Piecewise physics-informed neural networks for surrogate modelling of non-smooth system in elasticity problems using domain decomposition

To interpret physical phenomena, traditional mesh-based methods, such as finite element method, have proven effective for engineering problems. However, as system complexity increases, whether due to larger scales, finer resolutions, or intricate geometries, these methods face significant limitation...

Full description

Saved in:
Bibliographic Details
Published inBiosystems engineering Vol. 251; pp. 48 - 60
Main Authors Jeong, Youngjoon, Lee, Sangik, Lee, Jong-hyuk, Choi, Won
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2025
Subjects
Online AccessGet full text
ISSN1537-5110
DOI10.1016/j.biosystemseng.2025.01.017

Cover

Loading…
Abstract To interpret physical phenomena, traditional mesh-based methods, such as finite element method, have proven effective for engineering problems. However, as system complexity increases, whether due to larger scales, finer resolutions, or intricate geometries, these methods face significant limitations in term of computational cost and time. Complex problems, particularly those involving irregular boundaries or nonlinear behaviour, require finer meshes and greater computational power, making real-time analysis difficult. This challenge is especially relevant in agricultural systems, which are subject to high uncertainty and constantly changing environmental conditions. In this study, we proposed a method referred to as piecewise physics-informed neural networks (PINNs) to solve non-smooth problems in structural mechanics using neural networks by decomposing the computational domain. To quantitatively evaluate the performance of this method, three representative structural mechanics problems with non-smooth characteristics are employed. Results demonstrated that the piecewise PINNs provided more accurate solutions compared to conventional PINNs on these benchmark problems. Additionally, we developed a surrogate model for the non-smooth problems using piecewise PINNs without any labelled data and compared it with a model trained using deep neural networks. The proposed model outperformed the deep neural network model in cases of plane-stress problem. The results also showed that the surrogate model trained with piecewise PINNs exhibited an advantage in terms of execution time over the finite element analysis software. •Piecewise PINN method improves accuracy in non-smooth system solutions.•Domain decomposition reduces spectral bias and computational complexity.•Surrogate models trained with piecewise PINNs outperform DNN models.•Faster execution times compared to conventional finite element analysis software.•Enhanced performance in extrapolating beyond training data distribution.
AbstractList To interpret physical phenomena, traditional mesh-based methods, such as finite element method, have proven effective for engineering problems. However, as system complexity increases, whether due to larger scales, finer resolutions, or intricate geometries, these methods face significant limitations in term of computational cost and time. Complex problems, particularly those involving irregular boundaries or nonlinear behaviour, require finer meshes and greater computational power, making real-time analysis difficult. This challenge is especially relevant in agricultural systems, which are subject to high uncertainty and constantly changing environmental conditions. In this study, we proposed a method referred to as piecewise physics-informed neural networks (PINNs) to solve non-smooth problems in structural mechanics using neural networks by decomposing the computational domain. To quantitatively evaluate the performance of this method, three representative structural mechanics problems with non-smooth characteristics are employed. Results demonstrated that the piecewise PINNs provided more accurate solutions compared to conventional PINNs on these benchmark problems. Additionally, we developed a surrogate model for the non-smooth problems using piecewise PINNs without any labelled data and compared it with a model trained using deep neural networks. The proposed model outperformed the deep neural network model in cases of plane-stress problem. The results also showed that the surrogate model trained with piecewise PINNs exhibited an advantage in terms of execution time over the finite element analysis software. •Piecewise PINN method improves accuracy in non-smooth system solutions.•Domain decomposition reduces spectral bias and computational complexity.•Surrogate models trained with piecewise PINNs outperform DNN models.•Faster execution times compared to conventional finite element analysis software.•Enhanced performance in extrapolating beyond training data distribution.
To interpret physical phenomena, traditional mesh-based methods, such as finite element method, have proven effective for engineering problems. However, as system complexity increases, whether due to larger scales, finer resolutions, or intricate geometries, these methods face significant limitations in term of computational cost and time. Complex problems, particularly those involving irregular boundaries or nonlinear behaviour, require finer meshes and greater computational power, making real-time analysis difficult. This challenge is especially relevant in agricultural systems, which are subject to high uncertainty and constantly changing environmental conditions. In this study, we proposed a method referred to as piecewise physics-informed neural networks (PINNs) to solve non-smooth problems in structural mechanics using neural networks by decomposing the computational domain. To quantitatively evaluate the performance of this method, three representative structural mechanics problems with non-smooth characteristics are employed. Results demonstrated that the piecewise PINNs provided more accurate solutions compared to conventional PINNs on these benchmark problems. Additionally, we developed a surrogate model for the non-smooth problems using piecewise PINNs without any labelled data and compared it with a model trained using deep neural networks. The proposed model outperformed the deep neural network model in cases of plane-stress problem. The results also showed that the surrogate model trained with piecewise PINNs exhibited an advantage in terms of execution time over the finite element analysis software.
Author Jeong, Youngjoon
Lee, Jong-hyuk
Choi, Won
Lee, Sangik
Author_xml – sequence: 1
  givenname: Youngjoon
  orcidid: 0000-0002-5658-2455
  surname: Jeong
  fullname: Jeong, Youngjoon
  organization: Graduate School of Data Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
– sequence: 2
  givenname: Sangik
  orcidid: 0000-0001-8136-7397
  surname: Lee
  fullname: Lee, Sangik
  organization: Department of Agricultural Civil Engineering, College of Agriculture and Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
– sequence: 3
  givenname: Jong-hyuk
  surname: Lee
  fullname: Lee, Jong-hyuk
  organization: Department of Landscape Architecture and Rural Systems Engineering, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
– sequence: 4
  givenname: Won
  orcidid: 0000-0002-9766-377X
  surname: Choi
  fullname: Choi, Won
  email: fembem@snu.ac.kr
  organization: Department of Landscape Architecture and Rural Systems Engineering, Research Institute of Agriculture and Life Sciences, Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
BookMark eNqNkM1qHDEQhHVwILaTdxD4kstsJM3vklMwTmwwJAffhUbqWfdmRr1Ra2L2EfLW1rK5-BZoaGiqmqrvSlxEiiDEjVYbrXT3eb8ZkfjIGRaGuNsYZdqN0mX6C3Gp27qvWq3Ve3HFvFdKt33TXYq_PxE8vCCDPDwfGT1XGCdKCwQZYU1uLiu_UPrFspwlrynRzmWQCwWYZ4w7SZMsWSpeiPKzPEeQGCXMjjN6zEd5SDTOJZhc-eQItLgiCOBpORBjRoofxLvJzQwf_-1r8fTt7un2vnr88f3h9utj5WtlchWUMV3nwnaYVOcHMPUwqto1w9brpu0g1NA6GAGGqWBph2lqWuiD6b1xY-Pra_Hp_LZE-r0CZ7sg-9LERaCVbW1UAdf0222RfjlLfSLmBJM9JFxcOlqt7Im53ds3zO2JuVW6TF_cd2c3lDJ_EJJljxA9BEzgsw2E__XnFV5knCw
Cites_doi 10.1016/j.jcp.2021.110839
10.1016/j.cma.2019.112789
10.1016/j.matcom.2021.08.014
10.1016/j.jcp.2021.110683
10.3390/sym16111490
10.1016/j.engappai.2023.107183
10.1016/j.jcp.2021.110841
10.1016/j.asoc.2021.108050
10.1016/j.jcp.2018.10.045
10.1016/j.ijsolstr.2004.07.015
10.1016/j.cma.2019.112732
10.1093/imanum/drac085
10.1016/j.eswa.2024.123758
10.1061/(ASCE)EM.1943-7889.0001947
10.1016/j.cma.2022.115616
10.1016/j.cma.2020.113547
10.1016/j.tafmec.2019.102447
10.1016/j.cma.2019.112790
10.1016/j.cma.2021.114012
10.4208/cicp.OA-2020-0164
10.1038/s41467-019-10343-5
10.1016/j.engappai.2023.107250
10.1016/j.physd.2023.133851
10.1126/sciadv.abi8605
10.1016/j.cma.2024.117116
10.1016/j.cma.2020.113028
10.1016/j.cma.2021.113938
10.1016/j.jcp.2019.05.024
10.3390/app11209411
10.1007/s00707-023-03676-2
ContentType Journal Article
Copyright 2025 IAgrE
Copyright_xml – notice: 2025 IAgrE
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.biosystemseng.2025.01.017
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EndPage 60
ExternalDocumentID 10_1016_j_biosystemseng_2025_01_017
S1537511025000170
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AATLK
AATTM
AAXKI
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADQTV
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEQOU
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSA
SSH
SST
SSZ
T5K
UHS
UNMZH
~G-
~KM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c302t-d02266ad98f06c8e238b03a489c1456ed3e5aebee8f10158ff45e7d27c2ab4c3
IEDL.DBID .~1
ISSN 1537-5110
IngestDate Fri Aug 22 20:28:16 EDT 2025
Tue Jul 01 05:25:05 EDT 2025
Sun Apr 06 06:54:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Structural mechanics
Surrogate modelling
Domain decomposition
Physics-informed neural networks
Interface problems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c302t-d02266ad98f06c8e238b03a489c1456ed3e5aebee8f10158ff45e7d27c2ab4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9766-377X
0000-0001-8136-7397
0000-0002-5658-2455
PQID 3200254799
PQPubID 24069
PageCount 13
ParticipantIDs proquest_miscellaneous_3200254799
crossref_primary_10_1016_j_biosystemseng_2025_01_017
elsevier_sciencedirect_doi_10_1016_j_biosystemseng_2025_01_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2025
2025-03-00
20250301
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationTitle Biosystems engineering
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jagtap, Karniadakis (bib15) 2020; 28
Sun, Gao, Pan, Wang (bib35) 2020; 361
Zhou, Chen (bib42) 2022; 192
Fuhg, Bouklas (bib8) 2022; 451
Yamazaki, Harandi, Muramatsu, Viardin, Apel, Brepols, Reese, Rezaei (bib41) 2024
Anantharaman, Ma, Gowda, Laughman, Shah, Edelman, Rackauckas (bib2) 2020
Cao, Fang, Wu, Zhou, Gu (bib3) 2019
Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Köpf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, Chintala (bib24) 2019
De Ryck, Jagtap, Mishra (bib5) 2024; 44
Xu, Zhang, Luo, Xiao, Ma (bib40) 2019
Wang, Wang, Perdikaris (bib37) 2021; 7
Mao, Jagtap, Karniadakis (bib21) 2020; 360
Willard, Jia, Xu, Steinbach, Kumar (bib39) 2020
Goswami, Anitescu, Chakraborty, Rabczuk (bib10) 2020; 106
Dolean, Heinlein, Mishra, Moseley (bib6) 2024; 429
Ren, Lyu (bib30) 2024; 127
Kharazmi, Zhang, Karniadakis (bib18) 2021; 374
Zhu, Zabaras, Koutsourelakis, Perdikaris (bib43) 2019; 394
Pu, Chen (bib25) 2023; 454
Ronen, Jacobs, Kasten, Kritchman (bib32) 2019; 32
Faroughi, Darvishi, Rezaei (bib7) 2023; 234
Rezaei, Harandi, Moeineddin, Xu, Reese (bib31) 2022; 401
Haghighat, Bekar, Madenci, Juanes (bib11) 2021; 385
Genovese, Lamberti, Pappalettere (bib9) 2005; 42
Han, Temuer (bib12) 2024; 16
Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard, Jia, Jozefowicz, Kaiser, Kudlur, Zheng (bib1) 2015
Rao, Sun, Liu (bib29) 2021; 147
Jagtap, Kharazmi, Karniadakis (bib16) 2020; 365
Pun, Batra, Ramprasad, Mishin (bib26) 2019; 10
Niaki, Haghighat, Campbell, Poursartip, Vaziri (bib23) 2021; 384
Kim, Choi, Widemann, Zohdi (bib19) 2022; 451
Rahaman, Baratin, Arpit, Draxler, Lin, Hamprecht, Bengio, Courville (bib27) 2019
Samaniego, Anitescu, Goswami, Nguyen-Thanh, Guo, Hamdia, Zhuang, Rabczuk (bib33) 2020; 362
Shukla, Jagtap, Karniadakis (bib34) 2021; 447
Ugural (bib36) 2009
Raissi, Perdikaris, Karniadakis (bib28) 2019; 378
Wang, Wang, Perdikaris (bib38) 2021; 384
Moseley, Markham, Nissen-Meyer (bib22) 2021
Hu, Jagtap, Karniadakis, Kawaguchi (bib14) 2023; 126
Laubscher, Rousseau (bib20) 2022; 114
Chapra, Canale (bib4) 2011
Hoffer, Geiger, Ofner, Kern (bib13) 2021; 11
Jeong, Lee, Lee, Choi (bib17) 2024; 250
Hoffer (10.1016/j.biosystemseng.2025.01.017_bib13) 2021; 11
Shukla (10.1016/j.biosystemseng.2025.01.017_bib34) 2021; 447
Rao (10.1016/j.biosystemseng.2025.01.017_bib29) 2021; 147
Niaki (10.1016/j.biosystemseng.2025.01.017_bib23) 2021; 384
Wang (10.1016/j.biosystemseng.2025.01.017_bib37) 2021; 7
Cao (10.1016/j.biosystemseng.2025.01.017_bib3) 2019
Han (10.1016/j.biosystemseng.2025.01.017_bib12) 2024; 16
Xu (10.1016/j.biosystemseng.2025.01.017_bib40) 2019
Fuhg (10.1016/j.biosystemseng.2025.01.017_bib8) 2022; 451
Abadi (10.1016/j.biosystemseng.2025.01.017_bib1)
Laubscher (10.1016/j.biosystemseng.2025.01.017_bib20) 2022; 114
Zhou (10.1016/j.biosystemseng.2025.01.017_bib42) 2022; 192
Zhu (10.1016/j.biosystemseng.2025.01.017_bib43) 2019; 394
Wang (10.1016/j.biosystemseng.2025.01.017_bib38) 2021; 384
Chapra (10.1016/j.biosystemseng.2025.01.017_bib4) 2011
De Ryck (10.1016/j.biosystemseng.2025.01.017_bib5) 2024; 44
Jagtap (10.1016/j.biosystemseng.2025.01.017_bib15) 2020; 28
Rahaman (10.1016/j.biosystemseng.2025.01.017_bib27) 2019
Yamazaki (10.1016/j.biosystemseng.2025.01.017_bib41) 2024
Mao (10.1016/j.biosystemseng.2025.01.017_bib21) 2020; 360
Dolean (10.1016/j.biosystemseng.2025.01.017_bib6) 2024; 429
Ronen (10.1016/j.biosystemseng.2025.01.017_bib32) 2019; 32
Samaniego (10.1016/j.biosystemseng.2025.01.017_bib33) 2020; 362
Faroughi (10.1016/j.biosystemseng.2025.01.017_bib7) 2023; 234
Hu (10.1016/j.biosystemseng.2025.01.017_bib14) 2023; 126
Rezaei (10.1016/j.biosystemseng.2025.01.017_bib31) 2022; 401
Ren (10.1016/j.biosystemseng.2025.01.017_bib30) 2024; 127
Haghighat (10.1016/j.biosystemseng.2025.01.017_bib11) 2021; 385
Paszke (10.1016/j.biosystemseng.2025.01.017_bib24)
Genovese (10.1016/j.biosystemseng.2025.01.017_bib9) 2005; 42
Jagtap (10.1016/j.biosystemseng.2025.01.017_bib16) 2020; 365
Anantharaman (10.1016/j.biosystemseng.2025.01.017_bib2) 2020
Goswami (10.1016/j.biosystemseng.2025.01.017_bib10) 2020; 106
Jeong (10.1016/j.biosystemseng.2025.01.017_bib17) 2024; 250
Kharazmi (10.1016/j.biosystemseng.2025.01.017_bib18) 2021; 374
Raissi (10.1016/j.biosystemseng.2025.01.017_bib28) 2019; 378
Willard (10.1016/j.biosystemseng.2025.01.017_bib39) 2020
Pu (10.1016/j.biosystemseng.2025.01.017_bib25) 2023; 454
Sun (10.1016/j.biosystemseng.2025.01.017_bib35) 2020; 361
Ugural (10.1016/j.biosystemseng.2025.01.017_bib36) 2009
Moseley (10.1016/j.biosystemseng.2025.01.017_bib22) 2021
Pun (10.1016/j.biosystemseng.2025.01.017_bib26) 2019; 10
Kim (10.1016/j.biosystemseng.2025.01.017_bib19) 2022; 451
References_xml – volume: 394
  start-page: 56
  year: 2019
  end-page: 81
  ident: bib43
  article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data
  publication-title: Journal of Computational Physics
– volume: 374
  year: 2021
  ident: bib18
  article-title: hp-vpinns: Variational physics-informed neural networks with domain decomposition
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 114
  year: 2022
  ident: bib20
  article-title: Application of a mixed variable physics-informed neural network to solve the incompressible steady-state and transient mass, momentum, and energy conservation equations for flow over in-line heated tubes
  publication-title: Applied Soft Computing
– volume: 32
  year: 2019
  ident: bib32
  article-title: The convergence rate of neural networks for learned functions of different frequencies
  publication-title: Advances in Neural Information Processing Systems
– volume: 384
  year: 2021
  ident: bib23
  article-title: Physics-informed neural network for modelling the thermochemical curing process of composite-tool systems during manufacture
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 106
  year: 2020
  ident: bib10
  article-title: Transfer learning enhanced physics informed neural network for phase-field modeling of fracture
  publication-title: Theoretical and Applied Fracture Mechanics
– volume: 429
  year: 2024
  ident: bib6
  article-title: Multilevel domain decomposition-based architectures for physics-informed neural networks
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 127
  year: 2024
  ident: bib30
  article-title: Mixed form based physics-informed neural networks for performance evaluation of two-phase random materials
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 385
  year: 2021
  ident: bib11
  article-title: A nonlocal physics-informed deep learning framework using the peridynamic differential operator
  publication-title: Computer Methods in Applied Mechanics and Engineering
– start-page: 5301
  year: 2019
  end-page: 5310
  ident: bib27
  article-title: On the spectral bias of neural networks
  publication-title: International conference on machine learning
– volume: 16
  start-page: 1490
  year: 2024
  ident: bib12
  article-title: Piecewise neural network method for solving large interval solutions to initial value problems of ordinary differential equations
  publication-title: Symmetry
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: bib28
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: Journal of Computational Physics
– volume: 384
  year: 2021
  ident: bib38
  article-title: On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 44
  start-page: 83
  year: 2024
  end-page: 119
  ident: bib5
  article-title: Error estimates for physics-informed neural networks approximating the Navier–Stokes equations
  publication-title: IMA Journal of Numerical Analysis
– volume: 250
  year: 2024
  ident: bib17
  article-title: Data-efficient surrogate modeling using meta-learning and physics-informed deep learning approaches
  publication-title: Expert Systems with Applications
– start-page: 1
  year: 2024
  end-page: 29
  ident: bib41
  article-title: A finite element-based physics-informed operator learning framework for spatiotemporal partial differential equations on arbitrary domains
  publication-title: Engineering with Computers
– volume: 362
  year: 2020
  ident: bib33
  article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 7
  year: 2021
  ident: bib37
  article-title: Learning the solution operator of parametric partial differential equations with physics-informed DeepONets
  publication-title: Science Advances
– volume: 10
  start-page: 1
  year: 2019
  end-page: 10
  ident: bib26
  article-title: Physically informed artificial neural networks for atomistic modeling of materials
  publication-title: Nature Communications
– year: 2011
  ident: bib4
  article-title: Numerical methods for engineers
– year: 2021
  ident: bib22
  article-title: Finite basis physics-informed neural networks (fbpinns): A scalable domain decomposition approach for solving differential equations
  publication-title: arXiv preprint arXiv:2107.07871
– volume: 401
  year: 2022
  ident: bib31
  article-title: A mixed formulation for physics-informed neural networks as a potential solver for engineering problems in heterogeneous domains: Comparison with finite element method
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 234
  start-page: 5673
  year: 2023
  end-page: 5695
  ident: bib7
  article-title: On the order of derivation in the training of physics-informed neural networks: Case studies for non-uniform beam structures
  publication-title: Acta Mechanica
– volume: 451
  year: 2022
  ident: bib8
  article-title: The mixed deep energy method for resolving concentration features in finite strain hyperelasticity
  publication-title: Journal of Computational Physics
– volume: 451
  year: 2022
  ident: bib19
  article-title: A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder
  publication-title: Journal of Computational Physics
– volume: 126
  year: 2023
  ident: bib14
  article-title: Augmented physics-informed neural networks (APINNs): A gating network-based soft domain decomposition methodology
  publication-title: Engineering Applications of Artificial Intelligence
– year: 2020
  ident: bib2
  article-title: Accelerating simulation of stiff nonlinear systems using continuous-time echo state networks
  publication-title: arXiv preprint arXiv:2010.04004
– year: 2020
  ident: bib39
  article-title: Integrating scientific knowledge with machine learning for engineering and environmental systems
  publication-title: arXiv preprint arXiv:2003.04919
– volume: 42
  start-page: 203
  year: 2005
  end-page: 237
  ident: bib9
  article-title: Improved global–local simulated annealing formulation for solving non-smooth engineering optimization problems
  publication-title: International Journal of Solids and Structures
– volume: 361
  year: 2020
  ident: bib35
  article-title: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 11
  start-page: 9411
  year: 2021
  ident: bib13
  article-title: Mesh-free surrogate models for structural mechanic fem simulation: A comparative study of approaches
  publication-title: Applied Sciences
– volume: 192
  start-page: 1
  year: 2022
  end-page: 18
  ident: bib42
  article-title: Chaos of the Rayleigh–duffing oscillator with a non-smooth periodic perturbation and harmonic excitation
  publication-title: Mathematics and Computers in Simulation
– volume: 147
  year: 2021
  ident: bib29
  article-title: Physics-informed deep learning for computational elastodynamics without labeled data
  publication-title: Journal of Engineering Mechanics
– volume: 447
  year: 2021
  ident: bib34
  article-title: Parallel physics-informed neural networks via domain decomposition
  publication-title: Journal of Computational Physics
– year: 2015
  ident: bib1
  article-title: TensorFlow: Large-scale machine learning on heterogeneous systems
– volume: 454
  year: 2023
  ident: bib25
  article-title: Complex dynamics on the one-dimensional quantum droplets via time piecewise PINNs
  publication-title: Physica D: Nonlinear Phenomena
– volume: 365
  year: 2020
  ident: bib16
  article-title: Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 360
  year: 2020
  ident: bib21
  article-title: Physics-informed neural networks for high-speed flows
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 2019
  ident: bib24
  article-title: Pytorch: An imperative style, high-performance deep learning library
– volume: 28
  start-page: 2002
  year: 2020
  end-page: 2041
  ident: bib15
  article-title: Extended physics-informed neural networks (xpinns): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations
  publication-title: Communications in Computational Physics
– year: 2019
  ident: bib40
  article-title: Frequency principle: Fourier analysis sheds light on deep neural networks
  publication-title: arXiv preprint arXiv:1901.06523
– year: 2009
  ident: bib36
  article-title: Stresses in beams, plates, and shells
– year: 2019
  ident: bib3
  article-title: Towards understanding the spectral bias of deep learning
  publication-title: arXiv preprint arXiv:1912.01198
– volume: 451
  year: 2022
  ident: 10.1016/j.biosystemseng.2025.01.017_bib8
  article-title: The mixed deep energy method for resolving concentration features in finite strain hyperelasticity
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2021.110839
– year: 2020
  ident: 10.1016/j.biosystemseng.2025.01.017_bib2
  article-title: Accelerating simulation of stiff nonlinear systems using continuous-time echo state networks
  publication-title: arXiv preprint arXiv:2010.04004
– volume: 360
  year: 2020
  ident: 10.1016/j.biosystemseng.2025.01.017_bib21
  article-title: Physics-informed neural networks for high-speed flows
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2019.112789
– volume: 192
  start-page: 1
  year: 2022
  ident: 10.1016/j.biosystemseng.2025.01.017_bib42
  article-title: Chaos of the Rayleigh–duffing oscillator with a non-smooth periodic perturbation and harmonic excitation
  publication-title: Mathematics and Computers in Simulation
  doi: 10.1016/j.matcom.2021.08.014
– ident: 10.1016/j.biosystemseng.2025.01.017_bib24
– volume: 447
  year: 2021
  ident: 10.1016/j.biosystemseng.2025.01.017_bib34
  article-title: Parallel physics-informed neural networks via domain decomposition
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2021.110683
– volume: 32
  year: 2019
  ident: 10.1016/j.biosystemseng.2025.01.017_bib32
  article-title: The convergence rate of neural networks for learned functions of different frequencies
  publication-title: Advances in Neural Information Processing Systems
– volume: 16
  start-page: 1490
  issue: 11
  year: 2024
  ident: 10.1016/j.biosystemseng.2025.01.017_bib12
  article-title: Piecewise neural network method for solving large interval solutions to initial value problems of ordinary differential equations
  publication-title: Symmetry
  doi: 10.3390/sym16111490
– volume: 126
  year: 2023
  ident: 10.1016/j.biosystemseng.2025.01.017_bib14
  article-title: Augmented physics-informed neural networks (APINNs): A gating network-based soft domain decomposition methodology
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2023.107183
– volume: 451
  year: 2022
  ident: 10.1016/j.biosystemseng.2025.01.017_bib19
  article-title: A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2021.110841
– start-page: 5301
  year: 2019
  ident: 10.1016/j.biosystemseng.2025.01.017_bib27
  article-title: On the spectral bias of neural networks
– year: 2009
  ident: 10.1016/j.biosystemseng.2025.01.017_bib36
– volume: 114
  year: 2022
  ident: 10.1016/j.biosystemseng.2025.01.017_bib20
  article-title: Application of a mixed variable physics-informed neural network to solve the incompressible steady-state and transient mass, momentum, and energy conservation equations for flow over in-line heated tubes
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2021.108050
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.biosystemseng.2025.01.017_bib28
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2018.10.045
– ident: 10.1016/j.biosystemseng.2025.01.017_bib1
– volume: 42
  start-page: 203
  year: 2005
  ident: 10.1016/j.biosystemseng.2025.01.017_bib9
  article-title: Improved global–local simulated annealing formulation for solving non-smooth engineering optimization problems
  publication-title: International Journal of Solids and Structures
  doi: 10.1016/j.ijsolstr.2004.07.015
– volume: 361
  year: 2020
  ident: 10.1016/j.biosystemseng.2025.01.017_bib35
  article-title: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2019.112732
– volume: 44
  start-page: 83
  issue: 1
  year: 2024
  ident: 10.1016/j.biosystemseng.2025.01.017_bib5
  article-title: Error estimates for physics-informed neural networks approximating the Navier–Stokes equations
  publication-title: IMA Journal of Numerical Analysis
  doi: 10.1093/imanum/drac085
– volume: 250
  year: 2024
  ident: 10.1016/j.biosystemseng.2025.01.017_bib17
  article-title: Data-efficient surrogate modeling using meta-learning and physics-informed deep learning approaches
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2024.123758
– year: 2021
  ident: 10.1016/j.biosystemseng.2025.01.017_bib22
  article-title: Finite basis physics-informed neural networks (fbpinns): A scalable domain decomposition approach for solving differential equations
  publication-title: arXiv preprint arXiv:2107.07871
– volume: 147
  year: 2021
  ident: 10.1016/j.biosystemseng.2025.01.017_bib29
  article-title: Physics-informed deep learning for computational elastodynamics without labeled data
  publication-title: Journal of Engineering Mechanics
  doi: 10.1061/(ASCE)EM.1943-7889.0001947
– volume: 401
  year: 2022
  ident: 10.1016/j.biosystemseng.2025.01.017_bib31
  article-title: A mixed formulation for physics-informed neural networks as a potential solver for engineering problems in heterogeneous domains: Comparison with finite element method
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2022.115616
– start-page: 1
  year: 2024
  ident: 10.1016/j.biosystemseng.2025.01.017_bib41
  article-title: A finite element-based physics-informed operator learning framework for spatiotemporal partial differential equations on arbitrary domains
  publication-title: Engineering with Computers
– volume: 374
  year: 2021
  ident: 10.1016/j.biosystemseng.2025.01.017_bib18
  article-title: hp-vpinns: Variational physics-informed neural networks with domain decomposition
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2020.113547
– year: 2019
  ident: 10.1016/j.biosystemseng.2025.01.017_bib40
  article-title: Frequency principle: Fourier analysis sheds light on deep neural networks
  publication-title: arXiv preprint arXiv:1901.06523
– volume: 106
  year: 2020
  ident: 10.1016/j.biosystemseng.2025.01.017_bib10
  article-title: Transfer learning enhanced physics informed neural network for phase-field modeling of fracture
  publication-title: Theoretical and Applied Fracture Mechanics
  doi: 10.1016/j.tafmec.2019.102447
– volume: 362
  year: 2020
  ident: 10.1016/j.biosystemseng.2025.01.017_bib33
  article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2019.112790
– volume: 385
  year: 2021
  ident: 10.1016/j.biosystemseng.2025.01.017_bib11
  article-title: A nonlocal physics-informed deep learning framework using the peridynamic differential operator
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2021.114012
– volume: 28
  start-page: 2002
  year: 2020
  ident: 10.1016/j.biosystemseng.2025.01.017_bib15
  article-title: Extended physics-informed neural networks (xpinns): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations
  publication-title: Communications in Computational Physics
  doi: 10.4208/cicp.OA-2020-0164
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.biosystemseng.2025.01.017_bib26
  article-title: Physically informed artificial neural networks for atomistic modeling of materials
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-10343-5
– volume: 127
  year: 2024
  ident: 10.1016/j.biosystemseng.2025.01.017_bib30
  article-title: Mixed form based physics-informed neural networks for performance evaluation of two-phase random materials
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2023.107250
– year: 2019
  ident: 10.1016/j.biosystemseng.2025.01.017_bib3
  article-title: Towards understanding the spectral bias of deep learning
  publication-title: arXiv preprint arXiv:1912.01198
– volume: 384
  year: 2021
  ident: 10.1016/j.biosystemseng.2025.01.017_bib23
  article-title: Physics-informed neural network for modelling the thermochemical curing process of composite-tool systems during manufacture
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 2011
  ident: 10.1016/j.biosystemseng.2025.01.017_bib4
– volume: 454
  year: 2023
  ident: 10.1016/j.biosystemseng.2025.01.017_bib25
  article-title: Complex dynamics on the one-dimensional quantum droplets via time piecewise PINNs
  publication-title: Physica D: Nonlinear Phenomena
  doi: 10.1016/j.physd.2023.133851
– year: 2020
  ident: 10.1016/j.biosystemseng.2025.01.017_bib39
  article-title: Integrating scientific knowledge with machine learning for engineering and environmental systems
  publication-title: arXiv preprint arXiv:2003.04919
– volume: 7
  issue: 40
  year: 2021
  ident: 10.1016/j.biosystemseng.2025.01.017_bib37
  article-title: Learning the solution operator of parametric partial differential equations with physics-informed DeepONets
  publication-title: Science Advances
  doi: 10.1126/sciadv.abi8605
– volume: 429
  year: 2024
  ident: 10.1016/j.biosystemseng.2025.01.017_bib6
  article-title: Multilevel domain decomposition-based architectures for physics-informed neural networks
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2024.117116
– volume: 365
  year: 2020
  ident: 10.1016/j.biosystemseng.2025.01.017_bib16
  article-title: Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2020.113028
– volume: 384
  year: 2021
  ident: 10.1016/j.biosystemseng.2025.01.017_bib38
  article-title: On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2021.113938
– volume: 394
  start-page: 56
  year: 2019
  ident: 10.1016/j.biosystemseng.2025.01.017_bib43
  article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2019.05.024
– volume: 11
  start-page: 9411
  year: 2021
  ident: 10.1016/j.biosystemseng.2025.01.017_bib13
  article-title: Mesh-free surrogate models for structural mechanic fem simulation: A comparative study of approaches
  publication-title: Applied Sciences
  doi: 10.3390/app11209411
– volume: 234
  start-page: 5673
  issue: 11
  year: 2023
  ident: 10.1016/j.biosystemseng.2025.01.017_bib7
  article-title: On the order of derivation in the training of physics-informed neural networks: Case studies for non-uniform beam structures
  publication-title: Acta Mechanica
  doi: 10.1007/s00707-023-03676-2
SSID ssj0015746
Score 2.4320176
Snippet To interpret physical phenomena, traditional mesh-based methods, such as finite element method, have proven effective for engineering problems. However, as...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 48
SubjectTerms computer software
domain
Domain decomposition
finite element analysis
Interface problems
mechanics
neural networks
Physics-informed neural networks
Structural mechanics
Surrogate modelling
uncertainty
Title Piecewise physics-informed neural networks for surrogate modelling of non-smooth system in elasticity problems using domain decomposition
URI https://dx.doi.org/10.1016/j.biosystemseng.2025.01.017
https://www.proquest.com/docview/3200254799
Volume 251
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BS-QwFA7DCKKHxVUXx9Uh4l7jdNK0aS4Lg6zMKoqwCnMLafM6VJhWpjMsXrzvv96XptVV9rCw0EtCmqZ5Sd5L8r3vEfIlFZExynCWjd01I6pUZsLAsjyw3HCeGUidg_P1TTy9F5ezaNYj550vjINVtmu_X9Ob1brNGbW9OXositEPnKsSzQWnxBsWGOfBLqSD9Z09v8A8xpH0HkZYmLnSm-T0FeOVFpUnTK6hnONmkXsOzyZ62V-11Lv1ulFCFzvkQ2s90olv4EfSg3KXbE_my5ZBAzD1B8PgHvl1W0AGP4saqD_DqJmnSgVLHZUlVlZ6IHhNMZvW6-WycidrtAmR43zVaZXTsipZvahQqtT_CS1KCmh4O0z26om2YWlq6mD0c2qrhcECFhxgvUWF7ZO7i29351PWRl9gWRjwFbOo3ePYWJXkQZwlgLo9DUIjEpWN0eoCG0KEkgRIcuzNKMlzEYG0XGbcpCILP5E-Ng4OCLWxEnEoeY5vCSVVkqZGRioPcJiEuL0cENF1tn70HBu6A5896Dcy0k5GOhjjIwfkaycY_WbIaNQG_1bBSSdOjZPK3ZSYEqp1rUPesARIpQ7_9yOfyZZLedjaEemvlms4RjtmlQ6bgTokG5PvV9Ob3zbn-js
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SDfRxKH3S9KnSXsV6ZdmyLoUlNGyaZCl0C7kJ2RovLsQO611CfkL_dUeW3Dalh0LBF9uSLGskzUj65huA96XMrNVW8GrmjxlJpXKbJo7XiRNWiMpi6R2cz5b54qv8dJ6d78Hh6AvjYZVx7g9z-jBbxyfT2JrTy6aZfqGxqshc8Ep8YIG5BfuenUpOYH9-fLJY_jxMyFRwMqL03Ge4De9-wbzKpgucyT22a1ovikDjOQQw-6ui-mPKHvTQ0QO4Hw1INg91fAh72D6Ce_P1JpJoIN39RjL4GL5_brDCq6ZHFrYxeh7YUtExz2ZJhbUBC94zesz63WbT-c01NkTJ8e7qrKtZ27W8v-hIsCz8CWtahmR7e1j29prFyDQ980j6NXPdhaUEDj1mPQLDnsDq6OPqcMFjAAZepYnYckcKPs-t00Wd5FWBpN7LJLWy0NWMDC90KWYkTMSiptbMirqWGSonVCVsKav0KUyocvgMmMu1zFMlasoltdJFWVqV6TqhnpLSCvMA5NjY5jLQbJgRf_bN3JCR8TIyyYwudQAfRsGYG73GkEL4twLejuI0NK78YYltsdv1JhUDUYDS-vn_fuQN3Fmszk7N6fHy5AXc9W8Ciu0lTLabHb4is2Zbvo7d9ge1_Pzs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piecewise+physics-informed+neural+networks+for+surrogate+modelling+of+non-smooth+system+in+elasticity+problems+using+domain+decomposition&rft.jtitle=Biosystems+engineering&rft.au=Jeong%2C+Youngjoon&rft.au=Lee%2C+Sangik&rft.au=Lee%2C+Jong+Hyuk&rft.au=Choi%2C+Won&rft.date=2025-03-01&rft.issn=1537-5110&rft.volume=251+p.48-60&rft.spage=48&rft.epage=60&rft_id=info:doi/10.1016%2Fj.biosystemseng.2025.01.017&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-5110&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-5110&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-5110&client=summon