A sustainable mouse karyotype created by programmed chromosome fusion
Chromosome engineering has been attempted successfully in yeast but remains challenging in higher eukaryotes, including mammals. Here, we report programmed chromosome ligation in mice that resulted in the creation of new karyotypes in the lab. Using haploid embryonic stem cells and gene editing, we...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 377; no. 6609; pp. 967 - 975 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
The American Association for the Advancement of Science
26.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chromosome engineering has been attempted successfully in yeast but remains challenging in higher eukaryotes, including mammals. Here, we report programmed chromosome ligation in mice that resulted in the creation of new karyotypes in the lab. Using haploid embryonic stem cells and gene editing, we fused the two largest mouse chromosomes, chromosomes 1 and 2, and two medium-size chromosomes, chromosomes 4 and 5. Chromatin conformation and stem cell differentiation were minimally affected. However, karyotypes carrying fused chromosomes 1 and 2 resulted in arrested mitosis, polyploidization, and embryonic lethality, whereas a smaller fused chromosome composed of chromosomes 4 and 5 was able to be passed on to homozygous offspring. Our results suggest the feasibility of chromosome-level engineering in mammals.
One of the goals in synthetic biology is to generate complex multicellular life with designed DNA sequences. Being able to manipulate DNA at large scales, including at the chromosome level, is an important step toward this goal. So far, chromosome-level genetic engineering has been accomplished only in haploid yeast. By applying gene editing to haploid embryonic stem cells, Wang
et al
. achieved whole-chromosome ligations in mice, and successfully derived animals with 19 pairs of chromosomes, one pair fewer than is standard in this species. —DJ
The ability to perform karyotype engineering in laboratory mice has been developed using haploid stem cells and gene editing. |
---|---|
AbstractList | Designer chromosomesOne of the goals in synthetic biology is to generate complex multicellular life with designed DNA sequences. Being able to manipulate DNA at large scales, including at the chromosome level, is an important step toward this goal. So far, chromosome-level genetic engineering has been accomplished only in haploid yeast. By applying gene editing to haploid embryonic stem cells, Wang et al. achieved whole-chromosome ligations in mice, and successfully derived animals with 19 pairs of chromosomes, one pair fewer than is standard in this species. —DJ Chromosome engineering has been attempted successfully in yeast but remains challenging in higher eukaryotes, including mammals. Here, we report programmed chromosome ligation in mice that resulted in the creation of new karyotypes in the lab. Using haploid embryonic stem cells and gene editing, we fused the two largest mouse chromosomes, chromosomes 1 and 2, and two medium-size chromosomes, chromosomes 4 and 5. Chromatin conformation and stem cell differentiation were minimally affected. However, karyotypes carrying fused chromosomes 1 and 2 resulted in arrested mitosis, polyploidization, and embryonic lethality, whereas a smaller fused chromosome composed of chromosomes 4 and 5 was able to be passed on to homozygous offspring. Our results suggest the feasibility of chromosome-level engineering in mammals. One of the goals in synthetic biology is to generate complex multicellular life with designed DNA sequences. Being able to manipulate DNA at large scales, including at the chromosome level, is an important step toward this goal. So far, chromosome-level genetic engineering has been accomplished only in haploid yeast. By applying gene editing to haploid embryonic stem cells, Wang et al . achieved whole-chromosome ligations in mice, and successfully derived animals with 19 pairs of chromosomes, one pair fewer than is standard in this species. —DJ The ability to perform karyotype engineering in laboratory mice has been developed using haploid stem cells and gene editing. Chromosome engineering has been attempted successfully in yeast but remains challenging in higher eukaryotes, including mammals. Here, we report programmed chromosome ligation in mice that resulted in the creation of new karyotypes in the lab. Using haploid embryonic stem cells and gene editing, we fused the two largest mouse chromosomes, chromosomes 1 and 2, and two medium-size chromosomes, chromosomes 4 and 5. Chromatin conformation and stem cell differentiation were minimally affected. However, karyotypes carrying fused chromosomes 1 and 2 resulted in arrested mitosis, polyploidization, and embryonic lethality, whereas a smaller fused chromosome composed of chromosomes 4 and 5 was able to be passed on to homozygous offspring. Our results suggest the feasibility of chromosome-level engineering in mammals.Chromosome engineering has been attempted successfully in yeast but remains challenging in higher eukaryotes, including mammals. Here, we report programmed chromosome ligation in mice that resulted in the creation of new karyotypes in the lab. Using haploid embryonic stem cells and gene editing, we fused the two largest mouse chromosomes, chromosomes 1 and 2, and two medium-size chromosomes, chromosomes 4 and 5. Chromatin conformation and stem cell differentiation were minimally affected. However, karyotypes carrying fused chromosomes 1 and 2 resulted in arrested mitosis, polyploidization, and embryonic lethality, whereas a smaller fused chromosome composed of chromosomes 4 and 5 was able to be passed on to homozygous offspring. Our results suggest the feasibility of chromosome-level engineering in mammals. |
Author | Fan, Xu-Ning Zhou, Qi Liu, Chao Mao, Yi-Huan Xu, Kai Ji, Tian-Tian Wang, Li-Bin Li, Wei Li, Zhi-Kun Tu, Cheng-Fang Ma, Si-Nan Shu, You-Jia Zhao, Qian Wang, Li-Ying Wang, Le-Yun Liu, Tao Yang, Ning |
Author_xml | – sequence: 1 givenname: Li-Bin orcidid: 0000-0002-2462-5342 surname: Wang fullname: Wang, Li-Bin organization: State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China., Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China., Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China – sequence: 2 givenname: Zhi-Kun orcidid: 0000-0002-0542-2339 surname: Li fullname: Li, Zhi-Kun organization: State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China., Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China., Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China – sequence: 3 givenname: Le-Yun orcidid: 0000-0003-4448-0141 surname: Wang fullname: Wang, Le-Yun organization: State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China., Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China., Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China – sequence: 4 givenname: Kai orcidid: 0000-0002-5648-605X surname: Xu fullname: Xu, Kai organization: State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China., Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China., Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China – sequence: 5 givenname: Tian-Tian orcidid: 0000-0002-5562-9717 surname: Ji fullname: Ji, Tian-Tian organization: State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China., University of Chinese Academy of Sciences, Beijing 100049, China – sequence: 6 givenname: Yi-Huan surname: Mao fullname: Mao, Yi-Huan organization: State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China., Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China., Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China – sequence: 7 givenname: Si-Nan surname: Ma fullname: Ma, Si-Nan organization: State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China., College of Life Science, Northeast Agricultural University, Harbin 150030, China – sequence: 8 givenname: Tao surname: Liu fullname: Liu, Tao organization: Annoroad Gene Technology (Beijing) Co., Ltd., Beijing 100176, China – sequence: 9 givenname: Cheng-Fang surname: Tu fullname: Tu, Cheng-Fang organization: Annoroad Gene Technology (Beijing) Co., Ltd., Beijing 100176, China – sequence: 10 givenname: Qian surname: Zhao fullname: Zhao, Qian organization: Annoroad Gene Technology (Beijing) Co., Ltd., Beijing 100176, China – sequence: 11 givenname: Xu-Ning surname: Fan fullname: Fan, Xu-Ning organization: Annoroad Gene Technology (Beijing) Co., Ltd., Beijing 100176, China – sequence: 12 givenname: Chao surname: Liu fullname: Liu, Chao organization: State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China., Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China., Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China – sequence: 13 givenname: Li-Ying surname: Wang fullname: Wang, Li-Ying organization: State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China – sequence: 14 givenname: You-Jia surname: Shu fullname: Shu, You-Jia organization: State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China., University of Chinese Academy of Sciences, Beijing 100049, China – sequence: 15 givenname: Ning surname: Yang fullname: Yang, Ning organization: State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China., University of Chinese Academy of Sciences, Beijing 100049, China – sequence: 16 givenname: Qi orcidid: 0000-0001-6185-6695 surname: Zhou fullname: Zhou, Qi organization: State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China., Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China., Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China – sequence: 17 givenname: Wei orcidid: 0000-0001-7864-404X surname: Li fullname: Li, Wei organization: State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China., Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China., Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China |
BookMark | eNp1kL1PwzAQxS1UJEphZo3EwpL2nA_bGauqfEiVWLpHF_cCKXFcbGfof4-hnSox3Z3u907v3i2bDHYgxh44zDnPxMLrjgZNc2wMr0RxxaYcqjKtMsgnbAqQi1SBLG_Yrfd7gLir8ilbLxM_-oDdgE1PibGjp-QL3dGG44ES7QgD7ZLmmByc_XBoTJz0p7PGemsoaUff2eGOXbfYe7o_1xnbPq-3q9d08_7ytlpuUp1DFtICM6kkLxsoJe5ir0FxgdkOMy5FQ1AoFATYlkrkbdFWcSd2UgEVbaEhn7Gn09no5XskH2rTeU19jwNF43UmQQoQSqiIPl6gezu6IZr7o8qKi7yI1OJEaWe9d9TWB9eZ-H3Nof5NtT6nWp9TjYryQqG7gCFmEBx2_b-6H0kJgUU |
CitedBy_id | crossref_primary_10_1681_ASN_0000000577 crossref_primary_10_1038_s41467_024_49061_y crossref_primary_10_4252_wjsc_v15_i7_734 crossref_primary_10_1186_s13059_025_03523_8 crossref_primary_10_1038_s41556_024_01485_w crossref_primary_10_1093_synbio_ysac024 crossref_primary_10_1002_ece3_70400 crossref_primary_10_1038_s41421_022_00511_1 crossref_primary_10_1051_bcas_2024020 crossref_primary_10_3897_compcytogen_v7_i1_97165 crossref_primary_10_1186_s13619_024_00220_y crossref_primary_10_1016_j_jare_2023_07_006 crossref_primary_10_1016_j_tibtech_2024_08_012 crossref_primary_10_1016_j_gde_2022_102020 crossref_primary_10_1016_j_stem_2025_01_005 crossref_primary_10_1146_annurev_animal_111523_102225 |
Cites_doi | 10.1038/cr.2013.126 10.1038/nature11435 10.1073/pnas.1204799109 10.1038/nmeth.1923 10.1530/rep.1.01063 10.1038/s41586-018-0382-x 10.1038/nrg.2017.59 10.1186/s13059-015-0831-x 10.1101/gr.181101 10.1016/j.molcel.2018.02.007 10.1038/nature08267 10.1371/journal.pcbi.1005665 10.1016/j.stem.2013.11.016 10.1038/s41586-018-0374-x 10.1152/japplphysiol.00148.2004 10.3389/fnmol.2018.00250 10.1093/bioinformatics/btu268 10.1101/gr.220640.117 10.1038/s41467-021-23270-1 10.1038/35093564 10.1016/j.bbrc.2005.11.164 10.1038/cr.2013.93 10.1016/j.tig.2008.08.007 10.1101/gr.337602 10.1038/nrc1164 10.1530/REP-09-0069 10.1371/journal.pgen.1008332 10.1093/nar/gkaa220 10.1038/nature17408 10.1016/j.stem.2018.09.004 10.1038/nature10448 10.1038/nature18589 10.1016/j.stem.2011.10.012 10.1038/nrg2199 10.1186/s12864-017-4353-7 10.1146/annurev.es.14.110183.001035 10.1038/nprot.2010.195 10.1016/j.cell.2012.04.002 10.1186/gb-2008-9-9-r137 10.1093/humrep/16.11.2267 10.1007/s00412-006-0077-1 10.1038/s41587-019-0201-4 10.1186/s13059-014-0550-8 10.1126/science.1236083 10.1016/j.tig.2005.09.009 10.1038/cr.2015.151 10.1016/S0169-5347(01)02187-5 |
ContentType | Journal Article |
Copyright | Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.abm1964 |
DatabaseName | CrossRef Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 975 |
ExternalDocumentID | 10_1126_science_abm1964 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c302t-4a278715b057ad278c0816a2da2176be048a6e0af5863f4f96a26d780e4f4c03 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Tue Aug 05 10:52:02 EDT 2025 Fri Jul 25 19:11:08 EDT 2025 Thu Apr 24 22:56:56 EDT 2025 Tue Jul 01 02:24:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6609 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c302t-4a278715b057ad278c0816a2da2176be048a6e0af5863f4f96a26d780e4f4c03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2462-5342 0000-0002-5648-605X 0000-0002-0542-2339 0000-0001-7864-404X 0000-0001-6185-6695 0000-0002-5562-9717 0000-0003-4448-0141 |
PQID | 2707591634 |
PQPubID | 1256 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2707606868 proquest_journals_2707591634 crossref_primary_10_1126_science_abm1964 crossref_citationtrail_10_1126_science_abm1964 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-26 20220826 |
PublicationDateYYYYMMDD | 2022-08-26 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationYear | 2022 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_49_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 |
References_xml | – ident: e_1_3_3_20_2 doi: 10.1038/cr.2013.126 – ident: e_1_3_3_19_2 doi: 10.1038/nature11435 – ident: e_1_3_3_27_2 doi: 10.1073/pnas.1204799109 – ident: e_1_3_3_41_2 doi: 10.1038/nmeth.1923 – ident: e_1_3_3_6_2 doi: 10.1530/rep.1.01063 – ident: e_1_3_3_10_2 doi: 10.1038/s41586-018-0382-x – ident: e_1_3_3_33_2 doi: 10.1038/nrg.2017.59 – ident: e_1_3_3_44_2 doi: 10.1186/s13059-015-0831-x – ident: e_1_3_3_5_2 doi: 10.1101/gr.181101 – ident: e_1_3_3_22_2 doi: 10.1016/j.molcel.2018.02.007 – ident: e_1_3_3_35_2 doi: 10.1038/nature08267 – ident: e_1_3_3_47_2 doi: 10.1371/journal.pcbi.1005665 – ident: e_1_3_3_16_2 doi: 10.1016/j.stem.2013.11.016 – ident: e_1_3_3_11_2 doi: 10.1038/s41586-018-0374-x – ident: e_1_3_3_24_2 doi: 10.1152/japplphysiol.00148.2004 – ident: e_1_3_3_25_2 doi: 10.3389/fnmol.2018.00250 – ident: e_1_3_3_49_2 doi: 10.1093/bioinformatics/btu268 – ident: e_1_3_3_45_2 doi: 10.1101/gr.220640.117 – ident: e_1_3_3_28_2 doi: 10.1038/s41467-021-23270-1 – ident: e_1_3_3_9_2 doi: 10.1038/35093564 – ident: e_1_3_3_36_2 doi: 10.1016/j.bbrc.2005.11.164 – ident: e_1_3_3_2_2 – ident: e_1_3_3_17_2 doi: 10.1038/cr.2013.93 – ident: e_1_3_3_23_2 doi: 10.1016/j.tig.2008.08.007 – ident: e_1_3_3_4_2 doi: 10.1101/gr.337602 – ident: e_1_3_3_7_2 doi: 10.1038/nrc1164 – ident: e_1_3_3_38_2 doi: 10.1530/REP-09-0069 – ident: e_1_3_3_12_2 doi: 10.1371/journal.pgen.1008332 – ident: e_1_3_3_46_2 doi: 10.1093/nar/gkaa220 – ident: e_1_3_3_15_2 doi: 10.1038/nature17408 – ident: e_1_3_3_21_2 doi: 10.1016/j.stem.2018.09.004 – ident: e_1_3_3_13_2 doi: 10.1038/nature10448 – ident: e_1_3_3_48_2 doi: 10.1038/nature18589 – ident: e_1_3_3_14_2 doi: 10.1016/j.stem.2011.10.012 – ident: e_1_3_3_30_2 doi: 10.1038/nrg2199 – ident: e_1_3_3_26_2 doi: 10.1186/s12864-017-4353-7 – ident: e_1_3_3_32_2 doi: 10.1146/annurev.es.14.110183.001035 – ident: e_1_3_3_34_2 doi: 10.1038/nprot.2010.195 – ident: e_1_3_3_18_2 doi: 10.1016/j.cell.2012.04.002 – ident: e_1_3_3_42_2 doi: 10.1186/gb-2008-9-9-r137 – ident: e_1_3_3_8_2 doi: 10.1093/humrep/16.11.2267 – ident: e_1_3_3_29_2 doi: 10.1007/s00412-006-0077-1 – ident: e_1_3_3_39_2 doi: 10.1038/s41587-019-0201-4 – ident: e_1_3_3_40_2 doi: 10.1186/s13059-014-0550-8 – ident: e_1_3_3_43_2 doi: 10.1126/science.1236083 – ident: e_1_3_3_3_2 doi: 10.1016/j.tig.2005.09.009 – ident: e_1_3_3_37_2 doi: 10.1038/cr.2015.151 – ident: e_1_3_3_31_2 doi: 10.1016/S0169-5347(01)02187-5 |
SSID | ssj0009593 |
Score | 2.498371 |
Snippet | Chromosome engineering has been attempted successfully in yeast but remains challenging in higher eukaryotes, including mammals. Here, we report programmed... Designer chromosomesOne of the goals in synthetic biology is to generate complex multicellular life with designed DNA sequences. Being able to manipulate DNA... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 967 |
SubjectTerms | Chromosomes Deoxyribonucleic acid DNA Embryo cells Gene sequencing Genetic engineering Genetic modification Karyotypes Nucleotide sequence Stem cell transplantation Stem cells Yeast |
Title | A sustainable mouse karyotype created by programmed chromosome fusion |
URI | https://www.proquest.com/docview/2707591634 https://www.proquest.com/docview/2707606868 |
Volume | 377 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Nb9Mw1CqbkLggNkAMBjISh6HKleu4bnJM2arCxoREEeUU2Y4jKliLluZQfhU_kefYSTyNIcYliuKPRO89v6-8D4RegQgfD7XQJGaGEZ7Hgijr5qCFNImJjZS5dQ28PxezT_zdYrTo9X4FUUvVRg30zz_mlfwPVuEZ4NVmyd4Cs-2m8ADuAb9wBQzD9Z9wnPbLIP_JGvGm_01ebte1Y7XWB52C6aOwQPL19VcbgFeuL0y_qMoGK149bU46qJ3tr5wAgW1MYuoiB5pAAr8s8CqcLcnEVSf4LL1srL3TS3JauWSHZRcKRL5U16YuKhfrsQzdEmDRUsCNaAlp3uXF3OZDQ1btKyU7QeW4M7WNJRmNQvYd-TYwjk6FoEnAjxPX68OL9sTtdl1qBH0uzUCqC1ulrBOQTVDALP2YfTieZmdvz0_voF0Ghglw1t10cjyZ3ljo2ZeTChK1mhdc1YSuKgK1djN_gO57swSnjsb2UM-s9tFd16h0u4_2POBKfOTrlL9-iE5SHJAfrskPt-SHPflhtcUd-eGO_LAjv0doPj2Zv5kR35WD6IiyDeGSAZMfjhRo-jKHe217t0iWS7BuhTIgEqQwVBajWEQFLxIYE_k4poYXXNPoMdpZrVfmCcJasKFhiuWKa66LOOZJBPozi-xyVagDNGgAlGlfsd42Tvme1ZYrE5mHaOYheoCO2gU_XLGWm6ceNhDP_IkuMzYGhIG9FMHwy3YY-K39iSZXBuBYzxE2ryp--vctnqF73bk4RDuby8o8BwV2o154mvkNvruhpQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+sustainable+mouse+karyotype+created+by+programmed+chromosome+fusion&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Li-Bin%2C+Wang&rft.au=Zhi-Kun%2C+Li&rft.au=Le-Yun%2C+Wang&rft.au=Xu%2C+Kai&rft.date=2022-08-26&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=377&rft.issue=6609&rft.spage=967&rft.epage=975&rft_id=info:doi/10.1126%2Fscience.abm1964&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |