The Arrangement of Marks Impacts Afforded Messages: Ordering, Partitioning, Spacing, and Coloring in Bar Charts

Data visualizations present a massive number of potential messages to an observer. One might notice that one group's average is larger than another's, or that a difference in values is smaller than a difference between two others, or any of a combinatorial explosion of other possibilities....

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on visualization and computer graphics Vol. 30; no. 1; pp. 1 - 11
Main Authors Fygenson, Racquel, Franconeri, Steven, Bertini, Enrico
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Data visualizations present a massive number of potential messages to an observer. One might notice that one group's average is larger than another's, or that a difference in values is smaller than a difference between two others, or any of a combinatorial explosion of other possibilities. The message that a viewer tends to notice - the message that a visualization 'affords' - is strongly affected by how values are arranged in a chart, e.g., how the values are colored or positioned. Although understanding the mapping between a chart's arrangement and what viewers tend to notice is critical for creating guidelines and recommendation systems, current empirical work is insufficient to lay out clear rules. We present a set of empirical evaluations of how different messages-including ranking, grouping, and part-to-whole relationships-are afforded by variations in ordering, partitioning, spacing, and coloring of values, within the ubiquitous case study of bar graphs. In doing so, we introduce a quantitative method that is easily scalable, reviewable, and replicable, laying groundwork for further investigation of the effects of arrangement on message affordances across other visualizations and tasks. Pre-registration and all supplemental materials are available at https://osf.io/np3q7 and https://osf.io/bvy95 , respectively.
AbstractList Data visualizations present a massive number of potential messages to an observer. One might notice that one group's average is larger than another's, or that a difference in values is smaller than a difference between two others, or any of a combinatorial explosion of other possibilities. The message that a viewer tends to notice - the message that a visualization 'affords' - is strongly affected by how values are arranged in a chart, e.g., how the values are colored or positioned. Although understanding the mapping between a chart's arrangement and what viewers tend to notice is critical for creating guidelines and recommendation systems, current empirical work is insufficient to lay out clear rules. We present a set of empirical evaluations of how different messages-including ranking, grouping, and part-to-whole relationships-are afforded by variations in ordering, partitioning, spacing, and coloring of values, within the ubiquitous case study of bar graphs. In doing so, we introduce a quantitative method that is easily scalable, reviewable, and replicable, laying groundwork for further investigation of the effects of arrangement on message affordances across other visualizations and tasks. Pre-registration and all supplemental materials are available at https://osf.io/np3q7 and https://osf.io/bvy95, respectively.
Data visualizations present a massive number of potential messages to an observer. One might notice that one group's average is larger than another's, or that a difference in values is smaller than a difference between two others, or any of a combinatorial explosion of other possibilities. The message that a viewer tends to notice - the message that a visualization 'affords' - is strongly affected by how values are arranged in a chart, e.g., how the values are colored or positioned. Although understanding the mapping between a chart's arrangement and what viewers tend to notice is critical for creating guidelines and recommendation systems, current empirical work is insufficient to lay out clear rules. We present a set of empirical evaluations of how different messages-including ranking, grouping, and part-to-whole relationships-are afforded by variations in ordering, partitioning, spacing, and coloring of values, within the ubiquitous case study of bar graphs. In doing so, we introduce a quantitative method that is easily scalable, reviewable, and replicable, laying groundwork for further investigation of the effects of arrangement on message affordances across other visualizations and tasks. Pre-registration and all supplemental materials are available at https://osf.io/np3q7 and https://osf.io/bvy95, respectively.Data visualizations present a massive number of potential messages to an observer. One might notice that one group's average is larger than another's, or that a difference in values is smaller than a difference between two others, or any of a combinatorial explosion of other possibilities. The message that a viewer tends to notice - the message that a visualization 'affords' - is strongly affected by how values are arranged in a chart, e.g., how the values are colored or positioned. Although understanding the mapping between a chart's arrangement and what viewers tend to notice is critical for creating guidelines and recommendation systems, current empirical work is insufficient to lay out clear rules. We present a set of empirical evaluations of how different messages-including ranking, grouping, and part-to-whole relationships-are afforded by variations in ordering, partitioning, spacing, and coloring of values, within the ubiquitous case study of bar graphs. In doing so, we introduce a quantitative method that is easily scalable, reviewable, and replicable, laying groundwork for further investigation of the effects of arrangement on message affordances across other visualizations and tasks. Pre-registration and all supplemental materials are available at https://osf.io/np3q7 and https://osf.io/bvy95, respectively.
Author Franconeri, Steven
Fygenson, Racquel
Bertini, Enrico
Author_xml – sequence: 1
  givenname: Racquel
  orcidid: 0000-0002-0705-9000
  surname: Fygenson
  fullname: Fygenson, Racquel
  organization: Northeastern University, USA
– sequence: 2
  givenname: Steven
  orcidid: 0000-0001-5244-9764
  surname: Franconeri
  fullname: Franconeri, Steven
  organization: Northeastern University, USA
– sequence: 3
  givenname: Enrico
  orcidid: 0000-0002-9932-0551
  surname: Bertini
  fullname: Bertini, Enrico
  organization: Northeastern University, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37871066$$D View this record in MEDLINE/PubMed
BookMark eNpd0V1rFDEUBuAgFfuhP0AQCXjjhbOeJDP56N06aC20VHD1NmRmTrZTd5I1mb3w35vtriJe5Rx43hDynpOTEAMS8pLBgjEw71ff26sFBy4WQnDZGHhCzpipWQUNyJMyg1IVl1yekvOcHwBYXWvzjJwKpRUDKc9IXN0jXabkwhonDDONnt669CPT62nr-jnTpfcxDTjQW8zZrTFf0ruypzGs39EvLs3jPMbwuH0ticfBhYG2cRP3iI6BfnCJtvfF5ufkqXebjC-O5wX59unjqv1c3dxdXbfLm6oXwOeqMZ3RsvGd6xWoDrR2dWcG0w2-8cJLhbrnTAoFrkN0vpZdDcxhj0oPkg_igrw93LtN8ecO82ynMfe42biAcZct15rxWhnVFPrmP_oQdymU11luQDZaQW2Ken1Uu27CwW7TOLn0y_75ygLYAfQp5pzQ_yUM7L4uu6_L7uuyx7pK5tUhMyLiP54bBgLEb_USj6Y
CODEN ITVGEA
Cites_doi 10.1016/j.cognition.2018.08.006
10.1007/s11257-006-9002-9
10.1287/isre.2.1.63
10.1177/0956797618822798
10.1080/01621459.1987.10478448
10.1080/00031305.1987.10475440
10.1016/0010-0285(91)90005-9
10.1145/1358628.1358955
10.1037/a0029333
10.1109/tvcg.2012.197
10.1111/j.1540-5915.1991.tb00344.x
10.3758/bf03201236
10.1109/tvcg.2016.2598920
10.1177/0956797615585002
10.1109/tvcg.2022.3209456
10.2307/1574154
10.1111/coin.12227
10.2307/2288400
10.1007/978-3-319-26633-6_13
10.1111/cgf.14521
10.1109/tvcg.2022.3232959
10.1109/tvcg.2022.3231716
10.1109/tvcg.2011.279
10.2307/1419052
10.1145/989863.989880
10.1201/b17511
10.2466/pms.1961.13.3.305
10.1109/mcg.2006.70
10.1068/p2799
10.1068/p270417
10.1093/oxfordhb/9780199686858.013.060
10.1145/1753326.1753357
10.1037/1076-898x.4.2.119
10.1109/tvcg.2013.126
10.1007/3-540-37620-8_22
10.1109/tvcg.2015.2467195
10.1145/3173574.3174012
10.1007/BF00410640
10.1109/tvcg.2022.3209457
10.1145/1842993.1843031
10.1145/3290605.3300576
10.1037/0022-0663.91.4.690
10.1109/tvcg.2008.171
10.1145/1753326.1753716
10.1109/tvcg.2013.234
10.1080/01621459.1995.10476521
10.1109/tvcg.2014.2346320
10.1002/wcs.1328
10.3758/s13423-016-1047-0
10.1038/s41598-022-05353-1
10.25080/Majora-92bf1922-011
10.1111/cgf.12635
10.1109/mcg.2022.3152676
10.1109/tvcg.2021.3114823
10.1016/0042-6989(94)00173-j
10.1177/15291006211051956
10.3758/app.71.6.1251
10.15358/9783800648108
10.1002/(SICI)1520-6378(199908)24:4<243::AID-COL5>3.0.CO;2-3
10.1109/tvcg.2021.3128157
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TVCG.2023.3326590
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
Technology Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 11
ExternalDocumentID 37871066
10_1109_TVCG_2023_3326590
10291030
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
5VS
AAYOK
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
H~9
IFJZH
RIG
RNI
RZB
VH1
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c302t-59b9865fbac707b088a4b9d9bdf5f3f67e8c216370abeeaf46b401aece78d62d3
IEDL.DBID RIE
ISSN 1077-2626
1941-0506
IngestDate Thu Jul 10 18:56:35 EDT 2025
Mon Jun 30 03:28:34 EDT 2025
Mon Jul 21 05:57:08 EDT 2025
Tue Jul 01 02:12:19 EDT 2025
Wed Aug 27 02:37:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c302t-59b9865fbac707b088a4b9d9bdf5f3f67e8c216370abeeaf46b401aece78d62d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5244-9764
0000-0002-9932-0551
0000-0002-0705-9000
PMID 37871066
PQID 2906587049
PQPubID 75741
PageCount 11
ParticipantIDs proquest_journals_2906587049
ieee_primary_10291030
crossref_primary_10_1109_TVCG_2023_3326590
proquest_miscellaneous_2881247975
pubmed_primary_37871066
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref15
Norman (ref29) 2013
ref59
ref14
ref58
ref53
ref52
ref11
Tufte (ref47) 2001
ref54
Ware (ref56) 2012
ref17
Ware (ref55) 2008
ref16
Lidwell (ref26) 2010
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref6
Bertini (ref3) 2020
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Cairo (ref10) 2020
ref24
ref23
ref67
ref25
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref60
ref62
ref61
References_xml – ident: ref62
  doi: 10.1016/j.cognition.2018.08.006
– ident: ref38
  doi: 10.1007/s11257-006-9002-9
– ident: ref50
  doi: 10.1287/isre.2.1.63
– ident: ref63
  doi: 10.1177/0956797618822798
– ident: ref42
  doi: 10.1080/01621459.1987.10478448
– ident: ref46
  doi: 10.1080/00031305.1987.10475440
– volume-title: Why shouldnt all charts be scatter plots? beyond precision-driven visualizations
  year: 2020
  ident: ref3
– ident: ref48
  doi: 10.1016/0010-0285(91)90005-9
– ident: ref4
  doi: 10.1145/1358628.1358955
– ident: ref52
  doi: 10.1037/a0029333
– ident: ref5
  doi: 10.1109/tvcg.2012.197
– ident: ref49
  doi: 10.1111/j.1540-5915.1991.tb00344.x
– ident: ref65
  doi: 10.3758/bf03201236
– ident: ref25
  doi: 10.1109/tvcg.2016.2598920
– ident: ref60
  doi: 10.1177/0956797615585002
– ident: ref16
  doi: 10.1109/tvcg.2022.3209456
– ident: ref17
  doi: 10.2307/1574154
– ident: ref9
  doi: 10.1111/coin.12227
– ident: ref11
  doi: 10.2307/2288400
– ident: ref13
  doi: 10.1007/978-3-319-26633-6_13
– ident: ref44
  doi: 10.1111/cgf.14521
– ident: ref58
  doi: 10.1109/tvcg.2022.3232959
– ident: ref8
  doi: 10.1109/tvcg.2022.3231716
– ident: ref23
  doi: 10.1109/tvcg.2011.279
– ident: ref19
  doi: 10.2307/1419052
– ident: ref36
  doi: 10.1145/989863.989880
– ident: ref28
  doi: 10.1201/b17511
– ident: ref32
  doi: 10.2466/pms.1961.13.3.305
– volume-title: Visual Thinking: For Design
  year: 2008
  ident: ref55
– start-page: 11
  volume-title: 1. The Psychopathology Of Everyday Things
  year: 2013
  ident: ref29
– ident: ref31
  doi: 10.1109/mcg.2006.70
– volume-title: Information Visualization: Perception for Design
  year: 2012
  ident: ref56
– ident: ref33
  doi: 10.1068/p2799
– ident: ref37
  doi: 10.1068/p270417
– ident: ref7
  doi: 10.1093/oxfordhb/9780199686858.013.060
– ident: ref18
  doi: 10.1145/1753326.1753357
– ident: ref64
  doi: 10.1037/1076-898x.4.2.119
– ident: ref20
  doi: 10.1109/tvcg.2013.126
– ident: ref14
  doi: 10.1007/3-540-37620-8_22
– ident: ref24
  doi: 10.1109/tvcg.2015.2467195
– ident: ref21
  doi: 10.1145/3173574.3174012
– ident: ref57
  doi: 10.1007/BF00410640
– ident: ref34
  doi: 10.1109/tvcg.2022.3209457
– start-page: 22
  volume-title: Affordance
  year: 2010
  ident: ref26
– ident: ref67
  doi: 10.1145/1842993.1843031
– ident: ref22
  doi: 10.1145/3290605.3300576
– ident: ref41
  doi: 10.1037/0022-0663.91.4.690
– ident: ref66
  doi: 10.1109/tvcg.2008.171
– ident: ref1
  doi: 10.1145/1753326.1753716
– ident: ref6
  doi: 10.1109/tvcg.2013.234
– ident: ref43
  doi: 10.1080/01621459.1995.10476521
– ident: ref45
  doi: 10.1109/tvcg.2014.2346320
– ident: ref39
  doi: 10.1002/wcs.1328
– ident: ref27
  doi: 10.3758/s13423-016-1047-0
– ident: ref35
  doi: 10.1038/s41598-022-05353-1
– volume-title: About that weird georgia chart
  year: 2020
  ident: ref10
– ident: ref40
  doi: 10.25080/Majora-92bf1922-011
– ident: ref54
  doi: 10.1111/cgf.12635
– ident: ref53
  doi: 10.1109/mcg.2022.3152676
– ident: ref59
  doi: 10.1109/tvcg.2021.3114823
– volume-title: The visual display of quantitative informations
  year: 2001
  ident: ref47
– ident: ref2
  doi: 10.1016/0042-6989(94)00173-j
– ident: ref15
  doi: 10.1177/15291006211051956
– ident: ref12
  doi: 10.3758/app.71.6.1251
– ident: ref30
  doi: 10.15358/9783800648108
– ident: ref51
  doi: 10.1002/(SICI)1520-6378(199908)24:4<243::AID-COL5>3.0.CO;2-3
– ident: ref61
  doi: 10.1109/tvcg.2021.3128157
SSID ssj0014489
Score 2.4186416
Snippet Data visualizations present a massive number of potential messages to an observer. One might notice that one group's average is larger than another's, or that...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Affordances
Bars
Birds
Charts
Coloring
Combinatorial analysis
COVID-19
Data visualization
diagrams and plots
General public
Human-subjects qualitative studies
Human-subjects quantitative studies
Messages
Methodologies
Partitioning
Perception & cognition
Recommender systems
Task analysis
Visualization
Title The Arrangement of Marks Impacts Afforded Messages: Ordering, Partitioning, Spacing, and Coloring in Bar Charts
URI https://ieeexplore.ieee.org/document/10291030
https://www.ncbi.nlm.nih.gov/pubmed/37871066
https://www.proquest.com/docview/2906587049
https://www.proquest.com/docview/2881247975
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtQwcER7ggOFtkCgIFfiVDUhm9hxzK2s6AOpD4kW9RbZsY0QUlJtshe-nhk7u1ohVeJmKePE8YzH8x6Aj7Ktc1_zMtWyEKiglDhSRqZWWy0KbriYUXLy5VV1fse_3Yv7KVk95MI450LwmctoGHz5tm-XZCrDE14oaou1BVuoucVkrbXLAPUMFQMMZVqgmD65MGe5-nT7Y36WUZ_wrERpRRD_3biEQleVxwXMcNGc7sDVaokxvuR3thxN1v75p3rjf__DC3g-iZzsJNLIS3jiul14tlGIcA96pBYEWFCmAc1nvWeUxTOwi5BFObATT1HwzrJL6pny0w2f2TVV7cTpx-yG6G-y7B6z7zgjDHRn2byPIX7sV8e-6AUj9_447MPd6dfb-Xk6tWJI2zIvxlQoo-pKeKNbmUuDrElzo6wy1gtf-kq6ui1QtJO5Ns5pzyuDipt2rZO1rQpbvoLtru_cG2CCe4SSvOVScOed8bnPjajJHzRT2iZwtMJN8xArbjRBU8lVQ4hsCJHNhMgE9mmLNwDj7iZwsEJnMx3KoaHK9gL5E1cJHK4f43EiH4nuXL9EmJokHqmkSOB1JIP1y0tkbqhBV28f-eg7eIpr49FAcwDb42Lp3qPIMpoPgVT_AuD35sE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db9Mw8ATjAfbA5xiBAUbiCS0hTew43ttWMTpYCxId2ltkxzZCSAlq0hd-PXdxWlVIk3izlHPi-M7n-z6At7IuU1_yPNYyE6ig5DhSRsZWWy0ybriYUHLyfFHMrvina3E9JqsPuTDOuSH4zCU0HHz5tq3XZCrDE54paot1G-7gxS-ykK61dRqgpqFCiKGMMxTURyfmJFXvl9-nHxPqFJ7kKK8I4sA719DQV-VmEXO4as4fwGKzyBBh8itZ9yap__xTv_G__-Ih3B-FTnYaqOQR3HLNY9jfKUX4BFqkFwRYUa4BzWetZ5TH07GLIY-yY6ee4uCdZXPqmvLDdSfsC9XtxOnH7CtR4GjbPWbfcMYw0I1l0zYE-bGfDTvTK0YO_r47gKvzD8vpLB6bMcR1nmZ9LJRRZSG80bVMpUHmpLlRVhnrhc99IV1ZZyjcyVQb57TnhUHVTbvaydIWmc2fwl7TNu4ZMME9Qklecym488741KdGlOQRmihtI3i3wU31O9TcqAZdJVUVIbIiRFYjIiM4oC3eAQy7G8HRBp3VeCy7imrbC-RQXEXwZvsYDxR5SXTj2jXClCTzSCVFBIeBDLYvz5G9oQ5dPL_ho6_h7mw5v6wuLxafX8A9XCcP5poj2OtXa_cSBZjevBrI9i8UUeoL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Arrangement+of+Marks+Impacts+Afforded+Messages%3A+Ordering%2C+Partitioning%2C+Spacing%2C+and+Coloring+in+Bar+Charts&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Fygenson%2C+Racquel&rft.au=Franconeri%2C+Steven&rft.au=Bertini%2C+Enrico&rft.date=2024-01-01&rft.issn=1077-2626&rft.eissn=1941-0506&rft.volume=30&rft.issue=1&rft.spage=1008&rft.epage=1018&rft_id=info:doi/10.1109%2FTVCG.2023.3326590&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVCG_2023_3326590
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon