High-speed shear-driven dynamos. Part 2. Numerical analysis
This paper aims to numerically verify the large Reynolds number asymptotic theory of magneto-hydrodynamic (MHD) flows proposed in the companion paper Deguchi (J. Fluid Mech., vol. 868, 2019, pp. 176–211). To avoid any complexity associated with the chaotic nature of turbulence and flow geometry, non...
Saved in:
Published in | Journal of fluid mechanics Vol. 876; pp. 830 - 858 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
10.10.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-1120 1469-7645 |
DOI | 10.1017/jfm.2019.560 |
Cover
Abstract | This paper aims to numerically verify the large Reynolds number asymptotic theory of magneto-hydrodynamic (MHD) flows proposed in the companion paper Deguchi (J. Fluid Mech., vol. 868, 2019, pp. 176–211). To avoid any complexity associated with the chaotic nature of turbulence and flow geometry, nonlinear steady solutions of the viscous resistive MHD equations in plane Couette flow have been utilised. Two classes of nonlinear MHD states, which convert kinematic energy to magnetic energy effectively, have been determined. The first class of nonlinear states can be obtained when a small spanwise uniform magnetic field is applied to the known hydrodynamic solution branch of plane Couette flow. The nonlinear states are characterised by the hydrodynamic/magnetic roll–streak and the resonant layer at which strong vorticity and current sheets are observed. These flow features, and the induced strong streamwise magnetic field, are fully consistent with the vortex/Alfvén wave interaction theory proposed in the companion paper. When the spanwise uniform magnetic field is switched off, the solutions become purely hydrodynamic. However, the second class of ‘self-sustained shear-driven dynamos’ at the zero external magnetic field limit can be found by homotopy via the forced states subject to a spanwise uniform current field. The discovery of the dynamo states has motivated the corresponding large Reynolds number matched asymptotic analysis in the companion paper. Here, the reduced equations derived by the asymptotic theory have been solved numerically. The asymptotic solution provides remarkably good predictions for the finite Reynolds number dynamo solutions. |
---|---|
AbstractList | This paper aims to numerically verify the large Reynolds number asymptotic theory of magneto-hydrodynamic (MHD) flows proposed in the companion paper Deguchi (
J. Fluid Mech.
, vol. 868, 2019, pp. 176–211). To avoid any complexity associated with the chaotic nature of turbulence and flow geometry, nonlinear steady solutions of the viscous resistive MHD equations in plane Couette flow have been utilised. Two classes of nonlinear MHD states, which convert kinematic energy to magnetic energy effectively, have been determined. The first class of nonlinear states can be obtained when a small spanwise uniform magnetic field is applied to the known hydrodynamic solution branch of plane Couette flow. The nonlinear states are characterised by the hydrodynamic/magnetic roll–streak and the resonant layer at which strong vorticity and current sheets are observed. These flow features, and the induced strong streamwise magnetic field, are fully consistent with the vortex/Alfvén wave interaction theory proposed in the companion paper. When the spanwise uniform magnetic field is switched off, the solutions become purely hydrodynamic. However, the second class of ‘self-sustained shear-driven dynamos’ at the zero external magnetic field limit can be found by homotopy via the forced states subject to a spanwise uniform current field. The discovery of the dynamo states has motivated the corresponding large Reynolds number matched asymptotic analysis in the companion paper. Here, the reduced equations derived by the asymptotic theory have been solved numerically. The asymptotic solution provides remarkably good predictions for the finite Reynolds number dynamo solutions. This paper aims to numerically verify the large Reynolds number asymptotic theory of magneto-hydrodynamic (MHD) flows proposed in the companion paper Deguchi (J. Fluid Mech., vol. 868, 2019, pp. 176–211). To avoid any complexity associated with the chaotic nature of turbulence and flow geometry, nonlinear steady solutions of the viscous resistive MHD equations in plane Couette flow have been utilised. Two classes of nonlinear MHD states, which convert kinematic energy to magnetic energy effectively, have been determined. The first class of nonlinear states can be obtained when a small spanwise uniform magnetic field is applied to the known hydrodynamic solution branch of plane Couette flow. The nonlinear states are characterised by the hydrodynamic/magnetic roll–streak and the resonant layer at which strong vorticity and current sheets are observed. These flow features, and the induced strong streamwise magnetic field, are fully consistent with the vortex/Alfvén wave interaction theory proposed in the companion paper. When the spanwise uniform magnetic field is switched off, the solutions become purely hydrodynamic. However, the second class of ‘self-sustained shear-driven dynamos’ at the zero external magnetic field limit can be found by homotopy via the forced states subject to a spanwise uniform current field. The discovery of the dynamo states has motivated the corresponding large Reynolds number matched asymptotic analysis in the companion paper. Here, the reduced equations derived by the asymptotic theory have been solved numerically. The asymptotic solution provides remarkably good predictions for the finite Reynolds number dynamo solutions. This paper aims to numerically verify the large Reynolds number asymptotic theory of magneto-hydrodynamic (MHD) flows proposed in the companion paper Deguchi (J. Fluid Mech., vol. 868, 2019, pp. 176–211). To avoid any complexity associated with the chaotic nature of turbulence and flow geometry, nonlinear steady solutions of the viscous resistive MHD equations in plane Couette flow have been utilised. Two classes of nonlinear MHD states, which convert kinematic energy to magnetic energy effectively, have been determined. The first class of nonlinear states can be obtained when a small spanwise uniform magnetic field is applied to the known hydrodynamic solution branch of plane Couette flow. The nonlinear states are characterised by the hydrodynamic/magnetic roll–streak and the resonant layer at which strong vorticity and current sheets are observed. These flow features, and the induced strong streamwise magnetic field, are fully consistent with the vortex/Alfvén wave interaction theory proposed in the companion paper. When the spanwise uniform magnetic field is switched off, the solutions become purely hydrodynamic. However, the second class of ‘self-sustained shear-driven dynamos’ at the zero external magnetic field limit can be found by homotopy via the forced states subject to a spanwise uniform current field. The discovery of the dynamo states has motivated the corresponding large Reynolds number matched asymptotic analysis in the companion paper. Here, the reduced equations derived by the asymptotic theory have been solved numerically. The asymptotic solution provides remarkably good predictions for the finite Reynolds number dynamo solutions. |
Author | Deguchi, Kengo |
Author_xml | – sequence: 1 givenname: Kengo orcidid: 0000-0002-3709-3242 surname: Deguchi fullname: Deguchi, Kengo email: kengo.deguchi@monash.edu |
BookMark | eNp1kEtLw0AURgepYFvd-QMCbk28M5lHBldSrBWKutD1cJNM2il51JlU6L83pQVBdHU351w-zoSM2q61hFxTSChQdbepmoQB1YmQcEbGlEsdK8nFiIwBGIspZXBBJiFsAGgKWo3J_cKt1nHYWltGYW3Rx6V3X7aNyn2LTReS6A19H7Eketk11rsC6whbrPfBhUtyXmEd7NXpTsnH_PF9toiXr0_Ps4dlXKTA-rjkIhe6yhSmmnPgTFLJOOZSlNpSWmVaayYylVNpVaYLmYmCVwoFWqkhtemU3Bz_bn33ubOhN5tu54cRwbBUpCCYknKgbo9U4bsQvK3M1rsG_d5QMIc8ZshjDnnMkGfA2S-8cD32rmt7j67-T0pOEja5d-XK_kz5U_gG1tZ3UA |
CitedBy_id | crossref_primary_10_1017_jfm_2021_466 crossref_primary_10_1017_jfm_2019_841 crossref_primary_10_1017_jfm_2020_365 crossref_primary_10_1017_jfm_2019_990 crossref_primary_10_1017_jfm_2021_933 |
Cites_doi | 10.1017/jfm.2013.51 10.1017/jfm.2013.317 10.1017/jfm.2017.213 10.1098/rsta.2013.0352 10.1093/mnras/stx421 10.1017/jfm.2016.50 10.1103/PhysRevLett.102.114501 10.1017/jfm.2013.582 10.1093/mnrasl/slv200 10.1017/S0022112010002892 10.1017/S0022112091003725 10.1103/PhysRevLett.107.255004 10.1017/jfm.2018.971 10.1051/0004-6361:20021007 10.1103/PhysRevLett.98.204501 10.1017/jfm.2015.542 10.1088/0004-637X/736/1/3 10.1017/S0022112095000978 10.1086/170270 10.1063/1.1566753 10.1017/S0022112090000829 10.1088/2041-8205/809/1/L1 10.1063/1.4757227 10.1017/S0022112009990863 10.1103/PhysRevLett.119.164501 10.1017/jfm.2015.751 10.1017/jfm.2018.137 10.1017/S0022112001006243 10.1017/jfm.2014.282 10.1017/S0022112002001040 10.1063/1.2783986 10.1007/BF00149888 10.1093/mnras/stx1032 10.1146/annurev-fluid-120710-101228 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 10.1017/jfm.2015.514 10.1088/0004-637X/712/1/494 10.1103/PhysRevLett.98.254502 10.1038/nature12177 10.1103/PhysRevLett.100.184501 10.1063/1.4752756 10.1017/S0022112091000289 10.1017/jfm.2013.254 10.1063/1.869185 10.1017/jfm.2013.27 10.1017/S0022112092000892 10.1103/PhysRevLett.96.174101 10.1143/JPSJ.70.703 10.1051/0004-6361/201220111 10.1017/S0305004100038111 10.1103/PhysRevLett.107.114501 10.1086/591081 10.1103/PhysRevFluids.1.063602 10.1017/jfm.2016.480 10.1017/S002211200800267X 10.1093/mnras/94.1.39 10.1002/asna.200811010 10.1007/BF00151914 10.1017/jfm.2014.234 10.1017/jfm.2019.178 |
ContentType | Journal Article |
Copyright | 2019 Cambridge University Press |
Copyright_xml | – notice: 2019 Cambridge University Press |
DBID | AAYXX CITATION 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
DOI | 10.1017/jfm.2019.560 |
DatabaseName | CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest SciTech Premium Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student ProQuest Research Library Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Research Library Prep |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
DocumentTitleAlternate | High-speed shear-driven dynamos. Part 2. Numerical analysis K. Deguchi |
EISSN | 1469-7645 |
EndPage | 858 |
ExternalDocumentID | 10_1017_jfm_2019_560 |
GroupedDBID | -2P -DZ -E. -~6 -~X .DC .FH 09C 09E 0E1 0R~ 29K 4.4 5GY 5VS 74X 74Y 7~V 88I 8FE 8FG 8FH 8G5 8R4 8R5 AAAZR AABES AABWE AACJH AAGFV AAKTX AAMNQ AARAB AASVR AAUIS AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABQTM ABQWD ABROB ABTCQ ABUWG ABVKB ABVZP ABXAU ABZCX ACBEA ACBMC ACDLN ACGFO ACGFS ACGOD ACIMK ACIWK ACUIJ ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADKIL ADVJH AEBAK AEMTW AENEX AENGE AEUYN AEYYC AFFUJ AFKQG AFKRA AFLOS AFLVW AFRAH AFUTZ AFZFC AGABE AGBYD AGJUD AGLWM AHQXX AHRGI AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BHPHI BKSAR BLZWO BMAJL BPHCQ C0O CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC CS3 D-I DC4 DOHLZ DU5 DWQXO E.L EBS EJD F5P GNUQQ GUQSH HCIFZ HG- HST HZ~ I.6 I.7 IH6 IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L6V L98 LK5 LW7 M-V M2O M2P M7R M7S NIKVX O9- OYBOY P2P P62 PCBAR PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RNS ROL RR0 S0W S6- S6U SAAAG SC5 T9M TAE TN5 UT1 WFFJZ WH7 WQ3 WXU WYP ZE2 ZMEZD ZYDXJ ~02 AAYXX ABXHF ADMLS AEHGV AKMAY CITATION PHGZM PHGZT 3V. 7TB 7U5 7UA 7XB 8FD 8FK C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC PKEHL PQEST PQGLB PQUKI PRINS PUEGO Q9U |
ID | FETCH-LOGICAL-c302t-d45b59f87a394404261624ab65d9e11f89992587b16e789c685c4f7a5ae6903e3 |
IEDL.DBID | 8FG |
ISSN | 0022-1120 |
IngestDate | Sat Sep 06 11:32:14 EDT 2025 Tue Jul 01 03:01:17 EDT 2025 Thu Apr 24 23:09:36 EDT 2025 Tue Jan 21 06:23:26 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | high-speed flow dynamo theory nonlinear instability |
Language | English |
License | https://www.cambridge.org/core/terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c302t-d45b59f87a394404261624ab65d9e11f89992587b16e789c685c4f7a5ae6903e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3709-3242 |
PQID | 2353052766 |
PQPubID | 34769 |
PageCount | 29 |
ParticipantIDs | proquest_journals_2353052766 crossref_primary_10_1017_jfm_2019_560 crossref_citationtrail_10_1017_jfm_2019_560 cambridge_journals_10_1017_jfm_2019_560 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-10 |
PublicationDateYYYYMMDD | 2019-10-10 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Journal of fluid mechanics |
PublicationTitleAlternate | J. Fluid Mech |
PublicationYear | 2019 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | 2017; 119 2014c; 752 1991; 232 2018; 843 2013; 726 2013; 721 2015; 782 2015; 781 2010; 661 2003; 15 2017; 470 2014a; 372 2013a; 720 2002a; 393 2008; 100 2013b; 737 2009; 638 1997; 9 1990; 217 2010; 712 1992; 234 1995; 287 2014b; 750 1991; 227 2012; 24 2012; 22 2016; 791 2001; 70 1963; 20 2006; 96 2011; 736 1991; 376 1991; 133 2016; 802 2002b; 463 2008; 329 2019; 862 2019; 868 2001; 449 2007; 98 2008; 682 2012; 546 2007; 14 2015; 809 1964; 60 2017; 95 2016; 1 2011; 107 2013; 731 1992; 138 2013; 497 2009; 102 2008; 611 1934; 94 2016; 457 2012; 44 2017; 467 2017; 821 2003; 67 S0022112019005603_r26 S0022112019005603_r3 S0022112019005603_r27 S0022112019005603_r2 S0022112019005603_r1 S0022112019005603_r28 S0022112019005603_r29 Rudiger (S0022112019005603_r47) 2003; 67 S0022112019005603_r22 S0022112019005603_r7 S0022112019005603_r6 S0022112019005603_r23 S0022112019005603_r5 S0022112019005603_r24 S0022112019005603_r25 S0022112019005603_r4 S0022112019005603_r9 S0022112019005603_r8 S0022112019005603_r62 S0022112019005603_r63 S0022112019005603_r20 S0022112019005603_r21 S0022112019005603_r60 S0022112019005603_r61 S0022112019005603_r15 S0022112019005603_r59 S0022112019005603_r16 S0022112019005603_r17 S0022112019005603_r18 S0022112019005603_r11 S0022112019005603_r55 S0022112019005603_r12 S0022112019005603_r56 S0022112019005603_r57 S0022112019005603_r13 S0022112019005603_r58 S0022112019005603_r14 S0022112019005603_r19 Nauman (S0022112019005603_r39) 2017; 95 S0022112019005603_r51 S0022112019005603_r52 S0022112019005603_r53 S0022112019005603_r10 S0022112019005603_r54 S0022112019005603_r50 S0022112019005603_r48 S0022112019005603_r49 S0022112019005603_r44 S0022112019005603_r45 S0022112019005603_r46 S0022112019005603_r40 S0022112019005603_r41 S0022112019005603_r42 S0022112019005603_r43 S0022112019005603_r37 S0022112019005603_r38 S0022112019005603_r33 S0022112019005603_r34 S0022112019005603_r35 S0022112019005603_r36 S0022112019005603_r30 S0022112019005603_r31 S0022112019005603_r32 |
References_xml | – volume: 24 year: 2012 article-title: Nonlinear dynamo in a short Taylor–Couette setup publication-title: Phys. Fluids – volume: 467 start-page: 4858 year: 2017 end-page: 4864 article-title: Quasi-cyclic behaviour in non-linear simulations of the shear dynamo publication-title: Mon. Not. R. Astron. Soc. – volume: 731 start-page: 1 year: 2013 end-page: 45 article-title: Global bifurcations to subcritical magnetorotational dynamo action in Keplerian shear flow publication-title: J. Fluid Mech. – volume: 20 start-page: 130 year: 1963 end-page: 141 article-title: Deterministic nonperiodic flow publication-title: J. Atmos. Sci. – volume: 15 start-page: 1517 year: 2003 end-page: 1534 article-title: Homotopy of exact coherent structures in plane shear flows publication-title: Phys. Fluids – volume: 752 start-page: 602 year: 2014c end-page: 625 article-title: Free-stream coherent structures in parallel boundary-layer flows publication-title: J. Fluid Mech. – volume: 750 start-page: 99 year: 2014b end-page: 112 article-title: The high Reynolds number asymptotic development of nonlinear equilibrium states in plane Couette flow publication-title: J. Fluid Mech. – volume: 463 start-page: 361 year: 2002b end-page: 375 article-title: Hydromagnetic Taylor–Couette flow: numerical formulation and comparison with experiment publication-title: J. Fluid Mech. – volume: 449 start-page: 291 year: 2001 end-page: 300 article-title: Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst publication-title: J. Fluid Mech. – volume: 119 year: 2017 article-title: Dynamo action in a quasi-Keplerian Taylor–Couette flow publication-title: Phys. Rev. Lett. – volume: 227 start-page: 641 year: 1991 end-page: 666 article-title: On strongly nonlinear vortex/wave interactions in boundary-layer transition publication-title: J. Fluid Mech. – volume: 95 year: 2017 article-title: Sustained turbulence and magnetic energy in nonrotating shear flows publication-title: Phys. Rev. E – volume: 809 start-page: 1 issue: 71 year: 2015 end-page: 12 article-title: Resonant absorption of transverse oscillations and associated heating in a solar prominence. I. Observational aspects publication-title: Astrophys. J. – volume: 843 start-page: 53 year: 2018 end-page: 97 article-title: Bifurcation of nonlinear Tollmien–Schlichting waves in a high-speed channel flow publication-title: J. Fluid Mech. – volume: 546 start-page: A82 year: 2012 article-title: Damped kink oscillations of flowing prominence threads publication-title: Astron. Astrophys. – volume: 22 year: 2012 article-title: Periodic orbits near onset of chaos in plane Couette flow publication-title: Chaos – volume: 457 start-page: L39 year: 2016 end-page: L43 article-title: On the nature of magnetic turbulence in rotating, shearing flows publication-title: Mon. Not. R. Astron. Soc. – volume: 9 start-page: 883 year: 1997 end-page: 900 article-title: On a self-sustaining process in shear flows publication-title: Phys. Fluids – volume: 102 year: 2009 article-title: Hairpin vortex solution in planar Couette flow: a tapestry of knotted vortices publication-title: Phys. Rev. Lett. – volume: 1 year: 2016 article-title: Dynamo generated by the centrifugal instability publication-title: Phys. Rev. Fluids – volume: 712 start-page: 494 year: 2010 end-page: 510 article-title: The role of torsional Alfvén waves in coronal heating publication-title: Astrophys. J. – volume: 611 start-page: 107 year: 2008 end-page: 130 article-title: Visualizing the geometry of state space in plane Couette flow publication-title: J. Fluid Mech. – volume: 393 start-page: 339 year: 2002a end-page: 343 article-title: A Taylor–Couette dynamo publication-title: Astron. Astrophys. – volume: 14 year: 2007 article-title: Instability of current sheets and formation of plasmodia chains publication-title: Phys. Plasmas – volume: 372 start-page: 1 issue: 20130352 year: 2014a end-page: 19 article-title: Canonical exact coherent structures embedded in high Reynolds number flows publication-title: Phil. Trans. R. Soc. Lond. A – volume: 737 start-page: R2 year: 2013b article-title: A swirling spiral wave solution in pipe flow publication-title: J. Fluid Mech. – volume: 94 start-page: 39 year: 1934 end-page: 48 article-title: The magnetic fields of sunspots publication-title: Mon. Not. R. Astron. Soc. – volume: 98 year: 2007 article-title: Lower branch coherent states: transition and control publication-title: Phys. Rev. Lett. – volume: 862 start-page: R2 year: 2019 article-title: The onset of transient turbulence in minimal plane Couette flow publication-title: J. Fluid Mech. – volume: 376 start-page: 214 year: 1991 end-page: 222 article-title: A powerful local shear instability in weakly magnetized disks. I. Linear analysis publication-title: Astrophys. J. – volume: 67 year: 2003 article-title: Linear magnetohydrodynamic Taylor–Couette instability for liquid sodium publication-title: Phys. Rev. E – volume: 98 year: 2007 article-title: Self-sustaining nonlinear dynamo process in Keplerian shear flows publication-title: Phys. Rev. Lett. – volume: 96 year: 2006 article-title: Edge of chaos in a parallel shear flow publication-title: Phys. Rev. Lett. – volume: 791 start-page: 97 year: 2016 end-page: 121 article-title: Localized vortex/Tollmien–Schlichting wave interaction states in plane Poiseuille flow publication-title: J. Fluid Mech. – volume: 107 year: 2011 article-title: Large-scale magnetic field generation by randomly forced shearing waves publication-title: Phys. Rev. Lett. – volume: 44 start-page: 203 year: 2012 end-page: 225 article-title: The significance of simple invariant solutions in turbulent flows publication-title: Annu. Rev. Fluid Mech. – volume: 821 start-page: 582 year: 2017 end-page: 594 article-title: Scaling of small vortices in stably stratified shear flows publication-title: J. Fluid Mech. – volume: 217 start-page: 519 year: 1990 end-page: 527 article-title: Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity publication-title: J. Fluid Mech. – volume: 497 start-page: 463 year: 2013 end-page: 465 article-title: Shear-driven dynamo waves at high magnetic Reynolds number publication-title: Nature – volume: 782 start-page: 356 year: 2015 end-page: 367 article-title: Asymptotic descriptions of oblique coherent structures in shear flows publication-title: J. Fluid Mech. – volume: 232 start-page: 357 year: 1991 end-page: 375 article-title: The linear inviscid secondary instability of longitudinal vortex structures in boundary layers publication-title: J. Fluid Mech. – volume: 638 start-page: 1 year: 2009 end-page: 24 article-title: Equilibrium and travelling-wave solutions of plane Couette flow publication-title: J. Fluid Mech. – volume: 726 start-page: R2 year: 2013 article-title: Lower branch equilibria in Couette flow: the emergence of canonical states for arbitrary shear flows publication-title: J. Fluid Mech. – volume: 802 start-page: 634 year: 2016 end-page: 666 article-title: On the instability of vortex–wave interaction states publication-title: J. Fluid Mech. – volume: 133 start-page: 227 year: 1991 end-page: 245 article-title: Resonant behaviour of MHD waves on magnetic flux tubes. I. Connection formulae at the resonant surfaces publication-title: Solar Phys. – volume: 781 start-page: R6 year: 2015 article-title: Self-sustained states at Kolmogorov microscale publication-title: J. Fluid Mech. – volume: 682 start-page: L141 year: 2008 end-page: L144 article-title: Damping of fast magnetohydrodynamic oscillations in quiescent filament threads publication-title: Astrophys. J. – volume: 287 start-page: 317 year: 1995 end-page: 348 article-title: Regeneration mechanisms of near-wall turbulence structures publication-title: J. Fluid Mech. – volume: 721 start-page: 58 year: 2013 end-page: 85 article-title: The emergence of localized vortex–wave interaction states in plane Couette flow publication-title: J. Fluid Mech. – volume: 70 start-page: 703 year: 2001 end-page: 716 article-title: The dynamics of bursting process in wall turbulence publication-title: J. Phys. Soc. Japan – volume: 470 start-page: 2653 year: 2017 end-page: 2658 article-title: Magnetorotational dynamo action in the shearing box publication-title: Mon. Not. R. Astron. Soc. – volume: 736 start-page: 1 issue: 3 year: 2011 end-page: 27 article-title: Heating of the solar chromosphere and corona by Alfvén wave turbulence publication-title: Astrophys. J. – volume: 60 start-page: 635 year: 1964 end-page: 651 article-title: The stability of hydromagnetic Couette flow publication-title: Proc. Camb. Phil. Soc. – volume: 107 year: 2011 article-title: Homoclinic tangle on the edge of shear turbulence publication-title: Phys. Rev. Lett. – volume: 234 start-page: 511 year: 1992 end-page: 527 article-title: Three-dimensional convection in a horizontal fluid layer subjected to a constant shear publication-title: J. Fluid Mech. – volume: 661 start-page: 178 year: 2010 end-page: 205 article-title: Streamwise vortices in shear flows: harbingers of transition and the skeleton of coherent structures publication-title: J. Fluid Mech. – volume: 100 year: 2008 article-title: Generation of magnetic field by combined action of turbulence and shear publication-title: Phys. Rev. Lett. – volume: 868 start-page: 176 year: 2019 end-page: 211 article-title: High-speed shear driven dynamos. Part 1. Asymptotic analysis publication-title: J. Fluid Mech. – volume: 720 start-page: 582 year: 2013a end-page: 617 article-title: Axisymmetric travelling waves in annular sliding Couette flow at finite and asymptotically large Reynolds number publication-title: J. Fluid Mech. – volume: 138 start-page: 233 year: 1992 end-page: 255 article-title: Resonant behaviour of MHD waves on magnetic flux tubes. III. Effect of equilibrium flow publication-title: Solar Phys. – volume: 791 start-page: 284 year: 2016 end-page: 328 article-title: Travelling wave states in pipe flow publication-title: J. Fluid Mech. – volume: 329 start-page: 750 year: 2008 end-page: 761 article-title: Subcritical dynamos in shear flows publication-title: Astron. Nachr. – ident: S0022112019005603_r15 doi: 10.1017/jfm.2013.51 – ident: S0022112019005603_r45 doi: 10.1017/jfm.2013.317 – ident: S0022112019005603_r8 doi: 10.1017/jfm.2017.213 – ident: S0022112019005603_r10 doi: 10.1098/rsta.2013.0352 – ident: S0022112019005603_r52 doi: 10.1093/mnras/stx421 – ident: S0022112019005603_r19 doi: 10.1017/jfm.2016.50 – ident: S0022112019005603_r29 doi: 10.1103/PhysRevLett.102.114501 – ident: S0022112019005603_r16 doi: 10.1017/jfm.2013.582 – ident: S0022112019005603_r59 doi: 10.1093/mnrasl/slv200 – ident: S0022112019005603_r25 doi: 10.1017/S0022112010002892 – ident: S0022112019005603_r24 doi: 10.1017/S0022112091003725 – ident: S0022112019005603_r28 doi: 10.1103/PhysRevLett.107.255004 – ident: S0022112019005603_r36 doi: 10.1017/jfm.2018.971 – ident: S0022112019005603_r61 doi: 10.1051/0004-6361:20021007 – ident: S0022112019005603_r60 doi: 10.1103/PhysRevLett.98.204501 – ident: S0022112019005603_r13 doi: 10.1017/jfm.2015.542 – ident: S0022112019005603_r54 doi: 10.1088/0004-637X/736/1/3 – ident: S0022112019005603_r27 doi: 10.1017/S0022112095000978 – ident: S0022112019005603_r3 doi: 10.1086/170270 – volume: 95 year: 2017 ident: S0022112019005603_r39 article-title: Sustained turbulence and magnetic energy in nonrotating shear flows publication-title: Phys. Rev. E – ident: S0022112019005603_r57 doi: 10.1063/1.1566753 – ident: S0022112019005603_r38 doi: 10.1017/S0022112090000829 – ident: S0022112019005603_r41 doi: 10.1088/2041-8205/809/1/L1 – ident: S0022112019005603_r33 doi: 10.1063/1.4757227 – ident: S0022112019005603_r21 doi: 10.1017/S0022112009990863 – ident: S0022112019005603_r22 doi: 10.1103/PhysRevLett.119.164501 – ident: S0022112019005603_r42 doi: 10.1017/jfm.2015.751 – ident: S0022112019005603_r17 doi: 10.1017/jfm.2018.137 – ident: S0022112019005603_r31 doi: 10.1017/S0022112001006243 – ident: S0022112019005603_r12 doi: 10.1017/jfm.2014.282 – ident: S0022112019005603_r62 doi: 10.1017/S0022112002001040 – ident: S0022112019005603_r35 doi: 10.1063/1.2783986 – ident: S0022112019005603_r48 doi: 10.1007/BF00149888 – ident: S0022112019005603_r58 doi: 10.1093/mnras/stx1032 – ident: S0022112019005603_r32 doi: 10.1146/annurev-fluid-120710-101228 – ident: S0022112019005603_r34 doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 – ident: S0022112019005603_r7 doi: 10.1017/jfm.2015.514 – ident: S0022112019005603_r1 doi: 10.1088/0004-637X/712/1/494 – ident: S0022112019005603_r43 doi: 10.1103/PhysRevLett.98.254502 – ident: S0022112019005603_r49 – ident: S0022112019005603_r53 doi: 10.1038/nature12177 – ident: S0022112019005603_r63 doi: 10.1103/PhysRevLett.100.184501 – ident: S0022112019005603_r40 doi: 10.1063/1.4752756 – ident: S0022112019005603_r26 doi: 10.1017/S0022112091000289 – ident: S0022112019005603_r4 doi: 10.1017/jfm.2013.254 – ident: S0022112019005603_r56 doi: 10.1063/1.869185 – ident: S0022112019005603_r18 doi: 10.1017/jfm.2013.27 – ident: S0022112019005603_r5 doi: 10.1017/S0022112092000892 – ident: S0022112019005603_r50 doi: 10.1103/PhysRevLett.96.174101 – ident: S0022112019005603_r30 doi: 10.1143/JPSJ.70.703 – ident: S0022112019005603_r51 doi: 10.1051/0004-6361/201220111 – ident: S0022112019005603_r46 doi: 10.1017/S0305004100038111 – ident: S0022112019005603_r55 doi: 10.1103/PhysRevLett.107.114501 – ident: S0022112019005603_r2 doi: 10.1086/591081 – ident: S0022112019005603_r37 doi: 10.1103/PhysRevFluids.1.063602 – volume: 67 year: 2003 ident: S0022112019005603_r47 article-title: Linear magnetohydrodynamic Taylor–Couette instability for liquid sodium publication-title: Phys. Rev. E – ident: S0022112019005603_r14 doi: 10.1017/jfm.2016.480 – ident: S0022112019005603_r20 doi: 10.1017/S002211200800267X – ident: S0022112019005603_r6 doi: 10.1093/mnras/94.1.39 – ident: S0022112019005603_r44 doi: 10.1002/asna.200811010 – ident: S0022112019005603_r23 doi: 10.1007/BF00151914 – ident: S0022112019005603_r11 doi: 10.1017/jfm.2014.234 – ident: S0022112019005603_r9 doi: 10.1017/jfm.2019.178 |
SSID | ssj0013097 |
Score | 2.345403 |
Snippet | This paper aims to numerically verify the large Reynolds number asymptotic theory of magneto-hydrodynamic (MHD) flows proposed in the companion paper Deguchi... This paper aims to numerically verify the large Reynolds number asymptotic theory of magneto-hydrodynamic (MHD) flows proposed in the companion paper Deguchi (... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 830 |
SubjectTerms | Asymptotic methods Computational fluid dynamics Couette flow Current sheets Dynamical systems Flow geometry Fluid dynamics Fluid flow Fluid mechanics Hydrodynamics JFM Papers Magnetic field Magnetic fields Magnetohydrodynamic turbulence Magnetohydrodynamics Numerical analysis Researchers Reynolds number Rotating generators Shear Simulation System theory Theories Turbulence Turbulent flow Vortices Vorticity Wave interaction |
Title | High-speed shear-driven dynamos. Part 2. Numerical analysis |
URI | https://www.cambridge.org/core/product/identifier/S0022112019005603/type/journal_article https://www.proquest.com/docview/2353052766 |
Volume | 876 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgCAkOPAaIx0A5gDigjL6SNOKAeA2EYEI8JG5Vm6QHNG2Djv-P3WUMDqAeeqiVSrbjR2J_BtgPUu1yZTSPbKB4QrU1ubOSS6cSF5SpLR01J9935c1LcvsqXv2BW-XLKic2sTbUdmDojPw4igWqZqSkPB2-c5oaRberfoTGLMyF6GlIz9PO9fQWIdBqghaOcUXgC98JMvqtpDb0ULcFgVNOYRV-u6ff1rl2OZ0VWPKxIjsbC3cVZly_Ccs-bmR-V1ZNWPwBKtiE-bqo01RrcEJFHLwaooNiFU2u5vaDjBuzNIZ-ULXZAyoOi9qs-zm-uOmx3IOUrMNL5-r54ob7YQncxEE04jYRhdBlqnJqda0zIxkleSGF1S4MS8yrdCRSVYQohlQbmQqTlCoXucMEOXbxBjT6g77bBIZJQ4x5hCl1IXGFQluMGvMkjQqDTyy34PCbX5lX-Sobl4upDDmbEWcz5OwWHE24mRmPOU6jL3p_UB98Uw_HWBt_0LUmgpn-fqof2_9_3oEFWoj8Txi0oDH6-HS7GFiMir1ae_Zg7uzy_u4J3-dX3YfHL6EDzBM |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6FVIhy4JGCWiiwByoOaFN77d31CiHEo1FC26hCrdSba--uD1WVpHUqxJ_iNzITrxN6aG-Vj16trdnP8_DMfAPwPsqML7Q1XLhI85RqawrvFFdepz6qMld5ak4-HKvhSfrzVJ524G_bC0Nlla1OXChqN7X0j3xXJBKhKbRSX2aXnKZGUXa1HaHRwGLf__mNIVv9efQDz3dHiMHe8fchD1MFuE0iMeculaU0VaYL6gldhBBKpEWppDM-jisMQIyQmS5jfN_MWJVJm1a6kIXHSDLxCe77ANZS6mjtwtq3vfHRr1XeIjK65SdHTyYKpfZEUn1eUeN7bPqS6DBXRA43DeJNe7AwcoNn8CR4p-xrA6fn0PGTHjwNnioLeqDuweP_aAx78HBRRmrrDfhEZSO8nqFJZDXNyubuitQpczT4flr32RFClYk-G183qaILVgRalBdwci-CfAndyXTiN4FhmJJg5GIrUyrcoTQO_dQizURp8UrUFnxYyisPH1mdNwVqOkfJ5iTZHCW7BR9baeY2sJzTsI2LW1bvLFfPGnaPW9ZttwezevwKka_uvv0OHg2PDw_yg9F4_zWs06Zk_eJoG7rzq2v_Bt2aefk2YInB2X3D9x87xwUd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-speed+shear-driven+dynamos.+Part+2.+Numerical+analysis&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Deguchi%2C+Kengo&rft.date=2019-10-10&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=876&rft.spage=830&rft.epage=858&rft_id=info:doi/10.1017%2Fjfm.2019.560 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |