Growth rules for irregular architected materials with programmable properties

Biomaterials display microstructures that are geometrically irregular and functionally efficient. Understanding the role of irregularity in determining material properties offers a new path to engineer materials with superior functionalities, such as imperfection insensitivity, enhanced impact absor...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 377; no. 6609; pp. 975 - 981
Main Authors Liu, Ke, Sun, Rachel, Daraio, Chiara
Format Journal Article
LanguageEnglish
Published Washington The American Association for the Advancement of Science 26.08.2022
Online AccessGet full text

Cover

Loading…
Abstract Biomaterials display microstructures that are geometrically irregular and functionally efficient. Understanding the role of irregularity in determining material properties offers a new path to engineer materials with superior functionalities, such as imperfection insensitivity, enhanced impact absorption, and stress redirection. We uncover fundamental, probabilistic structure–property relationships using a growth-inspired program that evokes the formation of stochastic architectures in natural systems. This virtual growth program imposes a set of local rules on a limited number of basic elements. It generates materials that exhibit a large variation in functional properties starting from very limited initial resources, which echoes the diversity of biological systems. We identify basic rules to control mechanical properties by independently varying the microstructure’s topology and geometry in a general, graph-based representation of irregular materials. Materials with irregular microstructures are common in the natural world and often have interesting properties. Liu et al . devised a growth-inspired program for generating irregular materials from a limited number of basic elements. Using building blocks with arbitrary complexity, the authors stochastically connected them subject to a set of local rules. The results echoed the diversity of natural systems with a large range of functional properties. —BG A strategy for developing irregular materials can lead to a wide range of functional properties.
AbstractList An irregular planMaterials with irregular microstructures are common in the natural world and often have interesting properties. Liu et al. devised a growth-inspired program for generating irregular materials from a limited number of basic elements. Using building blocks with arbitrary complexity, the authors stochastically connected them subject to a set of local rules. The results echoed the diversity of natural systems with a large range of functional properties. —BG
Biomaterials display microstructures that are geometrically irregular and functionally efficient. Understanding the role of irregularity in determining material properties offers a new path to engineer materials with superior functionalities, such as imperfection insensitivity, enhanced impact absorption, and stress redirection. We uncover fundamental, probabilistic structure-property relationships using a growth-inspired program that evokes the formation of stochastic architectures in natural systems. This virtual growth program imposes a set of local rules on a limited number of basic elements. It generates materials that exhibit a large variation in functional properties starting from very limited initial resources, which echoes the diversity of biological systems. We identify basic rules to control mechanical properties by independently varying the microstructure's topology and geometry in a general, graph-based representation of irregular materials.Biomaterials display microstructures that are geometrically irregular and functionally efficient. Understanding the role of irregularity in determining material properties offers a new path to engineer materials with superior functionalities, such as imperfection insensitivity, enhanced impact absorption, and stress redirection. We uncover fundamental, probabilistic structure-property relationships using a growth-inspired program that evokes the formation of stochastic architectures in natural systems. This virtual growth program imposes a set of local rules on a limited number of basic elements. It generates materials that exhibit a large variation in functional properties starting from very limited initial resources, which echoes the diversity of biological systems. We identify basic rules to control mechanical properties by independently varying the microstructure's topology and geometry in a general, graph-based representation of irregular materials.
Biomaterials display microstructures that are geometrically irregular and functionally efficient. Understanding the role of irregularity in determining material properties offers a new path to engineer materials with superior functionalities, such as imperfection insensitivity, enhanced impact absorption, and stress redirection. We uncover fundamental, probabilistic structure–property relationships using a growth-inspired program that evokes the formation of stochastic architectures in natural systems. This virtual growth program imposes a set of local rules on a limited number of basic elements. It generates materials that exhibit a large variation in functional properties starting from very limited initial resources, which echoes the diversity of biological systems. We identify basic rules to control mechanical properties by independently varying the microstructure’s topology and geometry in a general, graph-based representation of irregular materials. Materials with irregular microstructures are common in the natural world and often have interesting properties. Liu et al . devised a growth-inspired program for generating irregular materials from a limited number of basic elements. Using building blocks with arbitrary complexity, the authors stochastically connected them subject to a set of local rules. The results echoed the diversity of natural systems with a large range of functional properties. —BG A strategy for developing irregular materials can lead to a wide range of functional properties.
Author Liu, Ke
Daraio, Chiara
Sun, Rachel
Author_xml – sequence: 1
  givenname: Ke
  orcidid: 0000-0001-9081-6334
  surname: Liu
  fullname: Liu, Ke
  organization: Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA 91125, USA., Department of Advanced Manufacturing and Robotics, Peking University, Beijing 100871, China
– sequence: 2
  givenname: Rachel
  orcidid: 0000-0001-6396-1720
  surname: Sun
  fullname: Sun, Rachel
  organization: Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 3
  givenname: Chiara
  orcidid: 0000-0001-5296-4440
  surname: Daraio
  fullname: Daraio, Chiara
  organization: Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA 91125, USA
BookMark eNp1kEFPwzAMRiM0JLbBmWslLly6Oc2aLkc0wUACcYFzlabOlqlthpNq4t_TwU6TOFmW32dbb8JGne-QsVsOM84zOQ_GYWdwpquOL3J1wcYcVJ6qDMSIjQGETJdQ5FdsEsIOYJgpMWZva_KHuE2obzAk1lPiiHDTN5oSTWbrIpqIddLqiOR0E5KDG_A9-Q3pttVVg8dmjxQdhmt2aQcGb051yj6fHj9Wz-nr-_pl9fCaGgFZTI3SwGthtao1Ry3qPONSg82EKGzBrVwoZRdKclOroqokWitBCMA6F8aKSkzZ_d_e4fRXjyGWrQsGm0Z36PtQZgUUEuRyqQb07gzd-Z664btfKldcwpHK_yhDPgRCWxoXdXS-i6RdU3Ioj5LLk-TyJHnIzc9ye3Ktpu9_Ez8bQ4YI
CitedBy_id crossref_primary_10_1016_j_eml_2024_102196
crossref_primary_10_1002_advs_202206099
crossref_primary_10_1016_j_triboint_2023_108266
crossref_primary_10_1103_PhysRevE_108_065002
crossref_primary_10_1002_smll_202402685
crossref_primary_10_1016_j_ijsolstr_2024_112795
crossref_primary_10_1016_j_ijmecsci_2022_107920
crossref_primary_10_1002_adem_202300048
crossref_primary_10_1002_adma_202305254
crossref_primary_10_1038_s43588_024_00669_6
crossref_primary_10_1016_j_applthermaleng_2025_126133
crossref_primary_10_1016_j_tws_2024_112287
crossref_primary_10_1177_14644207241229995
crossref_primary_10_1002_advs_202307279
crossref_primary_10_1038_s42254_023_00639_3
crossref_primary_10_1038_s41563_024_01960_7
crossref_primary_10_1016_j_mattod_2023_12_015
crossref_primary_10_1038_s44296_023_00002_8
crossref_primary_10_1016_j_nantod_2023_102126
crossref_primary_10_1007_s00004_024_00795_8
crossref_primary_10_1002_adem_202400524
crossref_primary_10_1080_17452759_2025_2460209
crossref_primary_10_1002_advs_202304834
crossref_primary_10_1016_j_actamat_2024_120700
crossref_primary_10_1016_j_apmt_2024_102414
crossref_primary_10_1038_s41467_024_47831_2
crossref_primary_10_1126_science_adi1563
crossref_primary_10_3390_e25010170
crossref_primary_10_1016_j_ijmecsci_2025_110123
crossref_primary_10_1126_science_adr9713
crossref_primary_10_1021_acsmaterialslett_3c00002
crossref_primary_10_1002_advs_202204977
crossref_primary_10_1016_j_jmps_2024_105751
crossref_primary_10_1115_1_4067570
crossref_primary_10_1002_adma_202405567
crossref_primary_10_1002_adom_202303087
crossref_primary_10_1142_S1758825124500674
crossref_primary_10_1016_j_addma_2024_104577
crossref_primary_10_1016_j_ijmecsci_2024_109582
crossref_primary_10_1016_j_matdes_2024_113055
crossref_primary_10_1002_adma_202400080
crossref_primary_10_1016_j_tafmec_2024_104428
crossref_primary_10_1016_j_cma_2024_116864
crossref_primary_10_1002_adma_202302530
crossref_primary_10_1016_j_mattod_2024_09_012
crossref_primary_10_1016_j_engstruct_2024_117686
crossref_primary_10_1016_j_cma_2025_117850
crossref_primary_10_1016_j_compstruct_2024_118210
crossref_primary_10_1016_j_matdes_2023_111922
crossref_primary_10_1002_adma_202416901
crossref_primary_10_1002_adfm_202310969
crossref_primary_10_1002_adfm_202307242
crossref_primary_10_1016_j_jmps_2024_105787
crossref_primary_10_1016_j_mattod_2024_12_018
crossref_primary_10_1126_sciadv_adq7933
crossref_primary_10_1021_acsnano_3c01223
crossref_primary_10_1016_j_mechmat_2023_104668
Cites_doi 10.1038/s41524-020-0341-6
10.1145/2766926
10.1038/nphoton.2013.29
10.1016/j.cma.2008.01.008
10.1115/1.2804743
10.1016/j.mattod.2020.10.006
10.1098/rspa.2010.0215
10.1073/pnas.1307879110
10.1145/2461912.2461979
10.1126/science.1255908
10.1039/C9MH01368G
10.1073/pnas.1911535116
10.1002/adma.202109304
10.1126/science.aao4640
10.1073/pnas.0631609100
10.1073/pnas.2122185119
10.1111/j.1365-2818.2006.01678.x
10.1073/pnas.1905814116
10.1016/j.eml.2015.11.004
10.1126/science.aar4586
10.1126/sciadv.aao7005
10.1038/nature25476
10.1073/pnas.1717442115
10.1063/1.4709436
10.1016/j.compstruct.2021.113693
10.1103/PhysRevLett.122.155501
10.1103/PhysRevLett.117.175901
10.1038/natrevmats.2017.66
10.1126/sciadv.abf4838
10.1063/1.5096590
10.1038/s41578-020-0206-0
10.1115/1.4026911
10.1126/sciadv.aaz4169
10.1038/nature18960
10.1038/s41467-018-08049-1
10.1126/science.1133628
10.1073/pnas.1817309116
10.1002/pro.2443
10.1073/pnas.2006985118
ContentType Journal Article
Copyright Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.abn1459
DatabaseName CrossRef
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 981
ExternalDocumentID 10_1126_science_abn1459
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c302t-c9a01d3fa9da1ea3d5216a0f2337f71f6499f4961cd97bb6eff60330ed53cf3b3
ISSN 0036-8075
1095-9203
IngestDate Fri Jul 11 05:30:09 EDT 2025
Fri Jul 25 10:29:19 EDT 2025
Thu Apr 24 23:04:05 EDT 2025
Tue Jul 01 02:24:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6609
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c302t-c9a01d3fa9da1ea3d5216a0f2337f71f6499f4961cd97bb6eff60330ed53cf3b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6396-1720
0000-0001-9081-6334
0000-0001-5296-4440
PQID 2707591609
PQPubID 1256
PageCount 7
ParticipantIDs proquest_miscellaneous_2707606889
proquest_journals_2707591609
crossref_citationtrail_10_1126_science_abn1459
crossref_primary_10_1126_science_abn1459
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-26
20220826
PublicationDateYYYYMMDD 2022-08-26
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-26
  day: 26
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationYear 2022
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_33_2
  doi: 10.1038/s41524-020-0341-6
– ident: e_1_3_2_25_2
  doi: 10.1145/2766926
– ident: e_1_3_2_31_2
  doi: 10.1038/nphoton.2013.29
– ident: e_1_3_2_40_2
  doi: 10.1016/j.cma.2008.01.008
– ident: e_1_3_2_14_2
  doi: 10.1115/1.2804743
– ident: e_1_3_2_38_2
– ident: e_1_3_2_4_2
  doi: 10.1016/j.mattod.2020.10.006
– ident: e_1_3_2_5_2
  doi: 10.1098/rspa.2010.0215
– ident: e_1_3_2_9_2
  doi: 10.1073/pnas.1307879110
– ident: e_1_3_2_13_2
  doi: 10.1145/2461912.2461979
– ident: e_1_3_2_17_2
  doi: 10.1126/science.1255908
– ident: e_1_3_2_12_2
  doi: 10.1039/C9MH01368G
– ident: e_1_3_2_19_2
  doi: 10.1073/pnas.1911535116
– ident: e_1_3_2_37_2
  doi: 10.1002/adma.202109304
– ident: e_1_3_2_21_2
  doi: 10.1126/science.aao4640
– ident: e_1_3_2_28_2
  doi: 10.1073/pnas.0631609100
– ident: e_1_3_2_42_2
  doi: 10.1073/pnas.2122185119
– ident: e_1_3_2_7_2
  doi: 10.1111/j.1365-2818.2006.01678.x
– ident: e_1_3_2_30_2
  doi: 10.1073/pnas.1905814116
– ident: e_1_3_2_22_2
  doi: 10.1016/j.eml.2015.11.004
– ident: e_1_3_2_11_2
  doi: 10.1126/science.aar4586
– ident: e_1_3_2_24_2
  doi: 10.1126/sciadv.aao7005
– ident: e_1_3_2_27_2
  doi: 10.1038/nature25476
– ident: e_1_3_2_34_2
  doi: 10.1073/pnas.1717442115
– ident: e_1_3_2_20_2
  doi: 10.1063/1.4709436
– ident: e_1_3_2_36_2
  doi: 10.1016/j.compstruct.2021.113693
– ident: e_1_3_2_16_2
  doi: 10.1103/PhysRevLett.122.155501
– ident: e_1_3_2_15_2
  doi: 10.1103/PhysRevLett.117.175901
– ident: e_1_3_2_2_2
  doi: 10.1038/natrevmats.2017.66
– ident: e_1_3_2_26_2
  doi: 10.1126/sciadv.abf4838
– ident: e_1_3_2_35_2
  doi: 10.1063/1.5096590
– ident: e_1_3_2_3_2
  doi: 10.1038/s41578-020-0206-0
– ident: e_1_3_2_10_2
  doi: 10.1115/1.4026911
– ident: e_1_3_2_23_2
  doi: 10.1126/sciadv.aaz4169
– ident: e_1_3_2_41_2
  doi: 10.1038/nature18960
– ident: e_1_3_2_6_2
  doi: 10.1038/s41467-018-08049-1
– ident: e_1_3_2_8_2
  doi: 10.1126/science.1133628
– ident: e_1_3_2_18_2
  doi: 10.1073/pnas.1817309116
– ident: e_1_3_2_32_2
  doi: 10.1002/pro.2443
– ident: e_1_3_2_29_2
  doi: 10.1073/pnas.2006985118
SSID ssj0009593
Score 2.6175015
Snippet Biomaterials display microstructures that are geometrically irregular and functionally efficient. Understanding the role of irregularity in determining...
An irregular planMaterials with irregular microstructures are common in the natural world and often have interesting properties. Liu et al. devised a...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 975
Title Growth rules for irregular architected materials with programmable properties
URI https://www.proquest.com/docview/2707591609
https://www.proquest.com/docview/2707606889
Volume 377
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdKJyReEBsgBgMZiYehKpUTp3bz2FFKgW1CopP2FtmOrVUa2ZQlD_B5-KBcYsd1BUOMl6hN4iS6-_l8d74_CL2ZJAAjNU0jnk1llComIykyFinNpU4Ep6ZoDcWTU7Y8Sz-dT84Hg59B1FJTy7H68ce8kv_hKpwDvrZZsnfgrH8onIDfwF84Aofh-E88_gA2dH0xqppL3ZVVGK2rqustX438BgEolKCU2q-xXlcXkvWtS5q6bp3xVd2HEjo1tZ_xoH76LZ2AkT42cWYjCPqAAjcs8C4crxub_bPZfLJGf1tH2gd3zEUl1tZne7EWlQhdEWDFEuAH8-BZbXJh7vJRoXh21ZHt4mQlMmmbSSaEhiKbutYvFpuMkSyQwVk_3v6zHWF-XymC3pZ6LGQZp640-VZN7uXsa_5lvsiPP55-vod2EjBGkiHamR3Njxa3Fnd2JaSC5Kz-Bdvaz_bi32k0q0fooTNF8MziahcNdLmH7tvmpN_30K4j3A0-dLXJ3z5GJxZyuIMcBopjDzkcQA57yOEWcjiEHN5A7gk6W7xfvVtGriNHpChJ6khlgsQFNSIrRKwFLUD5Y4KYhFJueGwY2M8mzVisioxLybQxjFBKdDGhylBJn6JheVXqZwinKp5ylWphpEw5mUraVkYUWqZCcibNPhr3lMqVK1ffdk25zDuzNWG5I23uSLuPDv2Aa1up5fZbD3rS52463-QgtPgEjCUCl1_7yyBs2x00Ueqrxt7D2jZN2fO_P-IFerCZIAdoWFeNfgnaay1fOfD8AlVFpFo
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Growth+rules+for+irregular+architected+materials+with+programmable+properties&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Liu%2C+Ke&rft.au=Sun%2C+Rachel&rft.au=Daraio%2C+Chiara&rft.date=2022-08-26&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=377&rft.issue=6609&rft.spage=975&rft.epage=981&rft_id=info:doi/10.1126%2Fscience.abn1459&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon