Evoked Component Analysis (ECA): Decomposing the Functional Ultrasound Signal With GLM-Regularization
Analysis of functional neuroimaging data aims to unveil spatial and temporal patterns of interest. Existing analysis methods fall into two categories: fully data-driven approaches and those reliant on prior information, e.g. the stimulus time course. While using the stimulus signal directly can help...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 71; no. 10; pp. 2823 - 2832 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Analysis of functional neuroimaging data aims to unveil spatial and temporal patterns of interest. Existing analysis methods fall into two categories: fully data-driven approaches and those reliant on prior information, e.g. the stimulus time course. While using the stimulus signal directly can help identify the activated brain areas, it is known that the relationship between stimuli and the brain's response exhibits nonlinear and time-varying characteristics. As such, relying completely on the stimulus signal to describe the brain's temporal response leads to a restricted interpretation of the brain function. In this paper, we present a new technique called Evoked Component Analysis (ECA), which leverages prior information up to a defined extent. This is achieved by including the general linear model (GLM) design matrix as a regulatory term and estimating the factor matrices in both space and time through an alternating minimization approach. We apply ECA to 2D and swept-3D functional ultrasound (fUS) experiments conducted with mice. When decomposing 2D fUS data, we employ GLM regularization at various intensities to emphasize the role of prior information. Furthermore, we show that incorporating multiple hemodynamic response functions within the design matrix can provide valuable insights into region-specific characteristics of evoked activity. Finally, we use ECA to analyze swept-3D fUS data recorded from five mice engaged in two distinct visual tasks. Swept-3D fUS images the 3D brain sequentially using a moving probe, resulting in different slice acquisition time instants. We show that ECA can estimate factor matrices with a fine resolution at each slice acquisition time instant and yield higher t-statistics compared to GLM and correlation analysis for all subjects. |
---|---|
AbstractList | Analysis of functional neuroimaging data aims to unveil spatial and temporal patterns of interest. Existing analysis methods fall into two categories: fully data-driven approaches and those reliant on prior information, e.g. the stimulus time course. While using the stimulus signal directly can help identify the activated brain areas, it is known that the relationship between stimuli and the brain's response exhibits nonlinear and time-varying characteristics. As such, relying completely on the stimulus signal to describe the brain's temporal response leads to a restricted interpretation of the brain function. In this paper, we present a new technique called Evoked Component Analysis (ECA), which leverages prior information up to a defined extent. This is achieved by including the general linear model (GLM) design matrix as a regulatory term and estimating the factor matrices in both space and time through an alternating minimization approach. We apply ECA to 2D and swept-3D functional ultrasound (fUS) experiments conducted with mice. When decomposing 2D fUS data, we employ GLM regularization at various intensities to emphasize the role of prior information. Furthermore, we show that incorporating multiple hemodynamic response functions within the design matrix can provide valuable insights into region-specific characteristics of evoked activity. Finally, we use ECA to analyze swept-3D fUS data recorded from five mice engaged in two distinct visual tasks. Swept-3D fUS images the 3D brain sequentially using a moving probe, resulting in different slice acquisition time instants. We show that ECA can estimate factor matrices with a fine resolution at each slice acquisition time instant and yield higher t-statistics compared to GLM and correlation analysis for all subjects. Analysis of functional neuroimaging data aims to unveil spatial and temporal patterns of interest. Existing analysis methods fall into two categories: fully data-driven approaches and those reliant on prior information, e.g. the stimulus time course. While using the stimulus signal directly can help identify the activated brain areas, it is known that the relationship between stimuli and the brain's response exhibits nonlinear and time-varying characteristics. As such, relying completely on the stimulus signal to describe the brain's temporal response leads to a restricted interpretation of the brain function. In this paper, we present a new technique called Evoked Component Analysis (ECA), which leverages prior information up to a defined extent. This is achieved by including the general linear model (GLM) design matrix as a regulatory term and estimating the factor matrices in both space and time through an alternating minimization approach. We apply ECA to 2D and swept-3D functional ultrasound (fUS) experiments conducted with mice. When decomposing 2D fUS data, we employ GLM regularization at various intensities to emphasize the role of prior information. Furthermore, we show that incorporating multiple hemodynamic response functions within the design matrix can provide valuable insights into region-specific characteristics of evoked activity. Finally, we use ECA to analyze swept-3D fUS data recorded from five mice engaged in two distinct visual tasks. Swept-3D fUS images the 3D brain sequentially using a moving probe, resulting in different slice acquisition time instants. We show that ECA can estimate factor matrices with a fine resolution at each slice acquisition time instant and yield higher t-statistics compared to GLM and correlation analysis for all subjects.Analysis of functional neuroimaging data aims to unveil spatial and temporal patterns of interest. Existing analysis methods fall into two categories: fully data-driven approaches and those reliant on prior information, e.g. the stimulus time course. While using the stimulus signal directly can help identify the activated brain areas, it is known that the relationship between stimuli and the brain's response exhibits nonlinear and time-varying characteristics. As such, relying completely on the stimulus signal to describe the brain's temporal response leads to a restricted interpretation of the brain function. In this paper, we present a new technique called Evoked Component Analysis (ECA), which leverages prior information up to a defined extent. This is achieved by including the general linear model (GLM) design matrix as a regulatory term and estimating the factor matrices in both space and time through an alternating minimization approach. We apply ECA to 2D and swept-3D functional ultrasound (fUS) experiments conducted with mice. When decomposing 2D fUS data, we employ GLM regularization at various intensities to emphasize the role of prior information. Furthermore, we show that incorporating multiple hemodynamic response functions within the design matrix can provide valuable insights into region-specific characteristics of evoked activity. Finally, we use ECA to analyze swept-3D fUS data recorded from five mice engaged in two distinct visual tasks. Swept-3D fUS images the 3D brain sequentially using a moving probe, resulting in different slice acquisition time instants. We show that ECA can estimate factor matrices with a fine resolution at each slice acquisition time instant and yield higher t-statistics compared to GLM and correlation analysis for all subjects. |
Author | Hunyadi, Borbala Generowicz, Bastian Kruizinga, Pieter Erol, Aybuke |
Author_xml | – sequence: 1 givenname: Aybuke orcidid: 0000-0002-0373-2720 surname: Erol fullname: Erol, Aybuke organization: Signal Processing Systems (SPS) Group, Department of Microelectronics, Delft University of Technology, The Netherlands – sequence: 2 givenname: Bastian orcidid: 0009-0002-0103-5910 surname: Generowicz fullname: Generowicz, Bastian organization: Center for Ultrasound and Brain Imaging at Erasmus MC (CUBE), Department of Neuroscience, Erasmus University Medical Center, The Netherlands – sequence: 3 givenname: Pieter orcidid: 0000-0003-2278-1218 surname: Kruizinga fullname: Kruizinga, Pieter organization: Center for Ultrasound and Brain Imaging at Erasmus MC (CUBE), Department of Neuroscience, Erasmus University Medical Center, The Netherlands – sequence: 4 givenname: Borbala orcidid: 0000-0002-9333-9024 surname: Hunyadi fullname: Hunyadi, Borbala email: b.hunyadi@tudelft.nl organization: Signal Processing Systems (SPS) Group, Department of Microelectronics, Delft University of Technology, Delft, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38687661$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0V1L5DAUBuAgLjp-_ABBJOCNe9Exp_lo6t3s7OgujCysipclk56O0U4zNu2C--s3ZUaRhUBI8pxDkveA7Da-QUJOgI0BWH55_-12Nk5ZKsac5xKk2CEjkFInqeSwS0aMgU7yNBf75CCE57gUWqg9ss-10plSMCI4--NfsKRTv1rH5k1HJ42p34IL9GI2nXy9ot_RDmfBNUvaPSG97hvbOR8Vfai71gTfNyW9c8th59F1T_Rmfpv8xmVfm9b9NYM9Il8qUwc83s6H5OF6dj_9kcx_3fycTuaJ5SztElQWjYVUKqs5altyXiJoJRGwVNIwlXMoNVQ5MFzgIscFyypbYaa10FEfkotN33XrX3sMXbFywWJdmwZ9HwrORJ5BxkQW6fl_9Nn3bXxDVMCyVHHBZFRnW9UvVlgW69atTPtWvH9gBLABtvUhtFh9EGDFEFIxhFQMIRXbkGLN6abGIeInL-OIN_sHBeaMUA |
CODEN | IEBEAX |
Cites_doi | 10.1016/j.neuroimage.2011.06.078 10.1038/nmeth.1641 10.1038/s41592-019-0572-y 10.1016/B978-0-12-824447-0.00018-2 10.3389/fnins.2016.00322 10.1016/j.neuroimage.2015.03.011 10.1006/nimg.1997.0316 10.1016/j.media.2016.08.006 10.1016/j.neuroimage.2017.01.071 10.3389/fnsys.2016.00109 10.1371/journal.pone.0078796 10.1093/cercor/bhs009 10.1016/j.jneumeth.2018.12.007 10.1109/ICASSPW59220.2023.10193574 10.1177/1971400917697342 10.1016/j.compmedimag.2008.10.011 10.3389/fnins.2019.01384 10.1016/j.neuron.2009.08.009 10.1109/TMI.2021.3107829 10.1016/j.neuroimage.2009.06.034 10.1016/S1053-8119(03)00286-6 10.1016/j.neuroimage.2016.12.036 10.1038/s41467-020-16774-9 10.3389/fnhum.2011.00028 10.1109/TUFFC.2023.3318653 10.1006/nimg.2002.1113 10.1214/09-STS282 10.1109/MEMB.2006.1607672 10.1111/ejn.13972 10.1016/j.neuroscience.2021.03.005 10.1016/j.neuron.2018.11.031 10.1016/j.neuroimage.2021.118809 10.1016/j.neuroimage.2003.11.029 10.1016/j.neuroimage.2013.01.067 10.1109/5.939827 10.1016/j.neuroimage.2013.11.046 10.1002/ima.22022 10.1093/cercor/bhr119 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TBME.2024.3395154 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 2832 |
ExternalDocumentID | 38687661 10_1109_TBME_2024_3395154 10510547 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Technische Universiteit Delft; Delft University of Technology funderid: 10.13039/501100001831 – fundername: Delft Technology Fellowship |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM PKN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c302t-e6ceac1256c83e8cd33de1865e1ed65a06931d81f910ebeb9eb07fcfe78848d33 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Fri Jul 11 06:15:55 EDT 2025 Mon Jun 30 10:24:11 EDT 2025 Wed Feb 19 02:03:44 EST 2025 Tue Jul 01 03:28:40 EDT 2025 Wed Aug 27 01:58:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c302t-e6ceac1256c83e8cd33de1865e1ed65a06931d81f910ebeb9eb07fcfe78848d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0002-0103-5910 0000-0002-0373-2720 0000-0002-9333-9024 0000-0003-2278-1218 |
PMID | 38687661 |
PQID | 3107263405 |
PQPubID | 85474 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_3049717047 pubmed_primary_38687661 crossref_primary_10_1109_TBME_2024_3395154 ieee_primary_10510547 proquest_journals_3107263405 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref36 ref31 ref30 Anderson (ref37) 2011 ref11 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Penny (ref34) 2011 Bishop (ref35) 2006; 4 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 (ref33) 2015 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 Calhoun (ref40) 2000 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref28 doi: 10.1016/j.neuroimage.2011.06.078 – volume: 4 volume-title: Pattern Recognition and Machine Learning year: 2006 ident: ref35 – ident: ref1 doi: 10.1038/nmeth.1641 – ident: ref32 doi: 10.1038/s41592-019-0572-y – ident: ref43 doi: 10.1016/B978-0-12-824447-0.00018-2 – ident: ref41 doi: 10.3389/fnins.2016.00322 – ident: ref14 doi: 10.1016/j.neuroimage.2015.03.011 – ident: ref19 doi: 10.1006/nimg.1997.0316 – ident: ref29 doi: 10.1016/j.media.2016.08.006 – ident: ref3 doi: 10.1016/j.neuroimage.2017.01.071 – ident: ref18 doi: 10.3389/fnsys.2016.00109 – ident: ref11 doi: 10.1371/journal.pone.0078796 – ident: ref26 doi: 10.1093/cercor/bhs009 – ident: ref44 doi: 10.1016/j.jneumeth.2018.12.007 – year: 2011 ident: ref37 publication-title: Statistics for Business and Economics – volume-title: Statistical Parametric Mapping: The Analysis of Functional Brain Images year: 2011 ident: ref34 – ident: ref17 doi: 10.1109/ICASSPW59220.2023.10193574 – ident: ref10 doi: 10.1177/1971400917697342 – ident: ref24 doi: 10.1016/j.compmedimag.2008.10.011 – ident: ref2 doi: 10.3389/fnins.2019.01384 – ident: ref21 doi: 10.1016/j.neuron.2009.08.009 – ident: ref39 doi: 10.1109/TMI.2021.3107829 – ident: ref7 doi: 10.1016/j.neuroimage.2009.06.034 – ident: ref42 doi: 10.1016/S1053-8119(03)00286-6 – ident: ref12 doi: 10.1016/j.neuroimage.2016.12.036 – ident: ref4 doi: 10.1038/s41467-020-16774-9 – ident: ref5 doi: 10.3389/fnhum.2011.00028 – ident: ref15 doi: 10.1109/TUFFC.2023.3318653 – year: 2015 ident: ref33 article-title: Allen brain atlas API – ident: ref36 doi: 10.1006/nimg.2002.1113 – volume-title: Proc. ISMRM, 9th Annu. Meeting year: 2000 ident: ref40 article-title: Improved fMRI slice timing correction: Interpolation errors and wrap around effects – ident: ref23 doi: 10.1214/09-STS282 – ident: ref25 doi: 10.1109/MEMB.2006.1607672 – ident: ref8 doi: 10.1111/ejn.13972 – ident: ref30 doi: 10.1016/j.neuroscience.2021.03.005 – ident: ref31 doi: 10.1016/j.neuron.2018.11.031 – ident: ref20 doi: 10.1016/j.neuroimage.2021.118809 – ident: ref6 doi: 10.1016/j.neuroimage.2003.11.029 – ident: ref27 doi: 10.1016/j.neuroimage.2013.01.067 – ident: ref9 doi: 10.1109/5.939827 – ident: ref13 doi: 10.1016/j.neuroimage.2013.11.046 – ident: ref16 doi: 10.1109/TUFFC.2023.3318653 – ident: ref22 doi: 10.1002/ima.22022 – ident: ref38 doi: 10.1093/cercor/bhr119 |
SSID | ssj0014846 |
Score | 2.4544275 |
Snippet | Analysis of functional neuroimaging data aims to unveil spatial and temporal patterns of interest. Existing analysis methods fall into two categories: fully... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2823 |
SubjectTerms | Algorithms Animals Biomedical engineering Brain Brain - diagnostic imaging Brain - physiology Brain slice preparation Correlation Correlation analysis Data analysis Decomposition Design analysis Design factors Functional ultrasound Functionals general linear model Hemodynamic responses Image acquisition Image processing Image Processing, Computer-Assisted - methods Linear Models Matrix decomposition Medical imaging Mice Neuroimaging Nonlinear response Probes Regularization regularized low-rank factorization Response functions Signal Processing, Computer-Assisted Statistical analysis Three-dimensional displays Ultrasonic imaging Ultrasonic testing Ultrasonography - methods Ultrasound Visual tasks |
Title | Evoked Component Analysis (ECA): Decomposing the Functional Ultrasound Signal With GLM-Regularization |
URI | https://ieeexplore.ieee.org/document/10510547 https://www.ncbi.nlm.nih.gov/pubmed/38687661 https://www.proquest.com/docview/3107263405 https://www.proquest.com/docview/3049717047 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RHhAcoJQCCwUZiQMgZYnXjzjc2rJLhdgeoCt6ixJ7UqqiDWqzHPrrOxMnq4JUiVuUWI6TmfF843kBvCnZ2-OkSWqn60RbnyVVZnxiUKMxlSG13kVbHNnDhf5yYk76ZPUuFwYRu-AzHPNl58sPjV_xURlJOMMBnW3ABlluMVlr7TLQLmblpJIkeJLr3oUp0_zD8f58SqbgRI-VIkRhuBmPcpY2Aiv_0kddg5XbsWanc2YP4WhYbQw1OR-v2mrsr_4p5Pjfn7MFD3r0KfYiuzyCO7jchvs3ahJuw915721_DDj905xjELxnNEuaSwwlTMTb6cHeu4_iE3JIesPnDYKQpJiRloyHi2Lxq70oL7lpk_h-dsp3fpy1P8Xnr_PkG55y8GufAboDi9n0-OAw6dsyJF6lkzZB62m3JmBkvVPofFAqoHTWoMRgTZnaXMngZE1IhFikyrFKs9rXSDTTjkY_gc0lrfoZCFuGSpngfK2DVspXxrkcZQhlLU2mshG8H4hT_I7VN4rOaknzgolaMFGLnqgj2OF_fGNg_L0j2B3oWfQCelkQqs0mVhFcHcHr9WMSLfaXlEtsVjSGrCeydlOe4mnkg_XkA_s8v-WlL-Aery2G_e3CZnuxwpcEX9rqVce214Vm6Hs |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BkPh42GCM0THASDwAUkpcf8TZ2xgtBdo-QKvtLUrsyzYNNWhLeeCv5xwn1UCaxFuUWI6Tu_P9zvcF8Dr33h7DVVQaWUZS2yQqEmUjhRKVKhSp9SbaYqbHC_nlRJ20yepNLgwiNsFn2PeXjS_fVXblj8pIwj0ckMltuEOKX_GQrrV2GkgT8nJiTjI8SGXrxORx-n7-YTokY3Ag-0IQplC-HY8wmrYCzf_SSE2LlZvRZqN1Rlsw69Ybgk0u-qu66Nvf_5Ry_O8PegibLf5kh4FhHsEtXG7Dg2tVCbfh7rT1tz8GHP6qLtAxv2tUS5qLdUVM2Jvh0eHbA_YRfVB65U8cGGFJNiI9GY4X2eJHfZlf-bZN7Pv5qb9zfF6fsU-TafQNT334a5sDugOL0XB-NI7axgyRFfGgjlBb2q8JGmlrBBrrhHDIjVbI0WmVxzoV3BleEhYhJilSLOKktCWSvS0NjX4CG0ta9VNgOneFUM7YUjophC2UMSly5_KSq0QkPXjXESf7GepvZI3dEqeZJ2rmiZq1RO3Bjv_H1waG39uD_Y6eWSuiVxnh2mSgBQHWHrxaPybh8h6TfInVisaQ_UT2buyn2A18sJ68Y5-9G176Eu6N59NJNvk8-_oM7vt1hiDAfdioL1f4nMBMXbxoWPgPzovrxA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evoked+Component+Analysis+%28ECA%29%3A+Decomposing+the+Functional+Ultrasound+Signal+With+GLM-Regularization&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Aybuke+Erol&rft.au=Generowicz%2C+Bastian&rft.au=Kruizinga%2C+Pieter&rft.au=Hunyadi%2C+Borbala&rft.date=2024-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=71&rft.issue=10&rft.spage=2823&rft_id=info:doi/10.1109%2FTBME.2024.3395154&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |