Growth rules for irregular architected materials with programmable properties
Biomaterials display microstructures that are geometrically irregular and functionally efficient. Understanding the role of irregularity in determining material properties offers a new path to engineer materials with superior functionalities, such as imperfection insensitivity, enhanced impact absor...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 377; no. 6609; pp. 975 - 981 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington
The American Association for the Advancement of Science
26.08.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | Biomaterials display microstructures that are geometrically irregular and functionally efficient. Understanding the role of irregularity in determining material properties offers a new path to engineer materials with superior functionalities, such as imperfection insensitivity, enhanced impact absorption, and stress redirection. We uncover fundamental, probabilistic structure–property relationships using a growth-inspired program that evokes the formation of stochastic architectures in natural systems. This virtual growth program imposes a set of local rules on a limited number of basic elements. It generates materials that exhibit a large variation in functional properties starting from very limited initial resources, which echoes the diversity of biological systems. We identify basic rules to control mechanical properties by independently varying the microstructure’s topology and geometry in a general, graph-based representation of irregular materials.
Materials with irregular microstructures are common in the natural world and often have interesting properties. Liu
et al
. devised a growth-inspired program for generating irregular materials from a limited number of basic elements. Using building blocks with arbitrary complexity, the authors stochastically connected them subject to a set of local rules. The results echoed the diversity of natural systems with a large range of functional properties. —BG
A strategy for developing irregular materials can lead to a wide range of functional properties. |
---|---|
AbstractList | An irregular planMaterials with irregular microstructures are common in the natural world and often have interesting properties. Liu et al. devised a growth-inspired program for generating irregular materials from a limited number of basic elements. Using building blocks with arbitrary complexity, the authors stochastically connected them subject to a set of local rules. The results echoed the diversity of natural systems with a large range of functional properties. —BG Biomaterials display microstructures that are geometrically irregular and functionally efficient. Understanding the role of irregularity in determining material properties offers a new path to engineer materials with superior functionalities, such as imperfection insensitivity, enhanced impact absorption, and stress redirection. We uncover fundamental, probabilistic structure-property relationships using a growth-inspired program that evokes the formation of stochastic architectures in natural systems. This virtual growth program imposes a set of local rules on a limited number of basic elements. It generates materials that exhibit a large variation in functional properties starting from very limited initial resources, which echoes the diversity of biological systems. We identify basic rules to control mechanical properties by independently varying the microstructure's topology and geometry in a general, graph-based representation of irregular materials.Biomaterials display microstructures that are geometrically irregular and functionally efficient. Understanding the role of irregularity in determining material properties offers a new path to engineer materials with superior functionalities, such as imperfection insensitivity, enhanced impact absorption, and stress redirection. We uncover fundamental, probabilistic structure-property relationships using a growth-inspired program that evokes the formation of stochastic architectures in natural systems. This virtual growth program imposes a set of local rules on a limited number of basic elements. It generates materials that exhibit a large variation in functional properties starting from very limited initial resources, which echoes the diversity of biological systems. We identify basic rules to control mechanical properties by independently varying the microstructure's topology and geometry in a general, graph-based representation of irregular materials. Biomaterials display microstructures that are geometrically irregular and functionally efficient. Understanding the role of irregularity in determining material properties offers a new path to engineer materials with superior functionalities, such as imperfection insensitivity, enhanced impact absorption, and stress redirection. We uncover fundamental, probabilistic structure–property relationships using a growth-inspired program that evokes the formation of stochastic architectures in natural systems. This virtual growth program imposes a set of local rules on a limited number of basic elements. It generates materials that exhibit a large variation in functional properties starting from very limited initial resources, which echoes the diversity of biological systems. We identify basic rules to control mechanical properties by independently varying the microstructure’s topology and geometry in a general, graph-based representation of irregular materials. Materials with irregular microstructures are common in the natural world and often have interesting properties. Liu et al . devised a growth-inspired program for generating irregular materials from a limited number of basic elements. Using building blocks with arbitrary complexity, the authors stochastically connected them subject to a set of local rules. The results echoed the diversity of natural systems with a large range of functional properties. —BG A strategy for developing irregular materials can lead to a wide range of functional properties. |
Author | Liu, Ke Daraio, Chiara Sun, Rachel |
Author_xml | – sequence: 1 givenname: Ke orcidid: 0000-0001-9081-6334 surname: Liu fullname: Liu, Ke organization: Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA 91125, USA., Department of Advanced Manufacturing and Robotics, Peking University, Beijing 100871, China – sequence: 2 givenname: Rachel orcidid: 0000-0001-6396-1720 surname: Sun fullname: Sun, Rachel organization: Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 3 givenname: Chiara orcidid: 0000-0001-5296-4440 surname: Daraio fullname: Daraio, Chiara organization: Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA 91125, USA |
BookMark | eNp1kEFPwzAMRiM0JLbBmWslLly6Oc2aLkc0wUACcYFzlabOlqlthpNq4t_TwU6TOFmW32dbb8JGne-QsVsOM84zOQ_GYWdwpquOL3J1wcYcVJ6qDMSIjQGETJdQ5FdsEsIOYJgpMWZva_KHuE2obzAk1lPiiHDTN5oSTWbrIpqIddLqiOR0E5KDG_A9-Q3pttVVg8dmjxQdhmt2aQcGb051yj6fHj9Wz-nr-_pl9fCaGgFZTI3SwGthtao1Ry3qPONSg82EKGzBrVwoZRdKclOroqokWitBCMA6F8aKSkzZ_d_e4fRXjyGWrQsGm0Z36PtQZgUUEuRyqQb07gzd-Z664btfKldcwpHK_yhDPgRCWxoXdXS-i6RdU3Ioj5LLk-TyJHnIzc9ye3Ktpu9_Ez8bQ4YI |
CitedBy_id | crossref_primary_10_1016_j_eml_2024_102196 crossref_primary_10_1002_advs_202206099 crossref_primary_10_1016_j_triboint_2023_108266 crossref_primary_10_1103_PhysRevE_108_065002 crossref_primary_10_1002_smll_202402685 crossref_primary_10_1016_j_ijsolstr_2024_112795 crossref_primary_10_1016_j_ijmecsci_2022_107920 crossref_primary_10_1002_adem_202300048 crossref_primary_10_1002_adma_202305254 crossref_primary_10_1038_s43588_024_00669_6 crossref_primary_10_1016_j_applthermaleng_2025_126133 crossref_primary_10_1016_j_tws_2024_112287 crossref_primary_10_1177_14644207241229995 crossref_primary_10_1002_advs_202307279 crossref_primary_10_1038_s42254_023_00639_3 crossref_primary_10_1038_s41563_024_01960_7 crossref_primary_10_1016_j_mattod_2023_12_015 crossref_primary_10_1038_s44296_023_00002_8 crossref_primary_10_1016_j_nantod_2023_102126 crossref_primary_10_1007_s00004_024_00795_8 crossref_primary_10_1002_adem_202400524 crossref_primary_10_1080_17452759_2025_2460209 crossref_primary_10_1002_advs_202304834 crossref_primary_10_1016_j_actamat_2024_120700 crossref_primary_10_1016_j_apmt_2024_102414 crossref_primary_10_1038_s41467_024_47831_2 crossref_primary_10_1126_science_adi1563 crossref_primary_10_3390_e25010170 crossref_primary_10_1016_j_ijmecsci_2025_110123 crossref_primary_10_1126_science_adr9713 crossref_primary_10_1021_acsmaterialslett_3c00002 crossref_primary_10_1002_advs_202204977 crossref_primary_10_1016_j_jmps_2024_105751 crossref_primary_10_1115_1_4067570 crossref_primary_10_1002_adma_202405567 crossref_primary_10_1002_adom_202303087 crossref_primary_10_1142_S1758825124500674 crossref_primary_10_1016_j_addma_2024_104577 crossref_primary_10_1016_j_ijmecsci_2024_109582 crossref_primary_10_1016_j_matdes_2024_113055 crossref_primary_10_1002_adma_202400080 crossref_primary_10_1016_j_tafmec_2024_104428 crossref_primary_10_1016_j_cma_2024_116864 crossref_primary_10_1002_adma_202302530 crossref_primary_10_1016_j_mattod_2024_09_012 crossref_primary_10_1016_j_engstruct_2024_117686 crossref_primary_10_1016_j_cma_2025_117850 crossref_primary_10_1016_j_compstruct_2024_118210 crossref_primary_10_1016_j_matdes_2023_111922 crossref_primary_10_1002_adma_202416901 crossref_primary_10_1002_adfm_202310969 crossref_primary_10_1002_adfm_202307242 crossref_primary_10_1016_j_jmps_2024_105787 crossref_primary_10_1016_j_mattod_2024_12_018 crossref_primary_10_1126_sciadv_adq7933 crossref_primary_10_1021_acsnano_3c01223 crossref_primary_10_1016_j_mechmat_2023_104668 |
Cites_doi | 10.1038/s41524-020-0341-6 10.1145/2766926 10.1038/nphoton.2013.29 10.1016/j.cma.2008.01.008 10.1115/1.2804743 10.1016/j.mattod.2020.10.006 10.1098/rspa.2010.0215 10.1073/pnas.1307879110 10.1145/2461912.2461979 10.1126/science.1255908 10.1039/C9MH01368G 10.1073/pnas.1911535116 10.1002/adma.202109304 10.1126/science.aao4640 10.1073/pnas.0631609100 10.1073/pnas.2122185119 10.1111/j.1365-2818.2006.01678.x 10.1073/pnas.1905814116 10.1016/j.eml.2015.11.004 10.1126/science.aar4586 10.1126/sciadv.aao7005 10.1038/nature25476 10.1073/pnas.1717442115 10.1063/1.4709436 10.1016/j.compstruct.2021.113693 10.1103/PhysRevLett.122.155501 10.1103/PhysRevLett.117.175901 10.1038/natrevmats.2017.66 10.1126/sciadv.abf4838 10.1063/1.5096590 10.1038/s41578-020-0206-0 10.1115/1.4026911 10.1126/sciadv.aaz4169 10.1038/nature18960 10.1038/s41467-018-08049-1 10.1126/science.1133628 10.1073/pnas.1817309116 10.1002/pro.2443 10.1073/pnas.2006985118 |
ContentType | Journal Article |
Copyright | Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.abn1459 |
DatabaseName | CrossRef Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 981 |
ExternalDocumentID | 10_1126_science_abn1459 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c302t-c9a01d3fa9da1ea3d5216a0f2337f71f6499f4961cd97bb6eff60330ed53cf3b3 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Fri Jul 11 05:30:09 EDT 2025 Fri Jul 25 10:29:19 EDT 2025 Thu Apr 24 23:04:05 EDT 2025 Tue Jul 01 02:24:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6609 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c302t-c9a01d3fa9da1ea3d5216a0f2337f71f6499f4961cd97bb6eff60330ed53cf3b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6396-1720 0000-0001-9081-6334 0000-0001-5296-4440 |
PQID | 2707591609 |
PQPubID | 1256 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2707606889 proquest_journals_2707591609 crossref_citationtrail_10_1126_science_abn1459 crossref_primary_10_1126_science_abn1459 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-26 20220826 |
PublicationDateYYYYMMDD | 2022-08-26 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationYear | 2022 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_33_2 doi: 10.1038/s41524-020-0341-6 – ident: e_1_3_2_25_2 doi: 10.1145/2766926 – ident: e_1_3_2_31_2 doi: 10.1038/nphoton.2013.29 – ident: e_1_3_2_40_2 doi: 10.1016/j.cma.2008.01.008 – ident: e_1_3_2_14_2 doi: 10.1115/1.2804743 – ident: e_1_3_2_38_2 – ident: e_1_3_2_4_2 doi: 10.1016/j.mattod.2020.10.006 – ident: e_1_3_2_5_2 doi: 10.1098/rspa.2010.0215 – ident: e_1_3_2_9_2 doi: 10.1073/pnas.1307879110 – ident: e_1_3_2_13_2 doi: 10.1145/2461912.2461979 – ident: e_1_3_2_17_2 doi: 10.1126/science.1255908 – ident: e_1_3_2_12_2 doi: 10.1039/C9MH01368G – ident: e_1_3_2_19_2 doi: 10.1073/pnas.1911535116 – ident: e_1_3_2_37_2 doi: 10.1002/adma.202109304 – ident: e_1_3_2_21_2 doi: 10.1126/science.aao4640 – ident: e_1_3_2_28_2 doi: 10.1073/pnas.0631609100 – ident: e_1_3_2_42_2 doi: 10.1073/pnas.2122185119 – ident: e_1_3_2_7_2 doi: 10.1111/j.1365-2818.2006.01678.x – ident: e_1_3_2_30_2 doi: 10.1073/pnas.1905814116 – ident: e_1_3_2_22_2 doi: 10.1016/j.eml.2015.11.004 – ident: e_1_3_2_11_2 doi: 10.1126/science.aar4586 – ident: e_1_3_2_24_2 doi: 10.1126/sciadv.aao7005 – ident: e_1_3_2_27_2 doi: 10.1038/nature25476 – ident: e_1_3_2_34_2 doi: 10.1073/pnas.1717442115 – ident: e_1_3_2_20_2 doi: 10.1063/1.4709436 – ident: e_1_3_2_36_2 doi: 10.1016/j.compstruct.2021.113693 – ident: e_1_3_2_16_2 doi: 10.1103/PhysRevLett.122.155501 – ident: e_1_3_2_15_2 doi: 10.1103/PhysRevLett.117.175901 – ident: e_1_3_2_2_2 doi: 10.1038/natrevmats.2017.66 – ident: e_1_3_2_26_2 doi: 10.1126/sciadv.abf4838 – ident: e_1_3_2_35_2 doi: 10.1063/1.5096590 – ident: e_1_3_2_3_2 doi: 10.1038/s41578-020-0206-0 – ident: e_1_3_2_10_2 doi: 10.1115/1.4026911 – ident: e_1_3_2_23_2 doi: 10.1126/sciadv.aaz4169 – ident: e_1_3_2_41_2 doi: 10.1038/nature18960 – ident: e_1_3_2_6_2 doi: 10.1038/s41467-018-08049-1 – ident: e_1_3_2_8_2 doi: 10.1126/science.1133628 – ident: e_1_3_2_18_2 doi: 10.1073/pnas.1817309116 – ident: e_1_3_2_32_2 doi: 10.1002/pro.2443 – ident: e_1_3_2_29_2 doi: 10.1073/pnas.2006985118 |
SSID | ssj0009593 |
Score | 2.6175015 |
Snippet | Biomaterials display microstructures that are geometrically irregular and functionally efficient. Understanding the role of irregularity in determining... An irregular planMaterials with irregular microstructures are common in the natural world and often have interesting properties. Liu et al. devised a... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 975 |
Title | Growth rules for irregular architected materials with programmable properties |
URI | https://www.proquest.com/docview/2707591609 https://www.proquest.com/docview/2707606889 |
Volume | 377 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdKJyReEBsgBgMZiYehKpUTp3bz2FFKgW1CopP2FtmOrVUa2ZQlD_B5-KBcYsd1BUOMl6hN4iS6-_l8d74_CL2ZJAAjNU0jnk1llComIykyFinNpU4Ep6ZoDcWTU7Y8Sz-dT84Hg59B1FJTy7H68ce8kv_hKpwDvrZZsnfgrH8onIDfwF84Aofh-E88_gA2dH0xqppL3ZVVGK2rqustX438BgEolKCU2q-xXlcXkvWtS5q6bp3xVd2HEjo1tZ_xoH76LZ2AkT42cWYjCPqAAjcs8C4crxub_bPZfLJGf1tH2gd3zEUl1tZne7EWlQhdEWDFEuAH8-BZbXJh7vJRoXh21ZHt4mQlMmmbSSaEhiKbutYvFpuMkSyQwVk_3v6zHWF-XymC3pZ6LGQZp640-VZN7uXsa_5lvsiPP55-vod2EjBGkiHamR3Njxa3Fnd2JaSC5Kz-Bdvaz_bi32k0q0fooTNF8MziahcNdLmH7tvmpN_30K4j3A0-dLXJ3z5GJxZyuIMcBopjDzkcQA57yOEWcjiEHN5A7gk6W7xfvVtGriNHpChJ6khlgsQFNSIrRKwFLUD5Y4KYhFJueGwY2M8mzVisioxLybQxjFBKdDGhylBJn6JheVXqZwinKp5ylWphpEw5mUraVkYUWqZCcibNPhr3lMqVK1ffdk25zDuzNWG5I23uSLuPDv2Aa1up5fZbD3rS52463-QgtPgEjCUCl1_7yyBs2x00Ueqrxt7D2jZN2fO_P-IFerCZIAdoWFeNfgnaay1fOfD8AlVFpFo |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Growth+rules+for+irregular+architected+materials+with+programmable+properties&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Liu%2C+Ke&rft.au=Sun%2C+Rachel&rft.au=Daraio%2C+Chiara&rft.date=2022-08-26&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=377&rft.issue=6609&rft.spage=975&rft.epage=981&rft_id=info:doi/10.1126%2Fscience.abn1459&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |