The Arrangement of Marks Impacts Afforded Messages: Ordering, Partitioning, Spacing, and Coloring in Bar Charts
Data visualizations present a massive number of potential messages to an observer. One might notice that one group's average is larger than another's, or that a difference in values is smaller than a difference between two others, or any of a combinatorial explosion of other possibilities....
Saved in:
Published in | IEEE transactions on visualization and computer graphics Vol. 30; no. 1; pp. 1 - 11 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Data visualizations present a massive number of potential messages to an observer. One might notice that one group's average is larger than another's, or that a difference in values is smaller than a difference between two others, or any of a combinatorial explosion of other possibilities. The message that a viewer tends to notice - the message that a visualization 'affords' - is strongly affected by how values are arranged in a chart, e.g., how the values are colored or positioned. Although understanding the mapping between a chart's arrangement and what viewers tend to notice is critical for creating guidelines and recommendation systems, current empirical work is insufficient to lay out clear rules. We present a set of empirical evaluations of how different messages-including ranking, grouping, and part-to-whole relationships-are afforded by variations in ordering, partitioning, spacing, and coloring of values, within the ubiquitous case study of bar graphs. In doing so, we introduce a quantitative method that is easily scalable, reviewable, and replicable, laying groundwork for further investigation of the effects of arrangement on message affordances across other visualizations and tasks. Pre-registration and all supplemental materials are available at https://osf.io/np3q7 and https://osf.io/bvy95 , respectively. |
---|---|
AbstractList | Data visualizations present a massive number of potential messages to an observer. One might notice that one group's average is larger than another's, or that a difference in values is smaller than a difference between two others, or any of a combinatorial explosion of other possibilities. The message that a viewer tends to notice - the message that a visualization 'affords' - is strongly affected by how values are arranged in a chart, e.g., how the values are colored or positioned. Although understanding the mapping between a chart's arrangement and what viewers tend to notice is critical for creating guidelines and recommendation systems, current empirical work is insufficient to lay out clear rules. We present a set of empirical evaluations of how different messages-including ranking, grouping, and part-to-whole relationships-are afforded by variations in ordering, partitioning, spacing, and coloring of values, within the ubiquitous case study of bar graphs. In doing so, we introduce a quantitative method that is easily scalable, reviewable, and replicable, laying groundwork for further investigation of the effects of arrangement on message affordances across other visualizations and tasks. Pre-registration and all supplemental materials are available at https://osf.io/np3q7 and https://osf.io/bvy95, respectively. Data visualizations present a massive number of potential messages to an observer. One might notice that one group's average is larger than another's, or that a difference in values is smaller than a difference between two others, or any of a combinatorial explosion of other possibilities. The message that a viewer tends to notice - the message that a visualization 'affords' - is strongly affected by how values are arranged in a chart, e.g., how the values are colored or positioned. Although understanding the mapping between a chart's arrangement and what viewers tend to notice is critical for creating guidelines and recommendation systems, current empirical work is insufficient to lay out clear rules. We present a set of empirical evaluations of how different messages-including ranking, grouping, and part-to-whole relationships-are afforded by variations in ordering, partitioning, spacing, and coloring of values, within the ubiquitous case study of bar graphs. In doing so, we introduce a quantitative method that is easily scalable, reviewable, and replicable, laying groundwork for further investigation of the effects of arrangement on message affordances across other visualizations and tasks. Pre-registration and all supplemental materials are available at https://osf.io/np3q7 and https://osf.io/bvy95, respectively.Data visualizations present a massive number of potential messages to an observer. One might notice that one group's average is larger than another's, or that a difference in values is smaller than a difference between two others, or any of a combinatorial explosion of other possibilities. The message that a viewer tends to notice - the message that a visualization 'affords' - is strongly affected by how values are arranged in a chart, e.g., how the values are colored or positioned. Although understanding the mapping between a chart's arrangement and what viewers tend to notice is critical for creating guidelines and recommendation systems, current empirical work is insufficient to lay out clear rules. We present a set of empirical evaluations of how different messages-including ranking, grouping, and part-to-whole relationships-are afforded by variations in ordering, partitioning, spacing, and coloring of values, within the ubiquitous case study of bar graphs. In doing so, we introduce a quantitative method that is easily scalable, reviewable, and replicable, laying groundwork for further investigation of the effects of arrangement on message affordances across other visualizations and tasks. Pre-registration and all supplemental materials are available at https://osf.io/np3q7 and https://osf.io/bvy95, respectively. |
Author | Franconeri, Steven Fygenson, Racquel Bertini, Enrico |
Author_xml | – sequence: 1 givenname: Racquel orcidid: 0000-0002-0705-9000 surname: Fygenson fullname: Fygenson, Racquel organization: Northeastern University, USA – sequence: 2 givenname: Steven orcidid: 0000-0001-5244-9764 surname: Franconeri fullname: Franconeri, Steven organization: Northeastern University, USA – sequence: 3 givenname: Enrico orcidid: 0000-0002-9932-0551 surname: Bertini fullname: Bertini, Enrico organization: Northeastern University, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37871066$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0V1rFDEUBuAgFfuhP0AQCXjjhbOeJDP56N06aC20VHD1NmRmTrZTd5I1mb3w35vtriJe5Rx43hDynpOTEAMS8pLBgjEw71ff26sFBy4WQnDZGHhCzpipWQUNyJMyg1IVl1yekvOcHwBYXWvzjJwKpRUDKc9IXN0jXabkwhonDDONnt669CPT62nr-jnTpfcxDTjQW8zZrTFf0ruypzGs39EvLs3jPMbwuH0ticfBhYG2cRP3iI6BfnCJtvfF5ufkqXebjC-O5wX59unjqv1c3dxdXbfLm6oXwOeqMZ3RsvGd6xWoDrR2dWcG0w2-8cJLhbrnTAoFrkN0vpZdDcxhj0oPkg_igrw93LtN8ecO82ynMfe42biAcZct15rxWhnVFPrmP_oQdymU11luQDZaQW2Ken1Uu27CwW7TOLn0y_75ygLYAfQp5pzQ_yUM7L4uu6_L7uuyx7pK5tUhMyLiP54bBgLEb_USj6Y |
CODEN | ITVGEA |
Cites_doi | 10.1016/j.cognition.2018.08.006 10.1007/s11257-006-9002-9 10.1287/isre.2.1.63 10.1177/0956797618822798 10.1080/01621459.1987.10478448 10.1080/00031305.1987.10475440 10.1016/0010-0285(91)90005-9 10.1145/1358628.1358955 10.1037/a0029333 10.1109/tvcg.2012.197 10.1111/j.1540-5915.1991.tb00344.x 10.3758/bf03201236 10.1109/tvcg.2016.2598920 10.1177/0956797615585002 10.1109/tvcg.2022.3209456 10.2307/1574154 10.1111/coin.12227 10.2307/2288400 10.1007/978-3-319-26633-6_13 10.1111/cgf.14521 10.1109/tvcg.2022.3232959 10.1109/tvcg.2022.3231716 10.1109/tvcg.2011.279 10.2307/1419052 10.1145/989863.989880 10.1201/b17511 10.2466/pms.1961.13.3.305 10.1109/mcg.2006.70 10.1068/p2799 10.1068/p270417 10.1093/oxfordhb/9780199686858.013.060 10.1145/1753326.1753357 10.1037/1076-898x.4.2.119 10.1109/tvcg.2013.126 10.1007/3-540-37620-8_22 10.1109/tvcg.2015.2467195 10.1145/3173574.3174012 10.1007/BF00410640 10.1109/tvcg.2022.3209457 10.1145/1842993.1843031 10.1145/3290605.3300576 10.1037/0022-0663.91.4.690 10.1109/tvcg.2008.171 10.1145/1753326.1753716 10.1109/tvcg.2013.234 10.1080/01621459.1995.10476521 10.1109/tvcg.2014.2346320 10.1002/wcs.1328 10.3758/s13423-016-1047-0 10.1038/s41598-022-05353-1 10.25080/Majora-92bf1922-011 10.1111/cgf.12635 10.1109/mcg.2022.3152676 10.1109/tvcg.2021.3114823 10.1016/0042-6989(94)00173-j 10.1177/15291006211051956 10.3758/app.71.6.1251 10.15358/9783800648108 10.1002/(SICI)1520-6378(199908)24:4<243::AID-COL5>3.0.CO;2-3 10.1109/tvcg.2021.3128157 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TVCG.2023.3326590 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed Technology Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0506 |
EndPage | 11 |
ExternalDocumentID | 37871066 10_1109_TVCG_2023_3326590 10291030 |
Genre | orig-research Journal Article |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TN5 5VS AAYOK AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION H~9 IFJZH RIG RNI RZB VH1 NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c302t-59b9865fbac707b088a4b9d9bdf5f3f67e8c216370abeeaf46b401aece78d62d3 |
IEDL.DBID | RIE |
ISSN | 1077-2626 1941-0506 |
IngestDate | Thu Jul 10 18:56:35 EDT 2025 Mon Jun 30 03:28:34 EDT 2025 Mon Jul 21 05:57:08 EDT 2025 Tue Jul 01 02:12:19 EDT 2025 Wed Aug 27 02:37:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c302t-59b9865fbac707b088a4b9d9bdf5f3f67e8c216370abeeaf46b401aece78d62d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5244-9764 0000-0002-9932-0551 0000-0002-0705-9000 |
PMID | 37871066 |
PQID | 2906587049 |
PQPubID | 75741 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2906587049 ieee_primary_10291030 crossref_primary_10_1109_TVCG_2023_3326590 proquest_miscellaneous_2881247975 pubmed_primary_37871066 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on visualization and computer graphics |
PublicationTitleAbbrev | TVCG |
PublicationTitleAlternate | IEEE Trans Vis Comput Graph |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref15 Norman (ref29) 2013 ref59 ref14 ref58 ref53 ref52 ref11 Tufte (ref47) 2001 ref54 Ware (ref56) 2012 ref17 Ware (ref55) 2008 ref16 Lidwell (ref26) 2010 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref6 Bertini (ref3) 2020 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Cairo (ref10) 2020 ref24 ref23 ref67 ref25 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref60 ref62 ref61 |
References_xml | – ident: ref62 doi: 10.1016/j.cognition.2018.08.006 – ident: ref38 doi: 10.1007/s11257-006-9002-9 – ident: ref50 doi: 10.1287/isre.2.1.63 – ident: ref63 doi: 10.1177/0956797618822798 – ident: ref42 doi: 10.1080/01621459.1987.10478448 – ident: ref46 doi: 10.1080/00031305.1987.10475440 – volume-title: Why shouldnt all charts be scatter plots? beyond precision-driven visualizations year: 2020 ident: ref3 – ident: ref48 doi: 10.1016/0010-0285(91)90005-9 – ident: ref4 doi: 10.1145/1358628.1358955 – ident: ref52 doi: 10.1037/a0029333 – ident: ref5 doi: 10.1109/tvcg.2012.197 – ident: ref49 doi: 10.1111/j.1540-5915.1991.tb00344.x – ident: ref65 doi: 10.3758/bf03201236 – ident: ref25 doi: 10.1109/tvcg.2016.2598920 – ident: ref60 doi: 10.1177/0956797615585002 – ident: ref16 doi: 10.1109/tvcg.2022.3209456 – ident: ref17 doi: 10.2307/1574154 – ident: ref9 doi: 10.1111/coin.12227 – ident: ref11 doi: 10.2307/2288400 – ident: ref13 doi: 10.1007/978-3-319-26633-6_13 – ident: ref44 doi: 10.1111/cgf.14521 – ident: ref58 doi: 10.1109/tvcg.2022.3232959 – ident: ref8 doi: 10.1109/tvcg.2022.3231716 – ident: ref23 doi: 10.1109/tvcg.2011.279 – ident: ref19 doi: 10.2307/1419052 – ident: ref36 doi: 10.1145/989863.989880 – ident: ref28 doi: 10.1201/b17511 – ident: ref32 doi: 10.2466/pms.1961.13.3.305 – volume-title: Visual Thinking: For Design year: 2008 ident: ref55 – start-page: 11 volume-title: 1. The Psychopathology Of Everyday Things year: 2013 ident: ref29 – ident: ref31 doi: 10.1109/mcg.2006.70 – volume-title: Information Visualization: Perception for Design year: 2012 ident: ref56 – ident: ref33 doi: 10.1068/p2799 – ident: ref37 doi: 10.1068/p270417 – ident: ref7 doi: 10.1093/oxfordhb/9780199686858.013.060 – ident: ref18 doi: 10.1145/1753326.1753357 – ident: ref64 doi: 10.1037/1076-898x.4.2.119 – ident: ref20 doi: 10.1109/tvcg.2013.126 – ident: ref14 doi: 10.1007/3-540-37620-8_22 – ident: ref24 doi: 10.1109/tvcg.2015.2467195 – ident: ref21 doi: 10.1145/3173574.3174012 – ident: ref57 doi: 10.1007/BF00410640 – ident: ref34 doi: 10.1109/tvcg.2022.3209457 – start-page: 22 volume-title: Affordance year: 2010 ident: ref26 – ident: ref67 doi: 10.1145/1842993.1843031 – ident: ref22 doi: 10.1145/3290605.3300576 – ident: ref41 doi: 10.1037/0022-0663.91.4.690 – ident: ref66 doi: 10.1109/tvcg.2008.171 – ident: ref1 doi: 10.1145/1753326.1753716 – ident: ref6 doi: 10.1109/tvcg.2013.234 – ident: ref43 doi: 10.1080/01621459.1995.10476521 – ident: ref45 doi: 10.1109/tvcg.2014.2346320 – ident: ref39 doi: 10.1002/wcs.1328 – ident: ref27 doi: 10.3758/s13423-016-1047-0 – ident: ref35 doi: 10.1038/s41598-022-05353-1 – volume-title: About that weird georgia chart year: 2020 ident: ref10 – ident: ref40 doi: 10.25080/Majora-92bf1922-011 – ident: ref54 doi: 10.1111/cgf.12635 – ident: ref53 doi: 10.1109/mcg.2022.3152676 – ident: ref59 doi: 10.1109/tvcg.2021.3114823 – volume-title: The visual display of quantitative informations year: 2001 ident: ref47 – ident: ref2 doi: 10.1016/0042-6989(94)00173-j – ident: ref15 doi: 10.1177/15291006211051956 – ident: ref12 doi: 10.3758/app.71.6.1251 – ident: ref30 doi: 10.15358/9783800648108 – ident: ref51 doi: 10.1002/(SICI)1520-6378(199908)24:4<243::AID-COL5>3.0.CO;2-3 – ident: ref61 doi: 10.1109/tvcg.2021.3128157 |
SSID | ssj0014489 |
Score | 2.4186416 |
Snippet | Data visualizations present a massive number of potential messages to an observer. One might notice that one group's average is larger than another's, or that... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Affordances Bars Birds Charts Coloring Combinatorial analysis COVID-19 Data visualization diagrams and plots General public Human-subjects qualitative studies Human-subjects quantitative studies Messages Methodologies Partitioning Perception & cognition Recommender systems Task analysis Visualization |
Title | The Arrangement of Marks Impacts Afforded Messages: Ordering, Partitioning, Spacing, and Coloring in Bar Charts |
URI | https://ieeexplore.ieee.org/document/10291030 https://www.ncbi.nlm.nih.gov/pubmed/37871066 https://www.proquest.com/docview/2906587049 https://www.proquest.com/docview/2881247975 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtQwcER7ggOFtkCgIFfiVDUhm9hxzK2s6AOpD4kW9RbZsY0QUlJtshe-nhk7u1ohVeJmKePE8YzH8x6Aj7Ktc1_zMtWyEKiglDhSRqZWWy0KbriYUXLy5VV1fse_3Yv7KVk95MI450LwmctoGHz5tm-XZCrDE14oaou1BVuoucVkrbXLAPUMFQMMZVqgmD65MGe5-nT7Y36WUZ_wrERpRRD_3biEQleVxwXMcNGc7sDVaokxvuR3thxN1v75p3rjf__DC3g-iZzsJNLIS3jiul14tlGIcA96pBYEWFCmAc1nvWeUxTOwi5BFObATT1HwzrJL6pny0w2f2TVV7cTpx-yG6G-y7B6z7zgjDHRn2byPIX7sV8e-6AUj9_447MPd6dfb-Xk6tWJI2zIvxlQoo-pKeKNbmUuDrElzo6wy1gtf-kq6ui1QtJO5Ns5pzyuDipt2rZO1rQpbvoLtru_cG2CCe4SSvOVScOed8bnPjajJHzRT2iZwtMJN8xArbjRBU8lVQ4hsCJHNhMgE9mmLNwDj7iZwsEJnMx3KoaHK9gL5E1cJHK4f43EiH4nuXL9EmJokHqmkSOB1JIP1y0tkbqhBV28f-eg7eIpr49FAcwDb42Lp3qPIMpoPgVT_AuD35sE |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db9Mw8ATjAfbA5xiBAUbiCS0hTew43ttWMTpYCxId2ltkxzZCSAlq0hd-PXdxWlVIk3izlHPi-M7n-z6At7IuU1_yPNYyE6ig5DhSRsZWWy0ybriYUHLyfFHMrvina3E9JqsPuTDOuSH4zCU0HHz5tq3XZCrDE54paot1G-7gxS-ykK61dRqgpqFCiKGMMxTURyfmJFXvl9-nHxPqFJ7kKK8I4sA719DQV-VmEXO4as4fwGKzyBBh8itZ9yap__xTv_G__-Ih3B-FTnYaqOQR3HLNY9jfKUX4BFqkFwRYUa4BzWetZ5TH07GLIY-yY6ee4uCdZXPqmvLDdSfsC9XtxOnH7CtR4GjbPWbfcMYw0I1l0zYE-bGfDTvTK0YO_r47gKvzD8vpLB6bMcR1nmZ9LJRRZSG80bVMpUHmpLlRVhnrhc99IV1ZZyjcyVQb57TnhUHVTbvaydIWmc2fwl7TNu4ZMME9Qklecym488741KdGlOQRmihtI3i3wU31O9TcqAZdJVUVIbIiRFYjIiM4oC3eAQy7G8HRBp3VeCy7imrbC-RQXEXwZvsYDxR5SXTj2jXClCTzSCVFBIeBDLYvz5G9oQ5dPL_ho6_h7mw5v6wuLxafX8A9XCcP5poj2OtXa_cSBZjevBrI9i8UUeoL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Arrangement+of+Marks+Impacts+Afforded+Messages%3A+Ordering%2C+Partitioning%2C+Spacing%2C+and+Coloring+in+Bar+Charts&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Fygenson%2C+Racquel&rft.au=Franconeri%2C+Steven&rft.au=Bertini%2C+Enrico&rft.date=2024-01-01&rft.issn=1077-2626&rft.eissn=1941-0506&rft.volume=30&rft.issue=1&rft.spage=1008&rft.epage=1018&rft_id=info:doi/10.1109%2FTVCG.2023.3326590&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVCG_2023_3326590 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon |