Linear stability of magnetohydrodynamic flow in a square duct with thin conducting walls

This study is concerned with the numerical linear stability analysis of liquid-metal flow in a square duct with thin electrically conducting walls subject to a uniform transverse magnetic field. We derive an asymptotic solution for the base flow that is valid for not only high but also moderate magn...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 788; pp. 129 - 146
Main Authors Priede, Jānis, Arlt, Thomas, Bühler, Leo
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 10.02.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study is concerned with the numerical linear stability analysis of liquid-metal flow in a square duct with thin electrically conducting walls subject to a uniform transverse magnetic field. We derive an asymptotic solution for the base flow that is valid for not only high but also moderate magnetic fields. This solution shows that, for low wall conductance ratios $c\ll 1$ , an extremely strong magnetic field with Hartmann number $\mathit{Ha}\sim c^{-4}$ is required to attain the asymptotic flow regime considered in previous studies. We use a vector streamfunction–vorticity formulation and a Chebyshev collocation method to solve the eigenvalue problem for three-dimensional small-amplitude perturbations in ducts with realistic wall conductance ratios $c=1$ , 0.1 and 0.01 and Hartmann numbers up to $10^{4}$ . As for similar flows, instability in a sufficiently strong magnetic field is found to occur in the sidewall jets with characteristic thickness ${\it\delta}\sim \mathit{Ha}^{-1/2}$ . This results in the critical Reynolds number and wavenumber increasing asymptotically with the magnetic field as $\mathit{Re}_{c}\sim 110\mathit{Ha}^{1/2}$ and $k_{c}\sim 0.5\mathit{Ha}^{1/2}$ . The respective critical Reynolds number based on the total volume flux in a square duct with $c\ll 1$ is $\overline{\mathit{Re}}_{c}\approx 520$ . Although this value is somewhat larger than $\overline{\mathit{Re}}_{c}\approx 313$ found by Ting et al. (Intl J. Engng Sci., vol. 29 (8), 1991, pp. 939–948) for the asymptotic sidewall jet profile, it still appears significantly lower than the Reynolds numbers at which turbulence is observed in experiments as well as in direct numerical simulations of this type of flow.
AbstractList This study is concerned with the numerical linear stability analysis of liquid-metal flow in a square duct with thin electrically conducting walls subject to a uniform transverse magnetic field. We derive an asymptotic solution for the base flow that is valid for not only high but also moderate magnetic fields. This solution shows that, for low wall conductance ratios $c\ll 1$ , an extremely strong magnetic field with Hartmann number $\mathit{Ha}\sim c^{-4}$ is required to attain the asymptotic flow regime considered in previous studies. We use a vector streamfunction–vorticity formulation and a Chebyshev collocation method to solve the eigenvalue problem for three-dimensional small-amplitude perturbations in ducts with realistic wall conductance ratios $c=1$ , 0.1 and 0.01 and Hartmann numbers up to $10^{4}$ . As for similar flows, instability in a sufficiently strong magnetic field is found to occur in the sidewall jets with characteristic thickness ${\it\delta}\sim \mathit{Ha}^{-1/2}$ . This results in the critical Reynolds number and wavenumber increasing asymptotically with the magnetic field as $\mathit{Re}_{c}\sim 110\mathit{Ha}^{1/2}$ and $k_{c}\sim 0.5\mathit{Ha}^{1/2}$ . The respective critical Reynolds number based on the total volume flux in a square duct with $c\ll 1$ is $\overline{\mathit{Re}}_{c}\approx 520$ . Although this value is somewhat larger than $\overline{\mathit{Re}}_{c}\approx 313$ found by Ting et al.  ( Intl J. Engng Sci. , vol. 29 (8), 1991, pp. 939–948) for the asymptotic sidewall jet profile, it still appears significantly lower than the Reynolds numbers at which turbulence is observed in experiments as well as in direct numerical simulations of this type of flow.
This study is concerned with the numerical linear stability analysis of liquid-metal flow in a square duct with thin electrically conducting walls subject to a uniform transverse magnetic field. We derive an asymptotic solution for the base flow that is valid for not only high but also moderate magnetic fields. This solution shows that, for low wall conductance ratios [formula omitted: see PDF] , an extremely strong magnetic field with Hartmann number [formula omitted: see PDF] is required to attain the asymptotic flow regime considered in previous studies. We use a vector streamfunction-vorticity formulation and a Chebyshev collocation method to solve the eigenvalue problem for three-dimensional small-amplitude perturbations in ducts with realistic wall conductance ratios [formula omitted: see PDF] , 0.1 and 0.01 and Hartmann numbers up to [formula omitted: see PDF] . As for similar flows, instability in a sufficiently strong magnetic field is found to occur in the sidewall jets with characteristic thickness [formula omitted: see PDF] . This results in the critical Reynolds number and wavenumber increasing asymptotically with the magnetic field as [formula omitted: see PDF] and [formula omitted: see PDF] . The respective critical Reynolds number based on the total volume flux in a square duct with [formula omitted: see PDF] is [formula omitted: see PDF] . Although this value is somewhat larger than [formula omitted: see PDF] found by Ting et al. (Intl J. Engng Sci., vol. 29 (8), 1991, pp. 939-948) for the asymptotic sidewall jet profile, it still appears significantly lower than the Reynolds numbers at which turbulence is observed in experiments as well as in direct numerical simulations of this type of flow.
This study is concerned with the numerical linear stability analysis of liquid-metal flow in a square duct with thin electrically conducting walls subject to a uniform transverse magnetic field. We derive an asymptotic solution for the base flow that is valid for not only high but also moderate magnetic fields. This solution shows that, for low wall conductance ratios $c\ll 1$ , an extremely strong magnetic field with Hartmann number $\mathit{Ha}\sim c^{-4}$ is required to attain the asymptotic flow regime considered in previous studies. We use a vector streamfunction–vorticity formulation and a Chebyshev collocation method to solve the eigenvalue problem for three-dimensional small-amplitude perturbations in ducts with realistic wall conductance ratios $c=1$ , 0.1 and 0.01 and Hartmann numbers up to $10^{4}$ . As for similar flows, instability in a sufficiently strong magnetic field is found to occur in the sidewall jets with characteristic thickness ${\it\delta}\sim \mathit{Ha}^{-1/2}$ . This results in the critical Reynolds number and wavenumber increasing asymptotically with the magnetic field as $\mathit{Re}_{c}\sim 110\mathit{Ha}^{1/2}$ and $k_{c}\sim 0.5\mathit{Ha}^{1/2}$ . The respective critical Reynolds number based on the total volume flux in a square duct with $c\ll 1$ is $\overline{\mathit{Re}}_{c}\approx 520$ . Although this value is somewhat larger than $\overline{\mathit{Re}}_{c}\approx 313$ found by Ting et al. (Intl J. Engng Sci., vol. 29 (8), 1991, pp. 939–948) for the asymptotic sidewall jet profile, it still appears significantly lower than the Reynolds numbers at which turbulence is observed in experiments as well as in direct numerical simulations of this type of flow.
Author Bühler, Leo
Arlt, Thomas
Priede, Jānis
Author_xml – sequence: 1
  givenname: Jānis
  surname: Priede
  fullname: Priede, Jānis
  email: J.Priede@coventry.ac.uk
  organization: Applied Mathematics Research Centre, Coventry University, Coventry CV1 5FB, UK
– sequence: 2
  givenname: Thomas
  surname: Arlt
  fullname: Arlt, Thomas
  organization: Institut für Kern- und Energietechnik, Karlsruhe Institute of Technology, von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
– sequence: 3
  givenname: Leo
  surname: Bühler
  fullname: Bühler, Leo
  organization: Institut für Kern- und Energietechnik, Karlsruhe Institute of Technology, von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
BookMark eNp1kE1LAzEQhoNUsK3e_AEBr-6ar910j1L8goIXBW8hm822KbtJm2Qp--9NaQ8ieppheN6Z4ZmBiXVWA3CLUY4R5g_bts8JwkXOUXUBppiVVcZLVkzAFCFCMowJugKzELYIYYoqPgVfK2O19DBEWZvOxBG6FvZybXV0m7Hxrhmt7I2CbecO0FgoYdgP0mvYDCrCg4kbGDdprpw9Toxdw4PsunANLlvZBX1zrnPw-fz0sXzNVu8vb8vHVaYoIjGrC80Q57SitC0wJQXVrFaaq0UpVcM0qxghqmAcK4ZqxlpZEkwaWdKCpr6kc3B32rvzbj_oEMXWDd6mkwIvFoxiXpU8UfcnSnkXgtet2HnTSz8KjMTRnUjuxNGdSO4STn7hykQZjbPRS9P9F8rPIdnX3jRr_eOVvwLf0L-D2A
CitedBy_id crossref_primary_10_1063_1_5145240
crossref_primary_10_2139_ssrn_4172017
crossref_primary_10_1063_5_0149639
crossref_primary_10_1142_S0217979224500243
crossref_primary_10_1017_jfm_2017_322
crossref_primary_10_1088_1757_899X_228_1_012003
crossref_primary_10_1016_j_fusengdes_2020_111854
crossref_primary_10_1002_pamm_202400041
crossref_primary_10_1088_1741_4326_acdc14
crossref_primary_10_1016_j_fusengdes_2021_112795
crossref_primary_10_1016_j_fusengdes_2023_113920
crossref_primary_10_3390_fluids4040177
crossref_primary_10_1017_jfm_2022_868
crossref_primary_10_1063_5_0167133
crossref_primary_10_1103_PhysRevFluids_6_073502
Cites_doi 10.1007/978-1-4020-4833-3_10
10.1115/1.4027198
10.1017/S0305004100028139
10.1103/PhysRevLett.110.084501
10.1017/S0022112005008487
10.1017/S002211209000204X
10.1017/S0022112065000344
10.1063/1.3478877
10.1103/PhysRevLett.95.124501
10.1017/jfm.2014.612
10.1007/978-3-540-30728-0
10.1007/BF01601011
10.1017/jfm.2012.276
10.1016/0020-7225(91)90167-2
10.1103/PhysRevLett.103.154501
10.1063/1.2747233
10.1017/S0022112009993259
10.1103/PhysRevE.75.047303
ContentType Journal Article
Copyright 2016 Cambridge University Press
Copyright_xml – notice: 2016 Cambridge University Press
DBID AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/jfm.2015.709
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Research Library Prep

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
DocumentTitleAlternate Linear stability of MHD flow in a square duct with thin walls
J. Priede, T. Arlt and L. Bühler
EISSN 1469-7645
EndPage 146
ExternalDocumentID 4321457419
10_1017_jfm_2015_709
GroupedDBID -2P
-DZ
-E.
-~6
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
3V.
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABZCX
ACBEA
ACBMC
ACCHT
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADVJH
AEBAK
AEHGV
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
EJD
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
I.7
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZE2
ZMEZD
ZYDXJ
~02
AATMM
AAYXX
ABVKB
ABXAU
ABXHF
ACDLN
AEUYN
AFZFC
AKMAY
BQFHP
CITATION
PHGZM
PHGZT
7TB
7U5
7UA
7XB
8FD
8FK
ADMLS
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c302t-b5e40773933f513253e4bce7c86acd4e49422c5471c40b44fa6212da6353fa663
IEDL.DBID BENPR
ISSN 0022-1120
IngestDate Sat Aug 16 05:42:37 EDT 2025
Tue Jul 01 03:01:05 EDT 2025
Thu Apr 24 23:01:08 EDT 2025
Wed Mar 13 05:51:13 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords high-Hartmann-number flows
instability
MHD and electrohydrodynamics
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c302t-b5e40773933f513253e4bce7c86acd4e49422c5471c40b44fa6212da6353fa663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1884317967
PQPubID 34769
PageCount 18
ParticipantIDs proquest_journals_1884317967
crossref_primary_10_1017_jfm_2015_709
crossref_citationtrail_10_1017_jfm_2015_709
cambridge_journals_10_1017_jfm_2015_709
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160210
PublicationDateYYYYMMDD 2016-02-10
PublicationDate_xml – month: 02
  year: 2016
  text: 20160210
  day: 10
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2016
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2010; 22
2007; 19
1991; 29
1965; 21
2010; 649
1953; 49
1961; 5
2005; 95
1937; 15
2012; 708
2013; 110
2007; 75
1961; 12
2014; 760
1990; 212
2009; 103
2006; 551
1981; 20
2014; 66
S0022112015007090_r20
S0022112015007090_r21
S0022112015007090_r22
Roberts (S0022112015007090_r18) 1967
S0022112015007090_r24
S0022112015007090_r26
S0022112015007090_r2
S0022112015007090_r19
S0022112015007090_r6
Canuto (S0022112015007090_r3) 2007
Walker (S0022112015007090_r25) 1981; 20
S0022112015007090_r5
Jackson (S0022112015007090_r11) 1998
Uflyand (S0022112015007090_r23) 1961; 5
Hartmann (S0022112015007090_r8) 1937; 15
S0022112015007090_r10
S0022112015007090_r12
S0022112015007090_r13
S0022112015007090_r14
S0022112015007090_r9
S0022112015007090_r15
S0022112015007090_r16
S0022112015007090_r17
Chandrasekhar (S0022112015007090_r4) 1961
Hartmann (S0022112015007090_r7) 1937; 15
Abramowitz (S0022112015007090_r1) 1972
References_xml – volume: 21
  start-page: 577
  issue: 4
  year: 1965
  end-page: 590
  article-title: Magnetohydrodynamic flow in rectangular ducts
  publication-title: J. Fluid Mech.
– volume: 103
  issue: 15
  year: 2009
  article-title: Instabilities and transition in magnetohydrodynamic flows in ducts with electrically conducting walls
  publication-title: Phys. Rev. Lett.
– volume: 29
  start-page: 939
  issue: 8
  year: 1991
  end-page: 948
  article-title: Linear stability analysis for high-velocity boundary layers in liquid-metal magnetohydrodynamic flows
  publication-title: Intl J. Engng Sci.
– volume: 20
  start-page: 79
  issue: 1
  year: 1981
  end-page: 112
  article-title: Magneto-hydrodynamic flows in rectangular ducts with thin conducting walls
  publication-title: J. Méc.
– volume: 95
  issue: 12
  year: 2005
  article-title: New type of magnetorotational instability in cylindrical Taylor–Couette flow
  publication-title: Phys. Rev. Lett.
– volume: 649
  start-page: 115
  year: 2010
  end-page: 134
  article-title: Linear stability of Hunt’s flow
  publication-title: J. Fluid Mech.
– volume: 212
  start-page: 437
  year: 1990
  end-page: 449
  article-title: Stability of the laminar flow in a rectangular duct
  publication-title: J. Fluid Mech.
– volume: 66
  issue: 3
  year: 2014
  article-title: Laminar–turbulent transition in magnetohydrodynamic duct, pipe, and channel flows
  publication-title: Appl. Mech. Rev.
– volume: 12
  start-page: 100
  issue: 2
  year: 1961
  end-page: 114
  article-title: Duct flow in magnetohydrodynamics
  publication-title: Z. Angew. Math. Phys.
– volume: 5
  start-page: 1191
  issue: 10
  year: 1961
  end-page: 1193
  article-title: Flow stability of a conducting fluid in a rectangular channel in a transverse magnetic field
  publication-title: Sov. Phys. Tech. Phys.
– volume: 110
  issue: 8
  year: 2013
  article-title: patterned turbulence in liquid metal flow: computational reconstruction of the Hartmann experiment
  publication-title: Phys. Rev. Lett.
– volume: 760
  start-page: 387
  year: 2014
  end-page: 406
  article-title: Two-dimensional nonlinear travelling waves in magnetohydrodynamic channel flow
  publication-title: J. Fluid Mech.
– volume: 49
  start-page: 136
  issue: 1
  year: 1953
  end-page: 144
  article-title: Steady motion of conducting fluids in pipes under transverse magnetic fields
  publication-title: Proc. Camb. Phil. Soc.
– volume: 19
  issue: 7
  year: 2007
  article-title: Quasi-two-dimensional perturbations in duct flows under transverse magnetic field
  publication-title: Phys. Fluids
– volume: 75
  start-page: 47303
  issue: 4
  year: 2007
  article-title: Inductionless magnetorotational instability in a Taylor–Couette flow with a helical magnetic field
  publication-title: Phys. Rev. E
– volume: 15
  start-page: 1
  issue: 6
  year: 1937
  end-page: 28
  article-title: Hg-dynamics I: theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic field
  publication-title: K. Dan. Vidensk. Selsk. Mat. Fys. Medd.
– volume: 15
  start-page: 1
  issue: 7
  year: 1937
  end-page: 45
  article-title: Hg-dynamics II: experimental investigations on the flow of mercury in a homogeneous magnetic field
  publication-title: K. Dan. Vidensk. Selsk. Mat. Fys. Medd.
– volume: 22
  issue: 8
  year: 2010
  article-title: Marginal turbulent magnetohydrodynamic flow in a square duct
  publication-title: Phys. Fluids
– volume: 551
  start-page: 387
  year: 2006
  end-page: 404
  article-title: Linear stability of flow in an internally heated rectangular duct
  publication-title: J. Fluid Mech.
– volume: 708
  start-page: 111
  year: 2012
  end-page: 127
  article-title: Linear stability of magnetohydrodynamic flow in a perfectly conducting rectangular duct
  publication-title: J. Fluid Mech.
– ident: S0022112015007090_r2
  doi: 10.1007/978-1-4020-4833-3_10
– ident: S0022112015007090_r26
  doi: 10.1115/1.4027198
– volume: 15
  start-page: 1
  year: 1937
  ident: S0022112015007090_r7
  article-title: Hg-dynamics I: theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic field
  publication-title: K. Dan. Vidensk. Selsk. Mat. Fys. Medd.
– volume: 5
  start-page: 1191
  year: 1961
  ident: S0022112015007090_r23
  article-title: Flow stability of a conducting fluid in a rectangular channel in a transverse magnetic field
  publication-title: Sov. Phys. Tech. Phys.
– ident: S0022112015007090_r20
  doi: 10.1017/S0305004100028139
– ident: S0022112015007090_r13
  doi: 10.1103/PhysRevLett.110.084501
– ident: S0022112015007090_r24
  doi: 10.1017/S0022112005008487
– ident: S0022112015007090_r21
  doi: 10.1017/S002211209000204X
– ident: S0022112015007090_r10
  doi: 10.1017/S0022112065000344
– ident: S0022112015007090_r19
  doi: 10.1063/1.3478877
– volume-title: Hydrodynamic and Hydromagnetic Stability
  year: 1961
  ident: S0022112015007090_r4
– ident: S0022112015007090_r9
  doi: 10.1103/PhysRevLett.95.124501
– ident: S0022112015007090_r6
  doi: 10.1017/jfm.2014.612
– volume-title: Spectral Methods: Fundamentals in Single Domains
  year: 2007
  ident: S0022112015007090_r3
  doi: 10.1007/978-3-540-30728-0
– ident: S0022112015007090_r5
  doi: 10.1007/BF01601011
– volume-title: Classical Electrodynamics
  year: 1998
  ident: S0022112015007090_r11
– ident: S0022112015007090_r16
  doi: 10.1017/jfm.2012.276
– ident: S0022112015007090_r22
  doi: 10.1016/0020-7225(91)90167-2
– ident: S0022112015007090_r12
  doi: 10.1103/PhysRevLett.103.154501
– ident: S0022112015007090_r14
  doi: 10.1063/1.2747233
– volume-title: Handbook of Mathematical Functions
  year: 1972
  ident: S0022112015007090_r1
– volume: 15
  start-page: 1
  year: 1937
  ident: S0022112015007090_r8
  article-title: Hg-dynamics II: experimental investigations on the flow of mercury in a homogeneous magnetic field
  publication-title: K. Dan. Vidensk. Selsk. Mat. Fys. Medd.
– volume: 20
  start-page: 79
  year: 1981
  ident: S0022112015007090_r25
  article-title: Magneto-hydrodynamic flows in rectangular ducts with thin conducting walls
  publication-title: J. Méc.
– ident: S0022112015007090_r15
  doi: 10.1017/S0022112009993259
– ident: S0022112015007090_r17
  doi: 10.1103/PhysRevE.75.047303
– volume-title: An Introduction to Magnetohydrodynamics
  year: 1967
  ident: S0022112015007090_r18
SSID ssj0013097
Score 2.2754967
Snippet This study is concerned with the numerical linear stability analysis of liquid-metal flow in a square duct with thin electrically conducting walls subject to a...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 129
SubjectTerms Base flow
Fluid mechanics
Linear equations
Magnetic fields
Reynolds number
Stability analysis
Vector space
Title Linear stability of magnetohydrodynamic flow in a square duct with thin conducting walls
URI https://www.cambridge.org/core/product/identifier/S0022112015007090/type/journal_article
https://www.proquest.com/docview/1884317967
Volume 788
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT8IwEL6IxEQf_IEaUSR90PhgpoO1W3kyqCAxSoxKwtvSdZ1ocEM3Y_zvvY6C8IBvTdd0yfX63V17_Q7giDIWoWFllhdJx6Lov1kBD7FV95TruFSK_KL9vut2evS2z_rmwC01aZUTTMyBOkykPiM_r3GubV3D9S5GH5auGqVvV00JjQIUEYI5Bl_Fy1b34fHvHsFueBO-cPQsbJP6rkmj3yL9EL3GzjydjPhHrDBvoObxOTc67U1YN94iaY6XdwuWVFyCDeM5ErMv0xKszdAKlmAlT-uU6Tb0MdREVSboAuZJsD8kici7eIlVlgx-QgTPcUF6Eg2Tb_IaE0HSD1QaRTQNLNGHtCQbYD9GzboHpyffYjhMd6DXbj1fdSxTS8GSjl3PrIApDN00_Z0TMYxAmaNoIJUnuStkSBVt0HpdMjRVktoBpZFwUaKhQH_Ewbbr7MJynMRqD4gQnAcIFJwGDYoBZoAYEGEYwxAKXE-pMpxMhembHZH642wyz0ex-1rsPoq9DKcTUfvSUJLryhjDBaOPp6NHYyqOBeMqk1Wb-f1Uffb__3wAqzhRnphdsyuwnH1-qUP0O7KgCgXevqlCsXl9f_dUNar2C-_J13U
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VIgQMPAqIQgEPIAYUSGM7jwEhBJTynEDqFhzH4aE2ARJU9U_xGzmnSQsDbGyWYznS-fzdnX3-DmCbcR6hYeWGE0lqMPTfjMANsWU5yqY2kyK_aL-5tdv37LLDOxX4LN_C6LTKEhNzoA4Tqc_ID5quq22dZztHr2-Grhqlb1fLEhpDtbhSgz6GbOnhxSmu745ltc7uTtpGUVXAkNS0MiPgCoMYTQRHI46xGKeKBVI50rWFDJliHrMsyRG0JTMDxiJhI7yHAi0zxbZNcd4JmGSUenpHua3z8a2F6TklOzn6MWaRaK8pql8i_ey9yfcdnfo4pnH4aQ5_WoPcxLUWYK7wTcnxUJkWoaLiGswXfiopUCCtwew3EsMaTOVJpDJdgg4Gtighgg5nnnI7IElEeuIxVlnyNAgRqgex6D1LEnWTPnmOiSDpG6qoIpp0lugjYZI9YT_G6LoHpyd90e2my3D_LzJegWqcxGoViBCuGyAsuSzwGIazASJOhEETR-CxHaXqsDsSpl_sv9Qf5q45Pord12L3Uex12CtF7cuCAF3X4ej-MnpnNPp1SPzxy7hGuWrffj9S1rW_P2_BdPvu5tq_vri9WocZnDRPCW-aDahm7x9qAz2eLNjM1YzAw3_r9RcU-g8M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+stability+of+magnetohydrodynamic+flow+in+a+square+duct+with+thin+conducting+walls&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Priede%2C+Janis&rft.au=Arlt%2C+Thomas&rft.au=B%C3%BChler%2C+Leo&rft.date=2016-02-10&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=788&rft.spage=129&rft_id=info:doi/10.1017%2Fjfm.2015.709&rft.externalDocID=4321457419
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon