An Image-Segmentation-Based Urban DTM Generation Method Using Airborne Lidar Data
DTM generation using airborne Light detection and ranging (Lidar) data is the fundamental issue of Lidar data processing and has been massively studied. However, DTM generation is still challenging in urban areas, due to the existence of densely distributed urban features and very large buildings. D...
Saved in:
Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 9; no. 1; pp. 496 - 506 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | DTM generation using airborne Light detection and ranging (Lidar) data is the fundamental issue of Lidar data processing and has been massively studied. However, DTM generation is still challenging in urban areas, due to the existence of densely distributed urban features and very large buildings. Different from most point-based DTM generation algorithms, this research proposes an image-segmentation-based method for urban DTM generation. First, image segmentation is conducted using the DSM image. Next, a seed ground segment is set for each cell. Following the order of the nearest segment pair, each unclassified segment is examined by comparing the spatial correlation between the candidate segment and its nearest ground segment. This process continues until no unclassified segment remains. Based on classified ground segments, all ground points can thus be extracted and the output DTM can be obtained through postinterpolation. This method was experimented in the central Cambridge. The accuracy assessment and comparison with other Lidar-processing methods proved that the segmentation-based method produces urban DTMs with a small mean bias and limited large errors. This methodology has the potential to be applied to other areas and terrain situations. In addition to an original DTM generation method, this research works as an example that mature methods from other subjects can be employed to extend the category of Lidar-processing algorithms. |
---|---|
AbstractList | DTM generation using airborne Light detection and ranging (Lidar) data is the fundamental issue of Lidar data processing and has been massively studied. However, DTM generation is still challenging in urban areas, due to the existence of densely distributed urban features and very large buildings. Different from most point-based DTM generation algorithms, this research proposes an image-segmentation-based method for urban DTM generation. First, image segmentation is conducted using the DSM image. Next, a seed ground segment is set for each cell. Following the order of the nearest segment pair, each unclassified segment is examined by comparing the spatial correlation between the candidate segment and its nearest ground segment. This process continues until no unclassified segment remains. Based on classified ground segments, all ground points can thus be extracted and the output DTM can be obtained through postinterpolation. This method was experimented in the central Cambridge. The accuracy assessment and comparison with other Lidar-processing methods proved that the segmentation-based method produces urban DTMs with a small mean bias and limited large errors. This methodology has the potential to be applied to other areas and terrain situations. In addition to an original DTM generation method, this research works as an example that mature methods from other subjects can be employed to extend the category of Lidar-processing algorithms. |
Author | Chen, Ziyue Gao, Bingbo Xu, Bing |
Author_xml | – sequence: 1 givenname: Ziyue surname: Chen fullname: Chen, Ziyue email: zychen@bnu.edu.cn organization: College of Global Change and Earth System Science, Beijing Normal University, Beijing, China – sequence: 2 givenname: Bing surname: Xu fullname: Xu, Bing email: bingxu@tsinghua.edu.cn organization: Center for Earth System Science, Tsinghua University, Beijing, China – sequence: 3 givenname: Bingbo surname: Gao fullname: Gao, Bingbo email: gaobb@nercita.org.cn organization: Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China |
BookMark | eNqFkMFSwjAQhjMOzgjoE3Dp0UsxmzQkOSIo4sA4Cpw7abvFOJBiUg6-vcUyHrx42sO_37-zX490XOWQkAHQIQDVd8-r9fhtNWQUxJAJYIlWF6TLQEAMgosO6YLmOoaEJlekF8IHpSMmNe-S17GL5nuzxXiF2z262tS2cvG9CVhEG58ZF03Xy2iGDv1PFC2xfq-aLFi3jcbWZ5V3GC1sYXw0NbW5Jpel2QW8Oc8-2Tw-rCdP8eJlNp-MF3HOKatjIyVINTKGs5Jqlakil5hRPioz1GaUCVUABZkAFSWnitJMAuqGRVZQhZr3yW3be_DV5xFDne5tyHG3Mw6rY0ih-Y8lTTVvVnm7mvsqBI9levB2b_xXCjQ9CUxbgelJYHoW2FD6D5XbVk_tjd39ww5a1iLi7zXJpVJC8G-Jr39r |
CODEN | IJSTHZ |
CitedBy_id | crossref_primary_10_1080_01431161_2018_1434327 crossref_primary_10_1080_01431161_2018_1488285 crossref_primary_10_3390_rs15164105 crossref_primary_10_1016_j_jag_2023_103566 crossref_primary_10_3390_s17010150 crossref_primary_10_3390_w12051369 crossref_primary_10_1002_cpe_6219 crossref_primary_10_1080_17538947_2017_1395089 crossref_primary_10_1109_JSTARS_2017_2753467 crossref_primary_10_1007_s12205_024_0092_x |
Cites_doi | 10.1111/j.1467-9671.2004.00173.x 10.1080/01431161.2012.756597 10.1016/j.agrformet.2015.06.005 10.1016/j.jag.2009.03.005 10.1016/j.isprsjprs.2003.10.002 10.1016/j.ecoinf.2010.03.004 10.1145/342009.335388 10.1016/j.rse.2006.10.013 10.1080/01431161.2013.873833 10.1191/0309133306pp492ra 10.1109/ICPR.2006.463 10.1016/j.isprsjprs.2006.06.002 10.1016/j.isprsjprs.2011.10.002 10.1080/01431161.2010.508880 10.1016/j.cageo.2004.09.015 10.1016/j.landurbplan.2014.12.007 10.1016/j.rse.2011.05.020 10.1016/j.isprsjprs.2013.08.006 10.1016/j.isprsjprs.2008.09.001 10.1016/S0924-2716(98)00009-4 10.5194/isprsannals-II-3-W4-165-2015 10.1109/JSTARS.2014.2332337 10.1109/IHMSC.2012.52 10.3390/rs4061804 10.1016/j.jag.2012.03.015 10.1016/j.asr.2008.11.008 10.1016/j.foreco.2008.02.055 10.5194/isprsarchives-XXXIX-B4-363-2012 10.14358/PERS.73.2.175 10.1016/j.isprsjprs.2012.07.001 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION 8FD FR3 H8D KR7 L7M |
DOI | 10.1109/JSTARS.2015.2512498 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2151-1535 |
EndPage | 506 |
ExternalDocumentID | 10_1109_JSTARS_2015_2512498 7378855 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Basic Research Program of China grantid: 2012CB955501-01 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 8FD FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c302t-a771786aa32f098b8dc7eb036fbe9a6b58d10174105f30800b71e9c30e2d08e93 |
IEDL.DBID | RIE |
ISSN | 1939-1404 |
IngestDate | Fri Jul 11 11:09:44 EDT 2025 Thu Apr 24 23:07:50 EDT 2025 Tue Jul 01 03:16:03 EDT 2025 Wed Aug 27 02:50:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | light detection and ranging (Lidar) Digital terrain model (DTM) urban image segmentation |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c302t-a771786aa32f098b8dc7eb036fbe9a6b58d10174105f30800b71e9c30e2d08e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1793240983 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_JSTARS_2015_2512498 proquest_miscellaneous_1793240983 crossref_citationtrail_10_1109_JSTARS_2015_2512498 ieee_primary_7378855 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-Jan. 2016-1-00 20160101 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-Jan. |
PublicationDecade | 2010 |
PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
PublicationTitleAbbrev | JSTARS |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | bartels (ref4) 2006; 36 ref12 ref53 elmqvist (ref15) 2002; 34 ref11 ref10 roggero (ref35) 2002; 34 ref17 ref16 ref18 nardinocchi (ref28) 2003; 34 ref50 pfeifer (ref31) 0 ref45 ref47 ref42 ref44 ref43 ref8 ref7 sohn (ref41) 2002; 34 ref9 ref3 ref6 ref5 sithole (ref39) 2003; 34 vu (ref49) 0 ref37 baatz (ref2) 0 ref30 ref32 kraus (ref23) 2001; 34 schiewe (ref36) 0 wack (ref52) 0 sithole (ref40) 2005; 34 vosselman (ref48) 2000; 33 roggero (ref33) 0 axelsson (ref1) 2000; 33 roggero (ref34) 2001; 34 lohmann (ref25) 2002; 34 ref24 ref26 ref20 sithole (ref38) 2001; 34 ref22 ref21 ref27 ref29 wack (ref51) 2002; 34 tovari (ref46) 2005; 34 hu (ref19) 2003 garbay (ref14) 1986; 8 cristian (ref13) 2013; 85 |
References_xml | – volume: 33 start-page: 110 year: 2000 ident: ref1 article-title: DEM generation form laser scanner data using adaptive TIN models publication-title: Int Arch Photogramm Remote Sens – volume: 34 start-page: 71 year: 2003 ident: ref39 article-title: Comparison of filtering algorithms publication-title: Int Arch Photogramm Remote Sens Spatial Inf Sci – ident: ref7 doi: 10.1111/j.1467-9671.2004.00173.x – volume: 34 start-page: 79 year: 2003 ident: ref28 article-title: Classification and filtering of laser data publication-title: Int Arch Photogramm Remote Sens – ident: ref20 doi: 10.1080/01431161.2012.756597 – volume: 34 start-page: 293 year: 2002 ident: ref51 article-title: Digital terrain models from airborne laser scanner data-a grid based approach publication-title: Int Arch Photogramm Remote Sens Spatial Inf Sci – ident: ref24 doi: 10.1016/j.agrformet.2015.06.005 – ident: ref50 doi: 10.1016/j.jag.2009.03.005 – volume: 34 start-page: 289 year: 2002 ident: ref35 article-title: Object segmentation with region growing and principal component analysis publication-title: Int Arch Photogramm Remote Sens Spatial Inf Sci – ident: ref3 doi: 10.1016/j.isprsjprs.2003.10.002 – start-page: 48 year: 0 ident: ref52 article-title: Laser DTM generation for south-tyrol and 3D-visualization publication-title: Proc ISPRS WG III/3 III/4 V/3 Workshop Laser Scanning – ident: ref42 doi: 10.1016/j.ecoinf.2010.03.004 – volume: 34 start-page: 23 year: 2001 ident: ref23 article-title: Advanced DTM generation from LIDAR data publication-title: Int Arch Photogramm Remote Sens – volume: 34 start-page: 66 year: 2005 ident: ref40 article-title: Filtering of airborne laser scanner data based on segmented point clouds publication-title: Int Arch Photogramm Remote Sens Spatial Inf Sci – ident: ref6 doi: 10.1145/342009.335388 – start-page: 12 year: 0 ident: ref2 article-title: Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation publication-title: Proc Angewandte Geogr Informationsverarbeitung XII – ident: ref21 doi: 10.1016/j.rse.2006.10.013 – ident: ref18 doi: 10.1080/01431161.2013.873833 – ident: ref16 doi: 10.1191/0309133306pp492ra – volume: 8 start-page: 25 year: 1986 ident: ref14 article-title: An iterative region-growing process for cell image segmentation based on local color similarity and global shape criteria publication-title: Anal Quant Cytol Histol – volume: 36 start-page: 426 year: 2006 ident: ref4 article-title: Segmentation of LIDAR data using measures of distribution publication-title: Int Arch Photogramm Remote Sens Spatial Inf Sci – volume: 34 start-page: 79 year: 2005 ident: ref46 article-title: Segmentation based robust interpolation-A new approach to laser data filtering publication-title: Int Arch Photogramm Remote Sens Spatial Inf Sci – volume: 34 start-page: 336 year: 2002 ident: ref41 article-title: Terrain surface reconstruction by the use of tetrahedron model with the MDL criterion publication-title: Int Arch Photogramm Remote Sens – ident: ref5 doi: 10.1109/ICPR.2006.463 – ident: ref37 doi: 10.1016/j.isprsjprs.2006.06.002 – ident: ref27 doi: 10.1016/j.isprsjprs.2011.10.002 – volume: 34 start-page: 311 year: 2002 ident: ref25 article-title: Segmentation and filtering of laser scanner digital surface models publication-title: Int Arch Photogramm Remote Sens Spatial Inf Sci – year: 0 ident: ref33 article-title: Dense DTM from laser scanner data publication-title: Proc OEPEE Workshop Airborne Laser Scanning Interferometric SAR – year: 0 ident: ref31 article-title: Derivation of digital terrain models in the SCOP$++$ environment publication-title: Proc OEEPE Workshop on Airborne Laserscanning and Interferometric SAR for Digital Elevation Models – year: 0 ident: ref36 article-title: Segmentation of high-resolution remotely sensed data concepts, applications and problems publication-title: Proc Symp Geospatial Theory Process Appl – ident: ref53 doi: 10.1080/01431161.2010.508880 – ident: ref43 doi: 10.1016/j.cageo.2004.09.015 – ident: ref17 doi: 10.1016/j.landurbplan.2014.12.007 – ident: ref32 doi: 10.1016/j.rse.2011.05.020 – volume: 85 start-page: 120 year: 2013 ident: ref13 article-title: Urban DEM generation, analysis and enhancements using tanDEM-X publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2013.08.006 – volume: 34 start-page: 227 year: 2001 ident: ref34 article-title: Airborne laser scanning: Clustering in raw data publication-title: Int Arch Photogramm Remote Sens Spatial Inf Sci – ident: ref26 doi: 10.1016/j.isprsjprs.2008.09.001 – ident: ref22 doi: 10.1016/S0924-2716(98)00009-4 – volume: 33 start-page: 935 year: 2000 ident: ref48 article-title: Slope based filtering of laser altimetry data publication-title: Int Arch Photogramm Remote Sens – ident: ref30 doi: 10.5194/isprsannals-II-3-W4-165-2015 – ident: ref12 doi: 10.1109/JSTARS.2014.2332337 – start-page: 6 year: 0 ident: ref49 article-title: LiDAR signatures to update Japanese building inventory database publication-title: Proc 25th Asian Conf Remote Sens – ident: ref45 doi: 10.1109/IHMSC.2012.52 – year: 2003 ident: ref19 article-title: Automated extraction of digital terrain models, roads and buildings Using Airborne Lidar Data – ident: ref44 doi: 10.3390/rs4061804 – volume: 34 start-page: 203 year: 2001 ident: ref38 article-title: Filtering of laser altimetry data using a slope adaptive filter publication-title: Int Arch Photogramm Remote Sens Spatial Inf Sci – ident: ref47 doi: 10.1016/j.jag.2012.03.015 – ident: ref10 doi: 10.1016/j.asr.2008.11.008 – ident: ref29 doi: 10.1016/j.foreco.2008.02.055 – volume: 34 start-page: 114 year: 2002 ident: ref15 article-title: Ground surface estimation from airborne laser scanner data using active shape models publication-title: Int Arch Photogramm Remote Sens Spatial Inf Sci – ident: ref8 doi: 10.5194/isprsarchives-XXXIX-B4-363-2012 – ident: ref9 doi: 10.14358/PERS.73.2.175 – ident: ref11 doi: 10.1016/j.isprsjprs.2012.07.001 |
SSID | ssj0062793 |
Score | 2.1435099 |
Snippet | DTM generation using airborne Light detection and ranging (Lidar) data is the fundamental issue of Lidar data processing and has been massively studied.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 496 |
SubjectTerms | Algorithm design and analysis Algorithms Assessments Buildings Categories Correlation Digital terrain model (DTM) Earth Feature extraction Grounds Image segmentation Laser radar Lidar light detection and ranging (Lidar) Segments Three-dimensional displays urban Urban areas |
Title | An Image-Segmentation-Based Urban DTM Generation Method Using Airborne Lidar Data |
URI | https://ieeexplore.ieee.org/document/7378855 https://www.proquest.com/docview/1793240983 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZSwMxEB5qQfDFq4r1IoKPpu7R7CaP1XpiBa0F35ZkN5Gi3UrdPuivd5LdFjwQn3ZhEzaZmcyRTL4BOMxizzNcG4r2x1CMvwIqMBaiEZcpClEWS4fO37uNLgft60f2WIOj-V0YrbVLPtMt--rO8rNxOrVbZcexBT9nbAEW8Fne1Zpp3SiIHcAu-iOCWsiYCmHI98Qxinjnvm_TuFjLmvO24F-skCur8kMXOwNzvgK92dDKvJLn1rRQrfTjG2rjf8e-CsuVp0k6pWisQU3n67B44Sr5vjfgrpOTqxFqE9rXT6PqBlJOT9CqZWQwUTIn3YceKWGp7SfSc8WmiUsyIJ3hBKUn1-RmmMkJ6cpCbsDg_Ozh9JJW9RVoGnpBQWWMsRyPpAwD4wmueJbGWqFJM0oLGSnGM7tgbSKoCa1nqWJfC-yrg8zjWoSbUM_Hud4Cwgwq3DD0DZMYcCtfGl8wnLKSTFmt0IRgRu8krcDHbQ2Ml8QFIZ5ISiYllklJxaQmHM07vZbYG383b1iyz5tWFG_CwYyxCS4dex4icz2eviVWN6FDI3i4_XvXHVjCH1Q7LrtQLyZTvYc-SKH2nfB9AlL_1Kc |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED91nabxwsc6RBkDT9ojLvmoE_uxg7EWGiSglXiL7MRGFTRFJX2Av56zk1ZiQ2hvkWIrju98vzv7_DuAn3nseYZrQxF_DMX4K6ACYyEacZmhEuWxdOz8yUXUH3fPbthNAw5Xd2G01i75THfsozvLz2fZwm6VHcWW_JyxD_ARcZ8F1W2tpd2NgthR7KJHIqgljak5hnxPHKGS966ubSIX61hA7wr-CodcYZV_rLGDmNMNSJaDqzJL7jqLUnWy5794G_939JuwXvuapFcpxxY0dPEFPv1xtXyfWnDZK8hgivaEXuvbaX0HqaC_ENdyMp4rWZCTUUIqYmr7iiSu3DRxaQakN5mj_hSaDCe5nJMTWcqvMD79PTru07rCAs1CLyipjDGa45GUYWA8wRXPs1grBDWjtJCRYjy3S9amgprQ-pYq9rXAvjrIPa5FuA3NYlboHSDMoMkNQ98wiSG38qXxBcNfVpIpaxfaECznO81q-nFbBeM-dWGIJ9JKSKkVUloLqQ2Hq04PFfvG-81bdtpXTesZb8OPpWBTXDz2REQWerZ4TK11QpdG8HD37a4H8Lk_SobpcHBx_g3W8GP1_sseNMv5Qn9Hj6RU-04RXwCa4dfx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Image-Segmentation-Based+Urban+DTM+Generation+Method+Using+Airborne+Lidar+Data&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Chen%2C+Ziyue&rft.au=Xu%2C+Bing&rft.au=Gao%2C+Bingbo&rft.date=2016-01-01&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=9&rft.issue=1&rft.spage=496&rft.epage=506&rft_id=info:doi/10.1109%2FJSTARS.2015.2512498&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2015_2512498 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |