Linear stability of magnetohydrodynamic flow in a square duct with thin conducting walls
This study is concerned with the numerical linear stability analysis of liquid-metal flow in a square duct with thin electrically conducting walls subject to a uniform transverse magnetic field. We derive an asymptotic solution for the base flow that is valid for not only high but also moderate magn...
Saved in:
Published in | Journal of fluid mechanics Vol. 788; pp. 129 - 146 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
10.02.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study is concerned with the numerical linear stability analysis of liquid-metal flow in a square duct with thin electrically conducting walls subject to a uniform transverse magnetic field. We derive an asymptotic solution for the base flow that is valid for not only high but also moderate magnetic fields. This solution shows that, for low wall conductance ratios
$c\ll 1$
, an extremely strong magnetic field with Hartmann number
$\mathit{Ha}\sim c^{-4}$
is required to attain the asymptotic flow regime considered in previous studies. We use a vector streamfunction–vorticity formulation and a Chebyshev collocation method to solve the eigenvalue problem for three-dimensional small-amplitude perturbations in ducts with realistic wall conductance ratios
$c=1$
, 0.1 and 0.01 and Hartmann numbers up to
$10^{4}$
. As for similar flows, instability in a sufficiently strong magnetic field is found to occur in the sidewall jets with characteristic thickness
${\it\delta}\sim \mathit{Ha}^{-1/2}$
. This results in the critical Reynolds number and wavenumber increasing asymptotically with the magnetic field as
$\mathit{Re}_{c}\sim 110\mathit{Ha}^{1/2}$
and
$k_{c}\sim 0.5\mathit{Ha}^{1/2}$
. The respective critical Reynolds number based on the total volume flux in a square duct with
$c\ll 1$
is
$\overline{\mathit{Re}}_{c}\approx 520$
. Although this value is somewhat larger than
$\overline{\mathit{Re}}_{c}\approx 313$
found by Ting et al. (Intl J. Engng Sci., vol. 29 (8), 1991, pp. 939–948) for the asymptotic sidewall jet profile, it still appears significantly lower than the Reynolds numbers at which turbulence is observed in experiments as well as in direct numerical simulations of this type of flow. |
---|---|
AbstractList | This study is concerned with the numerical linear stability analysis of liquid-metal flow in a square duct with thin electrically conducting walls subject to a uniform transverse magnetic field. We derive an asymptotic solution for the base flow that is valid for not only high but also moderate magnetic fields. This solution shows that, for low wall conductance ratios
$c\ll 1$
, an extremely strong magnetic field with Hartmann number
$\mathit{Ha}\sim c^{-4}$
is required to attain the asymptotic flow regime considered in previous studies. We use a vector streamfunction–vorticity formulation and a Chebyshev collocation method to solve the eigenvalue problem for three-dimensional small-amplitude perturbations in ducts with realistic wall conductance ratios
$c=1$
, 0.1 and 0.01 and Hartmann numbers up to
$10^{4}$
. As for similar flows, instability in a sufficiently strong magnetic field is found to occur in the sidewall jets with characteristic thickness
${\it\delta}\sim \mathit{Ha}^{-1/2}$
. This results in the critical Reynolds number and wavenumber increasing asymptotically with the magnetic field as
$\mathit{Re}_{c}\sim 110\mathit{Ha}^{1/2}$
and
$k_{c}\sim 0.5\mathit{Ha}^{1/2}$
. The respective critical Reynolds number based on the total volume flux in a square duct with
$c\ll 1$
is
$\overline{\mathit{Re}}_{c}\approx 520$
. Although this value is somewhat larger than
$\overline{\mathit{Re}}_{c}\approx 313$
found by Ting
et al.
(
Intl J. Engng Sci.
, vol. 29 (8), 1991, pp. 939–948) for the asymptotic sidewall jet profile, it still appears significantly lower than the Reynolds numbers at which turbulence is observed in experiments as well as in direct numerical simulations of this type of flow. This study is concerned with the numerical linear stability analysis of liquid-metal flow in a square duct with thin electrically conducting walls subject to a uniform transverse magnetic field. We derive an asymptotic solution for the base flow that is valid for not only high but also moderate magnetic fields. This solution shows that, for low wall conductance ratios [formula omitted: see PDF] , an extremely strong magnetic field with Hartmann number [formula omitted: see PDF] is required to attain the asymptotic flow regime considered in previous studies. We use a vector streamfunction-vorticity formulation and a Chebyshev collocation method to solve the eigenvalue problem for three-dimensional small-amplitude perturbations in ducts with realistic wall conductance ratios [formula omitted: see PDF] , 0.1 and 0.01 and Hartmann numbers up to [formula omitted: see PDF] . As for similar flows, instability in a sufficiently strong magnetic field is found to occur in the sidewall jets with characteristic thickness [formula omitted: see PDF] . This results in the critical Reynolds number and wavenumber increasing asymptotically with the magnetic field as [formula omitted: see PDF] and [formula omitted: see PDF] . The respective critical Reynolds number based on the total volume flux in a square duct with [formula omitted: see PDF] is [formula omitted: see PDF] . Although this value is somewhat larger than [formula omitted: see PDF] found by Ting et al. (Intl J. Engng Sci., vol. 29 (8), 1991, pp. 939-948) for the asymptotic sidewall jet profile, it still appears significantly lower than the Reynolds numbers at which turbulence is observed in experiments as well as in direct numerical simulations of this type of flow. This study is concerned with the numerical linear stability analysis of liquid-metal flow in a square duct with thin electrically conducting walls subject to a uniform transverse magnetic field. We derive an asymptotic solution for the base flow that is valid for not only high but also moderate magnetic fields. This solution shows that, for low wall conductance ratios $c\ll 1$ , an extremely strong magnetic field with Hartmann number $\mathit{Ha}\sim c^{-4}$ is required to attain the asymptotic flow regime considered in previous studies. We use a vector streamfunction–vorticity formulation and a Chebyshev collocation method to solve the eigenvalue problem for three-dimensional small-amplitude perturbations in ducts with realistic wall conductance ratios $c=1$ , 0.1 and 0.01 and Hartmann numbers up to $10^{4}$ . As for similar flows, instability in a sufficiently strong magnetic field is found to occur in the sidewall jets with characteristic thickness ${\it\delta}\sim \mathit{Ha}^{-1/2}$ . This results in the critical Reynolds number and wavenumber increasing asymptotically with the magnetic field as $\mathit{Re}_{c}\sim 110\mathit{Ha}^{1/2}$ and $k_{c}\sim 0.5\mathit{Ha}^{1/2}$ . The respective critical Reynolds number based on the total volume flux in a square duct with $c\ll 1$ is $\overline{\mathit{Re}}_{c}\approx 520$ . Although this value is somewhat larger than $\overline{\mathit{Re}}_{c}\approx 313$ found by Ting et al. (Intl J. Engng Sci., vol. 29 (8), 1991, pp. 939–948) for the asymptotic sidewall jet profile, it still appears significantly lower than the Reynolds numbers at which turbulence is observed in experiments as well as in direct numerical simulations of this type of flow. |
Author | Bühler, Leo Arlt, Thomas Priede, Jānis |
Author_xml | – sequence: 1 givenname: Jānis surname: Priede fullname: Priede, Jānis email: J.Priede@coventry.ac.uk organization: Applied Mathematics Research Centre, Coventry University, Coventry CV1 5FB, UK – sequence: 2 givenname: Thomas surname: Arlt fullname: Arlt, Thomas organization: Institut für Kern- und Energietechnik, Karlsruhe Institute of Technology, von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany – sequence: 3 givenname: Leo surname: Bühler fullname: Bühler, Leo organization: Institut für Kern- und Energietechnik, Karlsruhe Institute of Technology, von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany |
BookMark | eNp1kE1LAzEQhoNUsK3e_AEBr-6ar910j1L8goIXBW8hm822KbtJm2Qp--9NaQ8ieppheN6Z4ZmBiXVWA3CLUY4R5g_bts8JwkXOUXUBppiVVcZLVkzAFCFCMowJugKzELYIYYoqPgVfK2O19DBEWZvOxBG6FvZybXV0m7Hxrhmt7I2CbecO0FgoYdgP0mvYDCrCg4kbGDdprpw9Toxdw4PsunANLlvZBX1zrnPw-fz0sXzNVu8vb8vHVaYoIjGrC80Q57SitC0wJQXVrFaaq0UpVcM0qxghqmAcK4ZqxlpZEkwaWdKCpr6kc3B32rvzbj_oEMXWDd6mkwIvFoxiXpU8UfcnSnkXgtet2HnTSz8KjMTRnUjuxNGdSO4STn7hykQZjbPRS9P9F8rPIdnX3jRr_eOVvwLf0L-D2A |
CitedBy_id | crossref_primary_10_1063_1_5145240 crossref_primary_10_2139_ssrn_4172017 crossref_primary_10_1063_5_0149639 crossref_primary_10_1142_S0217979224500243 crossref_primary_10_1017_jfm_2017_322 crossref_primary_10_1088_1757_899X_228_1_012003 crossref_primary_10_1016_j_fusengdes_2020_111854 crossref_primary_10_1002_pamm_202400041 crossref_primary_10_1088_1741_4326_acdc14 crossref_primary_10_1016_j_fusengdes_2021_112795 crossref_primary_10_1016_j_fusengdes_2023_113920 crossref_primary_10_3390_fluids4040177 crossref_primary_10_1017_jfm_2022_868 crossref_primary_10_1063_5_0167133 crossref_primary_10_1103_PhysRevFluids_6_073502 |
Cites_doi | 10.1007/978-1-4020-4833-3_10 10.1115/1.4027198 10.1017/S0305004100028139 10.1103/PhysRevLett.110.084501 10.1017/S0022112005008487 10.1017/S002211209000204X 10.1017/S0022112065000344 10.1063/1.3478877 10.1103/PhysRevLett.95.124501 10.1017/jfm.2014.612 10.1007/978-3-540-30728-0 10.1007/BF01601011 10.1017/jfm.2012.276 10.1016/0020-7225(91)90167-2 10.1103/PhysRevLett.103.154501 10.1063/1.2747233 10.1017/S0022112009993259 10.1103/PhysRevE.75.047303 |
ContentType | Journal Article |
Copyright | 2016 Cambridge University Press |
Copyright_xml | – notice: 2016 Cambridge University Press |
DBID | AAYXX CITATION 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
DOI | 10.1017/jfm.2015.709 |
DatabaseName | CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Research Library Prep Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Research Library Prep |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
DocumentTitleAlternate | Linear stability of MHD flow in a square duct with thin walls J. Priede, T. Arlt and L. Bühler |
EISSN | 1469-7645 |
EndPage | 146 |
ExternalDocumentID | 4321457419 10_1017_jfm_2015_709 |
GroupedDBID | -2P -DZ -E. -~6 -~X .DC .FH 09C 09E 0E1 0R~ 29K 3V. 4.4 5GY 5VS 74X 74Y 7~V 88I 8FE 8FG 8FH 8G5 8R4 8R5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AARAB AASVR AAUIS AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABZCX ACBEA ACBMC ACCHT ACGFO ACGFS ACGOD ACIMK ACIWK ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADGEJ ADKIL ADOCW ADVJH AEBAK AEHGV AEMTW AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFRAH AFUTZ AGABE AGBYD AGJUD AGLWM AGOOT AHQXX AHRGI AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BHPHI BKSAR BLZWO BMAJL BPHCQ C0O CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC CS3 D-I DC4 DOHLZ DU5 DWQXO E.L EBS EJD F5P GNUQQ GUQSH HCIFZ HG- HST HZ~ I.6 I.7 IH6 IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L6V L98 LK5 LW7 M-V M2O M2P M7R M7S NIKVX O9- OYBOY P2P P62 PCBAR PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RNS ROL RR0 S0W S6- S6U SAAAG SC5 T9M TAE TN5 UT1 WFFJZ WH7 WQ3 WXU WXY WYP ZE2 ZMEZD ZYDXJ ~02 AATMM AAYXX ABVKB ABXAU ABXHF ACDLN AEUYN AFZFC AKMAY BQFHP CITATION PHGZM PHGZT 7TB 7U5 7UA 7XB 8FD 8FK ADMLS C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c302t-b5e40773933f513253e4bce7c86acd4e49422c5471c40b44fa6212da6353fa663 |
IEDL.DBID | BENPR |
ISSN | 0022-1120 |
IngestDate | Sat Aug 16 05:42:37 EDT 2025 Tue Jul 01 03:01:05 EDT 2025 Thu Apr 24 23:01:08 EDT 2025 Wed Mar 13 05:51:13 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | high-Hartmann-number flows instability MHD and electrohydrodynamics |
Language | English |
License | https://www.cambridge.org/core/terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c302t-b5e40773933f513253e4bce7c86acd4e49422c5471c40b44fa6212da6353fa663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1884317967 |
PQPubID | 34769 |
PageCount | 18 |
ParticipantIDs | proquest_journals_1884317967 crossref_primary_10_1017_jfm_2015_709 crossref_citationtrail_10_1017_jfm_2015_709 cambridge_journals_10_1017_jfm_2015_709 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160210 |
PublicationDateYYYYMMDD | 2016-02-10 |
PublicationDate_xml | – month: 02 year: 2016 text: 20160210 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Journal of fluid mechanics |
PublicationTitleAlternate | J. Fluid Mech |
PublicationYear | 2016 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | 2010; 22 2007; 19 1991; 29 1965; 21 2010; 649 1953; 49 1961; 5 2005; 95 1937; 15 2012; 708 2013; 110 2007; 75 1961; 12 2014; 760 1990; 212 2009; 103 2006; 551 1981; 20 2014; 66 S0022112015007090_r20 S0022112015007090_r21 S0022112015007090_r22 Roberts (S0022112015007090_r18) 1967 S0022112015007090_r24 S0022112015007090_r26 S0022112015007090_r2 S0022112015007090_r19 S0022112015007090_r6 Canuto (S0022112015007090_r3) 2007 Walker (S0022112015007090_r25) 1981; 20 S0022112015007090_r5 Jackson (S0022112015007090_r11) 1998 Uflyand (S0022112015007090_r23) 1961; 5 Hartmann (S0022112015007090_r8) 1937; 15 S0022112015007090_r10 S0022112015007090_r12 S0022112015007090_r13 S0022112015007090_r14 S0022112015007090_r9 S0022112015007090_r15 S0022112015007090_r16 S0022112015007090_r17 Chandrasekhar (S0022112015007090_r4) 1961 Hartmann (S0022112015007090_r7) 1937; 15 Abramowitz (S0022112015007090_r1) 1972 |
References_xml | – volume: 21 start-page: 577 issue: 4 year: 1965 end-page: 590 article-title: Magnetohydrodynamic flow in rectangular ducts publication-title: J. Fluid Mech. – volume: 103 issue: 15 year: 2009 article-title: Instabilities and transition in magnetohydrodynamic flows in ducts with electrically conducting walls publication-title: Phys. Rev. Lett. – volume: 29 start-page: 939 issue: 8 year: 1991 end-page: 948 article-title: Linear stability analysis for high-velocity boundary layers in liquid-metal magnetohydrodynamic flows publication-title: Intl J. Engng Sci. – volume: 20 start-page: 79 issue: 1 year: 1981 end-page: 112 article-title: Magneto-hydrodynamic flows in rectangular ducts with thin conducting walls publication-title: J. Méc. – volume: 95 issue: 12 year: 2005 article-title: New type of magnetorotational instability in cylindrical Taylor–Couette flow publication-title: Phys. Rev. Lett. – volume: 649 start-page: 115 year: 2010 end-page: 134 article-title: Linear stability of Hunt’s flow publication-title: J. Fluid Mech. – volume: 212 start-page: 437 year: 1990 end-page: 449 article-title: Stability of the laminar flow in a rectangular duct publication-title: J. Fluid Mech. – volume: 66 issue: 3 year: 2014 article-title: Laminar–turbulent transition in magnetohydrodynamic duct, pipe, and channel flows publication-title: Appl. Mech. Rev. – volume: 12 start-page: 100 issue: 2 year: 1961 end-page: 114 article-title: Duct flow in magnetohydrodynamics publication-title: Z. Angew. Math. Phys. – volume: 5 start-page: 1191 issue: 10 year: 1961 end-page: 1193 article-title: Flow stability of a conducting fluid in a rectangular channel in a transverse magnetic field publication-title: Sov. Phys. Tech. Phys. – volume: 110 issue: 8 year: 2013 article-title: patterned turbulence in liquid metal flow: computational reconstruction of the Hartmann experiment publication-title: Phys. Rev. Lett. – volume: 760 start-page: 387 year: 2014 end-page: 406 article-title: Two-dimensional nonlinear travelling waves in magnetohydrodynamic channel flow publication-title: J. Fluid Mech. – volume: 49 start-page: 136 issue: 1 year: 1953 end-page: 144 article-title: Steady motion of conducting fluids in pipes under transverse magnetic fields publication-title: Proc. Camb. Phil. Soc. – volume: 19 issue: 7 year: 2007 article-title: Quasi-two-dimensional perturbations in duct flows under transverse magnetic field publication-title: Phys. Fluids – volume: 75 start-page: 47303 issue: 4 year: 2007 article-title: Inductionless magnetorotational instability in a Taylor–Couette flow with a helical magnetic field publication-title: Phys. Rev. E – volume: 15 start-page: 1 issue: 6 year: 1937 end-page: 28 article-title: Hg-dynamics I: theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic field publication-title: K. Dan. Vidensk. Selsk. Mat. Fys. Medd. – volume: 15 start-page: 1 issue: 7 year: 1937 end-page: 45 article-title: Hg-dynamics II: experimental investigations on the flow of mercury in a homogeneous magnetic field publication-title: K. Dan. Vidensk. Selsk. Mat. Fys. Medd. – volume: 22 issue: 8 year: 2010 article-title: Marginal turbulent magnetohydrodynamic flow in a square duct publication-title: Phys. Fluids – volume: 551 start-page: 387 year: 2006 end-page: 404 article-title: Linear stability of flow in an internally heated rectangular duct publication-title: J. Fluid Mech. – volume: 708 start-page: 111 year: 2012 end-page: 127 article-title: Linear stability of magnetohydrodynamic flow in a perfectly conducting rectangular duct publication-title: J. Fluid Mech. – ident: S0022112015007090_r2 doi: 10.1007/978-1-4020-4833-3_10 – ident: S0022112015007090_r26 doi: 10.1115/1.4027198 – volume: 15 start-page: 1 year: 1937 ident: S0022112015007090_r7 article-title: Hg-dynamics I: theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic field publication-title: K. Dan. Vidensk. Selsk. Mat. Fys. Medd. – volume: 5 start-page: 1191 year: 1961 ident: S0022112015007090_r23 article-title: Flow stability of a conducting fluid in a rectangular channel in a transverse magnetic field publication-title: Sov. Phys. Tech. Phys. – ident: S0022112015007090_r20 doi: 10.1017/S0305004100028139 – ident: S0022112015007090_r13 doi: 10.1103/PhysRevLett.110.084501 – ident: S0022112015007090_r24 doi: 10.1017/S0022112005008487 – ident: S0022112015007090_r21 doi: 10.1017/S002211209000204X – ident: S0022112015007090_r10 doi: 10.1017/S0022112065000344 – ident: S0022112015007090_r19 doi: 10.1063/1.3478877 – volume-title: Hydrodynamic and Hydromagnetic Stability year: 1961 ident: S0022112015007090_r4 – ident: S0022112015007090_r9 doi: 10.1103/PhysRevLett.95.124501 – ident: S0022112015007090_r6 doi: 10.1017/jfm.2014.612 – volume-title: Spectral Methods: Fundamentals in Single Domains year: 2007 ident: S0022112015007090_r3 doi: 10.1007/978-3-540-30728-0 – ident: S0022112015007090_r5 doi: 10.1007/BF01601011 – volume-title: Classical Electrodynamics year: 1998 ident: S0022112015007090_r11 – ident: S0022112015007090_r16 doi: 10.1017/jfm.2012.276 – ident: S0022112015007090_r22 doi: 10.1016/0020-7225(91)90167-2 – ident: S0022112015007090_r12 doi: 10.1103/PhysRevLett.103.154501 – ident: S0022112015007090_r14 doi: 10.1063/1.2747233 – volume-title: Handbook of Mathematical Functions year: 1972 ident: S0022112015007090_r1 – volume: 15 start-page: 1 year: 1937 ident: S0022112015007090_r8 article-title: Hg-dynamics II: experimental investigations on the flow of mercury in a homogeneous magnetic field publication-title: K. Dan. Vidensk. Selsk. Mat. Fys. Medd. – volume: 20 start-page: 79 year: 1981 ident: S0022112015007090_r25 article-title: Magneto-hydrodynamic flows in rectangular ducts with thin conducting walls publication-title: J. Méc. – ident: S0022112015007090_r15 doi: 10.1017/S0022112009993259 – ident: S0022112015007090_r17 doi: 10.1103/PhysRevE.75.047303 – volume-title: An Introduction to Magnetohydrodynamics year: 1967 ident: S0022112015007090_r18 |
SSID | ssj0013097 |
Score | 2.2754967 |
Snippet | This study is concerned with the numerical linear stability analysis of liquid-metal flow in a square duct with thin electrically conducting walls subject to a... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 129 |
SubjectTerms | Base flow Fluid mechanics Linear equations Magnetic fields Reynolds number Stability analysis Vector space |
Title | Linear stability of magnetohydrodynamic flow in a square duct with thin conducting walls |
URI | https://www.cambridge.org/core/product/identifier/S0022112015007090/type/journal_article https://www.proquest.com/docview/1884317967 |
Volume | 788 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT8IwEL6IxEQf_IEaUSR90PhgpoO1W3kyqCAxSoxKwtvSdZ1ocEM3Y_zvvY6C8IBvTdd0yfX63V17_Q7giDIWoWFllhdJx6Lov1kBD7FV95TruFSK_KL9vut2evS2z_rmwC01aZUTTMyBOkykPiM_r3GubV3D9S5GH5auGqVvV00JjQIUEYI5Bl_Fy1b34fHvHsFueBO-cPQsbJP6rkmj3yL9EL3GzjydjPhHrDBvoObxOTc67U1YN94iaY6XdwuWVFyCDeM5ErMv0xKszdAKlmAlT-uU6Tb0MdREVSboAuZJsD8kici7eIlVlgx-QgTPcUF6Eg2Tb_IaE0HSD1QaRTQNLNGHtCQbYD9GzboHpyffYjhMd6DXbj1fdSxTS8GSjl3PrIApDN00_Z0TMYxAmaNoIJUnuStkSBVt0HpdMjRVktoBpZFwUaKhQH_Ewbbr7MJynMRqD4gQnAcIFJwGDYoBZoAYEGEYwxAKXE-pMpxMhembHZH642wyz0ex-1rsPoq9DKcTUfvSUJLryhjDBaOPp6NHYyqOBeMqk1Wb-f1Uffb__3wAqzhRnphdsyuwnH1-qUP0O7KgCgXevqlCsXl9f_dUNar2C-_J13U |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VIgQMPAqIQgEPIAYUSGM7jwEhBJTynEDqFhzH4aE2ARJU9U_xGzmnSQsDbGyWYznS-fzdnX3-DmCbcR6hYeWGE0lqMPTfjMANsWU5yqY2kyK_aL-5tdv37LLDOxX4LN_C6LTKEhNzoA4Tqc_ID5quq22dZztHr2-Grhqlb1fLEhpDtbhSgz6GbOnhxSmu745ltc7uTtpGUVXAkNS0MiPgCoMYTQRHI46xGKeKBVI50rWFDJliHrMsyRG0JTMDxiJhI7yHAi0zxbZNcd4JmGSUenpHua3z8a2F6TklOzn6MWaRaK8pql8i_ey9yfcdnfo4pnH4aQ5_WoPcxLUWYK7wTcnxUJkWoaLiGswXfiopUCCtwew3EsMaTOVJpDJdgg4Gtighgg5nnnI7IElEeuIxVlnyNAgRqgex6D1LEnWTPnmOiSDpG6qoIpp0lugjYZI9YT_G6LoHpyd90e2my3D_LzJegWqcxGoViBCuGyAsuSzwGIazASJOhEETR-CxHaXqsDsSpl_sv9Qf5q45Pord12L3Uex12CtF7cuCAF3X4ej-MnpnNPp1SPzxy7hGuWrffj9S1rW_P2_BdPvu5tq_vri9WocZnDRPCW-aDahm7x9qAz2eLNjM1YzAw3_r9RcU-g8M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+stability+of+magnetohydrodynamic+flow+in+a+square+duct+with+thin+conducting+walls&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Priede%2C+Janis&rft.au=Arlt%2C+Thomas&rft.au=B%C3%BChler%2C+Leo&rft.date=2016-02-10&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=788&rft.spage=129&rft_id=info:doi/10.1017%2Fjfm.2015.709&rft.externalDocID=4321457419 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |