Rough or wiggly? Membrane topology and morphology for fouling control

During filtration in reverse osmosis membranes (ROM), the system performance is dramatically affected by membrane fouling which causes a significant decrease in permeate flux as well as an increase in the energy input required to operate the system. In this work, we develop a model, able to dynamica...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 862; pp. 753 - 780
Main Authors Ling, Bowen, Battiato, Ilenia
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 10.03.2019
Subjects
Online AccessGet full text
ISSN0022-1120
1469-7645
DOI10.1017/jfm.2018.965

Cover

Loading…
Abstract During filtration in reverse osmosis membranes (ROM), the system performance is dramatically affected by membrane fouling which causes a significant decrease in permeate flux as well as an increase in the energy input required to operate the system. In this work, we develop a model, able to dynamically capture foulant evolution, that couples the transient Navier–Stokes and the advection–diffusion equations, with an adsorption–desorption equation for the foulant accumulation. The model is validated against unsteady measurements of permeate flux as well as steady-state spatial fouling patterns. For a straight channel, we derive a universal scaling relationship between the Sherwood and Bejan numbers, i.e. the dimensionless permeate flux through the membrane and the pressure drop along the channel, respectively, and generalize this result to membranes subject to morphological and/or topological modifications, i.e. whose shape (wiggliness) or surface roughness is altered from the rectangular and flat reference case. We demonstrate that a universal scaling can be identified through the definition of a modified Reynolds number, $Re^{\star }$ , that accounts for the additional length scales introduced by the membrane modifications, and a membrane performance index, $\unicode[STIX]{x1D709}$ , an aggregate efficiency measure with respect to both clean permeate flux and energy input required to operate the system. Our numerical simulations demonstrate that ‘wiggly’ membranes outperform ‘rough’ membranes for smaller values of $Re^{\star }$ , while the trend is reversed at higher $Re^{\star }$ . The proposed approach is able to quantitatively investigate, optimize and guide the design of both morphologically and topologically altered membranes under the same framework, while providing insights into the physical mechanisms controlling the overall system performance.
AbstractList During filtration in reverse osmosis membranes (ROM), the system performance is dramatically affected by membrane fouling which causes a significant decrease in permeate flux as well as an increase in the energy input required to operate the system. In this work, we develop a model, able to dynamically capture foulant evolution, that couples the transient Navier–Stokes and the advection–diffusion equations, with an adsorption–desorption equation for the foulant accumulation. The model is validated against unsteady measurements of permeate flux as well as steady-state spatial fouling patterns. For a straight channel, we derive a universal scaling relationship between the Sherwood and Bejan numbers, i.e. the dimensionless permeate flux through the membrane and the pressure drop along the channel, respectively, and generalize this result to membranes subject to morphological and/or topological modifications, i.e. whose shape (wiggliness) or surface roughness is altered from the rectangular and flat reference case. We demonstrate that a universal scaling can be identified through the definition of a modified Reynolds number, $Re^{\star }$ , that accounts for the additional length scales introduced by the membrane modifications, and a membrane performance index, $\unicode[STIX]{x1D709}$ , an aggregate efficiency measure with respect to both clean permeate flux and energy input required to operate the system. Our numerical simulations demonstrate that ‘wiggly’ membranes outperform ‘rough’ membranes for smaller values of $Re^{\star }$ , while the trend is reversed at higher $Re^{\star }$ . The proposed approach is able to quantitatively investigate, optimize and guide the design of both morphologically and topologically altered membranes under the same framework, while providing insights into the physical mechanisms controlling the overall system performance.
During filtration in reverse osmosis membranes (ROM), the system performance is dramatically affected by membrane fouling which causes a significant decrease in permeate flux as well as an increase in the energy input required to operate the system. In this work, we develop a model, able to dynamically capture foulant evolution, that couples the transient Navier–Stokes and the advection–diffusion equations, with an adsorption–desorption equation for the foulant accumulation. The model is validated against unsteady measurements of permeate flux as well as steady-state spatial fouling patterns. For a straight channel, we derive a universal scaling relationship between the Sherwood and Bejan numbers, i.e. the dimensionless permeate flux through the membrane and the pressure drop along the channel, respectively, and generalize this result to membranes subject to morphological and/or topological modifications, i.e. whose shape (wiggliness) or surface roughness is altered from the rectangular and flat reference case. We demonstrate that a universal scaling can be identified through the definition of a modified Reynolds number, \(Re^{\star }\), that accounts for the additional length scales introduced by the membrane modifications, and a membrane performance index, \(\unicode[STIX]{x1D709}\), an aggregate efficiency measure with respect to both clean permeate flux and energy input required to operate the system. Our numerical simulations demonstrate that ‘wiggly’ membranes outperform ‘rough’ membranes for smaller values of \(Re^{\star }\), while the trend is reversed at higher \(Re^{\star }\). The proposed approach is able to quantitatively investigate, optimize and guide the design of both morphologically and topologically altered membranes under the same framework, while providing insights into the physical mechanisms controlling the overall system performance.
Author Ling, Bowen
Battiato, Ilenia
Author_xml – sequence: 1
  givenname: Bowen
  orcidid: 0000-0002-3218-4807
  surname: Ling
  fullname: Ling, Bowen
  organization: Energy Resources Engineering, Stanford University, Stanford, CA 94305, USA
– sequence: 2
  givenname: Ilenia
  orcidid: 0000-0002-7453-6428
  surname: Battiato
  fullname: Battiato, Ilenia
  email: ibattiat@stanford.edu
  organization: Energy Resources Engineering, Stanford University, Stanford, CA 94305, USA
BookMark eNp1kNFKwzAUhoNMcJve-QAFb23NOU2T5kpkbCpMBNHrkGZp19E2NW2Rvb0dGwiiV4cD33_Ozzcjk8Y1lpBroBFQEHe7vI6QQhpJnpyRKTAuQ8FZMiFTShFDAKQXZNZ1O0ohplJMyfLNDcU2cD74Koui2t8HL7bOvG5s0LvWVa7YB7rZBLXz7fa45iOcu6EqmyIwrum9qy7Jea6rzl6d5px8rJbvi6dw_fr4vHhYhyam2IdaokTLAVJjeQISbBpnaGObSNRJllkhLGeSaZqymGmpM5OJjRGpMAgm5_Gc3Bzvtt59Drbr1c4NvhlfKgTBGOWIOFJ4pIx3XedtrkzZ6748dNVlpYCqgy416lIHXWrUNYZuf4VaX9ba7__DoxOuR13lprA_Vf4MfAPpWX1B
CitedBy_id crossref_primary_10_1016_j_advwatres_2020_103712
crossref_primary_10_1016_j_memsci_2022_120958
crossref_primary_10_1063_1_5092199
crossref_primary_10_1103_PhysRevFluids_6_044501
crossref_primary_10_3390_fluids5030121
crossref_primary_10_2139_ssrn_4172993
crossref_primary_10_1016_j_compfluid_2021_105189
crossref_primary_10_1016_j_memsci_2020_118199
crossref_primary_10_3390_membranes11050349
crossref_primary_10_1016_j_seppur_2022_122121
crossref_primary_10_3390_membranes10120445
crossref_primary_10_1016_j_advwatres_2024_104759
crossref_primary_10_1016_j_memsci_2022_121023
crossref_primary_10_1002_cite_202100043
crossref_primary_10_1063_5_0101621
crossref_primary_10_1038_s41598_022_20469_0
crossref_primary_10_1016_j_desal_2023_116994
crossref_primary_10_1016_j_memsci_2020_118627
crossref_primary_10_1016_j_seppur_2023_123664
crossref_primary_10_1021_acsestengg_3c00537
crossref_primary_10_1016_j_fm_2022_104146
Cites_doi 10.1016/j.desal.2010.06.018
10.1016/S0011-9164(00)84104-1
10.1016/j.memsci.2016.02.028
10.1103/PhysRevLett.105.144504
10.1016/j.memsci.2004.12.023
10.1038/s41598-018-22346-1
10.1126/science.aab0530
10.1016/0376-7388(90)85007-8
10.1016/0011-9164(92)80033-6
10.1016/j.memsci.2012.09.045
10.1016/S0011-9164(02)00204-7
10.1006/jcis.2000.6997
10.1016/j.desal.2010.05.031
10.1016/j.memsci.2013.10.017
10.1016/j.desal.2005.05.017
10.1016/j.cej.2008.10.030
10.1016/j.jcis.2014.06.021
10.1016/j.memsci.2012.03.012
10.1016/S0011-9164(01)85005-0
10.1016/S0376-7388(99)00218-5
10.1016/j.memsci.2006.07.049
10.1063/1.5031776
10.1016/j.desal.2013.11.007
10.1016/j.jhazmat.2011.11.051
10.1016/j.desal.2011.06.063
10.1021/es702463a
10.1016/j.polymer.2006.12.046
10.1016/j.memsci.2013.05.060
10.1016/j.memsci.2013.10.068
10.1021/i160016a014
10.1017/jfm.2016.194
10.1016/j.desal.2006.12.009
10.1016/S0376-7388(01)00376-3
10.1016/j.memsci.2012.10.059
10.1016/S0043-1354(00)00142-1
10.1016/S0376-7388(00)82088-8
10.1016/j.memsci.2005.12.059
10.1103/PhysRevFluids.2.094305
10.1017/jfm.2016.431
10.1016/S0376-7388(96)00351-1
10.1016/j.memsci.2007.07.003
10.1016/S0043-1354(98)00240-1
10.1016/S0022-0248(01)01525-1
10.1039/C5CS00579E
10.1063/1.4795545
10.1016/j.memsci.2004.08.039
10.1016/j.watres.2009.03.010
10.1016/S0011-9164(03)00401-6
10.1002/2013WR015065
10.1016/j.memsci.2007.05.025
10.1126/science.1200488
10.1016/j.memsci.2009.10.031
10.1016/j.watres.2016.09.031
10.1016/j.memsci.2014.04.001
10.1017/jfm.2012.85
10.1016/j.desal.2017.05.018
10.1017/jfm.2017.102
10.1016/S0011-9164(98)00171-4
10.1038/nature06599
10.1016/j.memsci.2006.07.022
10.1002/2016WR018907
ContentType Journal Article
Copyright 2019 Cambridge University Press
Copyright_xml – notice: 2019 Cambridge University Press
DBID AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/jfm.2018.965
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Research Library Prep

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
DocumentTitleAlternate Membrane morphology and topology
B. Ling and I. Battiato
EISSN 1469-7645
EndPage 780
ExternalDocumentID 10_1017_jfm_2018_965
GroupedDBID -2P
-DZ
-E.
-~6
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVKB
ABVZP
ABXAU
ABZCX
ACBEA
ACBMC
ACDLN
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADKIL
ADVJH
AEBAK
AEMTW
AENEX
AENGE
AEUYN
AEYYC
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFRAH
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AGLWM
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
EJD
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
I.7
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WYP
ZE2
ZMEZD
ZYDXJ
~02
AAYXX
ABXHF
ADMLS
AEHGV
AKMAY
CITATION
PHGZM
PHGZT
3V.
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c302t-a9292e6118ce65191e83b2e3e592a5bbe77e6494a08434a9abcb7dc787c21cf63
IEDL.DBID BENPR
ISSN 0022-1120
IngestDate Sat Aug 16 08:02:16 EDT 2025
Tue Jul 01 03:01:15 EDT 2025
Thu Apr 24 23:01:38 EDT 2025
Tue Jan 21 06:20:20 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords membranes
porous media
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c302t-a9292e6118ce65191e83b2e3e592a5bbe77e6494a08434a9abcb7dc787c21cf63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7453-6428
0000-0002-3218-4807
PQID 2174406222
PQPubID 34769
PageCount 28
ParticipantIDs proquest_journals_2174406222
crossref_citationtrail_10_1017_jfm_2018_965
crossref_primary_10_1017_jfm_2018_965
cambridge_journals_10_1017_jfm_2018_965
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-10
PublicationDateYYYYMMDD 2019-03-10
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-10
  day: 10
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2019
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2001; 188
2013; 25
2017; 2
2009; 43
2007; 303
2001; 141
2005; 252
2010; 347
2010; 105
2005; 257
1998; 119
2010; 264
2016; 106
2007b; 300
1977; 21
2010; 261
2013a; 444
2014; 452
2003; 157
2017; 356
2012; 405
2014; 453
2018; 8
2018; 3
2012; 211
2007; 216
2005; 186
2002; 142
1990; 48
1965; 4
2006; 284
2016; 795
2018; 30
2000; 165
2016; 511
1992; 86
2012; 699
2014; 50
2011; 281
2016; 45
2011; 333
2017; 818
2007a; 48
2013; 427
2016; 801
2016; 52
1981; 8
2006; 279
2014; 432
2001; 231
1997; 127
2000; 34
2000; 229
2014; 37
1999; 33
2008; 42
2008; 452
2017; 421
2014; 343
2009; 149
2013b; 428
2014; 464
S0022112018009655_r19
S0022112018009655_r11
S0022112018009655_r12
S0022112018009655_r56
S0022112018009655_r13
S0022112018009655_r57
S0022112018009655_r14
S0022112018009655_r58
S0022112018009655_r59
S0022112018009655_r15
S0022112018009655_r16
S0022112018009655_r17
S0022112018009655_r18
S0022112018009655_r50
S0022112018009655_r51
S0022112018009655_r52
S0022112018009655_r53
S0022112018009655_r10
S0022112018009655_r54
S0022112018009655_r8
S0022112018009655_r9
S0022112018009655_r44
S0022112018009655_r2
S0022112018009655_r45
S0022112018009655_r46
S0022112018009655_r47
S0022112018009655_r1
S0022112018009655_r48
S0022112018009655_r6
S0022112018009655_r49
S0022112018009655_r7
S0022112018009655_r4
S0022112018009655_r5
S0022112018009655_r40
S0022112018009655_r41
S0022112018009655_r42
S0022112018009655_r43
S0022112018009655_r33
S0022112018009655_r34
S0022112018009655_r35
S0022112018009655_r36
S0022112018009655_r37
S0022112018009655_r38
S0022112018009655_r39
S0022112018009655_r30
S0022112018009655_r31
S0022112018009655_r32
S0022112018009655_r22
S0022112018009655_r23
Battiato (S0022112018009655_r3) 2014; 37
S0022112018009655_r24
S0022112018009655_r25
S0022112018009655_r26
S0022112018009655_r27
Sanei (S0022112018009655_r55) 2018; 3
S0022112018009655_r28
S0022112018009655_r29
S0022112018009655_r60
S0022112018009655_r61
S0022112018009655_r62
S0022112018009655_r63
S0022112018009655_r20
S0022112018009655_r21
References_xml – volume: 356
  start-page: eaab0530
  issue: 6343
  year: 2017
  article-title: Maximizing the right stuff: the trade-off between membrane permeability and selectivity
  publication-title: Science
– volume: 105
  year: 2010
  article-title: Elastic response of carbon nanotube forests to aerodynamic stresses
  publication-title: Phys. Rev. Lett.
– volume: 50
  start-page: 6358
  issue: 8
  year: 2014
  end-page: 6369
  article-title: Single-parameter model of vegetated aquatic flows
  publication-title: Water Resour. Res.
– volume: 34
  start-page: 3854
  issue: 15
  year: 2000
  end-page: 3866
  article-title: Effect of operating conditions on caso4 scale formation mechanism in nanofiltration for water softening
  publication-title: Water Res.
– volume: 428
  start-page: 598
  year: 2013b
  end-page: 607
  article-title: Use of nanoimprinted surface patterns to mitigate colloidal deposition on ultrafiltration membranes
  publication-title: J. Membr. Sci.
– volume: 52
  start-page: 8066
  issue: 10
  year: 2016
  end-page: 8080
  article-title: Vertical dispersion in vegetated shear flows
  publication-title: Water Resour. Res.
– volume: 264
  start-page: 256
  issue: 3
  year: 2010
  end-page: 267
  article-title: Accelerated desupersaturation of reverse osmosis concentrate by chemically-enhanced seeded precipitation
  publication-title: Desalination
– volume: 229
  start-page: 544
  issue: 2
  year: 2000
  end-page: 549
  article-title: Atomic force microscopy studies of membranes: effect of surface roughness on double-layer interactions and particle adhesion
  publication-title: J. Colloid Interface Sci.
– volume: 4
  start-page: 439
  issue: 4
  year: 1965
  end-page: 445
  article-title: Concentration polar zation in reverse osmosis desalination with variable flux and incomplete salt rejection
  publication-title: Ind. Engng Chem. Fundam.
– volume: 211
  start-page: 288
  year: 2012
  end-page: 295
  article-title: Functionalized nanoparticle interactions with polymeric membranes
  publication-title: J. Hazard. Mater.
– volume: 2
  issue: 9
  year: 2017
  article-title: Inertial effects on the stress generation of active fluids
  publication-title: Phys. Rev. Fluid.
– volume: 699
  start-page: 94
  year: 2012
  end-page: 114
  article-title: Self-similarity in coupled Brinkman/Navier–Stokes flows
  publication-title: J. Fluid Mech.
– volume: 3
  issue: 094305
  year: 2018
  article-title: Membrane filtration with complex branching pore morphology
  publication-title: Phys. Rev. Fluid
– volume: 405
  start-page: 219
  year: 2012
  end-page: 232
  article-title: The impact of flux and spacers on biofilm development on reverse osmosis membranes
  publication-title: J. Membr. Sci.
– volume: 432
  start-page: 10
  year: 2014
  end-page: 18
  article-title: A combined network model for membrane fouling
  publication-title: J. Colloid Interface Sci.
– volume: 453
  start-page: 92
  year: 2014
  end-page: 99
  article-title: Hydrodynamics of sinusoidal spacers for improved reverse osmosis performance
  publication-title: J. Membr. Sci.
– volume: 21
  start-page: 1
  issue: 1
  year: 1977
  end-page: 10
  article-title: Concentration polarization in a reverse osmosis test cell
  publication-title: Desalination
– volume: 8
  start-page: 4430
  issue: 1
  year: 2018
  end-page: 4445
  article-title: Universal scaling-law for flow resistance over canopies with complex morphology
  publication-title: Sci. Rep.
– volume: 231
  start-page: 559
  issue: 4
  year: 2001
  end-page: 567
  article-title: Kinetics of gypsum formation and growth during the dissolution of colemanite in sulfuric acid
  publication-title: J. Cryst. Growth
– volume: 30
  issue: 7
  year: 2018
  article-title: Hydrodynamic dispersion in thin channels with micro-structured porous walls
  publication-title: Phys. Fluids
– volume: 511
  start-page: 108
  year: 2016
  end-page: 118
  article-title: Designing asymmetric multilayered membrane filters with improved performance
  publication-title: J. Membr. Sci.
– volume: 42
  start-page: 4292
  issue: 12
  year: 2008
  end-page: 4297
  article-title: Reverse osmosis desalting of inland brackish water of high gypsum scaling propensity: kinetics and mitigation of membrane mineral scaling
  publication-title: Environ. Sci. Technol.
– volume: 119
  start-page: 289
  issue: 1–3
  year: 1998
  end-page: 293
  article-title: Purification of landfill leachate with reverse osmosis and nanofiltration
  publication-title: Desalination
– volume: 142
  start-page: 229
  issue: 3
  year: 2002
  end-page: 234
  article-title: Reverse osmosis applied to metal finishing wastewater
  publication-title: Desalination
– volume: 343
  start-page: 26
  year: 2014
  end-page: 37
  article-title: Effect of different commercial feed spacers on biofouling of reverse osmosis membrane systems: a numerical study
  publication-title: Desalination
– volume: 86
  start-page: 187
  issue: 2
  year: 1992
  end-page: 222
  article-title: Flux decline due to gypsum precipitation on ro membranes
  publication-title: Desalination
– volume: 48
  start-page: 1165
  issue: 5
  year: 2007a
  end-page: 1170
  article-title: A novel method of surface modification on thin-film composite reverse osmosis membrane by grafting poly (ethylene glycol)
  publication-title: Polymer
– volume: 33
  start-page: 647
  issue: 3
  year: 1999
  end-page: 652
  article-title: Treatment of landfill leachate by reverse osmosis
  publication-title: Water Res.
– volume: 43
  start-page: 2317
  issue: 9
  year: 2009
  end-page: 2348
  article-title: Reverse osmosis desalination: water sources, technology, and today’s challenges
  publication-title: Water Res.
– volume: 284
  start-page: 237
  issue: 1
  year: 2006
  end-page: 247
  article-title: Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis
  publication-title: J. Membr. Sci.
– volume: 427
  start-page: 10
  year: 2013
  end-page: 20
  article-title: Numerical analysis of spacer impacts on forward osmosis membrane process using concentration polarization index
  publication-title: J. Membr. Sci.
– volume: 333
  start-page: 712
  issue: 6043
  year: 2011
  end-page: 717
  article-title: The future of seawater desalination: energy, technology, and the environment
  publication-title: Science
– volume: 452
  start-page: 11
  year: 2014
  end-page: 19
  article-title: Fabrication and characterization of a surface-patterned thin film composite membrane
  publication-title: J. Membr. Sci.
– volume: 188
  start-page: 115
  issue: 1
  year: 2001
  end-page: 128
  article-title: Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes
  publication-title: J. Membr. Sci.
– volume: 444
  start-page: 420
  year: 2013a
  end-page: 428
  article-title: Influence of sub-micron surface patterns on the deposition of model proteins during active filtration
  publication-title: J. Membr. Sci.
– volume: 165
  start-page: 31
  issue: 1
  year: 2000
  end-page: 46
  article-title: Protein and humic acid adsorption onto hydrophilic membrane surfaces: effects of ph and ionic strength
  publication-title: J. Membr. Sci.
– volume: 157
  start-page: 217
  issue: 1–3
  year: 2003
  end-page: 234
  article-title: Kinetics and thermodynamics of calcium carbonate and calcium sulfate at salinities up to 1.5 m
  publication-title: Desalination
– volume: 347
  start-page: 250
  issue: 1
  year: 2010
  end-page: 259
  article-title: Using polyelectrolyte coatings to improve fouling resistance of a positively charged nanofiltration membrane
  publication-title: J. Membr. Sci.
– volume: 127
  start-page: 101
  issue: 1
  year: 1997
  end-page: 109
  article-title: Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes
  publication-title: J. Membr. Sci.
– volume: 186
  start-page: 111
  issue: 1–3
  year: 2005
  end-page: 128
  article-title: Modeling concentration polarization in reverse osmosis processes
  publication-title: Desalination
– volume: 45
  start-page: 5888
  year: 2016
  end-page: 5924
  article-title: Antifouling membranes for sustainable water purification: strategies and mechanisms
  publication-title: Chem. Soc. Rev.
– volume: 252
  start-page: 253
  issue: 1
  year: 2005
  end-page: 263
  article-title: Morphometric characterization of calcium sulfate dihydrate (gypsum) scale on reverse osmosis membranes
  publication-title: J. Membr. Sci.
– volume: 421
  start-page: 47
  year: 2017
  end-page: 60
  article-title: Origin of structural parameter inconsistency in forward osmosis models: a pore-scale cfd study
  publication-title: Desalination
– volume: 48
  start-page: 231
  issue: 2–3
  year: 1990
  end-page: 262
  article-title: Prediction of concentration polarization and flux behavior in reverse osmosis by numerical analysis
  publication-title: J. Membr. Sci.
– volume: 818
  start-page: 744
  year: 2017
  end-page: 771
  article-title: Flow and fouling in membrane filters: effects of membrane morphology
  publication-title: J. Fluid Mech.
– volume: 257
  start-page: 85
  issue: 1
  year: 2005
  end-page: 98
  article-title: Membrane contactor processes for wastewater reclamation in space: part I. Direct osmotic concentration as pretreatment for reverse osmosis
  publication-title: J. Membr. Sci.
– volume: 300
  start-page: 165
  issue: 1
  year: 2007b
  end-page: 171
  article-title: Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane
  publication-title: J. Membr. Sci.
– volume: 284
  start-page: 102
  issue: 1
  year: 2006
  end-page: 109
  article-title: Numerical study on permeate flux enhancement by spacers in a crossflow reverse osmosis channel
  publication-title: J. Membr. Sci.
– volume: 464
  start-page: 161
  year: 2014
  end-page: 172
  article-title: Analysis of forward osmosis desalination via two-dimensional fem model
  publication-title: J. Membr. Sci.
– volume: 141
  start-page: 269
  issue: 3
  year: 2001
  end-page: 289
  article-title: Concentration polarization in ultrafiltration and reverse osmosis: a critical review
  publication-title: Desalination
– volume: 149
  start-page: 221
  issue: 1
  year: 2009
  end-page: 231
  article-title: Modeling the impacts of feed spacer geometry on reverse osmosis and nanofiltration processes
  publication-title: Chem. Engng J.
– volume: 303
  start-page: 140
  issue: 1
  year: 2007
  end-page: 153
  article-title: Numerical study of concentration polarization in a rectangular reverse osmosis membrane channel: permeate flux variation and hydrodynamic end effects
  publication-title: J. Membr. Sci.
– volume: 106
  start-page: 86
  year: 2016
  end-page: 97
  article-title: Biofouling in forward osmosis systems: an experimental and numerical study
  publication-title: Water Res.
– volume: 25
  issue: 3
  year: 2013
  article-title: Control and optimization of solute transport in a thin porous tube
  publication-title: Phys. Fluids
– volume: 216
  start-page: 1
  issue: 1–3
  year: 2007
  end-page: 76
  article-title: State-of-the-art of reverse osmosis desalination
  publication-title: Desalination
– volume: 261
  start-page: 240
  issue: 3
  year: 2010
  end-page: 250
  article-title: Feasibility of reverse osmosis desalination of brackish agricultural drainage water in the san joaquin valley
  publication-title: Desalination
– volume: 795
  start-page: 36
  year: 2016
  end-page: 59
  article-title: Flow and fouling in a pleated membrane filter
  publication-title: J. Fluid Mech.
– volume: 452
  start-page: 301
  issue: 7185
  year: 2008
  end-page: 310
  article-title: Science and technology for water purification in the coming decades
  publication-title: Nature
– volume: 801
  start-page: 13
  year: 2016
  end-page: 42
  article-title: Dispersion controlled by permeable surfaces: surface properties and scaling
  publication-title: J. Fluid Mech.
– volume: 281
  start-page: 1
  year: 2011
  end-page: 16
  article-title: Biofouling in reverse osmosis membranes for seawater desalination: phenomena and prevention
  publication-title: Desalination
– volume: 8
  start-page: 141
  issue: 2
  year: 1981
  end-page: 171
  article-title: Membranes for power generation by pressure-retarded osmosis
  publication-title: J. Membr. Sci.
– volume: 279
  start-page: 655
  issue: 1
  year: 2006
  end-page: 668
  article-title: Diagnostic characterization of gypsum scale formation and control in RO membrane desalination of brackish water
  publication-title: J. Membr. Sci.
– volume: 37
  start-page: 19
  issue: 3
  year: 2014
  end-page: 24
  article-title: Effective medium theory for drag-reducing micro-patterned surfaces in turbulent ows
  publication-title: Eur. Phys. J. E
– ident: S0022112018009655_r47
  doi: 10.1016/j.desal.2010.06.018
– ident: S0022112018009655_r25
  doi: 10.1016/S0011-9164(00)84104-1
– ident: S0022112018009655_r21
  doi: 10.1016/j.memsci.2016.02.028
– ident: S0022112018009655_r4
  doi: 10.1103/PhysRevLett.105.144504
– ident: S0022112018009655_r58
  doi: 10.1016/j.memsci.2004.12.023
– ident: S0022112018009655_r50
  doi: 10.1038/s41598-018-22346-1
– ident: S0022112018009655_r43
  doi: 10.1126/science.aab0530
– ident: S0022112018009655_r7
  doi: 10.1016/0376-7388(90)85007-8
– ident: S0022112018009655_r10
  doi: 10.1016/0011-9164(92)80033-6
– ident: S0022112018009655_r44
  doi: 10.1016/j.memsci.2012.09.045
– ident: S0022112018009655_r6
  doi: 10.1016/S0011-9164(02)00204-7
– ident: S0022112018009655_r8
  doi: 10.1006/jcis.2000.6997
– ident: S0022112018009655_r41
  doi: 10.1016/j.desal.2010.05.031
– ident: S0022112018009655_r37
  doi: 10.1016/j.memsci.2013.10.017
– ident: S0022112018009655_r29
  doi: 10.1016/j.desal.2005.05.017
– ident: S0022112018009655_r23
  doi: 10.1016/j.cej.2008.10.030
– ident: S0022112018009655_r20
  doi: 10.1016/j.jcis.2014.06.021
– ident: S0022112018009655_r59
  doi: 10.1016/j.memsci.2012.03.012
– ident: S0022112018009655_r51
  doi: 10.1016/S0011-9164(01)85005-0
– ident: S0022112018009655_r24
  doi: 10.1016/S0376-7388(99)00218-5
– volume: 37
  start-page: 19
  year: 2014
  ident: S0022112018009655_r3
  article-title: Effective medium theory for drag-reducing micro-patterned surfaces in turbulent ows
  publication-title: Eur. Phys. J. E
– ident: S0022112018009655_r42
  doi: 10.1016/j.memsci.2006.07.049
– ident: S0022112018009655_r33
  doi: 10.1063/1.5031776
– ident: S0022112018009655_r12
  doi: 10.1016/j.desal.2013.11.007
– ident: S0022112018009655_r30
  doi: 10.1016/j.jhazmat.2011.11.051
– ident: S0022112018009655_r40
  doi: 10.1016/j.desal.2011.06.063
– ident: S0022112018009655_r46
  doi: 10.1021/es702463a
– ident: S0022112018009655_r26
  doi: 10.1016/j.polymer.2006.12.046
– volume: 3
  year: 2018
  ident: S0022112018009655_r55
  article-title: Membrane filtration with complex branching pore morphology
  publication-title: Phys. Rev. Fluid
– ident: S0022112018009655_r38
  doi: 10.1016/j.memsci.2013.05.060
– ident: S0022112018009655_r62
  doi: 10.1016/j.memsci.2013.10.068
– ident: S0022112018009655_r9
  doi: 10.1021/i160016a014
– ident: S0022112018009655_r54
  doi: 10.1017/jfm.2016.194
– ident: S0022112018009655_r18
  doi: 10.1016/j.desal.2006.12.009
– ident: S0022112018009655_r61
  doi: 10.1016/S0376-7388(01)00376-3
– ident: S0022112018009655_r39
  doi: 10.1016/j.memsci.2012.10.059
– ident: S0022112018009655_r32
  doi: 10.1016/S0043-1354(00)00142-1
– ident: S0022112018009655_r31
  doi: 10.1016/S0376-7388(00)82088-8
– ident: S0022112018009655_r48
  doi: 10.1016/j.memsci.2005.12.059
– ident: S0022112018009655_r60
  doi: 10.1103/PhysRevFluids.2.094305
– ident: S0022112018009655_r34
  doi: 10.1017/jfm.2016.431
– ident: S0022112018009655_r17
  doi: 10.1016/S0376-7388(96)00351-1
– ident: S0022112018009655_r35
  doi: 10.1016/j.memsci.2007.07.003
– ident: S0022112018009655_r15
  doi: 10.1016/S0043-1354(98)00240-1
– ident: S0022112018009655_r14
  doi: 10.1016/S0022-0248(01)01525-1
– ident: S0022112018009655_r63
  doi: 10.1039/C5CS00579E
– ident: S0022112018009655_r22
  doi: 10.1063/1.4795545
– ident: S0022112018009655_r13
  doi: 10.1016/j.memsci.2004.08.039
– ident: S0022112018009655_r19
  doi: 10.1016/j.watres.2009.03.010
– ident: S0022112018009655_r57
  doi: 10.1016/S0011-9164(03)00401-6
– ident: S0022112018009655_r5
  doi: 10.1002/2013WR015065
– ident: S0022112018009655_r27
  doi: 10.1016/j.memsci.2007.05.025
– ident: S0022112018009655_r16
  doi: 10.1126/science.1200488
– ident: S0022112018009655_r1
  doi: 10.1016/j.memsci.2009.10.031
– ident: S0022112018009655_r11
  doi: 10.1016/j.watres.2016.09.031
– ident: S0022112018009655_r52
  doi: 10.1016/j.memsci.2014.04.001
– ident: S0022112018009655_r2
  doi: 10.1017/jfm.2012.85
– ident: S0022112018009655_r28
  doi: 10.1016/j.desal.2017.05.018
– ident: S0022112018009655_r53
  doi: 10.1017/jfm.2017.102
– ident: S0022112018009655_r45
  doi: 10.1016/S0011-9164(98)00171-4
– ident: S0022112018009655_r56
  doi: 10.1038/nature06599
– ident: S0022112018009655_r36
  doi: 10.1016/j.memsci.2006.07.022
– ident: S0022112018009655_r49
  doi: 10.1002/2016WR018907
SSID ssj0013097
Score 2.4188135
Snippet During filtration in reverse osmosis membranes (ROM), the system performance is dramatically affected by membrane fouling which causes a significant decrease...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 753
SubjectTerms Advection-diffusion equation
Clean energy
Computational fluid dynamics
Computer simulation
Design
Design optimization
Dye dispersion
Fluctuations
Fluid flow
Fluid mechanics
Flux
Fouling
Fouling control
Frameworks
JFM Papers
Mathematical models
Mathematical morphology
Membrane processes
Membranes
Morphology
Performance indices
Permeability
Porous materials
Pressure drop
Reverse osmosis
Reynolds number
Scaling
Straight channels
Surface roughness
Topology
Water treatment
Title Rough or wiggly? Membrane topology and morphology for fouling control
URI https://www.cambridge.org/core/product/identifier/S0022112018009655/type/journal_article
https://www.proquest.com/docview/2174406222
Volume 862
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60RdCDj6pYHyUHxYNE972bk6i0iqCIKHhbkkm2KHWrbUX67510U6sHPexh2bC7TCYzX5Iv3wDsexjLLJHItW8KHmmtOYFY5JgqEceBLoRvzzvf3CZXj9H1U_zkFtyGjlY5jYmTQK37aNfITyx0puRD6ez07Z3bqlF2d9WV0JiHOoXgjCZf9fP27d39bB_BE-lUL5yQheeo71Y0-qWwB9H97FjYxDITVvidoH7H50nS6azCskOL7Kzq3jWYM2UDVhxyZG5cDhuw9ENWsAELE1onDtehfW-L8LD-gH0-d7u98Sm7MfQDsjRsVFVHGDNZavbaJ3NXtwRi6bL89C5zPPYNeOy0Hy6uuCucwDH0ghGXhHkCk9DcAU1CEM03WagCE5pYBDJWyqSpSSIRSS-LwkgKqVClGmnsYuBjkYSbUCv7pdkC5mudJIWyOnc0lzCxRBXItEjRi9EXWDTh8NtyuXP_YV5Rx9KcbJxbG-dk4yYcTe2ao9Mft2Uwen-0Pvhu_VbpbvzRbnfaRbPPz3xl-__HO7BILxJ8ws_bhdpo8GH2CGSMVAvms85ly_nTF3mk0Z4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1RECocaNmCgFLqA6iHypA4nz4gVBW2S2E5VCBxC_bYWYGWLLCL0P4pfmPH-WDhADcOOUQZOdF47HmOn98AbHoYqTRWyI1vcx4aYziBWOSYaBlFwuTSd-eduydx5yz8ex6dT8FjcxbG0SqbObGcqM0A3T_yHQedKflQOtu7ueWuapTbXW1KaFRhcWTHD7RkG-4e7lP_bgnRPjj93eF1VQGOgSdGXBEgEDYmYI02Jvzi2zTQwgY2kkJFWtsksXEoQ-WlYRAqqTTqxCAFNgof8zigdj_ATBgE0o2otP1nsmvhyaRRJycc49VEeydRfZW7Y-9-ui1dGpvIOLxMhy-zQZni2p9hocam7FcVTIswZYsWfKpxKqtngWEL5p-JGLZgtiSR4vALHPxzJX_Y4I49XPZ6_fEe61r6AFVYNqpqMYyZKgy7HlDnVrcEmelybPgeq1nzS3D2Lg5dhuliUNgVYL4xcZxrp6pHKxcbKdRCJXmCXoS-xHwVfjx5LqsH2zCriGpJRj7OnI8z8vEq_Gz8mmGtdu6KbvRfsd56sr6pVD5esVtvumjy-klkrr39-Dt87Jx2j7Pjw5OjrzBHjUpeMgPXYXp0d2-_EbwZ6Y0yphhcvHcQ_wfZUQwb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rough+or+wiggly%3F+Membrane+topology+and+morphology+for+fouling+control&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Ling%2C+Bowen&rft.au=Battiato%2C+Ilenia&rft.date=2019-03-10&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=862&rft.spage=753&rft.epage=780&rft_id=info:doi/10.1017%2Fjfm.2018.965&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_jfm_2018_965
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon