High-speed shear-driven dynamos. Part 2. Numerical analysis

This paper aims to numerically verify the large Reynolds number asymptotic theory of magneto-hydrodynamic (MHD) flows proposed in the companion paper Deguchi (J. Fluid Mech., vol. 868, 2019, pp. 176–211). To avoid any complexity associated with the chaotic nature of turbulence and flow geometry, non...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 876; pp. 830 - 858
Main Author Deguchi, Kengo
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 10.10.2019
Subjects
Online AccessGet full text
ISSN0022-1120
1469-7645
DOI10.1017/jfm.2019.560

Cover

Abstract This paper aims to numerically verify the large Reynolds number asymptotic theory of magneto-hydrodynamic (MHD) flows proposed in the companion paper Deguchi (J. Fluid Mech., vol. 868, 2019, pp. 176–211). To avoid any complexity associated with the chaotic nature of turbulence and flow geometry, nonlinear steady solutions of the viscous resistive MHD equations in plane Couette flow have been utilised. Two classes of nonlinear MHD states, which convert kinematic energy to magnetic energy effectively, have been determined. The first class of nonlinear states can be obtained when a small spanwise uniform magnetic field is applied to the known hydrodynamic solution branch of plane Couette flow. The nonlinear states are characterised by the hydrodynamic/magnetic roll–streak and the resonant layer at which strong vorticity and current sheets are observed. These flow features, and the induced strong streamwise magnetic field, are fully consistent with the vortex/Alfvén wave interaction theory proposed in the companion paper. When the spanwise uniform magnetic field is switched off, the solutions become purely hydrodynamic. However, the second class of ‘self-sustained shear-driven dynamos’ at the zero external magnetic field limit can be found by homotopy via the forced states subject to a spanwise uniform current field. The discovery of the dynamo states has motivated the corresponding large Reynolds number matched asymptotic analysis in the companion paper. Here, the reduced equations derived by the asymptotic theory have been solved numerically. The asymptotic solution provides remarkably good predictions for the finite Reynolds number dynamo solutions.
AbstractList This paper aims to numerically verify the large Reynolds number asymptotic theory of magneto-hydrodynamic (MHD) flows proposed in the companion paper Deguchi ( J. Fluid Mech. , vol. 868, 2019, pp. 176–211). To avoid any complexity associated with the chaotic nature of turbulence and flow geometry, nonlinear steady solutions of the viscous resistive MHD equations in plane Couette flow have been utilised. Two classes of nonlinear MHD states, which convert kinematic energy to magnetic energy effectively, have been determined. The first class of nonlinear states can be obtained when a small spanwise uniform magnetic field is applied to the known hydrodynamic solution branch of plane Couette flow. The nonlinear states are characterised by the hydrodynamic/magnetic roll–streak and the resonant layer at which strong vorticity and current sheets are observed. These flow features, and the induced strong streamwise magnetic field, are fully consistent with the vortex/Alfvén wave interaction theory proposed in the companion paper. When the spanwise uniform magnetic field is switched off, the solutions become purely hydrodynamic. However, the second class of ‘self-sustained shear-driven dynamos’ at the zero external magnetic field limit can be found by homotopy via the forced states subject to a spanwise uniform current field. The discovery of the dynamo states has motivated the corresponding large Reynolds number matched asymptotic analysis in the companion paper. Here, the reduced equations derived by the asymptotic theory have been solved numerically. The asymptotic solution provides remarkably good predictions for the finite Reynolds number dynamo solutions.
This paper aims to numerically verify the large Reynolds number asymptotic theory of magneto-hydrodynamic (MHD) flows proposed in the companion paper Deguchi (J. Fluid Mech., vol. 868, 2019, pp. 176–211). To avoid any complexity associated with the chaotic nature of turbulence and flow geometry, nonlinear steady solutions of the viscous resistive MHD equations in plane Couette flow have been utilised. Two classes of nonlinear MHD states, which convert kinematic energy to magnetic energy effectively, have been determined. The first class of nonlinear states can be obtained when a small spanwise uniform magnetic field is applied to the known hydrodynamic solution branch of plane Couette flow. The nonlinear states are characterised by the hydrodynamic/magnetic roll–streak and the resonant layer at which strong vorticity and current sheets are observed. These flow features, and the induced strong streamwise magnetic field, are fully consistent with the vortex/Alfvén wave interaction theory proposed in the companion paper. When the spanwise uniform magnetic field is switched off, the solutions become purely hydrodynamic. However, the second class of ‘self-sustained shear-driven dynamos’ at the zero external magnetic field limit can be found by homotopy via the forced states subject to a spanwise uniform current field. The discovery of the dynamo states has motivated the corresponding large Reynolds number matched asymptotic analysis in the companion paper. Here, the reduced equations derived by the asymptotic theory have been solved numerically. The asymptotic solution provides remarkably good predictions for the finite Reynolds number dynamo solutions.
This paper aims to numerically verify the large Reynolds number asymptotic theory of magneto-hydrodynamic (MHD) flows proposed in the companion paper Deguchi (J. Fluid Mech., vol. 868, 2019, pp. 176–211). To avoid any complexity associated with the chaotic nature of turbulence and flow geometry, nonlinear steady solutions of the viscous resistive MHD equations in plane Couette flow have been utilised. Two classes of nonlinear MHD states, which convert kinematic energy to magnetic energy effectively, have been determined. The first class of nonlinear states can be obtained when a small spanwise uniform magnetic field is applied to the known hydrodynamic solution branch of plane Couette flow. The nonlinear states are characterised by the hydrodynamic/magnetic roll–streak and the resonant layer at which strong vorticity and current sheets are observed. These flow features, and the induced strong streamwise magnetic field, are fully consistent with the vortex/Alfvén wave interaction theory proposed in the companion paper. When the spanwise uniform magnetic field is switched off, the solutions become purely hydrodynamic. However, the second class of ‘self-sustained shear-driven dynamos’ at the zero external magnetic field limit can be found by homotopy via the forced states subject to a spanwise uniform current field. The discovery of the dynamo states has motivated the corresponding large Reynolds number matched asymptotic analysis in the companion paper. Here, the reduced equations derived by the asymptotic theory have been solved numerically. The asymptotic solution provides remarkably good predictions for the finite Reynolds number dynamo solutions.
Author Deguchi, Kengo
Author_xml – sequence: 1
  givenname: Kengo
  orcidid: 0000-0002-3709-3242
  surname: Deguchi
  fullname: Deguchi, Kengo
  email: kengo.deguchi@monash.edu
BookMark eNp1kEtLw0AURgepYFvd-QMCbk28M5lHBldSrBWKutD1cJNM2il51JlU6L83pQVBdHU351w-zoSM2q61hFxTSChQdbepmoQB1YmQcEbGlEsdK8nFiIwBGIspZXBBJiFsAGgKWo3J_cKt1nHYWltGYW3Rx6V3X7aNyn2LTReS6A19H7Eketk11rsC6whbrPfBhUtyXmEd7NXpTsnH_PF9toiXr0_Ps4dlXKTA-rjkIhe6yhSmmnPgTFLJOOZSlNpSWmVaayYylVNpVaYLmYmCVwoFWqkhtemU3Bz_bn33ubOhN5tu54cRwbBUpCCYknKgbo9U4bsQvK3M1rsG_d5QMIc8ZshjDnnMkGfA2S-8cD32rmt7j67-T0pOEja5d-XK_kz5U_gG1tZ3UA
CitedBy_id crossref_primary_10_1017_jfm_2021_466
crossref_primary_10_1017_jfm_2019_841
crossref_primary_10_1017_jfm_2020_365
crossref_primary_10_1017_jfm_2019_990
crossref_primary_10_1017_jfm_2021_933
Cites_doi 10.1017/jfm.2013.51
10.1017/jfm.2013.317
10.1017/jfm.2017.213
10.1098/rsta.2013.0352
10.1093/mnras/stx421
10.1017/jfm.2016.50
10.1103/PhysRevLett.102.114501
10.1017/jfm.2013.582
10.1093/mnrasl/slv200
10.1017/S0022112010002892
10.1017/S0022112091003725
10.1103/PhysRevLett.107.255004
10.1017/jfm.2018.971
10.1051/0004-6361:20021007
10.1103/PhysRevLett.98.204501
10.1017/jfm.2015.542
10.1088/0004-637X/736/1/3
10.1017/S0022112095000978
10.1086/170270
10.1063/1.1566753
10.1017/S0022112090000829
10.1088/2041-8205/809/1/L1
10.1063/1.4757227
10.1017/S0022112009990863
10.1103/PhysRevLett.119.164501
10.1017/jfm.2015.751
10.1017/jfm.2018.137
10.1017/S0022112001006243
10.1017/jfm.2014.282
10.1017/S0022112002001040
10.1063/1.2783986
10.1007/BF00149888
10.1093/mnras/stx1032
10.1146/annurev-fluid-120710-101228
10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
10.1017/jfm.2015.514
10.1088/0004-637X/712/1/494
10.1103/PhysRevLett.98.254502
10.1038/nature12177
10.1103/PhysRevLett.100.184501
10.1063/1.4752756
10.1017/S0022112091000289
10.1017/jfm.2013.254
10.1063/1.869185
10.1017/jfm.2013.27
10.1017/S0022112092000892
10.1103/PhysRevLett.96.174101
10.1143/JPSJ.70.703
10.1051/0004-6361/201220111
10.1017/S0305004100038111
10.1103/PhysRevLett.107.114501
10.1086/591081
10.1103/PhysRevFluids.1.063602
10.1017/jfm.2016.480
10.1017/S002211200800267X
10.1093/mnras/94.1.39
10.1002/asna.200811010
10.1007/BF00151914
10.1017/jfm.2014.234
10.1017/jfm.2019.178
ContentType Journal Article
Copyright 2019 Cambridge University Press
Copyright_xml – notice: 2019 Cambridge University Press
DBID AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/jfm.2019.560
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest SciTech Premium Collection‎ Natural Science Collection Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Research Library Prep

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
DocumentTitleAlternate High-speed shear-driven dynamos. Part 2. Numerical analysis
K. Deguchi
EISSN 1469-7645
EndPage 858
ExternalDocumentID 10_1017_jfm_2019_560
GroupedDBID -2P
-DZ
-E.
-~6
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVKB
ABVZP
ABXAU
ABZCX
ACBEA
ACBMC
ACDLN
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADKIL
ADVJH
AEBAK
AEMTW
AENEX
AENGE
AEUYN
AEYYC
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFRAH
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AGLWM
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
EJD
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
I.7
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WYP
ZE2
ZMEZD
ZYDXJ
~02
AAYXX
ABXHF
ADMLS
AEHGV
AKMAY
CITATION
PHGZM
PHGZT
3V.
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c302t-d45b59f87a394404261624ab65d9e11f89992587b16e789c685c4f7a5ae6903e3
IEDL.DBID 8FG
ISSN 0022-1120
IngestDate Sat Sep 06 11:32:14 EDT 2025
Tue Jul 01 03:01:17 EDT 2025
Thu Apr 24 23:09:36 EDT 2025
Tue Jan 21 06:23:26 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords high-speed flow
dynamo theory
nonlinear instability
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c302t-d45b59f87a394404261624ab65d9e11f89992587b16e789c685c4f7a5ae6903e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3709-3242
PQID 2353052766
PQPubID 34769
PageCount 29
ParticipantIDs proquest_journals_2353052766
crossref_primary_10_1017_jfm_2019_560
crossref_citationtrail_10_1017_jfm_2019_560
cambridge_journals_10_1017_jfm_2019_560
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-10
PublicationDateYYYYMMDD 2019-10-10
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-10
  day: 10
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2019
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2017; 119
2014c; 752
1991; 232
2018; 843
2013; 726
2013; 721
2015; 782
2015; 781
2010; 661
2003; 15
2017; 470
2014a; 372
2013a; 720
2002a; 393
2008; 100
2013b; 737
2009; 638
1997; 9
1990; 217
2010; 712
1992; 234
1995; 287
2014b; 750
1991; 227
2012; 24
2012; 22
2016; 791
2001; 70
1963; 20
2006; 96
2011; 736
1991; 376
1991; 133
2016; 802
2002b; 463
2008; 329
2019; 862
2019; 868
2001; 449
2007; 98
2008; 682
2012; 546
2007; 14
2015; 809
1964; 60
2017; 95
2016; 1
2011; 107
2013; 731
1992; 138
2013; 497
2009; 102
2008; 611
1934; 94
2016; 457
2012; 44
2017; 467
2017; 821
2003; 67
S0022112019005603_r26
S0022112019005603_r3
S0022112019005603_r27
S0022112019005603_r2
S0022112019005603_r1
S0022112019005603_r28
S0022112019005603_r29
Rudiger (S0022112019005603_r47) 2003; 67
S0022112019005603_r22
S0022112019005603_r7
S0022112019005603_r6
S0022112019005603_r23
S0022112019005603_r5
S0022112019005603_r24
S0022112019005603_r25
S0022112019005603_r4
S0022112019005603_r9
S0022112019005603_r8
S0022112019005603_r62
S0022112019005603_r63
S0022112019005603_r20
S0022112019005603_r21
S0022112019005603_r60
S0022112019005603_r61
S0022112019005603_r15
S0022112019005603_r59
S0022112019005603_r16
S0022112019005603_r17
S0022112019005603_r18
S0022112019005603_r11
S0022112019005603_r55
S0022112019005603_r12
S0022112019005603_r56
S0022112019005603_r57
S0022112019005603_r13
S0022112019005603_r58
S0022112019005603_r14
S0022112019005603_r19
Nauman (S0022112019005603_r39) 2017; 95
S0022112019005603_r51
S0022112019005603_r52
S0022112019005603_r53
S0022112019005603_r10
S0022112019005603_r54
S0022112019005603_r50
S0022112019005603_r48
S0022112019005603_r49
S0022112019005603_r44
S0022112019005603_r45
S0022112019005603_r46
S0022112019005603_r40
S0022112019005603_r41
S0022112019005603_r42
S0022112019005603_r43
S0022112019005603_r37
S0022112019005603_r38
S0022112019005603_r33
S0022112019005603_r34
S0022112019005603_r35
S0022112019005603_r36
S0022112019005603_r30
S0022112019005603_r31
S0022112019005603_r32
References_xml – volume: 24
  year: 2012
  article-title: Nonlinear dynamo in a short Taylor–Couette setup
  publication-title: Phys. Fluids
– volume: 467
  start-page: 4858
  year: 2017
  end-page: 4864
  article-title: Quasi-cyclic behaviour in non-linear simulations of the shear dynamo
  publication-title: Mon. Not. R. Astron. Soc.
– volume: 731
  start-page: 1
  year: 2013
  end-page: 45
  article-title: Global bifurcations to subcritical magnetorotational dynamo action in Keplerian shear flow
  publication-title: J. Fluid Mech.
– volume: 20
  start-page: 130
  year: 1963
  end-page: 141
  article-title: Deterministic nonperiodic flow
  publication-title: J. Atmos. Sci.
– volume: 15
  start-page: 1517
  year: 2003
  end-page: 1534
  article-title: Homotopy of exact coherent structures in plane shear flows
  publication-title: Phys. Fluids
– volume: 752
  start-page: 602
  year: 2014c
  end-page: 625
  article-title: Free-stream coherent structures in parallel boundary-layer flows
  publication-title: J. Fluid Mech.
– volume: 750
  start-page: 99
  year: 2014b
  end-page: 112
  article-title: The high Reynolds number asymptotic development of nonlinear equilibrium states in plane Couette flow
  publication-title: J. Fluid Mech.
– volume: 463
  start-page: 361
  year: 2002b
  end-page: 375
  article-title: Hydromagnetic Taylor–Couette flow: numerical formulation and comparison with experiment
  publication-title: J. Fluid Mech.
– volume: 449
  start-page: 291
  year: 2001
  end-page: 300
  article-title: Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst
  publication-title: J. Fluid Mech.
– volume: 119
  year: 2017
  article-title: Dynamo action in a quasi-Keplerian Taylor–Couette flow
  publication-title: Phys. Rev. Lett.
– volume: 227
  start-page: 641
  year: 1991
  end-page: 666
  article-title: On strongly nonlinear vortex/wave interactions in boundary-layer transition
  publication-title: J. Fluid Mech.
– volume: 95
  year: 2017
  article-title: Sustained turbulence and magnetic energy in nonrotating shear flows
  publication-title: Phys. Rev. E
– volume: 809
  start-page: 1
  issue: 71
  year: 2015
  end-page: 12
  article-title: Resonant absorption of transverse oscillations and associated heating in a solar prominence. I. Observational aspects
  publication-title: Astrophys. J.
– volume: 843
  start-page: 53
  year: 2018
  end-page: 97
  article-title: Bifurcation of nonlinear Tollmien–Schlichting waves in a high-speed channel flow
  publication-title: J. Fluid Mech.
– volume: 546
  start-page: A82
  year: 2012
  article-title: Damped kink oscillations of flowing prominence threads
  publication-title: Astron. Astrophys.
– volume: 22
  year: 2012
  article-title: Periodic orbits near onset of chaos in plane Couette flow
  publication-title: Chaos
– volume: 457
  start-page: L39
  year: 2016
  end-page: L43
  article-title: On the nature of magnetic turbulence in rotating, shearing flows
  publication-title: Mon. Not. R. Astron. Soc.
– volume: 9
  start-page: 883
  year: 1997
  end-page: 900
  article-title: On a self-sustaining process in shear flows
  publication-title: Phys. Fluids
– volume: 102
  year: 2009
  article-title: Hairpin vortex solution in planar Couette flow: a tapestry of knotted vortices
  publication-title: Phys. Rev. Lett.
– volume: 1
  year: 2016
  article-title: Dynamo generated by the centrifugal instability
  publication-title: Phys. Rev. Fluids
– volume: 712
  start-page: 494
  year: 2010
  end-page: 510
  article-title: The role of torsional Alfvén waves in coronal heating
  publication-title: Astrophys. J.
– volume: 611
  start-page: 107
  year: 2008
  end-page: 130
  article-title: Visualizing the geometry of state space in plane Couette flow
  publication-title: J. Fluid Mech.
– volume: 393
  start-page: 339
  year: 2002a
  end-page: 343
  article-title: A Taylor–Couette dynamo
  publication-title: Astron. Astrophys.
– volume: 14
  year: 2007
  article-title: Instability of current sheets and formation of plasmodia chains
  publication-title: Phys. Plasmas
– volume: 372
  start-page: 1
  issue: 20130352
  year: 2014a
  end-page: 19
  article-title: Canonical exact coherent structures embedded in high Reynolds number flows
  publication-title: Phil. Trans. R. Soc. Lond. A
– volume: 737
  start-page: R2
  year: 2013b
  article-title: A swirling spiral wave solution in pipe flow
  publication-title: J. Fluid Mech.
– volume: 94
  start-page: 39
  year: 1934
  end-page: 48
  article-title: The magnetic fields of sunspots
  publication-title: Mon. Not. R. Astron. Soc.
– volume: 98
  year: 2007
  article-title: Lower branch coherent states: transition and control
  publication-title: Phys. Rev. Lett.
– volume: 862
  start-page: R2
  year: 2019
  article-title: The onset of transient turbulence in minimal plane Couette flow
  publication-title: J. Fluid Mech.
– volume: 376
  start-page: 214
  year: 1991
  end-page: 222
  article-title: A powerful local shear instability in weakly magnetized disks. I. Linear analysis
  publication-title: Astrophys. J.
– volume: 67
  year: 2003
  article-title: Linear magnetohydrodynamic Taylor–Couette instability for liquid sodium
  publication-title: Phys. Rev. E
– volume: 98
  year: 2007
  article-title: Self-sustaining nonlinear dynamo process in Keplerian shear flows
  publication-title: Phys. Rev. Lett.
– volume: 96
  year: 2006
  article-title: Edge of chaos in a parallel shear flow
  publication-title: Phys. Rev. Lett.
– volume: 791
  start-page: 97
  year: 2016
  end-page: 121
  article-title: Localized vortex/Tollmien–Schlichting wave interaction states in plane Poiseuille flow
  publication-title: J. Fluid Mech.
– volume: 107
  year: 2011
  article-title: Large-scale magnetic field generation by randomly forced shearing waves
  publication-title: Phys. Rev. Lett.
– volume: 44
  start-page: 203
  year: 2012
  end-page: 225
  article-title: The significance of simple invariant solutions in turbulent flows
  publication-title: Annu. Rev. Fluid Mech.
– volume: 821
  start-page: 582
  year: 2017
  end-page: 594
  article-title: Scaling of small vortices in stably stratified shear flows
  publication-title: J. Fluid Mech.
– volume: 217
  start-page: 519
  year: 1990
  end-page: 527
  article-title: Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity
  publication-title: J. Fluid Mech.
– volume: 497
  start-page: 463
  year: 2013
  end-page: 465
  article-title: Shear-driven dynamo waves at high magnetic Reynolds number
  publication-title: Nature
– volume: 782
  start-page: 356
  year: 2015
  end-page: 367
  article-title: Asymptotic descriptions of oblique coherent structures in shear flows
  publication-title: J. Fluid Mech.
– volume: 232
  start-page: 357
  year: 1991
  end-page: 375
  article-title: The linear inviscid secondary instability of longitudinal vortex structures in boundary layers
  publication-title: J. Fluid Mech.
– volume: 638
  start-page: 1
  year: 2009
  end-page: 24
  article-title: Equilibrium and travelling-wave solutions of plane Couette flow
  publication-title: J. Fluid Mech.
– volume: 726
  start-page: R2
  year: 2013
  article-title: Lower branch equilibria in Couette flow: the emergence of canonical states for arbitrary shear flows
  publication-title: J. Fluid Mech.
– volume: 802
  start-page: 634
  year: 2016
  end-page: 666
  article-title: On the instability of vortex–wave interaction states
  publication-title: J. Fluid Mech.
– volume: 133
  start-page: 227
  year: 1991
  end-page: 245
  article-title: Resonant behaviour of MHD waves on magnetic flux tubes. I. Connection formulae at the resonant surfaces
  publication-title: Solar Phys.
– volume: 781
  start-page: R6
  year: 2015
  article-title: Self-sustained states at Kolmogorov microscale
  publication-title: J. Fluid Mech.
– volume: 682
  start-page: L141
  year: 2008
  end-page: L144
  article-title: Damping of fast magnetohydrodynamic oscillations in quiescent filament threads
  publication-title: Astrophys. J.
– volume: 287
  start-page: 317
  year: 1995
  end-page: 348
  article-title: Regeneration mechanisms of near-wall turbulence structures
  publication-title: J. Fluid Mech.
– volume: 721
  start-page: 58
  year: 2013
  end-page: 85
  article-title: The emergence of localized vortex–wave interaction states in plane Couette flow
  publication-title: J. Fluid Mech.
– volume: 70
  start-page: 703
  year: 2001
  end-page: 716
  article-title: The dynamics of bursting process in wall turbulence
  publication-title: J. Phys. Soc. Japan
– volume: 470
  start-page: 2653
  year: 2017
  end-page: 2658
  article-title: Magnetorotational dynamo action in the shearing box
  publication-title: Mon. Not. R. Astron. Soc.
– volume: 736
  start-page: 1
  issue: 3
  year: 2011
  end-page: 27
  article-title: Heating of the solar chromosphere and corona by Alfvén wave turbulence
  publication-title: Astrophys. J.
– volume: 60
  start-page: 635
  year: 1964
  end-page: 651
  article-title: The stability of hydromagnetic Couette flow
  publication-title: Proc. Camb. Phil. Soc.
– volume: 107
  year: 2011
  article-title: Homoclinic tangle on the edge of shear turbulence
  publication-title: Phys. Rev. Lett.
– volume: 234
  start-page: 511
  year: 1992
  end-page: 527
  article-title: Three-dimensional convection in a horizontal fluid layer subjected to a constant shear
  publication-title: J. Fluid Mech.
– volume: 661
  start-page: 178
  year: 2010
  end-page: 205
  article-title: Streamwise vortices in shear flows: harbingers of transition and the skeleton of coherent structures
  publication-title: J. Fluid Mech.
– volume: 100
  year: 2008
  article-title: Generation of magnetic field by combined action of turbulence and shear
  publication-title: Phys. Rev. Lett.
– volume: 868
  start-page: 176
  year: 2019
  end-page: 211
  article-title: High-speed shear driven dynamos. Part 1. Asymptotic analysis
  publication-title: J. Fluid Mech.
– volume: 720
  start-page: 582
  year: 2013a
  end-page: 617
  article-title: Axisymmetric travelling waves in annular sliding Couette flow at finite and asymptotically large Reynolds number
  publication-title: J. Fluid Mech.
– volume: 138
  start-page: 233
  year: 1992
  end-page: 255
  article-title: Resonant behaviour of MHD waves on magnetic flux tubes. III. Effect of equilibrium flow
  publication-title: Solar Phys.
– volume: 791
  start-page: 284
  year: 2016
  end-page: 328
  article-title: Travelling wave states in pipe flow
  publication-title: J. Fluid Mech.
– volume: 329
  start-page: 750
  year: 2008
  end-page: 761
  article-title: Subcritical dynamos in shear flows
  publication-title: Astron. Nachr.
– ident: S0022112019005603_r15
  doi: 10.1017/jfm.2013.51
– ident: S0022112019005603_r45
  doi: 10.1017/jfm.2013.317
– ident: S0022112019005603_r8
  doi: 10.1017/jfm.2017.213
– ident: S0022112019005603_r10
  doi: 10.1098/rsta.2013.0352
– ident: S0022112019005603_r52
  doi: 10.1093/mnras/stx421
– ident: S0022112019005603_r19
  doi: 10.1017/jfm.2016.50
– ident: S0022112019005603_r29
  doi: 10.1103/PhysRevLett.102.114501
– ident: S0022112019005603_r16
  doi: 10.1017/jfm.2013.582
– ident: S0022112019005603_r59
  doi: 10.1093/mnrasl/slv200
– ident: S0022112019005603_r25
  doi: 10.1017/S0022112010002892
– ident: S0022112019005603_r24
  doi: 10.1017/S0022112091003725
– ident: S0022112019005603_r28
  doi: 10.1103/PhysRevLett.107.255004
– ident: S0022112019005603_r36
  doi: 10.1017/jfm.2018.971
– ident: S0022112019005603_r61
  doi: 10.1051/0004-6361:20021007
– ident: S0022112019005603_r60
  doi: 10.1103/PhysRevLett.98.204501
– ident: S0022112019005603_r13
  doi: 10.1017/jfm.2015.542
– ident: S0022112019005603_r54
  doi: 10.1088/0004-637X/736/1/3
– ident: S0022112019005603_r27
  doi: 10.1017/S0022112095000978
– ident: S0022112019005603_r3
  doi: 10.1086/170270
– volume: 95
  year: 2017
  ident: S0022112019005603_r39
  article-title: Sustained turbulence and magnetic energy in nonrotating shear flows
  publication-title: Phys. Rev. E
– ident: S0022112019005603_r57
  doi: 10.1063/1.1566753
– ident: S0022112019005603_r38
  doi: 10.1017/S0022112090000829
– ident: S0022112019005603_r41
  doi: 10.1088/2041-8205/809/1/L1
– ident: S0022112019005603_r33
  doi: 10.1063/1.4757227
– ident: S0022112019005603_r21
  doi: 10.1017/S0022112009990863
– ident: S0022112019005603_r22
  doi: 10.1103/PhysRevLett.119.164501
– ident: S0022112019005603_r42
  doi: 10.1017/jfm.2015.751
– ident: S0022112019005603_r17
  doi: 10.1017/jfm.2018.137
– ident: S0022112019005603_r31
  doi: 10.1017/S0022112001006243
– ident: S0022112019005603_r12
  doi: 10.1017/jfm.2014.282
– ident: S0022112019005603_r62
  doi: 10.1017/S0022112002001040
– ident: S0022112019005603_r35
  doi: 10.1063/1.2783986
– ident: S0022112019005603_r48
  doi: 10.1007/BF00149888
– ident: S0022112019005603_r58
  doi: 10.1093/mnras/stx1032
– ident: S0022112019005603_r32
  doi: 10.1146/annurev-fluid-120710-101228
– ident: S0022112019005603_r34
  doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
– ident: S0022112019005603_r7
  doi: 10.1017/jfm.2015.514
– ident: S0022112019005603_r1
  doi: 10.1088/0004-637X/712/1/494
– ident: S0022112019005603_r43
  doi: 10.1103/PhysRevLett.98.254502
– ident: S0022112019005603_r49
– ident: S0022112019005603_r53
  doi: 10.1038/nature12177
– ident: S0022112019005603_r63
  doi: 10.1103/PhysRevLett.100.184501
– ident: S0022112019005603_r40
  doi: 10.1063/1.4752756
– ident: S0022112019005603_r26
  doi: 10.1017/S0022112091000289
– ident: S0022112019005603_r4
  doi: 10.1017/jfm.2013.254
– ident: S0022112019005603_r56
  doi: 10.1063/1.869185
– ident: S0022112019005603_r18
  doi: 10.1017/jfm.2013.27
– ident: S0022112019005603_r5
  doi: 10.1017/S0022112092000892
– ident: S0022112019005603_r50
  doi: 10.1103/PhysRevLett.96.174101
– ident: S0022112019005603_r30
  doi: 10.1143/JPSJ.70.703
– ident: S0022112019005603_r51
  doi: 10.1051/0004-6361/201220111
– ident: S0022112019005603_r46
  doi: 10.1017/S0305004100038111
– ident: S0022112019005603_r55
  doi: 10.1103/PhysRevLett.107.114501
– ident: S0022112019005603_r2
  doi: 10.1086/591081
– ident: S0022112019005603_r37
  doi: 10.1103/PhysRevFluids.1.063602
– volume: 67
  year: 2003
  ident: S0022112019005603_r47
  article-title: Linear magnetohydrodynamic Taylor–Couette instability for liquid sodium
  publication-title: Phys. Rev. E
– ident: S0022112019005603_r14
  doi: 10.1017/jfm.2016.480
– ident: S0022112019005603_r20
  doi: 10.1017/S002211200800267X
– ident: S0022112019005603_r6
  doi: 10.1093/mnras/94.1.39
– ident: S0022112019005603_r44
  doi: 10.1002/asna.200811010
– ident: S0022112019005603_r23
  doi: 10.1007/BF00151914
– ident: S0022112019005603_r11
  doi: 10.1017/jfm.2014.234
– ident: S0022112019005603_r9
  doi: 10.1017/jfm.2019.178
SSID ssj0013097
Score 2.345403
Snippet This paper aims to numerically verify the large Reynolds number asymptotic theory of magneto-hydrodynamic (MHD) flows proposed in the companion paper Deguchi...
This paper aims to numerically verify the large Reynolds number asymptotic theory of magneto-hydrodynamic (MHD) flows proposed in the companion paper Deguchi (...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 830
SubjectTerms Asymptotic methods
Computational fluid dynamics
Couette flow
Current sheets
Dynamical systems
Flow geometry
Fluid dynamics
Fluid flow
Fluid mechanics
Hydrodynamics
JFM Papers
Magnetic field
Magnetic fields
Magnetohydrodynamic turbulence
Magnetohydrodynamics
Numerical analysis
Researchers
Reynolds number
Rotating generators
Shear
Simulation
System theory
Theories
Turbulence
Turbulent flow
Vortices
Vorticity
Wave interaction
Title High-speed shear-driven dynamos. Part 2. Numerical analysis
URI https://www.cambridge.org/core/product/identifier/S0022112019005603/type/journal_article
https://www.proquest.com/docview/2353052766
Volume 876
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgCAkOPAaIx0A5gDigjL6SNOKAeA2EYEI8JG5Vm6QHNG2Djv-P3WUMDqAeeqiVSrbjR2J_BtgPUu1yZTSPbKB4QrU1ubOSS6cSF5SpLR01J9935c1LcvsqXv2BW-XLKic2sTbUdmDojPw4igWqZqSkPB2-c5oaRberfoTGLMyF6GlIz9PO9fQWIdBqghaOcUXgC98JMvqtpDb0ULcFgVNOYRV-u6ff1rl2OZ0VWPKxIjsbC3cVZly_Ccs-bmR-V1ZNWPwBKtiE-bqo01RrcEJFHLwaooNiFU2u5vaDjBuzNIZ-ULXZAyoOi9qs-zm-uOmx3IOUrMNL5-r54ob7YQncxEE04jYRhdBlqnJqda0zIxkleSGF1S4MS8yrdCRSVYQohlQbmQqTlCoXucMEOXbxBjT6g77bBIZJQ4x5hCl1IXGFQluMGvMkjQqDTyy34PCbX5lX-Sobl4upDDmbEWcz5OwWHE24mRmPOU6jL3p_UB98Uw_HWBt_0LUmgpn-fqof2_9_3oEFWoj8Txi0oDH6-HS7GFiMir1ae_Zg7uzy_u4J3-dX3YfHL6EDzBM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6FVIhy4JGCWiiwByoOaFN77d31CiHEo1FC26hCrdSba--uD1WVpHUqxJ_iNzITrxN6aG-Vj16trdnP8_DMfAPwPsqML7Q1XLhI85RqawrvFFdepz6qMld5ak4-HKvhSfrzVJ524G_bC0Nlla1OXChqN7X0j3xXJBKhKbRSX2aXnKZGUXa1HaHRwGLf__mNIVv9efQDz3dHiMHe8fchD1MFuE0iMeculaU0VaYL6gldhBBKpEWppDM-jisMQIyQmS5jfN_MWJVJm1a6kIXHSDLxCe77ANZS6mjtwtq3vfHRr1XeIjK65SdHTyYKpfZEUn1eUeN7bPqS6DBXRA43DeJNe7AwcoNn8CR4p-xrA6fn0PGTHjwNnioLeqDuweP_aAx78HBRRmrrDfhEZSO8nqFJZDXNyubuitQpczT4flr32RFClYk-G183qaILVgRalBdwci-CfAndyXTiN4FhmJJg5GIrUyrcoTQO_dQizURp8UrUFnxYyisPH1mdNwVqOkfJ5iTZHCW7BR9baeY2sJzTsI2LW1bvLFfPGnaPW9ZttwezevwKka_uvv0OHg2PDw_yg9F4_zWs06Zk_eJoG7rzq2v_Bt2aefk2YInB2X3D9x87xwUd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-speed+shear-driven+dynamos.+Part+2.+Numerical+analysis&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Deguchi%2C+Kengo&rft.date=2019-10-10&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=876&rft.spage=830&rft.epage=858&rft_id=info:doi/10.1017%2Fjfm.2019.560
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon