Evoked Component Analysis (ECA): Decomposing the Functional Ultrasound Signal With GLM-Regularization

Analysis of functional neuroimaging data aims to unveil spatial and temporal patterns of interest. Existing analysis methods fall into two categories: fully data-driven approaches and those reliant on prior information, e.g. the stimulus time course. While using the stimulus signal directly can help...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 71; no. 10; pp. 2823 - 2832
Main Authors Erol, Aybuke, Generowicz, Bastian, Kruizinga, Pieter, Hunyadi, Borbala
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Analysis of functional neuroimaging data aims to unveil spatial and temporal patterns of interest. Existing analysis methods fall into two categories: fully data-driven approaches and those reliant on prior information, e.g. the stimulus time course. While using the stimulus signal directly can help identify the activated brain areas, it is known that the relationship between stimuli and the brain's response exhibits nonlinear and time-varying characteristics. As such, relying completely on the stimulus signal to describe the brain's temporal response leads to a restricted interpretation of the brain function. In this paper, we present a new technique called Evoked Component Analysis (ECA), which leverages prior information up to a defined extent. This is achieved by including the general linear model (GLM) design matrix as a regulatory term and estimating the factor matrices in both space and time through an alternating minimization approach. We apply ECA to 2D and swept-3D functional ultrasound (fUS) experiments conducted with mice. When decomposing 2D fUS data, we employ GLM regularization at various intensities to emphasize the role of prior information. Furthermore, we show that incorporating multiple hemodynamic response functions within the design matrix can provide valuable insights into region-specific characteristics of evoked activity. Finally, we use ECA to analyze swept-3D fUS data recorded from five mice engaged in two distinct visual tasks. Swept-3D fUS images the 3D brain sequentially using a moving probe, resulting in different slice acquisition time instants. We show that ECA can estimate factor matrices with a fine resolution at each slice acquisition time instant and yield higher t-statistics compared to GLM and correlation analysis for all subjects.
AbstractList Analysis of functional neuroimaging data aims to unveil spatial and temporal patterns of interest. Existing analysis methods fall into two categories: fully data-driven approaches and those reliant on prior information, e.g. the stimulus time course. While using the stimulus signal directly can help identify the activated brain areas, it is known that the relationship between stimuli and the brain's response exhibits nonlinear and time-varying characteristics. As such, relying completely on the stimulus signal to describe the brain's temporal response leads to a restricted interpretation of the brain function. In this paper, we present a new technique called Evoked Component Analysis (ECA), which leverages prior information up to a defined extent. This is achieved by including the general linear model (GLM) design matrix as a regulatory term and estimating the factor matrices in both space and time through an alternating minimization approach. We apply ECA to 2D and swept-3D functional ultrasound (fUS) experiments conducted with mice. When decomposing 2D fUS data, we employ GLM regularization at various intensities to emphasize the role of prior information. Furthermore, we show that incorporating multiple hemodynamic response functions within the design matrix can provide valuable insights into region-specific characteristics of evoked activity. Finally, we use ECA to analyze swept-3D fUS data recorded from five mice engaged in two distinct visual tasks. Swept-3D fUS images the 3D brain sequentially using a moving probe, resulting in different slice acquisition time instants. We show that ECA can estimate factor matrices with a fine resolution at each slice acquisition time instant and yield higher t-statistics compared to GLM and correlation analysis for all subjects.
Analysis of functional neuroimaging data aims to unveil spatial and temporal patterns of interest. Existing analysis methods fall into two categories: fully data-driven approaches and those reliant on prior information, e.g. the stimulus time course. While using the stimulus signal directly can help identify the activated brain areas, it is known that the relationship between stimuli and the brain's response exhibits nonlinear and time-varying characteristics. As such, relying completely on the stimulus signal to describe the brain's temporal response leads to a restricted interpretation of the brain function. In this paper, we present a new technique called Evoked Component Analysis (ECA), which leverages prior information up to a defined extent. This is achieved by including the general linear model (GLM) design matrix as a regulatory term and estimating the factor matrices in both space and time through an alternating minimization approach. We apply ECA to 2D and swept-3D functional ultrasound (fUS) experiments conducted with mice. When decomposing 2D fUS data, we employ GLM regularization at various intensities to emphasize the role of prior information. Furthermore, we show that incorporating multiple hemodynamic response functions within the design matrix can provide valuable insights into region-specific characteristics of evoked activity. Finally, we use ECA to analyze swept-3D fUS data recorded from five mice engaged in two distinct visual tasks. Swept-3D fUS images the 3D brain sequentially using a moving probe, resulting in different slice acquisition time instants. We show that ECA can estimate factor matrices with a fine resolution at each slice acquisition time instant and yield higher t-statistics compared to GLM and correlation analysis for all subjects.Analysis of functional neuroimaging data aims to unveil spatial and temporal patterns of interest. Existing analysis methods fall into two categories: fully data-driven approaches and those reliant on prior information, e.g. the stimulus time course. While using the stimulus signal directly can help identify the activated brain areas, it is known that the relationship between stimuli and the brain's response exhibits nonlinear and time-varying characteristics. As such, relying completely on the stimulus signal to describe the brain's temporal response leads to a restricted interpretation of the brain function. In this paper, we present a new technique called Evoked Component Analysis (ECA), which leverages prior information up to a defined extent. This is achieved by including the general linear model (GLM) design matrix as a regulatory term and estimating the factor matrices in both space and time through an alternating minimization approach. We apply ECA to 2D and swept-3D functional ultrasound (fUS) experiments conducted with mice. When decomposing 2D fUS data, we employ GLM regularization at various intensities to emphasize the role of prior information. Furthermore, we show that incorporating multiple hemodynamic response functions within the design matrix can provide valuable insights into region-specific characteristics of evoked activity. Finally, we use ECA to analyze swept-3D fUS data recorded from five mice engaged in two distinct visual tasks. Swept-3D fUS images the 3D brain sequentially using a moving probe, resulting in different slice acquisition time instants. We show that ECA can estimate factor matrices with a fine resolution at each slice acquisition time instant and yield higher t-statistics compared to GLM and correlation analysis for all subjects.
Author Hunyadi, Borbala
Generowicz, Bastian
Kruizinga, Pieter
Erol, Aybuke
Author_xml – sequence: 1
  givenname: Aybuke
  orcidid: 0000-0002-0373-2720
  surname: Erol
  fullname: Erol, Aybuke
  organization: Signal Processing Systems (SPS) Group, Department of Microelectronics, Delft University of Technology, The Netherlands
– sequence: 2
  givenname: Bastian
  orcidid: 0009-0002-0103-5910
  surname: Generowicz
  fullname: Generowicz, Bastian
  organization: Center for Ultrasound and Brain Imaging at Erasmus MC (CUBE), Department of Neuroscience, Erasmus University Medical Center, The Netherlands
– sequence: 3
  givenname: Pieter
  orcidid: 0000-0003-2278-1218
  surname: Kruizinga
  fullname: Kruizinga, Pieter
  organization: Center for Ultrasound and Brain Imaging at Erasmus MC (CUBE), Department of Neuroscience, Erasmus University Medical Center, The Netherlands
– sequence: 4
  givenname: Borbala
  orcidid: 0000-0002-9333-9024
  surname: Hunyadi
  fullname: Hunyadi, Borbala
  email: b.hunyadi@tudelft.nl
  organization: Signal Processing Systems (SPS) Group, Department of Microelectronics, Delft University of Technology, Delft, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38687661$$D View this record in MEDLINE/PubMed
BookMark eNpd0V1L5DAUBuAgLjp-_ABBJOCNe9Exp_lo6t3s7OgujCysipclk56O0U4zNu2C--s3ZUaRhUBI8pxDkveA7Da-QUJOgI0BWH55_-12Nk5ZKsac5xKk2CEjkFInqeSwS0aMgU7yNBf75CCE57gUWqg9ss-10plSMCI4--NfsKRTv1rH5k1HJ42p34IL9GI2nXy9ot_RDmfBNUvaPSG97hvbOR8Vfai71gTfNyW9c8th59F1T_Rmfpv8xmVfm9b9NYM9Il8qUwc83s6H5OF6dj_9kcx_3fycTuaJ5SztElQWjYVUKqs5altyXiJoJRGwVNIwlXMoNVQ5MFzgIscFyypbYaa10FEfkotN33XrX3sMXbFywWJdmwZ9HwrORJ5BxkQW6fl_9Nn3bXxDVMCyVHHBZFRnW9UvVlgW69atTPtWvH9gBLABtvUhtFh9EGDFEFIxhFQMIRXbkGLN6abGIeInL-OIN_sHBeaMUA
CODEN IEBEAX
Cites_doi 10.1016/j.neuroimage.2011.06.078
10.1038/nmeth.1641
10.1038/s41592-019-0572-y
10.1016/B978-0-12-824447-0.00018-2
10.3389/fnins.2016.00322
10.1016/j.neuroimage.2015.03.011
10.1006/nimg.1997.0316
10.1016/j.media.2016.08.006
10.1016/j.neuroimage.2017.01.071
10.3389/fnsys.2016.00109
10.1371/journal.pone.0078796
10.1093/cercor/bhs009
10.1016/j.jneumeth.2018.12.007
10.1109/ICASSPW59220.2023.10193574
10.1177/1971400917697342
10.1016/j.compmedimag.2008.10.011
10.3389/fnins.2019.01384
10.1016/j.neuron.2009.08.009
10.1109/TMI.2021.3107829
10.1016/j.neuroimage.2009.06.034
10.1016/S1053-8119(03)00286-6
10.1016/j.neuroimage.2016.12.036
10.1038/s41467-020-16774-9
10.3389/fnhum.2011.00028
10.1109/TUFFC.2023.3318653
10.1006/nimg.2002.1113
10.1214/09-STS282
10.1109/MEMB.2006.1607672
10.1111/ejn.13972
10.1016/j.neuroscience.2021.03.005
10.1016/j.neuron.2018.11.031
10.1016/j.neuroimage.2021.118809
10.1016/j.neuroimage.2003.11.029
10.1016/j.neuroimage.2013.01.067
10.1109/5.939827
10.1016/j.neuroimage.2013.11.046
10.1002/ima.22022
10.1093/cercor/bhr119
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2024.3395154
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 2832
ExternalDocumentID 38687661
10_1109_TBME_2024_3395154
10510547
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Technische Universiteit Delft; Delft University of Technology
  funderid: 10.13039/501100001831
– fundername: Delft Technology Fellowship
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c302t-e6ceac1256c83e8cd33de1865e1ed65a06931d81f910ebeb9eb07fcfe78848d33
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Fri Jul 11 06:15:55 EDT 2025
Mon Jun 30 10:24:11 EDT 2025
Wed Feb 19 02:03:44 EST 2025
Tue Jul 01 03:28:40 EDT 2025
Wed Aug 27 01:58:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c302t-e6ceac1256c83e8cd33de1865e1ed65a06931d81f910ebeb9eb07fcfe78848d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0002-0103-5910
0000-0002-0373-2720
0000-0002-9333-9024
0000-0003-2278-1218
PMID 38687661
PQID 3107263405
PQPubID 85474
PageCount 10
ParticipantIDs proquest_miscellaneous_3049717047
pubmed_primary_38687661
crossref_primary_10_1109_TBME_2024_3395154
ieee_primary_10510547
proquest_journals_3107263405
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref36
ref31
ref30
Anderson (ref37) 2011
ref11
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Penny (ref34) 2011
Bishop (ref35) 2006; 4
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
(ref33) 2015
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
Calhoun (ref40) 2000
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref28
  doi: 10.1016/j.neuroimage.2011.06.078
– volume: 4
  volume-title: Pattern Recognition and Machine Learning
  year: 2006
  ident: ref35
– ident: ref1
  doi: 10.1038/nmeth.1641
– ident: ref32
  doi: 10.1038/s41592-019-0572-y
– ident: ref43
  doi: 10.1016/B978-0-12-824447-0.00018-2
– ident: ref41
  doi: 10.3389/fnins.2016.00322
– ident: ref14
  doi: 10.1016/j.neuroimage.2015.03.011
– ident: ref19
  doi: 10.1006/nimg.1997.0316
– ident: ref29
  doi: 10.1016/j.media.2016.08.006
– ident: ref3
  doi: 10.1016/j.neuroimage.2017.01.071
– ident: ref18
  doi: 10.3389/fnsys.2016.00109
– ident: ref11
  doi: 10.1371/journal.pone.0078796
– ident: ref26
  doi: 10.1093/cercor/bhs009
– ident: ref44
  doi: 10.1016/j.jneumeth.2018.12.007
– year: 2011
  ident: ref37
  publication-title: Statistics for Business and Economics
– volume-title: Statistical Parametric Mapping: The Analysis of Functional Brain Images
  year: 2011
  ident: ref34
– ident: ref17
  doi: 10.1109/ICASSPW59220.2023.10193574
– ident: ref10
  doi: 10.1177/1971400917697342
– ident: ref24
  doi: 10.1016/j.compmedimag.2008.10.011
– ident: ref2
  doi: 10.3389/fnins.2019.01384
– ident: ref21
  doi: 10.1016/j.neuron.2009.08.009
– ident: ref39
  doi: 10.1109/TMI.2021.3107829
– ident: ref7
  doi: 10.1016/j.neuroimage.2009.06.034
– ident: ref42
  doi: 10.1016/S1053-8119(03)00286-6
– ident: ref12
  doi: 10.1016/j.neuroimage.2016.12.036
– ident: ref4
  doi: 10.1038/s41467-020-16774-9
– ident: ref5
  doi: 10.3389/fnhum.2011.00028
– ident: ref15
  doi: 10.1109/TUFFC.2023.3318653
– year: 2015
  ident: ref33
  article-title: Allen brain atlas API
– ident: ref36
  doi: 10.1006/nimg.2002.1113
– volume-title: Proc. ISMRM, 9th Annu. Meeting
  year: 2000
  ident: ref40
  article-title: Improved fMRI slice timing correction: Interpolation errors and wrap around effects
– ident: ref23
  doi: 10.1214/09-STS282
– ident: ref25
  doi: 10.1109/MEMB.2006.1607672
– ident: ref8
  doi: 10.1111/ejn.13972
– ident: ref30
  doi: 10.1016/j.neuroscience.2021.03.005
– ident: ref31
  doi: 10.1016/j.neuron.2018.11.031
– ident: ref20
  doi: 10.1016/j.neuroimage.2021.118809
– ident: ref6
  doi: 10.1016/j.neuroimage.2003.11.029
– ident: ref27
  doi: 10.1016/j.neuroimage.2013.01.067
– ident: ref9
  doi: 10.1109/5.939827
– ident: ref13
  doi: 10.1016/j.neuroimage.2013.11.046
– ident: ref16
  doi: 10.1109/TUFFC.2023.3318653
– ident: ref22
  doi: 10.1002/ima.22022
– ident: ref38
  doi: 10.1093/cercor/bhr119
SSID ssj0014846
Score 2.4544275
Snippet Analysis of functional neuroimaging data aims to unveil spatial and temporal patterns of interest. Existing analysis methods fall into two categories: fully...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 2823
SubjectTerms Algorithms
Animals
Biomedical engineering
Brain
Brain - diagnostic imaging
Brain - physiology
Brain slice preparation
Correlation
Correlation analysis
Data analysis
Decomposition
Design analysis
Design factors
Functional ultrasound
Functionals
general linear model
Hemodynamic responses
Image acquisition
Image processing
Image Processing, Computer-Assisted - methods
Linear Models
Matrix decomposition
Medical imaging
Mice
Neuroimaging
Nonlinear response
Probes
Regularization
regularized low-rank factorization
Response functions
Signal Processing, Computer-Assisted
Statistical analysis
Three-dimensional displays
Ultrasonic imaging
Ultrasonic testing
Ultrasonography - methods
Ultrasound
Visual tasks
Title Evoked Component Analysis (ECA): Decomposing the Functional Ultrasound Signal With GLM-Regularization
URI https://ieeexplore.ieee.org/document/10510547
https://www.ncbi.nlm.nih.gov/pubmed/38687661
https://www.proquest.com/docview/3107263405
https://www.proquest.com/docview/3049717047
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RHhAcoJQCCwUZiQMgZYnXjzjc2rJLhdgeoCt6ixJ7UqqiDWqzHPrrOxMnq4JUiVuUWI6TmfF843kBvCnZ2-OkSWqn60RbnyVVZnxiUKMxlSG13kVbHNnDhf5yYk76ZPUuFwYRu-AzHPNl58sPjV_xURlJOMMBnW3ABlluMVlr7TLQLmblpJIkeJLr3oUp0_zD8f58SqbgRI-VIkRhuBmPcpY2Aiv_0kddg5XbsWanc2YP4WhYbQw1OR-v2mrsr_4p5Pjfn7MFD3r0KfYiuzyCO7jchvs3ahJuw915721_DDj905xjELxnNEuaSwwlTMTb6cHeu4_iE3JIesPnDYKQpJiRloyHi2Lxq70oL7lpk_h-dsp3fpy1P8Xnr_PkG55y8GufAboDi9n0-OAw6dsyJF6lkzZB62m3JmBkvVPofFAqoHTWoMRgTZnaXMngZE1IhFikyrFKs9rXSDTTjkY_gc0lrfoZCFuGSpngfK2DVspXxrkcZQhlLU2mshG8H4hT_I7VN4rOaknzgolaMFGLnqgj2OF_fGNg_L0j2B3oWfQCelkQqs0mVhFcHcHr9WMSLfaXlEtsVjSGrCeydlOe4mnkg_XkA_s8v-WlL-Aery2G_e3CZnuxwpcEX9rqVce214Vm6Hs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BkPh42GCM0THASDwAUkpcf8TZ2xgtBdo-QKvtLUrsyzYNNWhLeeCv5xwn1UCaxFuUWI6Tu_P9zvcF8Dr33h7DVVQaWUZS2yQqEmUjhRKVKhSp9SbaYqbHC_nlRJ20yepNLgwiNsFn2PeXjS_fVXblj8pIwj0ckMltuEOKX_GQrrV2GkgT8nJiTjI8SGXrxORx-n7-YTokY3Ag-0IQplC-HY8wmrYCzf_SSE2LlZvRZqN1Rlsw69Ybgk0u-qu66Nvf_5Ry_O8PegibLf5kh4FhHsEtXG7Dg2tVCbfh7rT1tz8GHP6qLtAxv2tUS5qLdUVM2Jvh0eHbA_YRfVB65U8cGGFJNiI9GY4X2eJHfZlf-bZN7Pv5qb9zfF6fsU-TafQNT334a5sDugOL0XB-NI7axgyRFfGgjlBb2q8JGmlrBBrrhHDIjVbI0WmVxzoV3BleEhYhJilSLOKktCWSvS0NjX4CG0ta9VNgOneFUM7YUjophC2UMSly5_KSq0QkPXjXESf7GepvZI3dEqeZJ2rmiZq1RO3Bjv_H1waG39uD_Y6eWSuiVxnh2mSgBQHWHrxaPybh8h6TfInVisaQ_UT2buyn2A18sJ68Y5-9G176Eu6N59NJNvk8-_oM7vt1hiDAfdioL1f4nMBMXbxoWPgPzovrxA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evoked+Component+Analysis+%28ECA%29%3A+Decomposing+the+Functional+Ultrasound+Signal+With+GLM-Regularization&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Aybuke+Erol&rft.au=Generowicz%2C+Bastian&rft.au=Kruizinga%2C+Pieter&rft.au=Hunyadi%2C+Borbala&rft.date=2024-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=71&rft.issue=10&rft.spage=2823&rft_id=info:doi/10.1109%2FTBME.2024.3395154&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon