Piecewise physics-informed neural networks for surrogate modelling of non-smooth system in elasticity problems using domain decomposition
To interpret physical phenomena, traditional mesh-based methods, such as finite element method, have proven effective for engineering problems. However, as system complexity increases, whether due to larger scales, finer resolutions, or intricate geometries, these methods face significant limitation...
Saved in:
Published in | Biosystems engineering Vol. 251; pp. 48 - 60 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1537-5110 |
DOI | 10.1016/j.biosystemseng.2025.01.017 |
Cover
Loading…
Abstract | To interpret physical phenomena, traditional mesh-based methods, such as finite element method, have proven effective for engineering problems. However, as system complexity increases, whether due to larger scales, finer resolutions, or intricate geometries, these methods face significant limitations in term of computational cost and time. Complex problems, particularly those involving irregular boundaries or nonlinear behaviour, require finer meshes and greater computational power, making real-time analysis difficult. This challenge is especially relevant in agricultural systems, which are subject to high uncertainty and constantly changing environmental conditions. In this study, we proposed a method referred to as piecewise physics-informed neural networks (PINNs) to solve non-smooth problems in structural mechanics using neural networks by decomposing the computational domain. To quantitatively evaluate the performance of this method, three representative structural mechanics problems with non-smooth characteristics are employed. Results demonstrated that the piecewise PINNs provided more accurate solutions compared to conventional PINNs on these benchmark problems. Additionally, we developed a surrogate model for the non-smooth problems using piecewise PINNs without any labelled data and compared it with a model trained using deep neural networks. The proposed model outperformed the deep neural network model in cases of plane-stress problem. The results also showed that the surrogate model trained with piecewise PINNs exhibited an advantage in terms of execution time over the finite element analysis software.
•Piecewise PINN method improves accuracy in non-smooth system solutions.•Domain decomposition reduces spectral bias and computational complexity.•Surrogate models trained with piecewise PINNs outperform DNN models.•Faster execution times compared to conventional finite element analysis software.•Enhanced performance in extrapolating beyond training data distribution. |
---|---|
AbstractList | To interpret physical phenomena, traditional mesh-based methods, such as finite element method, have proven effective for engineering problems. However, as system complexity increases, whether due to larger scales, finer resolutions, or intricate geometries, these methods face significant limitations in term of computational cost and time. Complex problems, particularly those involving irregular boundaries or nonlinear behaviour, require finer meshes and greater computational power, making real-time analysis difficult. This challenge is especially relevant in agricultural systems, which are subject to high uncertainty and constantly changing environmental conditions. In this study, we proposed a method referred to as piecewise physics-informed neural networks (PINNs) to solve non-smooth problems in structural mechanics using neural networks by decomposing the computational domain. To quantitatively evaluate the performance of this method, three representative structural mechanics problems with non-smooth characteristics are employed. Results demonstrated that the piecewise PINNs provided more accurate solutions compared to conventional PINNs on these benchmark problems. Additionally, we developed a surrogate model for the non-smooth problems using piecewise PINNs without any labelled data and compared it with a model trained using deep neural networks. The proposed model outperformed the deep neural network model in cases of plane-stress problem. The results also showed that the surrogate model trained with piecewise PINNs exhibited an advantage in terms of execution time over the finite element analysis software.
•Piecewise PINN method improves accuracy in non-smooth system solutions.•Domain decomposition reduces spectral bias and computational complexity.•Surrogate models trained with piecewise PINNs outperform DNN models.•Faster execution times compared to conventional finite element analysis software.•Enhanced performance in extrapolating beyond training data distribution. To interpret physical phenomena, traditional mesh-based methods, such as finite element method, have proven effective for engineering problems. However, as system complexity increases, whether due to larger scales, finer resolutions, or intricate geometries, these methods face significant limitations in term of computational cost and time. Complex problems, particularly those involving irregular boundaries or nonlinear behaviour, require finer meshes and greater computational power, making real-time analysis difficult. This challenge is especially relevant in agricultural systems, which are subject to high uncertainty and constantly changing environmental conditions. In this study, we proposed a method referred to as piecewise physics-informed neural networks (PINNs) to solve non-smooth problems in structural mechanics using neural networks by decomposing the computational domain. To quantitatively evaluate the performance of this method, three representative structural mechanics problems with non-smooth characteristics are employed. Results demonstrated that the piecewise PINNs provided more accurate solutions compared to conventional PINNs on these benchmark problems. Additionally, we developed a surrogate model for the non-smooth problems using piecewise PINNs without any labelled data and compared it with a model trained using deep neural networks. The proposed model outperformed the deep neural network model in cases of plane-stress problem. The results also showed that the surrogate model trained with piecewise PINNs exhibited an advantage in terms of execution time over the finite element analysis software. |
Author | Jeong, Youngjoon Lee, Jong-hyuk Choi, Won Lee, Sangik |
Author_xml | – sequence: 1 givenname: Youngjoon orcidid: 0000-0002-5658-2455 surname: Jeong fullname: Jeong, Youngjoon organization: Graduate School of Data Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea – sequence: 2 givenname: Sangik orcidid: 0000-0001-8136-7397 surname: Lee fullname: Lee, Sangik organization: Department of Agricultural Civil Engineering, College of Agriculture and Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea – sequence: 3 givenname: Jong-hyuk surname: Lee fullname: Lee, Jong-hyuk organization: Department of Landscape Architecture and Rural Systems Engineering, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea – sequence: 4 givenname: Won orcidid: 0000-0002-9766-377X surname: Choi fullname: Choi, Won email: fembem@snu.ac.kr organization: Department of Landscape Architecture and Rural Systems Engineering, Research Institute of Agriculture and Life Sciences, Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea |
BookMark | eNqNkM1qHDEQhHVwILaTdxD4kstsJM3vklMwTmwwJAffhUbqWfdmRr1Ra2L2EfLW1rK5-BZoaGiqmqrvSlxEiiDEjVYbrXT3eb8ZkfjIGRaGuNsYZdqN0mX6C3Gp27qvWq3Ve3HFvFdKt33TXYq_PxE8vCCDPDwfGT1XGCdKCwQZYU1uLiu_UPrFspwlrynRzmWQCwWYZ4w7SZMsWSpeiPKzPEeQGCXMjjN6zEd5SDTOJZhc-eQItLgiCOBpORBjRoofxLvJzQwf_-1r8fTt7un2vnr88f3h9utj5WtlchWUMV3nwnaYVOcHMPUwqto1w9brpu0g1NA6GAGGqWBph2lqWuiD6b1xY-Pra_Hp_LZE-r0CZ7sg-9LERaCVbW1UAdf0222RfjlLfSLmBJM9JFxcOlqt7Im53ds3zO2JuVW6TF_cd2c3lDJ_EJJljxA9BEzgsw2E__XnFV5knCw |
Cites_doi | 10.1016/j.jcp.2021.110839 10.1016/j.cma.2019.112789 10.1016/j.matcom.2021.08.014 10.1016/j.jcp.2021.110683 10.3390/sym16111490 10.1016/j.engappai.2023.107183 10.1016/j.jcp.2021.110841 10.1016/j.asoc.2021.108050 10.1016/j.jcp.2018.10.045 10.1016/j.ijsolstr.2004.07.015 10.1016/j.cma.2019.112732 10.1093/imanum/drac085 10.1016/j.eswa.2024.123758 10.1061/(ASCE)EM.1943-7889.0001947 10.1016/j.cma.2022.115616 10.1016/j.cma.2020.113547 10.1016/j.tafmec.2019.102447 10.1016/j.cma.2019.112790 10.1016/j.cma.2021.114012 10.4208/cicp.OA-2020-0164 10.1038/s41467-019-10343-5 10.1016/j.engappai.2023.107250 10.1016/j.physd.2023.133851 10.1126/sciadv.abi8605 10.1016/j.cma.2024.117116 10.1016/j.cma.2020.113028 10.1016/j.cma.2021.113938 10.1016/j.jcp.2019.05.024 10.3390/app11209411 10.1007/s00707-023-03676-2 |
ContentType | Journal Article |
Copyright | 2025 IAgrE |
Copyright_xml | – notice: 2025 IAgrE |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.biosystemseng.2025.01.017 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Agriculture |
EndPage | 60 |
ExternalDocumentID | 10_1016_j_biosystemseng_2025_01_017 S1537511025000170 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AATLK AATTM AAXKI AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADQTV ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AEQOU AFJKZ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BJAXD BKOJK BLXMC BNPGV CAG COF CS3 DM4 DU5 EBS EFBJH EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA K-O KOM LG5 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSA SSH SST SSZ T5K UHS UNMZH ~G- ~KM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c302t-d02266ad98f06c8e238b03a489c1456ed3e5aebee8f10158ff45e7d27c2ab4c3 |
IEDL.DBID | .~1 |
ISSN | 1537-5110 |
IngestDate | Fri Aug 22 20:28:16 EDT 2025 Tue Jul 01 05:25:05 EDT 2025 Sun Apr 06 06:54:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Structural mechanics Surrogate modelling Domain decomposition Physics-informed neural networks Interface problems |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c302t-d02266ad98f06c8e238b03a489c1456ed3e5aebee8f10158ff45e7d27c2ab4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9766-377X 0000-0001-8136-7397 0000-0002-5658-2455 |
PQID | 3200254799 |
PQPubID | 24069 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_3200254799 crossref_primary_10_1016_j_biosystemseng_2025_01_017 elsevier_sciencedirect_doi_10_1016_j_biosystemseng_2025_01_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2025 2025-03-00 20250301 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: March 2025 |
PublicationDecade | 2020 |
PublicationTitle | Biosystems engineering |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Jagtap, Karniadakis (bib15) 2020; 28 Sun, Gao, Pan, Wang (bib35) 2020; 361 Zhou, Chen (bib42) 2022; 192 Fuhg, Bouklas (bib8) 2022; 451 Yamazaki, Harandi, Muramatsu, Viardin, Apel, Brepols, Reese, Rezaei (bib41) 2024 Anantharaman, Ma, Gowda, Laughman, Shah, Edelman, Rackauckas (bib2) 2020 Cao, Fang, Wu, Zhou, Gu (bib3) 2019 Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Köpf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, Chintala (bib24) 2019 De Ryck, Jagtap, Mishra (bib5) 2024; 44 Xu, Zhang, Luo, Xiao, Ma (bib40) 2019 Wang, Wang, Perdikaris (bib37) 2021; 7 Mao, Jagtap, Karniadakis (bib21) 2020; 360 Willard, Jia, Xu, Steinbach, Kumar (bib39) 2020 Goswami, Anitescu, Chakraborty, Rabczuk (bib10) 2020; 106 Dolean, Heinlein, Mishra, Moseley (bib6) 2024; 429 Ren, Lyu (bib30) 2024; 127 Kharazmi, Zhang, Karniadakis (bib18) 2021; 374 Zhu, Zabaras, Koutsourelakis, Perdikaris (bib43) 2019; 394 Pu, Chen (bib25) 2023; 454 Ronen, Jacobs, Kasten, Kritchman (bib32) 2019; 32 Faroughi, Darvishi, Rezaei (bib7) 2023; 234 Rezaei, Harandi, Moeineddin, Xu, Reese (bib31) 2022; 401 Haghighat, Bekar, Madenci, Juanes (bib11) 2021; 385 Genovese, Lamberti, Pappalettere (bib9) 2005; 42 Han, Temuer (bib12) 2024; 16 Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard, Jia, Jozefowicz, Kaiser, Kudlur, Zheng (bib1) 2015 Rao, Sun, Liu (bib29) 2021; 147 Jagtap, Kharazmi, Karniadakis (bib16) 2020; 365 Pun, Batra, Ramprasad, Mishin (bib26) 2019; 10 Niaki, Haghighat, Campbell, Poursartip, Vaziri (bib23) 2021; 384 Kim, Choi, Widemann, Zohdi (bib19) 2022; 451 Rahaman, Baratin, Arpit, Draxler, Lin, Hamprecht, Bengio, Courville (bib27) 2019 Samaniego, Anitescu, Goswami, Nguyen-Thanh, Guo, Hamdia, Zhuang, Rabczuk (bib33) 2020; 362 Shukla, Jagtap, Karniadakis (bib34) 2021; 447 Ugural (bib36) 2009 Raissi, Perdikaris, Karniadakis (bib28) 2019; 378 Wang, Wang, Perdikaris (bib38) 2021; 384 Moseley, Markham, Nissen-Meyer (bib22) 2021 Hu, Jagtap, Karniadakis, Kawaguchi (bib14) 2023; 126 Laubscher, Rousseau (bib20) 2022; 114 Chapra, Canale (bib4) 2011 Hoffer, Geiger, Ofner, Kern (bib13) 2021; 11 Jeong, Lee, Lee, Choi (bib17) 2024; 250 Hoffer (10.1016/j.biosystemseng.2025.01.017_bib13) 2021; 11 Shukla (10.1016/j.biosystemseng.2025.01.017_bib34) 2021; 447 Rao (10.1016/j.biosystemseng.2025.01.017_bib29) 2021; 147 Niaki (10.1016/j.biosystemseng.2025.01.017_bib23) 2021; 384 Wang (10.1016/j.biosystemseng.2025.01.017_bib37) 2021; 7 Cao (10.1016/j.biosystemseng.2025.01.017_bib3) 2019 Han (10.1016/j.biosystemseng.2025.01.017_bib12) 2024; 16 Xu (10.1016/j.biosystemseng.2025.01.017_bib40) 2019 Fuhg (10.1016/j.biosystemseng.2025.01.017_bib8) 2022; 451 Abadi (10.1016/j.biosystemseng.2025.01.017_bib1) Laubscher (10.1016/j.biosystemseng.2025.01.017_bib20) 2022; 114 Zhou (10.1016/j.biosystemseng.2025.01.017_bib42) 2022; 192 Zhu (10.1016/j.biosystemseng.2025.01.017_bib43) 2019; 394 Wang (10.1016/j.biosystemseng.2025.01.017_bib38) 2021; 384 Chapra (10.1016/j.biosystemseng.2025.01.017_bib4) 2011 De Ryck (10.1016/j.biosystemseng.2025.01.017_bib5) 2024; 44 Jagtap (10.1016/j.biosystemseng.2025.01.017_bib15) 2020; 28 Rahaman (10.1016/j.biosystemseng.2025.01.017_bib27) 2019 Yamazaki (10.1016/j.biosystemseng.2025.01.017_bib41) 2024 Mao (10.1016/j.biosystemseng.2025.01.017_bib21) 2020; 360 Dolean (10.1016/j.biosystemseng.2025.01.017_bib6) 2024; 429 Ronen (10.1016/j.biosystemseng.2025.01.017_bib32) 2019; 32 Samaniego (10.1016/j.biosystemseng.2025.01.017_bib33) 2020; 362 Faroughi (10.1016/j.biosystemseng.2025.01.017_bib7) 2023; 234 Hu (10.1016/j.biosystemseng.2025.01.017_bib14) 2023; 126 Rezaei (10.1016/j.biosystemseng.2025.01.017_bib31) 2022; 401 Ren (10.1016/j.biosystemseng.2025.01.017_bib30) 2024; 127 Haghighat (10.1016/j.biosystemseng.2025.01.017_bib11) 2021; 385 Paszke (10.1016/j.biosystemseng.2025.01.017_bib24) Genovese (10.1016/j.biosystemseng.2025.01.017_bib9) 2005; 42 Jagtap (10.1016/j.biosystemseng.2025.01.017_bib16) 2020; 365 Anantharaman (10.1016/j.biosystemseng.2025.01.017_bib2) 2020 Goswami (10.1016/j.biosystemseng.2025.01.017_bib10) 2020; 106 Jeong (10.1016/j.biosystemseng.2025.01.017_bib17) 2024; 250 Kharazmi (10.1016/j.biosystemseng.2025.01.017_bib18) 2021; 374 Raissi (10.1016/j.biosystemseng.2025.01.017_bib28) 2019; 378 Willard (10.1016/j.biosystemseng.2025.01.017_bib39) 2020 Pu (10.1016/j.biosystemseng.2025.01.017_bib25) 2023; 454 Sun (10.1016/j.biosystemseng.2025.01.017_bib35) 2020; 361 Ugural (10.1016/j.biosystemseng.2025.01.017_bib36) 2009 Moseley (10.1016/j.biosystemseng.2025.01.017_bib22) 2021 Pun (10.1016/j.biosystemseng.2025.01.017_bib26) 2019; 10 Kim (10.1016/j.biosystemseng.2025.01.017_bib19) 2022; 451 |
References_xml | – volume: 394 start-page: 56 year: 2019 end-page: 81 ident: bib43 article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data publication-title: Journal of Computational Physics – volume: 374 year: 2021 ident: bib18 article-title: hp-vpinns: Variational physics-informed neural networks with domain decomposition publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 114 year: 2022 ident: bib20 article-title: Application of a mixed variable physics-informed neural network to solve the incompressible steady-state and transient mass, momentum, and energy conservation equations for flow over in-line heated tubes publication-title: Applied Soft Computing – volume: 32 year: 2019 ident: bib32 article-title: The convergence rate of neural networks for learned functions of different frequencies publication-title: Advances in Neural Information Processing Systems – volume: 384 year: 2021 ident: bib23 article-title: Physics-informed neural network for modelling the thermochemical curing process of composite-tool systems during manufacture publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 106 year: 2020 ident: bib10 article-title: Transfer learning enhanced physics informed neural network for phase-field modeling of fracture publication-title: Theoretical and Applied Fracture Mechanics – volume: 429 year: 2024 ident: bib6 article-title: Multilevel domain decomposition-based architectures for physics-informed neural networks publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 127 year: 2024 ident: bib30 article-title: Mixed form based physics-informed neural networks for performance evaluation of two-phase random materials publication-title: Engineering Applications of Artificial Intelligence – volume: 385 year: 2021 ident: bib11 article-title: A nonlocal physics-informed deep learning framework using the peridynamic differential operator publication-title: Computer Methods in Applied Mechanics and Engineering – start-page: 5301 year: 2019 end-page: 5310 ident: bib27 article-title: On the spectral bias of neural networks publication-title: International conference on machine learning – volume: 16 start-page: 1490 year: 2024 ident: bib12 article-title: Piecewise neural network method for solving large interval solutions to initial value problems of ordinary differential equations publication-title: Symmetry – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: bib28 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: Journal of Computational Physics – volume: 384 year: 2021 ident: bib38 article-title: On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 44 start-page: 83 year: 2024 end-page: 119 ident: bib5 article-title: Error estimates for physics-informed neural networks approximating the Navier–Stokes equations publication-title: IMA Journal of Numerical Analysis – volume: 250 year: 2024 ident: bib17 article-title: Data-efficient surrogate modeling using meta-learning and physics-informed deep learning approaches publication-title: Expert Systems with Applications – start-page: 1 year: 2024 end-page: 29 ident: bib41 article-title: A finite element-based physics-informed operator learning framework for spatiotemporal partial differential equations on arbitrary domains publication-title: Engineering with Computers – volume: 362 year: 2020 ident: bib33 article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 7 year: 2021 ident: bib37 article-title: Learning the solution operator of parametric partial differential equations with physics-informed DeepONets publication-title: Science Advances – volume: 10 start-page: 1 year: 2019 end-page: 10 ident: bib26 article-title: Physically informed artificial neural networks for atomistic modeling of materials publication-title: Nature Communications – year: 2011 ident: bib4 article-title: Numerical methods for engineers – year: 2021 ident: bib22 article-title: Finite basis physics-informed neural networks (fbpinns): A scalable domain decomposition approach for solving differential equations publication-title: arXiv preprint arXiv:2107.07871 – volume: 401 year: 2022 ident: bib31 article-title: A mixed formulation for physics-informed neural networks as a potential solver for engineering problems in heterogeneous domains: Comparison with finite element method publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 234 start-page: 5673 year: 2023 end-page: 5695 ident: bib7 article-title: On the order of derivation in the training of physics-informed neural networks: Case studies for non-uniform beam structures publication-title: Acta Mechanica – volume: 451 year: 2022 ident: bib8 article-title: The mixed deep energy method for resolving concentration features in finite strain hyperelasticity publication-title: Journal of Computational Physics – volume: 451 year: 2022 ident: bib19 article-title: A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder publication-title: Journal of Computational Physics – volume: 126 year: 2023 ident: bib14 article-title: Augmented physics-informed neural networks (APINNs): A gating network-based soft domain decomposition methodology publication-title: Engineering Applications of Artificial Intelligence – year: 2020 ident: bib2 article-title: Accelerating simulation of stiff nonlinear systems using continuous-time echo state networks publication-title: arXiv preprint arXiv:2010.04004 – year: 2020 ident: bib39 article-title: Integrating scientific knowledge with machine learning for engineering and environmental systems publication-title: arXiv preprint arXiv:2003.04919 – volume: 42 start-page: 203 year: 2005 end-page: 237 ident: bib9 article-title: Improved global–local simulated annealing formulation for solving non-smooth engineering optimization problems publication-title: International Journal of Solids and Structures – volume: 361 year: 2020 ident: bib35 article-title: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 11 start-page: 9411 year: 2021 ident: bib13 article-title: Mesh-free surrogate models for structural mechanic fem simulation: A comparative study of approaches publication-title: Applied Sciences – volume: 192 start-page: 1 year: 2022 end-page: 18 ident: bib42 article-title: Chaos of the Rayleigh–duffing oscillator with a non-smooth periodic perturbation and harmonic excitation publication-title: Mathematics and Computers in Simulation – volume: 147 year: 2021 ident: bib29 article-title: Physics-informed deep learning for computational elastodynamics without labeled data publication-title: Journal of Engineering Mechanics – volume: 447 year: 2021 ident: bib34 article-title: Parallel physics-informed neural networks via domain decomposition publication-title: Journal of Computational Physics – year: 2015 ident: bib1 article-title: TensorFlow: Large-scale machine learning on heterogeneous systems – volume: 454 year: 2023 ident: bib25 article-title: Complex dynamics on the one-dimensional quantum droplets via time piecewise PINNs publication-title: Physica D: Nonlinear Phenomena – volume: 365 year: 2020 ident: bib16 article-title: Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 360 year: 2020 ident: bib21 article-title: Physics-informed neural networks for high-speed flows publication-title: Computer Methods in Applied Mechanics and Engineering – year: 2019 ident: bib24 article-title: Pytorch: An imperative style, high-performance deep learning library – volume: 28 start-page: 2002 year: 2020 end-page: 2041 ident: bib15 article-title: Extended physics-informed neural networks (xpinns): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations publication-title: Communications in Computational Physics – year: 2019 ident: bib40 article-title: Frequency principle: Fourier analysis sheds light on deep neural networks publication-title: arXiv preprint arXiv:1901.06523 – year: 2009 ident: bib36 article-title: Stresses in beams, plates, and shells – year: 2019 ident: bib3 article-title: Towards understanding the spectral bias of deep learning publication-title: arXiv preprint arXiv:1912.01198 – volume: 451 year: 2022 ident: 10.1016/j.biosystemseng.2025.01.017_bib8 article-title: The mixed deep energy method for resolving concentration features in finite strain hyperelasticity publication-title: Journal of Computational Physics doi: 10.1016/j.jcp.2021.110839 – year: 2020 ident: 10.1016/j.biosystemseng.2025.01.017_bib2 article-title: Accelerating simulation of stiff nonlinear systems using continuous-time echo state networks publication-title: arXiv preprint arXiv:2010.04004 – volume: 360 year: 2020 ident: 10.1016/j.biosystemseng.2025.01.017_bib21 article-title: Physics-informed neural networks for high-speed flows publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2019.112789 – volume: 192 start-page: 1 year: 2022 ident: 10.1016/j.biosystemseng.2025.01.017_bib42 article-title: Chaos of the Rayleigh–duffing oscillator with a non-smooth periodic perturbation and harmonic excitation publication-title: Mathematics and Computers in Simulation doi: 10.1016/j.matcom.2021.08.014 – ident: 10.1016/j.biosystemseng.2025.01.017_bib24 – volume: 447 year: 2021 ident: 10.1016/j.biosystemseng.2025.01.017_bib34 article-title: Parallel physics-informed neural networks via domain decomposition publication-title: Journal of Computational Physics doi: 10.1016/j.jcp.2021.110683 – volume: 32 year: 2019 ident: 10.1016/j.biosystemseng.2025.01.017_bib32 article-title: The convergence rate of neural networks for learned functions of different frequencies publication-title: Advances in Neural Information Processing Systems – volume: 16 start-page: 1490 issue: 11 year: 2024 ident: 10.1016/j.biosystemseng.2025.01.017_bib12 article-title: Piecewise neural network method for solving large interval solutions to initial value problems of ordinary differential equations publication-title: Symmetry doi: 10.3390/sym16111490 – volume: 126 year: 2023 ident: 10.1016/j.biosystemseng.2025.01.017_bib14 article-title: Augmented physics-informed neural networks (APINNs): A gating network-based soft domain decomposition methodology publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2023.107183 – volume: 451 year: 2022 ident: 10.1016/j.biosystemseng.2025.01.017_bib19 article-title: A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder publication-title: Journal of Computational Physics doi: 10.1016/j.jcp.2021.110841 – start-page: 5301 year: 2019 ident: 10.1016/j.biosystemseng.2025.01.017_bib27 article-title: On the spectral bias of neural networks – year: 2009 ident: 10.1016/j.biosystemseng.2025.01.017_bib36 – volume: 114 year: 2022 ident: 10.1016/j.biosystemseng.2025.01.017_bib20 article-title: Application of a mixed variable physics-informed neural network to solve the incompressible steady-state and transient mass, momentum, and energy conservation equations for flow over in-line heated tubes publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2021.108050 – volume: 378 start-page: 686 year: 2019 ident: 10.1016/j.biosystemseng.2025.01.017_bib28 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: Journal of Computational Physics doi: 10.1016/j.jcp.2018.10.045 – ident: 10.1016/j.biosystemseng.2025.01.017_bib1 – volume: 42 start-page: 203 year: 2005 ident: 10.1016/j.biosystemseng.2025.01.017_bib9 article-title: Improved global–local simulated annealing formulation for solving non-smooth engineering optimization problems publication-title: International Journal of Solids and Structures doi: 10.1016/j.ijsolstr.2004.07.015 – volume: 361 year: 2020 ident: 10.1016/j.biosystemseng.2025.01.017_bib35 article-title: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2019.112732 – volume: 44 start-page: 83 issue: 1 year: 2024 ident: 10.1016/j.biosystemseng.2025.01.017_bib5 article-title: Error estimates for physics-informed neural networks approximating the Navier–Stokes equations publication-title: IMA Journal of Numerical Analysis doi: 10.1093/imanum/drac085 – volume: 250 year: 2024 ident: 10.1016/j.biosystemseng.2025.01.017_bib17 article-title: Data-efficient surrogate modeling using meta-learning and physics-informed deep learning approaches publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2024.123758 – year: 2021 ident: 10.1016/j.biosystemseng.2025.01.017_bib22 article-title: Finite basis physics-informed neural networks (fbpinns): A scalable domain decomposition approach for solving differential equations publication-title: arXiv preprint arXiv:2107.07871 – volume: 147 year: 2021 ident: 10.1016/j.biosystemseng.2025.01.017_bib29 article-title: Physics-informed deep learning for computational elastodynamics without labeled data publication-title: Journal of Engineering Mechanics doi: 10.1061/(ASCE)EM.1943-7889.0001947 – volume: 401 year: 2022 ident: 10.1016/j.biosystemseng.2025.01.017_bib31 article-title: A mixed formulation for physics-informed neural networks as a potential solver for engineering problems in heterogeneous domains: Comparison with finite element method publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2022.115616 – start-page: 1 year: 2024 ident: 10.1016/j.biosystemseng.2025.01.017_bib41 article-title: A finite element-based physics-informed operator learning framework for spatiotemporal partial differential equations on arbitrary domains publication-title: Engineering with Computers – volume: 374 year: 2021 ident: 10.1016/j.biosystemseng.2025.01.017_bib18 article-title: hp-vpinns: Variational physics-informed neural networks with domain decomposition publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2020.113547 – year: 2019 ident: 10.1016/j.biosystemseng.2025.01.017_bib40 article-title: Frequency principle: Fourier analysis sheds light on deep neural networks publication-title: arXiv preprint arXiv:1901.06523 – volume: 106 year: 2020 ident: 10.1016/j.biosystemseng.2025.01.017_bib10 article-title: Transfer learning enhanced physics informed neural network for phase-field modeling of fracture publication-title: Theoretical and Applied Fracture Mechanics doi: 10.1016/j.tafmec.2019.102447 – volume: 362 year: 2020 ident: 10.1016/j.biosystemseng.2025.01.017_bib33 article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2019.112790 – volume: 385 year: 2021 ident: 10.1016/j.biosystemseng.2025.01.017_bib11 article-title: A nonlocal physics-informed deep learning framework using the peridynamic differential operator publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2021.114012 – volume: 28 start-page: 2002 year: 2020 ident: 10.1016/j.biosystemseng.2025.01.017_bib15 article-title: Extended physics-informed neural networks (xpinns): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations publication-title: Communications in Computational Physics doi: 10.4208/cicp.OA-2020-0164 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.biosystemseng.2025.01.017_bib26 article-title: Physically informed artificial neural networks for atomistic modeling of materials publication-title: Nature Communications doi: 10.1038/s41467-019-10343-5 – volume: 127 year: 2024 ident: 10.1016/j.biosystemseng.2025.01.017_bib30 article-title: Mixed form based physics-informed neural networks for performance evaluation of two-phase random materials publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2023.107250 – year: 2019 ident: 10.1016/j.biosystemseng.2025.01.017_bib3 article-title: Towards understanding the spectral bias of deep learning publication-title: arXiv preprint arXiv:1912.01198 – volume: 384 year: 2021 ident: 10.1016/j.biosystemseng.2025.01.017_bib23 article-title: Physics-informed neural network for modelling the thermochemical curing process of composite-tool systems during manufacture publication-title: Computer Methods in Applied Mechanics and Engineering – year: 2011 ident: 10.1016/j.biosystemseng.2025.01.017_bib4 – volume: 454 year: 2023 ident: 10.1016/j.biosystemseng.2025.01.017_bib25 article-title: Complex dynamics on the one-dimensional quantum droplets via time piecewise PINNs publication-title: Physica D: Nonlinear Phenomena doi: 10.1016/j.physd.2023.133851 – year: 2020 ident: 10.1016/j.biosystemseng.2025.01.017_bib39 article-title: Integrating scientific knowledge with machine learning for engineering and environmental systems publication-title: arXiv preprint arXiv:2003.04919 – volume: 7 issue: 40 year: 2021 ident: 10.1016/j.biosystemseng.2025.01.017_bib37 article-title: Learning the solution operator of parametric partial differential equations with physics-informed DeepONets publication-title: Science Advances doi: 10.1126/sciadv.abi8605 – volume: 429 year: 2024 ident: 10.1016/j.biosystemseng.2025.01.017_bib6 article-title: Multilevel domain decomposition-based architectures for physics-informed neural networks publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2024.117116 – volume: 365 year: 2020 ident: 10.1016/j.biosystemseng.2025.01.017_bib16 article-title: Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2020.113028 – volume: 384 year: 2021 ident: 10.1016/j.biosystemseng.2025.01.017_bib38 article-title: On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2021.113938 – volume: 394 start-page: 56 year: 2019 ident: 10.1016/j.biosystemseng.2025.01.017_bib43 article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data publication-title: Journal of Computational Physics doi: 10.1016/j.jcp.2019.05.024 – volume: 11 start-page: 9411 year: 2021 ident: 10.1016/j.biosystemseng.2025.01.017_bib13 article-title: Mesh-free surrogate models for structural mechanic fem simulation: A comparative study of approaches publication-title: Applied Sciences doi: 10.3390/app11209411 – volume: 234 start-page: 5673 issue: 11 year: 2023 ident: 10.1016/j.biosystemseng.2025.01.017_bib7 article-title: On the order of derivation in the training of physics-informed neural networks: Case studies for non-uniform beam structures publication-title: Acta Mechanica doi: 10.1007/s00707-023-03676-2 |
SSID | ssj0015746 |
Score | 2.4320176 |
Snippet | To interpret physical phenomena, traditional mesh-based methods, such as finite element method, have proven effective for engineering problems. However, as... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 48 |
SubjectTerms | computer software domain Domain decomposition finite element analysis Interface problems mechanics neural networks Physics-informed neural networks Structural mechanics Surrogate modelling uncertainty |
Title | Piecewise physics-informed neural networks for surrogate modelling of non-smooth system in elasticity problems using domain decomposition |
URI | https://dx.doi.org/10.1016/j.biosystemseng.2025.01.017 https://www.proquest.com/docview/3200254799 |
Volume | 251 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BS-QwFA7DCKKHxVUXx9Uh4l7jdNK0aS4Lg6zMKoqwCnMLafM6VJhWpjMsXrzvv96XptVV9rCw0EtCmqZ5Sd5L8r3vEfIlFZExynCWjd01I6pUZsLAsjyw3HCeGUidg_P1TTy9F5ezaNYj550vjINVtmu_X9Ob1brNGbW9OXositEPnKsSzQWnxBsWGOfBLqSD9Z09v8A8xpH0HkZYmLnSm-T0FeOVFpUnTK6hnONmkXsOzyZ62V-11Lv1ulFCFzvkQ2s90olv4EfSg3KXbE_my5ZBAzD1B8PgHvl1W0AGP4saqD_DqJmnSgVLHZUlVlZ6IHhNMZvW6-WycidrtAmR43zVaZXTsipZvahQqtT_CS1KCmh4O0z26om2YWlq6mD0c2qrhcECFhxgvUWF7ZO7i29351PWRl9gWRjwFbOo3ePYWJXkQZwlgLo9DUIjEpWN0eoCG0KEkgRIcuzNKMlzEYG0XGbcpCILP5E-Ng4OCLWxEnEoeY5vCSVVkqZGRioPcJiEuL0cENF1tn70HBu6A5896Dcy0k5GOhjjIwfkaycY_WbIaNQG_1bBSSdOjZPK3ZSYEqp1rUPesARIpQ7_9yOfyZZLedjaEemvlms4RjtmlQ6bgTokG5PvV9Ob3zbn-js |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SDfRxKH3S9KnSXsV6ZdmyLoUlNGyaZCl0C7kJ2RovLsQO611CfkL_dUeW3Dalh0LBF9uSLGskzUj65huA96XMrNVW8GrmjxlJpXKbJo7XiRNWiMpi6R2cz5b54qv8dJ6d78Hh6AvjYZVx7g9z-jBbxyfT2JrTy6aZfqGxqshc8Ep8YIG5BfuenUpOYH9-fLJY_jxMyFRwMqL03Ge4De9-wbzKpgucyT22a1ovikDjOQQw-6ui-mPKHvTQ0QO4Hw1INg91fAh72D6Ce_P1JpJoIN39RjL4GL5_brDCq6ZHFrYxeh7YUtExz2ZJhbUBC94zesz63WbT-c01NkTJ8e7qrKtZ27W8v-hIsCz8CWtahmR7e1j29prFyDQ980j6NXPdhaUEDj1mPQLDnsDq6OPqcMFjAAZepYnYckcKPs-t00Wd5FWBpN7LJLWy0NWMDC90KWYkTMSiptbMirqWGSonVCVsKav0KUyocvgMmMu1zFMlasoltdJFWVqV6TqhnpLSCvMA5NjY5jLQbJgRf_bN3JCR8TIyyYwudQAfRsGYG73GkEL4twLejuI0NK78YYltsdv1JhUDUYDS-vn_fuQN3Fmszk7N6fHy5AXc9W8Ciu0lTLabHb4is2Zbvo7d9ge1_Pzs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piecewise+physics-informed+neural+networks+for+surrogate+modelling+of+non-smooth+system+in+elasticity+problems+using+domain+decomposition&rft.jtitle=Biosystems+engineering&rft.au=Jeong%2C+Youngjoon&rft.au=Lee%2C+Sangik&rft.au=Lee%2C+Jong+Hyuk&rft.au=Choi%2C+Won&rft.date=2025-03-01&rft.issn=1537-5110&rft.volume=251+p.48-60&rft.spage=48&rft.epage=60&rft_id=info:doi/10.1016%2Fj.biosystemseng.2025.01.017&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-5110&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-5110&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-5110&client=summon |