: J Craniofac Surg
– volume: 427
  year: 2022
  article-title: 3D printed calcium phosphate scaffolds with controlled release of osteogenic drugs for bone regeneration
  publication-title: Chem Eng J
– volume: 45
  start-page: 21051
  issue: 17
  year: 2019
  end-page: 21061
  article-title: Current advances in bone tissue engineering concerning ceramic and bioglass scaffolds: a review
  publication-title: Ceram Int
– volume: 201
  year: 2021
  article-title: 3D printed bone tissue regenerative PLA/HA scaffolds with comprehensive performance optimizations
  publication-title: Mater Des
– volume: 1
  start-page: 1012
  issue: 10
  year: 2013
  end-page: 1028
  article-title: Applications of nanostructured calcium phosphate in tissue engineering
  publication-title: Biomater Sci
– volume: 224
  year: 2021
  article-title: 3D printing of PLA/n‐HA composite scaffolds with customized mechanical properties and biological functions for bone tissue engineering
  publication-title: Compos Part B
– volume: 32
  issue: 17
  year: 2020
  article-title: Nanomaterial patterning in 3D printing
  publication-title: Adv Mater
– volume: 7
  issue: 6
  year: 2018
  article-title: Biomimetic tissue‐engineered bone substitutes for maxillofacial and craniofacial repair: the potential of cell sheet technologies
  publication-title: Adv Healthc Mater
– volume: 66
  start-page: 315
  year: 2016
  end-page: 322
  article-title: Materials and techniques used in cranioplasty fixation: a review
  publication-title: Mater Sci Eng C
– volume: 51
  start-page: 214
  issue: 3
  year: 2017
  end-page: 220
  article-title: Reconstruction of large cranial defects with poly‐methyl‐methacrylate (PMMA) using a rapid prototyping model and a new technique for intraoperative implant modeling
  publication-title: Neurol Neurochir Pol
– volume: 103
  year: 2019
  article-title: Advanced biomaterials for repairing and reconstruction of mandibular defects
  publication-title: Mater Sci Eng C
– volume: 12
  start-page: 2683
  issue: 17
  year: 2019
  article-title: Hydroxyapatite and fluorapatite in conservative dentistry and oral implantology—a review
  publication-title: Materials
– volume: 12
  start-page: 2631
  issue: 11
  year: 2020
  article-title: Biomimetic polyurethane 3D scaffolds based on polytetrahydrofuran glycol and polyethylene glycol for soft tissue engineering
  publication-title: Polymers
– volume: 40
  start-page: 6095
  issue: 15
  year: 2020
  end-page: 6106
  article-title: A thermodynamic approach to surface modification of calcium phosphate implants by phosphate evaporation and condensation
  publication-title: J Eur Ceram Soc
– volume: 5
  start-page: 9148
  issue: 46
  year: 2017
  end-page: 9156
  article-title: Controlled synthesis and transformation of nano‐hydroxyapatite with tailored morphologies for biomedical applications
  publication-title: J Mater Chem B
– volume: 6
  start-page: 4110
  issue: 11
  year: 2021
  end-page: 4140
  article-title: Bone physiological microenvironment and healing mechanism: basis for future bone‐tissue engineering scaffolds
  publication-title: Bioact Mater
– volume: 104
  start-page: 2833
  issue: 11
  year: 2016
  end-page: 2842
  article-title: Effect of resorption rate and osteoconductivity of biodegradable calcium phosphate materials on the acquisition of natural bone strength in the repaired bone
  publication-title: J Biomed Mater Res A
– ident: e_1_2_11_9_1
  doi: 10.1016/j.msec.2016.08.055
– ident: e_1_2_11_34_1
  doi: 10.3389/fphys.2017.00956
– ident: e_1_2_11_17_1
  doi: 10.1515/ntrev-2021-0083
– ident: e_1_2_11_37_1
  doi: 10.1016/j.ijbiomac.2016.08.046
– ident: e_1_2_11_38_1
  doi: 10.3390/polym12112631
– ident: e_1_2_11_24_1
  doi: 10.1002/adfm.202008687
– ident: e_1_2_11_19_1
  doi: 10.1039/c3bm60058k
– ident: e_1_2_11_30_1
  doi: 10.1021/acsami.6b14782
– ident: e_1_2_11_50_1
  doi: 10.3390/polym14061266
– volume: 57
  issue: 3
  year: 2022
  ident: e_1_2_11_29_1
  article-title: Determination of the activation energies of phase transition for calcium orthophosphates based on powder X‐ray diffraction data
  publication-title: Cryst
– ident: e_1_2_11_5_1
  doi: 10.1016/j.bioactmat.2021.03.043
– ident: e_1_2_11_33_1
  doi: 10.1097/MOO.0000000000000373
– ident: e_1_2_11_16_1
  doi: 10.1016/j.compositesb.2021.109192
– ident: e_1_2_11_23_1
  doi: 10.1016/S1005-0302(11)60087-X
– ident: e_1_2_11_15_1
  doi: 10.1016/j.biomaterials.2022.121431
– ident: e_1_2_11_14_1
  doi: 10.1111/j.1600-051X.2008.01318.x
– ident: e_1_2_11_2_1
  doi: 10.1021/acsami.0c00553
– ident: e_1_2_11_25_1
  doi: 10.1016/j.cej.2021.130961
– ident: e_1_2_11_45_1
  doi: 10.1016/j.actbio.2020.07.006
– ident: e_1_2_11_6_1
  doi: 10.1021/acsbiomaterials.8b00521
– ident: e_1_2_11_46_1
  doi: 10.1039/C7TB02487H
– ident: e_1_2_11_21_1
  doi: 10.1016/j.actbio.2021.05.056
– ident: e_1_2_11_12_1
  doi: 10.1002/adhm.201901134
– ident: e_1_2_11_11_1
  doi: 10.1002/adhm.201700919
– ident: e_1_2_11_26_1
  doi: 10.3390/ma12172683
– ident: e_1_2_11_47_1
  doi: 10.1016/j.ceramint.2019.05.144
– ident: e_1_2_11_7_1
  doi: 10.1016/j.ijbiomac.2013.04.004
– ident: e_1_2_11_39_1
  doi: 10.1038/s41598-020-64757-z
– ident: e_1_2_11_31_1
  doi: 10.1002/jbm.a.35828
– ident: e_1_2_11_51_1
  doi: 10.1097/SCS.0000000000003025
– ident: e_1_2_11_35_1
  doi: 10.1016/j.matdes.2021.109957
– ident: e_1_2_11_40_1
  doi: 10.1016/j.jeurceramsoc.2018.11.013
– ident: e_1_2_11_4_1
  doi: 10.1016/j.matdes.2021.109490
– ident: e_1_2_11_27_1
  doi: 10.1016/j.ceramint.2019.07.096
– ident: e_1_2_11_43_1
  doi: 10.1016/j.coche.2020.05.007
– ident: e_1_2_11_22_1
  doi: 10.1016/j.actbio.2017.07.033
– ident: e_1_2_11_10_1
  doi: 10.1177/2041731419896449
– ident: e_1_2_11_3_1
  doi: 10.1016/j.msec.2019.109858
– ident: e_1_2_11_18_1
  doi: 10.1515/ntrev-2014-0013
– ident: e_1_2_11_41_1
  doi: 10.1016/j.jeurceramsoc.2020.07.028
– ident: e_1_2_11_20_1
  doi: 10.1088/1758-5082/6/3/035013
– ident: e_1_2_11_52_1
  doi: 10.1002/pc.27174
– ident: e_1_2_11_36_1
  doi: 10.1016/j.msec.2020.111158
– ident: e_1_2_11_44_1
  doi: 10.1016/j.actbio.2018.11.003
– volume: 24
  start-page: 2093
  issue: 7
  year: 2020
  ident: e_1_2_11_8_1
  article-title: Contribution of augmented reality to minimally invasive computer‐assisted cranial base surgery
  publication-title: IEEE J Biomed Health Inform
– ident: e_1_2_11_32_1
  doi: 10.1016/j.msec.2017.08.039
– ident: e_1_2_11_28_1
  doi: 10.1016/j.progsolidstchem.2004.07.001
– ident: e_1_2_11_13_1
  doi: 10.1016/j.biomaterials.2008.09.032
– ident: e_1_2_11_48_1
  doi: 10.1016/j.msec.2016.04.101
– ident: e_1_2_11_42_1
  doi: 10.1002/adma.201907142
– ident: e_1_2_11_49_1
  doi: 10.1016/j.pjnns.2017.02.007
SSID ssj0002920456
Score 2.34781
Snippet Hydroxyapatite (HA) bioceramics have been extensively employed as bone tissue scaffolds owing to their biodegradability and osteoinductivity. In our work, HA,...
Abstract Hydroxyapatite (HA) bioceramics have been extensively employed as bone tissue scaffolds owing to their biodegradability and osteoinductivity. In our...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 3-D printers
3D printing
autogenous
Bioceramics
Biocompatibility
Biomedical materials
bone repair
Bones
Calcium phosphates
Cell adhesion
Ceramics
Chemical properties
Design
Hydroxyapatite
Image compression
Immunofluorescence
In vivo methods and tests
Mechanical properties
Pore size
Porous materials
Raw materials
Regeneration (physiology)
Scaffolds
Sintering
Skull
Three dimensional printing
Transplants & implants
Trauma
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7BcimHir7ULQ_5gLilbDZO7JwQy0OoEgghkPZmefygVcsu7G4PvfET-I38EmYS7wKq2mviRNGMPfN5Mv4-gO1ondYoQ6Ysl24s6gwpsWS5tbKufKQdGZcGTs-qkyv5bVgOU8Ftmtoq5zGxCdR-7LhGvlv0CIoQmpD13u1dxqpR_Hc1SWgswwqFYK07sDI4Oju_WFRZWItJNhKufVXVGaXfYXtylplHd2_Q9r_K_FVKapj7X8HNl6C1yTrHa_A2wUWx3_r3HSyF0XtYfUEi-AHOi8PH-weuzxF4FJ7JHzyfhxLf_3juUbHcMz0LAn-MbRPchAsTVqGfCgKsYvqTNqFiEq4b_ml200e4Oj66PDjJkk5C5igBkV2jtrUjg0t0WKBCq6xXZYzB60KWylHO77vgK4I6tLspdcAyKHpGeixijsUn6IzGo_AZRM-zAEyFgXY6MmqHPiKWtoyuQJTSdmFnbirjEok4a1n8Mi39cd-wTY3MuyAWA29b3oy_hwzY1ovbTHTdXBhPrk1aN8bLWjnds2WtvYx5tMHX0WGNFUUeVL0ubMw9ZdLqm5rnudKF7cZ7__oGczrYJwzz5f9vWYc3rDLfdohtQGc2-R02CYvMcCtNuCd1EuEL
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access - NZ
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5SL3oQn1hf5FC8rba72U326BMRlB4s9BYyeaiorbT14M2f4G_0lziTXWtFBK-7CSyTncw3w8z3MdYKxioFwifSUOnGgEoAA0vSMUaUhQuYkVFp4Oq6uOiJy37en5H6qvghpgU38ox4X5ODGxgffpOGPoFJD2hkfZ4Ga6mbLxXdaXmFRJhE1G5NZVEmGHf71cgs7T6s9_6IRZGy_wfOnEWrMdycL7OlGifyo-pgV9icH6yyxRn2wDXWzU4_3t6pMIeokTtifXA0CMXvXh01pxhqlp54DvdDE281bv2I5OfHHJEqHz9g9slH_jYST9P5rLPe-dnNyUVSCyQkFiMPGjQoU1q0tAALGUgw0jiZh-CdykQuLQb71HpXIMbBtCZXHnIvcY9wkIUOZBusMRgO_CbjbUfKLwV4THFEUBZcAMhNHmwGIIRpsv0vU2lbs4eTiMWjrniPU0021aLTZHy68LkizPi95JhsPX1NDNfxwXB0q2uH0U6U0qq2yUvlROgE410ZLJRQ4JUDst1kO18npWu3G-usjXgVIacom6wVT--vb9BXx0cIXrb-t2ybLZDMfNUitsMak9GL30UwMoG9-Nt9ApWV3jo
  priority: 102
  providerName: Wiley-Blackwell
Title 3D‐printed degradable hydroxyapatite bioactive ceramics for skull regeneration
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmba2.41
https://www.proquest.com/docview/3092350849
https://doaj.org/article/d497c80a598d4f1faed9fcb9b6488b70
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9tAEB0VeoEDogVEaBrtAfVmEsdre31MaFJUKShCIOW22tkPQECCknDgUvET-I39JZ2xDQpCVS-97MFeS6OZ9c6b1ex7AIfBWKVQ-ig3fHRjUEVIiSWKjZFF5gJVZHw0MDrNTi7kz0k6WZH64p6wih64clzbySK3qmPSQjkZ4mC8K4LFAjNaepiX1TrlvJViivdg1mAiaFDdkmWW0fYdmu6RjN-kn5Kl_w20XAWoZYYZbsNWDQ1FrzLpE3zw08-wuUIYuAPj5Pvvp2c-iyOgKBwTPTi--ySuHh33oxjuj156gdczU25kwvo5K84vBIFTsbihglPM_WXJNc0h2YWL4eD8-CSqNREiS8mGfBiUKSw5V6LFBHM0uXF5GoJ3KpFpbim_d613GcEaqmRS5TH1OX0jHSYhxmQP1qezqd8H0XEs9pKhp6pGBmXRBcTUpMEmiFKaBnx7cZW2NWE461bc6orquKvZp1rGDRCvE-8rjoz3U_rs69fXTGpdPqBQ6zrU-l-hbkDzJVK6_tMWOukQRCWUKYsGHJbR-5sNetTvEV45-B-mfIEN1p2vesaasL6cP_ivhE6W2IK1rhzTqIY_WvCxPzgdn7XKxUnj6NfgDzrr66w
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAOiF-xUMCHwi10kzhxckCopSxb2q04tNLejMc_BbXslt1FqDcegSfhoXgSZpxkaYXg1mviWJY9nvlmMjMfwHowtqpQ-kQZDt0YrBIkw5Kkxsi6dIE8Mg4NjPbL4aF8Ny7GK_Czq4XhtMpOJ0ZF7aaWY-QbeZ-gCKEJWb86_ZIwaxT_Xe0oNBqx2PVn38hlm7_c2abzfZZlgzcHr4dJyyqQWFLXtIpQmdrS8iRazFGhUcapIgTvqlwWypKFzKx3JQED8gWKymPhFX0jHeYhxZzmvQJXZU6WnCvTB2-XMR1mfpKRMDZTZZ2QsR83dbrc53TjM5rshUwvGMDIE3AB3J6HyNHGDW7BzRacis1Gmm7Dip_cgRvnWhbehff59q_vPzgaSFBVOG414bj6Snw8c5wRYzhDe-EFfpqaqEqF9TPmvJ8Lgsdifkwur5j5o9jtmoXiHhxeyv7dh9XJdOIfgOg7ppsp0ZNfJUNl0QXEwhTB5ohSmh4877ZK27ZlOTNnnOim2XKmeU-1THsglgNPmy4dfw_Z4r1evua22vHBdHak21uqnayVrfqmqCsnQxqMd3WwWGNJeg5Vvwdr3Unp9q7P9R_J7MF6PL1_rUGPtjYJMT38_yxP4drwYLSn93b2dx_Bdea3b3LT1mB1MfvqHxMKWuCTKHoCPly2rP8GnCYd0g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VIiF6QPyKQAEfCrel2V3v2nvg0BKiltIqByrlZjz-KYiSVEkQ6o1H4DV4LZ6EGe8mtEJIXHrddaKRPT_fzI6_AdiK1mmNMmTKcunGos6QAkuWWyub2kfKyLg0cHhU7x3Lt-NqvAY_l3dhWn6IVcGNLSP5azbwMx-3_5CGfkFbvJR51095EM6_UbY2f7U_oKN9XhTDN-9f72XdQIHMkacmAaK2jSPJJDosUaFV1qsqxuB1KSvlKDgWLviaMAGlAZUOWAVFv5Eey5hjSf97Da7zp0XuHivkaFXO4aFPMs2KLVTdZBTnx-0VXZZ2u5P1UuxLIwIu4dqL6DiFt-FtuNXhUrHTKtIdWAuTu7Bxga3wHozKwa_vP7gQSChVeGaZ8HzxSnw899wMY7k5exEEfpra5EWFCzMedz8XhIzF_DNlu2IWThLRNevDfTi-kv17AOuT6SQ8BNH3PGmmxkAplYzaoY-Ila2iKxGltD14sdwq4zq2ch6acWpanuXC8J4amfdArBaetQQdfy_Z5b1evWZG7fRgOjsxnYEaLxvldN9WjfYy5tEG30SHDdbk4lD1e7C5PCnTmfnclH3CxwRxZdODrXR6_5LBHO7uEFh69H_LnsGN0WBo3u0fHTyGmzzhvu1O24T1xexreEI4aIFPkwYK-HDVKv8bwO8cMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D%E2%80%90printed+degradable+hydroxyapatite+bioactive+ceramics+for+skull+regeneration&rft.jtitle=MedComm+-+Biomaterials+and+applications&rft.au=Gui%2C+Xingyu&rft.au=Zhang%2C+Boqing&rft.au=Su%2C+Zixuan&rft.au=Zhou%2C+Zhigang&rft.date=2023-06-01&rft.issn=2769-643X&rft.eissn=2769-643X&rft.volume=2&rft.issue=2&rft_id=info:doi/10.1002%2Fmba2.41&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mba2_41
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2769-643X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2769-643X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2769-643X&client=summon