Constrained Independent Vector Analysis With Reference for Multi-Subject fMRI Analysis

Objective: Independent component analysis (ICA) is now a widely used solution for the analysis of multi-subject functional magnetic resonance imaging (fMRI) data. Independent vector analysis (IVA) generalizes ICA to multiple datasets (multi-subject data). Along with higher-order statistical informat...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 71; no. 12; pp. 3531 - 3542
Main Authors Vu, Trung, Laport, Francisco, Yang, Hanlu, Calhoun, Vince D., Adal, Tulay
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2024.3432273

Cover

Loading…
Abstract Objective: Independent component analysis (ICA) is now a widely used solution for the analysis of multi-subject functional magnetic resonance imaging (fMRI) data. Independent vector analysis (IVA) generalizes ICA to multiple datasets (multi-subject data). Along with higher-order statistical information in ICA, it leverages the statistical dependence across the datasets as an additional type of statistical diversity. As such, IVA preserves variability in the estimation of single-subject maps but its performance might suffer when the number of datasets increases. Constrained IVA is an effective way to bypass computational issues and improve the quality of separation by incorporating available prior information. Existing constrained IVA approaches often rely on user-defined threshold values to define the constraints. However, an improperly selected threshold can have a negative impact on the final results. This paper proposes two novel methods for constrained IVA: one using an adaptive-reverse scheme to select variable thresholds for the constraints and a second one based on a threshold-free formulation by leveraging the unique structure of IVA. Notably, the proposed algorithms do not require all components to be constrained, utilizing free components to model interferences and components that might not be in the reference set. We demonstrate that our solutions provide an attractive solution to multi-subject fMRI analysis both by simulations and through analysis of resting state fMRI data collected from 98 subjects - the highest number of subjects ever used by IVA algorithms. Our results show that both proposed approaches obtain significantly better separation quality and model match while providing computationally efficient and highly reproducible solutions.
AbstractList Objective: Independent component analysis (ICA) is now a widely used solution for the analysis of multi-subject functional magnetic resonance imaging (fMRI) data. Independent vector analysis (IVA) generalizes ICA to multiple datasets (multi-subject data). Along with higher-order statistical information in ICA, it leverages the statistical dependence across the datasets as an additional type of statistical diversity. As such, IVA preserves variability in the estimation of single-subject maps but its performance might suffer when the number of datasets increases. Constrained IVA is an effective way to bypass computational issues and improve the quality of separation by incorporating available prior information. Existing constrained IVA approaches often rely on user-defined threshold values to define the constraints. However, an improperly selected threshold can have a negative impact on the final results. This paper proposes two novel methods for constrained IVA: one using an adaptive-reverse scheme to select variable thresholds for the constraints and a second one based on a threshold-free formulation by leveraging the unique structure of IVA. Notably, the proposed algorithms do not require all components to be constrained, utilizing free components to model interferences and components that might not be in the reference set. We demonstrate that our solutions provide an attractive solution to multi-subject fMRI analysis both by simulations and through analysis of resting state fMRI data collected from 98 subjects - the highest number of subjects ever used by IVA algorithms. Our results show that both proposed approaches obtain significantly better separation quality and model match while providing computationally efficient and highly reproducible solutions.
Independent component analysis (ICA) is now a widely used solution for the analysis of multi-subject functional magnetic resonance imaging (fMRI) data. Independent vector analysis (IVA) generalizes ICA to multiple datasets (multi-subject data). Along with higher-order statistical information in ICA, it leverages the statistical dependence across the datasets as an additional type of statistical diversity. As such, IVA preserves variability in the estimation of single-subject maps but its performance might suffer when the number of datasets increases. Constrained IVA is an effective way to bypass computational issues and improve the quality of separation by incorporating available prior information. Existing constrained IVA approaches often rely on user-defined threshold values to define the constraints. However, an improperly selected threshold can have a negative impact on the final results. This paper proposes two novel methods for constrained IVA: one using an adaptive-reverse scheme to select variable thresholds for the constraints and a second one based on a threshold-free formulation by leveraging the unique structure of IVA. Notably, the proposed algorithms do not require all components to be constrained, utilizing free components to model interferences and components that might not be in the reference set. We demonstrate that our solutions provide an attractive solution to multi-subject fMRI analysis both by simulations and through analysis of resting state fMRI data collected from 98 subjects - the highest number of subjects ever used by IVA algorithms. Our results show that both proposed approaches obtain significantly better separation quality and model match while providing computationally efficient and highly reproducible solutions.OBJECTIVEIndependent component analysis (ICA) is now a widely used solution for the analysis of multi-subject functional magnetic resonance imaging (fMRI) data. Independent vector analysis (IVA) generalizes ICA to multiple datasets (multi-subject data). Along with higher-order statistical information in ICA, it leverages the statistical dependence across the datasets as an additional type of statistical diversity. As such, IVA preserves variability in the estimation of single-subject maps but its performance might suffer when the number of datasets increases. Constrained IVA is an effective way to bypass computational issues and improve the quality of separation by incorporating available prior information. Existing constrained IVA approaches often rely on user-defined threshold values to define the constraints. However, an improperly selected threshold can have a negative impact on the final results. This paper proposes two novel methods for constrained IVA: one using an adaptive-reverse scheme to select variable thresholds for the constraints and a second one based on a threshold-free formulation by leveraging the unique structure of IVA. Notably, the proposed algorithms do not require all components to be constrained, utilizing free components to model interferences and components that might not be in the reference set. We demonstrate that our solutions provide an attractive solution to multi-subject fMRI analysis both by simulations and through analysis of resting state fMRI data collected from 98 subjects - the highest number of subjects ever used by IVA algorithms. Our results show that both proposed approaches obtain significantly better separation quality and model match while providing computationally efficient and highly reproducible solutions.
Independent component analysis (ICA) is now a widely used solution for the analysis of multi-subject functional magnetic resonance imaging (fMRI) data. Independent vector analysis (IVA) generalizes ICA to multiple datasets (multi-subject data). Along with higher-order statistical information in ICA, it leverages the statistical dependence across the datasets as an additional type of statistical diversity. As such, IVA preserves variability in the estimation of single-subject maps but its performance might suffer when the number of datasets increases. Constrained IVA is an effective way to bypass computational issues and improve the quality of separation by incorporating available prior information. Existing constrained IVA approaches often rely on user-defined threshold values to define the constraints. However, an improperly selected threshold can have a negative impact on the final results. This paper proposes two novel methods for constrained IVA: one using an adaptive-reverse scheme to select variable thresholds for the constraints and a second one based on a threshold-free formulation by leveraging the unique structure of IVA. Notably, the proposed algorithms do not require all components to be constrained, utilizing free components to model interferences and components that might not be in the reference set. We demonstrate that our solutions provide an attractive solution to multi-subject fMRI analysis both by simulations and through analysis of resting state fMRI data collected from 98 subjects - the highest number of subjects ever used by IVA algorithms. Our results show that both proposed approaches obtain significantly better separation quality and model match while providing computationally efficient and highly reproducible solutions.
Author Yang, Hanlu
Adal, Tulay
Vu, Trung
Laport, Francisco
Calhoun, Vince D.
Author_xml – sequence: 1
  givenname: Trung
  orcidid: 0000-0003-2180-5994
  surname: Vu
  fullname: Vu, Trung
  email: trungvv91@gmail.com
  organization: Department of Computer Science and Electrical Engineering, University of Maryland, College Park, MD, USA
– sequence: 2
  givenname: Francisco
  orcidid: 0000-0002-6543-8236
  surname: Laport
  fullname: Laport, Francisco
  organization: Department of Computer Science and Electrical Engineering, University of Maryland, USA
– sequence: 3
  givenname: Hanlu
  orcidid: 0000-0001-7903-6257
  surname: Yang
  fullname: Yang, Hanlu
  organization: Department of Computer Science and Electrical Engineering, University of Maryland, USA
– sequence: 4
  givenname: Vince D.
  orcidid: 0000-0001-9058-0747
  surname: Calhoun
  fullname: Calhoun, Vince D.
  organization: Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, and Emory University, USA
– sequence: 5
  givenname: Tulay
  orcidid: 0000-0003-0594-2796
  surname: Adal
  fullname: Adal, Tulay
  organization: Department of Computer Science and Electrical Engineering, University of Maryland, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39042541$$D View this record in MEDLINE/PubMed
BookMark eNpd0d9r2zAQB3AxWtok6x8wGMOwl704Pf20_NiGrgs0FLo2fTSyfGIOjpxJ9kP_-ykkDaMvEkKfO477TsmZ7z0S8oXCnFIor59vV3dzBkzMueCMFfwTmVApdc4kp2dkAkB1XrJSXJJpjJv0FFqoC3LJSxBMCjoh60Xv4xBM67HJlr7BHabDD9ka7dCH7Mab7i22MXtthz_ZEzoM6C1mLv2txm5o899jvUk2c6un5Yl_JufOdBGvjveMvPy8e178yh8e75eLm4fccmBD7ooGa7CqBGUVNxzBUHCFQeNqpNpyRR2TqnGF5CWjjAuUqrY1NJLxQgs-Iz8OfXeh_ztiHKptGy12nfHYj7HioAUwDUIm-v0D3fRjSPMmRTktQatCJ_XtqMZ6i021C-3WhLfqfWMJ0AOwoY8xoDsRCtU-lWqfSrVPpTqmkmq-HmpaRPzPKyhKJfg_vrqGgQ
CODEN IEBEAX
Cites_doi 10.1109/TMI.2019.2893651
10.1109/ICASSP.2010.5496014
10.1109/TSP.2014.2318136
10.1016/j.neuroimage.2004.12.012
10.1109/TSP.2006.889983
10.1176/appi.ajp.2013.12101339
10.3389/fnsys.2011.00002
10.1016/S1053-8119(09)71511-3
10.1089/brain.2020.0815
10.1016/j.jneumeth.2015.03.019
10.1016/j.nicl.2020.102375
10.1109/TSP.2010.2055859
10.1038/s42003-021-02592-2
10.1198/016214504000001907
10.2307/2334380
10.1016/j.neuroimage.2005.08.060
10.1016/j.neubiorev.2006.06.007
10.1109/ICASSP.2017.7952640
10.1089/brain.2021.0079
10.1109/ICASSP.2018.8461646
10.1006/nimg.2002.1122
10.1016/j.sigpro.2011.02.019
10.1109/ICASSP.1994.390093
10.1109/RBME.2012.2211076
10.1109/MSP.2014.2300511
10.1016/j.neuroimage.2012.04.046
10.3389/fnsys.2014.00106
10.1016/j.neuroimage.2004.10.043
10.1109/TSP.2011.2181836
10.1007/11679363_21
10.1016/j.nicl.2019.101747
10.1016/j.neuroimage.2020.116872
10.1002/hbm.21170
10.1109/MSP.2022.3163870
10.1016/j.neuroimage.2012.11.008
10.1016/j.neuroimage.2011.10.010
10.1093/schbul/sbt179
10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1
10.1016/j.neuroimage.2004.02.026
10.1016/j.neucom.2007.04.004
10.1002/hbm.1024
10.1002/hbm.1048
10.1109/TNN.2004.836795
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2024.3432273
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Statistics
EISSN 1558-2531
EndPage 3542
ExternalDocumentID 39042541
10_1109_TBME_2024_3432273
10607964
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NSF
  grantid: 2112455; 2316420
– fundername: Xunta de Galicia
  grantid: ED481B 2022/012
  funderid: 10.13039/501100010801
– fundername: NIH
  grantid: R01MH118695; R01MH123610; R01AG073949
– fundername: NIA NIH HHS
  grantid: R01 AG073949
– fundername: NIMH NIH HHS
  grantid: R01 MH118695
– fundername: NIMH NIH HHS
  grantid: R01 MH123610
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c302t-f7deb0c6906c63a3e0a10f7aeafbe18c361f256df753921234e56bcb0d5237843
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Fri Jul 11 05:56:31 EDT 2025
Mon Jun 30 10:09:52 EDT 2025
Thu May 29 04:59:32 EDT 2025
Tue Jul 01 03:28:41 EDT 2025
Wed Aug 27 02:28:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c302t-f7deb0c6906c63a3e0a10f7aeafbe18c361f256df753921234e56bcb0d5237843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0594-2796
0000-0002-6543-8236
0000-0003-2180-5994
0000-0001-7903-6257
0000-0001-9058-0747
PMID 39042541
PQID 3131908678
PQPubID 85474
PageCount 12
ParticipantIDs ieee_primary_10607964
crossref_primary_10_1109_TBME_2024_3432273
proquest_miscellaneous_3084028045
pubmed_primary_39042541
proquest_journals_3131908678
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref10
ref2
ref1
Amari (ref38) 1995; 8
ref17
ref39
ref16
ref19
ref18
Richard (ref21) 2020; 33
ref24
ref46
ref23
ref45
ref26
ref25
ref47
ref20
ref42
ref41
ref22
ref44
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Bertsekas (ref33) 2014
ref40
Lu (ref32) 2000; 13
References_xml – ident: ref19
  doi: 10.1109/TMI.2019.2893651
– ident: ref17
  doi: 10.1109/ICASSP.2010.5496014
– ident: ref26
  doi: 10.1109/TSP.2014.2318136
– ident: ref28
  doi: 10.1016/j.neuroimage.2004.12.012
– ident: ref34
  doi: 10.1109/TSP.2006.889983
– ident: ref41
  doi: 10.1176/appi.ajp.2013.12101339
– ident: ref43
  doi: 10.3389/fnsys.2011.00002
– ident: ref9
  doi: 10.1016/S1053-8119(09)71511-3
– ident: ref30
  doi: 10.1089/brain.2020.0815
– ident: ref15
  doi: 10.1016/j.jneumeth.2015.03.019
– ident: ref40
  doi: 10.1016/j.nicl.2020.102375
– ident: ref35
  doi: 10.1109/TSP.2010.2055859
– ident: ref44
  doi: 10.1038/s42003-021-02592-2
– ident: ref46
  doi: 10.1198/016214504000001907
– ident: ref20
  doi: 10.2307/2334380
– ident: ref22
  doi: 10.1016/j.neuroimage.2005.08.060
– ident: ref2
  doi: 10.1016/j.neubiorev.2006.06.007
– ident: ref31
  doi: 10.1109/ICASSP.2017.7952640
– ident: ref45
  doi: 10.1089/brain.2021.0079
– ident: ref39
  doi: 10.1109/ICASSP.2018.8461646
– ident: ref7
  doi: 10.1006/nimg.2002.1122
– ident: ref29
  doi: 10.1016/j.sigpro.2011.02.019
– ident: ref37
  doi: 10.1109/ICASSP.1994.390093
– ident: ref5
  doi: 10.1109/RBME.2012.2211076
– ident: ref13
  doi: 10.1109/MSP.2014.2300511
– ident: ref3
  doi: 10.1016/j.neuroimage.2012.04.046
– ident: ref14
  doi: 10.3389/fnsys.2014.00106
– ident: ref8
  doi: 10.1016/j.neuroimage.2004.10.043
– ident: ref12
  doi: 10.1109/TSP.2011.2181836
– ident: ref11
  doi: 10.1007/11679363_21
– ident: ref24
  doi: 10.1016/j.nicl.2019.101747
– ident: ref18
  doi: 10.1016/j.neuroimage.2020.116872
– volume: 8
  start-page: 757
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 1995
  ident: ref38
  article-title: A new learning algorithm for blind signal separation
– ident: ref10
  doi: 10.1002/hbm.21170
– ident: ref47
  doi: 10.1109/MSP.2022.3163870
– ident: ref36
  doi: 10.1016/j.neuroimage.2012.11.008
– ident: ref16
  doi: 10.1016/j.neuroimage.2011.10.010
– volume: 13
  start-page: 570
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2000
  ident: ref32
  article-title: Constrained independent component analysis
– ident: ref42
  doi: 10.1093/schbul/sbt179
– ident: ref1
  doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1
– ident: ref23
  doi: 10.1016/j.neuroimage.2004.02.026
– volume-title: Constrained Optimization and Lagrange Multiplier Methods
  year: 2014
  ident: ref33
– ident: ref27
  doi: 10.1016/j.neucom.2007.04.004
– ident: ref4
  doi: 10.1002/hbm.1024
– ident: ref6
  doi: 10.1002/hbm.1048
– ident: ref25
  doi: 10.1109/TNN.2004.836795
– volume: 33
  start-page: 19149
  volume-title: Proc Adv. Neural Inf. Process. Syst.
  year: 2020
  ident: ref21
  article-title: Modeling shared responses in neuroimaging studies through multiview ICA
SSID ssj0014846
Score 2.4698994
Snippet Objective: Independent component analysis (ICA) is now a widely used solution for the analysis of multi-subject functional magnetic resonance imaging (fMRI)...
Independent component analysis (ICA) is now a widely used solution for the analysis of multi-subject functional magnetic resonance imaging (fMRI) data....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 3531
SubjectTerms Adult
Algorithms
Biomedical engineering
Brain - diagnostic imaging
Brain - physiology
Brain Mapping - methods
constrained IVA
Constraints
Data analysis
Datasets
fMRI analysis
Functional magnetic resonance imaging
Gaussian processes
Humans
Image Processing, Computer-Assisted - methods
Independent component analysis
Independent vector analysis
Indexes
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
multivariate Gaussian distribution
Principal Component Analysis
Separation
Stacking
Statistics
Symbols
Tensors
Vector analysis
Vectors
Title Constrained Independent Vector Analysis With Reference for Multi-Subject fMRI Analysis
URI https://ieeexplore.ieee.org/document/10607964
https://www.ncbi.nlm.nih.gov/pubmed/39042541
https://www.proquest.com/docview/3131908678
https://www.proquest.com/docview/3084028045
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50D7IefD_qiwiehK5pk03bo8ouKqwH0XVvJUkTFGFXtHvx1ztJH6iw4K3Q0EdmJvNNJt8MwBmlNuPCijDmTIecFSZUVupQZIr1qZIx86z30b24eeJ3k_6kJqt7Lowxxh8-Mz136XP5xUzP3VYZWrigjjq5DMsYuVVkrTZlwNOKlUMjtOA443UKM6LZxePVaIChYMx7jkaJDrsLKxjro7ry6Jc_8g1WFmNN73OG63DffG111OStNy9VT3_9KeT479_ZgLUafZLLSl02YclMt2D1R03CLVgZ1dn2bRi7bp6-h4QpyG3bL7ckY7_VT5qCJuT5tXwhbclagjiYeGJviMuS2-chdvRw2w7fgafh4PH6Jqz7MISa0bgMbVIYRbUraawFk8xQGVGbSCOtMlGqmYgsIqfCYuiTOVfITV8orWiBUW6ScrYLnelsavaB2MIymTDNUqm4slZG0iBA4YmwCKwkC-C8kUb-XpXbyH2YQrPcSTF3UsxrKQaw4yb1x8BqPgM4agSY1xb5mbMIFxuM35I0gNP2NtqSS5DIqZnNcQzFcDdOEeUGsFcJvn14oy8HC156CF33bdVJlyPolB9zc4x4pVQnXk-_ATuH42s
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VkHgcSqG0BCgYiVOlbO3Y6yTHUoF2KdkDWh63yHZsFSHtViV74dczdh4CJKTeIsXKwzPj-cbjbwbghFKXC-lknAhuYsErG2unTCxzzYdUq4QH1nsxkaNrcXE3vGvJ6oELY60Nh8_swF-GXH41Nwu_VYYWLqmnTi7BCjr-IWvoWn3SQGQNL4cytOEkF20Sk9H8x_S0OMNgMBEDT6REl70Oqxjto8IK9sojhRYr76PN4HXON2HSfW9z2ORhsKj1wDy9KeX43z_0CT62-JP8bBRmCz7Y2TZsvKhKuA2rRZtv_ww3vp9n6CJhKzLuO-bW5CZs9pOupAm5va__kL5oLUEkTAK1N8aFye_0EFdcjfvhO3B9fjb9NYrbTgyx4TSpY5dWVlPjixobyRW3VDHqUmWV05ZlhkvmEDtVDoOf3DtDYYdSG00rjHPTTPAvsDybz-wuEFc5rlJueKa00M4ppixCFJFKh9BK8Qi-d9Io_zYFN8oQqNC89FIsvRTLVooR7PhJfTGwmc8IDjoBlq1NPpac4XKDEVyaRXDc30Zr8ikSNbPzBY6hGPAmGeLcCL42gu8f3unL3jsvPYK10bS4LC_Hk9_7sO6_szn3cgDL9b-F_YbopdaHQWefAUNf5rQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+Independent+Vector+Analysis+With+Reference+for+Multi-Subject+fMRI+Analysis&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Vu%2C+Trung&rft.au=Laport%2C+Francisco&rft.au=Yang%2C+Hanlu&rft.au=Calhoun%2C+Vince+D&rft.date=2024-12-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=71&rft.issue=12&rft.spage=3531&rft_id=info:doi/10.1109%2FTBME.2024.3432273&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon