An Image-Segmentation-Based Urban DTM Generation Method Using Airborne Lidar Data

DTM generation using airborne Light detection and ranging (Lidar) data is the fundamental issue of Lidar data processing and has been massively studied. However, DTM generation is still challenging in urban areas, due to the existence of densely distributed urban features and very large buildings. D...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 9; no. 1; pp. 496 - 506
Main Authors Chen, Ziyue, Xu, Bing, Gao, Bingbo
Format Journal Article
LanguageEnglish
Published IEEE 01.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract DTM generation using airborne Light detection and ranging (Lidar) data is the fundamental issue of Lidar data processing and has been massively studied. However, DTM generation is still challenging in urban areas, due to the existence of densely distributed urban features and very large buildings. Different from most point-based DTM generation algorithms, this research proposes an image-segmentation-based method for urban DTM generation. First, image segmentation is conducted using the DSM image. Next, a seed ground segment is set for each cell. Following the order of the nearest segment pair, each unclassified segment is examined by comparing the spatial correlation between the candidate segment and its nearest ground segment. This process continues until no unclassified segment remains. Based on classified ground segments, all ground points can thus be extracted and the output DTM can be obtained through postinterpolation. This method was experimented in the central Cambridge. The accuracy assessment and comparison with other Lidar-processing methods proved that the segmentation-based method produces urban DTMs with a small mean bias and limited large errors. This methodology has the potential to be applied to other areas and terrain situations. In addition to an original DTM generation method, this research works as an example that mature methods from other subjects can be employed to extend the category of Lidar-processing algorithms.
AbstractList DTM generation using airborne Light detection and ranging (Lidar) data is the fundamental issue of Lidar data processing and has been massively studied. However, DTM generation is still challenging in urban areas, due to the existence of densely distributed urban features and very large buildings. Different from most point-based DTM generation algorithms, this research proposes an image-segmentation-based method for urban DTM generation. First, image segmentation is conducted using the DSM image. Next, a seed ground segment is set for each cell. Following the order of the nearest segment pair, each unclassified segment is examined by comparing the spatial correlation between the candidate segment and its nearest ground segment. This process continues until no unclassified segment remains. Based on classified ground segments, all ground points can thus be extracted and the output DTM can be obtained through postinterpolation. This method was experimented in the central Cambridge. The accuracy assessment and comparison with other Lidar-processing methods proved that the segmentation-based method produces urban DTMs with a small mean bias and limited large errors. This methodology has the potential to be applied to other areas and terrain situations. In addition to an original DTM generation method, this research works as an example that mature methods from other subjects can be employed to extend the category of Lidar-processing algorithms.
Author Chen, Ziyue
Gao, Bingbo
Xu, Bing
Author_xml – sequence: 1
  givenname: Ziyue
  surname: Chen
  fullname: Chen, Ziyue
  email: zychen@bnu.edu.cn
  organization: College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
– sequence: 2
  givenname: Bing
  surname: Xu
  fullname: Xu, Bing
  email: bingxu@tsinghua.edu.cn
  organization: Center for Earth System Science, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Bingbo
  surname: Gao
  fullname: Gao, Bingbo
  email: gaobb@nercita.org.cn
  organization: Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
BookMark eNqFkMFSwjAQhjMOzgjoE3Dp0UsxmzQkOSIo4sA4Cpw7abvFOJBiUg6-vcUyHrx42sO_37-zX490XOWQkAHQIQDVd8-r9fhtNWQUxJAJYIlWF6TLQEAMgosO6YLmOoaEJlekF8IHpSMmNe-S17GL5nuzxXiF2z262tS2cvG9CVhEG58ZF03Xy2iGDv1PFC2xfq-aLFi3jcbWZ5V3GC1sYXw0NbW5Jpel2QW8Oc8-2Tw-rCdP8eJlNp-MF3HOKatjIyVINTKGs5Jqlakil5hRPioz1GaUCVUABZkAFSWnitJMAuqGRVZQhZr3yW3be_DV5xFDne5tyHG3Mw6rY0ih-Y8lTTVvVnm7mvsqBI9levB2b_xXCjQ9CUxbgelJYHoW2FD6D5XbVk_tjd39ww5a1iLi7zXJpVJC8G-Jr39r
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1080_01431161_2018_1434327
crossref_primary_10_1080_01431161_2018_1488285
crossref_primary_10_3390_rs15164105
crossref_primary_10_1016_j_jag_2023_103566
crossref_primary_10_3390_s17010150
crossref_primary_10_3390_w12051369
crossref_primary_10_1002_cpe_6219
crossref_primary_10_1080_17538947_2017_1395089
crossref_primary_10_1109_JSTARS_2017_2753467
crossref_primary_10_1007_s12205_024_0092_x
Cites_doi 10.1111/j.1467-9671.2004.00173.x
10.1080/01431161.2012.756597
10.1016/j.agrformet.2015.06.005
10.1016/j.jag.2009.03.005
10.1016/j.isprsjprs.2003.10.002
10.1016/j.ecoinf.2010.03.004
10.1145/342009.335388
10.1016/j.rse.2006.10.013
10.1080/01431161.2013.873833
10.1191/0309133306pp492ra
10.1109/ICPR.2006.463
10.1016/j.isprsjprs.2006.06.002
10.1016/j.isprsjprs.2011.10.002
10.1080/01431161.2010.508880
10.1016/j.cageo.2004.09.015
10.1016/j.landurbplan.2014.12.007
10.1016/j.rse.2011.05.020
10.1016/j.isprsjprs.2013.08.006
10.1016/j.isprsjprs.2008.09.001
10.1016/S0924-2716(98)00009-4
10.5194/isprsannals-II-3-W4-165-2015
10.1109/JSTARS.2014.2332337
10.1109/IHMSC.2012.52
10.3390/rs4061804
10.1016/j.jag.2012.03.015
10.1016/j.asr.2008.11.008
10.1016/j.foreco.2008.02.055
10.5194/isprsarchives-XXXIX-B4-363-2012
10.14358/PERS.73.2.175
10.1016/j.isprsjprs.2012.07.001
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
8FD
FR3
H8D
KR7
L7M
DOI 10.1109/JSTARS.2015.2512498
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 506
ExternalDocumentID 10_1109_JSTARS_2015_2512498
7378855
Genre orig-research
GrantInformation_xml – fundername: National Basic Research Program of China
  grantid: 2012CB955501-01
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c302t-a771786aa32f098b8dc7eb036fbe9a6b58d10174105f30800b71e9c30e2d08e93
IEDL.DBID RIE
ISSN 1939-1404
IngestDate Fri Jul 11 11:09:44 EDT 2025
Thu Apr 24 23:07:50 EDT 2025
Tue Jul 01 03:16:03 EDT 2025
Wed Aug 27 02:50:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords light detection and ranging (Lidar)
Digital terrain model (DTM)
urban
image segmentation
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c302t-a771786aa32f098b8dc7eb036fbe9a6b58d10174105f30800b71e9c30e2d08e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1793240983
PQPubID 23500
PageCount 11
ParticipantIDs crossref_primary_10_1109_JSTARS_2015_2512498
proquest_miscellaneous_1793240983
crossref_citationtrail_10_1109_JSTARS_2015_2512498
ieee_primary_7378855
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-Jan.
2016-1-00
20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-Jan.
PublicationDecade 2010
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
References bartels (ref4) 2006; 36
ref12
ref53
elmqvist (ref15) 2002; 34
ref11
ref10
roggero (ref35) 2002; 34
ref17
ref16
ref18
nardinocchi (ref28) 2003; 34
ref50
pfeifer (ref31) 0
ref45
ref47
ref42
ref44
ref43
ref8
ref7
sohn (ref41) 2002; 34
ref9
ref3
ref6
ref5
sithole (ref39) 2003; 34
vu (ref49) 0
ref37
baatz (ref2) 0
ref30
ref32
kraus (ref23) 2001; 34
schiewe (ref36) 0
wack (ref52) 0
sithole (ref40) 2005; 34
vosselman (ref48) 2000; 33
roggero (ref33) 0
axelsson (ref1) 2000; 33
roggero (ref34) 2001; 34
lohmann (ref25) 2002; 34
ref24
ref26
ref20
sithole (ref38) 2001; 34
ref22
ref21
ref27
ref29
wack (ref51) 2002; 34
tovari (ref46) 2005; 34
hu (ref19) 2003
garbay (ref14) 1986; 8
cristian (ref13) 2013; 85
References_xml – volume: 33
  start-page: 110
  year: 2000
  ident: ref1
  article-title: DEM generation form laser scanner data using adaptive TIN models
  publication-title: Int Arch Photogramm Remote Sens
– volume: 34
  start-page: 71
  year: 2003
  ident: ref39
  article-title: Comparison of filtering algorithms
  publication-title: Int Arch Photogramm Remote Sens Spatial Inf Sci
– ident: ref7
  doi: 10.1111/j.1467-9671.2004.00173.x
– volume: 34
  start-page: 79
  year: 2003
  ident: ref28
  article-title: Classification and filtering of laser data
  publication-title: Int Arch Photogramm Remote Sens
– ident: ref20
  doi: 10.1080/01431161.2012.756597
– volume: 34
  start-page: 293
  year: 2002
  ident: ref51
  article-title: Digital terrain models from airborne laser scanner data-a grid based approach
  publication-title: Int Arch Photogramm Remote Sens Spatial Inf Sci
– ident: ref24
  doi: 10.1016/j.agrformet.2015.06.005
– ident: ref50
  doi: 10.1016/j.jag.2009.03.005
– volume: 34
  start-page: 289
  year: 2002
  ident: ref35
  article-title: Object segmentation with region growing and principal component analysis
  publication-title: Int Arch Photogramm Remote Sens Spatial Inf Sci
– ident: ref3
  doi: 10.1016/j.isprsjprs.2003.10.002
– start-page: 48
  year: 0
  ident: ref52
  article-title: Laser DTM generation for south-tyrol and 3D-visualization
  publication-title: Proc ISPRS WG III/3 III/4 V/3 Workshop Laser Scanning
– ident: ref42
  doi: 10.1016/j.ecoinf.2010.03.004
– volume: 34
  start-page: 23
  year: 2001
  ident: ref23
  article-title: Advanced DTM generation from LIDAR data
  publication-title: Int Arch Photogramm Remote Sens
– volume: 34
  start-page: 66
  year: 2005
  ident: ref40
  article-title: Filtering of airborne laser scanner data based on segmented point clouds
  publication-title: Int Arch Photogramm Remote Sens Spatial Inf Sci
– ident: ref6
  doi: 10.1145/342009.335388
– start-page: 12
  year: 0
  ident: ref2
  article-title: Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation
  publication-title: Proc Angewandte Geogr Informationsverarbeitung XII
– ident: ref21
  doi: 10.1016/j.rse.2006.10.013
– ident: ref18
  doi: 10.1080/01431161.2013.873833
– ident: ref16
  doi: 10.1191/0309133306pp492ra
– volume: 8
  start-page: 25
  year: 1986
  ident: ref14
  article-title: An iterative region-growing process for cell image segmentation based on local color similarity and global shape criteria
  publication-title: Anal Quant Cytol Histol
– volume: 36
  start-page: 426
  year: 2006
  ident: ref4
  article-title: Segmentation of LIDAR data using measures of distribution
  publication-title: Int Arch Photogramm Remote Sens Spatial Inf Sci
– volume: 34
  start-page: 79
  year: 2005
  ident: ref46
  article-title: Segmentation based robust interpolation-A new approach to laser data filtering
  publication-title: Int Arch Photogramm Remote Sens Spatial Inf Sci
– volume: 34
  start-page: 336
  year: 2002
  ident: ref41
  article-title: Terrain surface reconstruction by the use of tetrahedron model with the MDL criterion
  publication-title: Int Arch Photogramm Remote Sens
– ident: ref5
  doi: 10.1109/ICPR.2006.463
– ident: ref37
  doi: 10.1016/j.isprsjprs.2006.06.002
– ident: ref27
  doi: 10.1016/j.isprsjprs.2011.10.002
– volume: 34
  start-page: 311
  year: 2002
  ident: ref25
  article-title: Segmentation and filtering of laser scanner digital surface models
  publication-title: Int Arch Photogramm Remote Sens Spatial Inf Sci
– year: 0
  ident: ref33
  article-title: Dense DTM from laser scanner data
  publication-title: Proc OEPEE Workshop Airborne Laser Scanning Interferometric SAR
– year: 0
  ident: ref31
  article-title: Derivation of digital terrain models in the SCOP$++$ environment
  publication-title: Proc OEEPE Workshop on Airborne Laserscanning and Interferometric SAR for Digital Elevation Models
– year: 0
  ident: ref36
  article-title: Segmentation of high-resolution remotely sensed data concepts, applications and problems
  publication-title: Proc Symp Geospatial Theory Process Appl
– ident: ref53
  doi: 10.1080/01431161.2010.508880
– ident: ref43
  doi: 10.1016/j.cageo.2004.09.015
– ident: ref17
  doi: 10.1016/j.landurbplan.2014.12.007
– ident: ref32
  doi: 10.1016/j.rse.2011.05.020
– volume: 85
  start-page: 120
  year: 2013
  ident: ref13
  article-title: Urban DEM generation, analysis and enhancements using tanDEM-X
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2013.08.006
– volume: 34
  start-page: 227
  year: 2001
  ident: ref34
  article-title: Airborne laser scanning: Clustering in raw data
  publication-title: Int Arch Photogramm Remote Sens Spatial Inf Sci
– ident: ref26
  doi: 10.1016/j.isprsjprs.2008.09.001
– ident: ref22
  doi: 10.1016/S0924-2716(98)00009-4
– volume: 33
  start-page: 935
  year: 2000
  ident: ref48
  article-title: Slope based filtering of laser altimetry data
  publication-title: Int Arch Photogramm Remote Sens
– ident: ref30
  doi: 10.5194/isprsannals-II-3-W4-165-2015
– ident: ref12
  doi: 10.1109/JSTARS.2014.2332337
– start-page: 6
  year: 0
  ident: ref49
  article-title: LiDAR signatures to update Japanese building inventory database
  publication-title: Proc 25th Asian Conf Remote Sens
– ident: ref45
  doi: 10.1109/IHMSC.2012.52
– year: 2003
  ident: ref19
  article-title: Automated extraction of digital terrain models, roads and buildings Using Airborne Lidar Data
– ident: ref44
  doi: 10.3390/rs4061804
– volume: 34
  start-page: 203
  year: 2001
  ident: ref38
  article-title: Filtering of laser altimetry data using a slope adaptive filter
  publication-title: Int Arch Photogramm Remote Sens Spatial Inf Sci
– ident: ref47
  doi: 10.1016/j.jag.2012.03.015
– ident: ref10
  doi: 10.1016/j.asr.2008.11.008
– ident: ref29
  doi: 10.1016/j.foreco.2008.02.055
– volume: 34
  start-page: 114
  year: 2002
  ident: ref15
  article-title: Ground surface estimation from airborne laser scanner data using active shape models
  publication-title: Int Arch Photogramm Remote Sens Spatial Inf Sci
– ident: ref8
  doi: 10.5194/isprsarchives-XXXIX-B4-363-2012
– ident: ref9
  doi: 10.14358/PERS.73.2.175
– ident: ref11
  doi: 10.1016/j.isprsjprs.2012.07.001
SSID ssj0062793
Score 2.1435099
Snippet DTM generation using airborne Light detection and ranging (Lidar) data is the fundamental issue of Lidar data processing and has been massively studied....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 496
SubjectTerms Algorithm design and analysis
Algorithms
Assessments
Buildings
Categories
Correlation
Digital terrain model (DTM)
Earth
Feature extraction
Grounds
Image segmentation
Laser radar
Lidar
light detection and ranging (Lidar)
Segments
Three-dimensional displays
urban
Urban areas
Title An Image-Segmentation-Based Urban DTM Generation Method Using Airborne Lidar Data
URI https://ieeexplore.ieee.org/document/7378855
https://www.proquest.com/docview/1793240983
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZSwMxEB5qQfDFq4r1IoKPpu7R7CaP1XpiBa0F35ZkN5Gi3UrdPuivd5LdFjwQn3ZhEzaZmcyRTL4BOMxizzNcG4r2x1CMvwIqMBaiEZcpClEWS4fO37uNLgft60f2WIOj-V0YrbVLPtMt--rO8rNxOrVbZcexBT9nbAEW8Fne1Zpp3SiIHcAu-iOCWsiYCmHI98Qxinjnvm_TuFjLmvO24F-skCur8kMXOwNzvgK92dDKvJLn1rRQrfTjG2rjf8e-CsuVp0k6pWisQU3n67B44Sr5vjfgrpOTqxFqE9rXT6PqBlJOT9CqZWQwUTIn3YceKWGp7SfSc8WmiUsyIJ3hBKUn1-RmmMkJ6cpCbsDg_Ozh9JJW9RVoGnpBQWWMsRyPpAwD4wmueJbGWqFJM0oLGSnGM7tgbSKoCa1nqWJfC-yrg8zjWoSbUM_Hud4Cwgwq3DD0DZMYcCtfGl8wnLKSTFmt0IRgRu8krcDHbQ2Ml8QFIZ5ISiYllklJxaQmHM07vZbYG383b1iyz5tWFG_CwYyxCS4dex4icz2eviVWN6FDI3i4_XvXHVjCH1Q7LrtQLyZTvYc-SKH2nfB9AlL_1Kc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED91nabxwsc6RBkDT9ojLvmoE_uxg7EWGiSglXiL7MRGFTRFJX2Av56zk1ZiQ2hvkWIrju98vzv7_DuAn3nseYZrQxF_DMX4K6ACYyEacZmhEuWxdOz8yUXUH3fPbthNAw5Xd2G01i75THfsozvLz2fZwm6VHcWW_JyxD_ARcZ8F1W2tpd2NgthR7KJHIqgljak5hnxPHKGS966ubSIX61hA7wr-CodcYZV_rLGDmNMNSJaDqzJL7jqLUnWy5794G_939JuwXvuapFcpxxY0dPEFPv1xtXyfWnDZK8hgivaEXuvbaX0HqaC_ENdyMp4rWZCTUUIqYmr7iiSu3DRxaQakN5mj_hSaDCe5nJMTWcqvMD79PTru07rCAs1CLyipjDGa45GUYWA8wRXPs1grBDWjtJCRYjy3S9amgprQ-pYq9rXAvjrIPa5FuA3NYlboHSDMoMkNQ98wiSG38qXxBcNfVpIpaxfaECznO81q-nFbBeM-dWGIJ9JKSKkVUloLqQ2Hq04PFfvG-81bdtpXTesZb8OPpWBTXDz2REQWerZ4TK11QpdG8HD37a4H8Lk_SobpcHBx_g3W8GP1_sseNMv5Qn9Hj6RU-04RXwCa4dfx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Image-Segmentation-Based+Urban+DTM+Generation+Method+Using+Airborne+Lidar+Data&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Chen%2C+Ziyue&rft.au=Xu%2C+Bing&rft.au=Gao%2C+Bingbo&rft.date=2016-01-01&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=9&rft.issue=1&rft.spage=496&rft.epage=506&rft_id=info:doi/10.1109%2FJSTARS.2015.2512498&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2015_2512498
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon