A sustainable mouse karyotype created by programmed chromosome fusion

Chromosome engineering has been attempted successfully in yeast but remains challenging in higher eukaryotes, including mammals. Here, we report programmed chromosome ligation in mice that resulted in the creation of new karyotypes in the lab. Using haploid embryonic stem cells and gene editing, we...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 377; no. 6609; pp. 967 - 975
Main Authors Wang, Li-Bin, Li, Zhi-Kun, Wang, Le-Yun, Xu, Kai, Ji, Tian-Tian, Mao, Yi-Huan, Ma, Si-Nan, Liu, Tao, Tu, Cheng-Fang, Zhao, Qian, Fan, Xu-Ning, Liu, Chao, Wang, Li-Ying, Shu, You-Jia, Yang, Ning, Zhou, Qi, Li, Wei
Format Journal Article
LanguageEnglish
Published Washington The American Association for the Advancement of Science 26.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chromosome engineering has been attempted successfully in yeast but remains challenging in higher eukaryotes, including mammals. Here, we report programmed chromosome ligation in mice that resulted in the creation of new karyotypes in the lab. Using haploid embryonic stem cells and gene editing, we fused the two largest mouse chromosomes, chromosomes 1 and 2, and two medium-size chromosomes, chromosomes 4 and 5. Chromatin conformation and stem cell differentiation were minimally affected. However, karyotypes carrying fused chromosomes 1 and 2 resulted in arrested mitosis, polyploidization, and embryonic lethality, whereas a smaller fused chromosome composed of chromosomes 4 and 5 was able to be passed on to homozygous offspring. Our results suggest the feasibility of chromosome-level engineering in mammals. One of the goals in synthetic biology is to generate complex multicellular life with designed DNA sequences. Being able to manipulate DNA at large scales, including at the chromosome level, is an important step toward this goal. So far, chromosome-level genetic engineering has been accomplished only in haploid yeast. By applying gene editing to haploid embryonic stem cells, Wang et al . achieved whole-chromosome ligations in mice, and successfully derived animals with 19 pairs of chromosomes, one pair fewer than is standard in this species. —DJ The ability to perform karyotype engineering in laboratory mice has been developed using haploid stem cells and gene editing.
AbstractList Designer chromosomesOne of the goals in synthetic biology is to generate complex multicellular life with designed DNA sequences. Being able to manipulate DNA at large scales, including at the chromosome level, is an important step toward this goal. So far, chromosome-level genetic engineering has been accomplished only in haploid yeast. By applying gene editing to haploid embryonic stem cells, Wang et al. achieved whole-chromosome ligations in mice, and successfully derived animals with 19 pairs of chromosomes, one pair fewer than is standard in this species. —DJ
Chromosome engineering has been attempted successfully in yeast but remains challenging in higher eukaryotes, including mammals. Here, we report programmed chromosome ligation in mice that resulted in the creation of new karyotypes in the lab. Using haploid embryonic stem cells and gene editing, we fused the two largest mouse chromosomes, chromosomes 1 and 2, and two medium-size chromosomes, chromosomes 4 and 5. Chromatin conformation and stem cell differentiation were minimally affected. However, karyotypes carrying fused chromosomes 1 and 2 resulted in arrested mitosis, polyploidization, and embryonic lethality, whereas a smaller fused chromosome composed of chromosomes 4 and 5 was able to be passed on to homozygous offspring. Our results suggest the feasibility of chromosome-level engineering in mammals. One of the goals in synthetic biology is to generate complex multicellular life with designed DNA sequences. Being able to manipulate DNA at large scales, including at the chromosome level, is an important step toward this goal. So far, chromosome-level genetic engineering has been accomplished only in haploid yeast. By applying gene editing to haploid embryonic stem cells, Wang et al . achieved whole-chromosome ligations in mice, and successfully derived animals with 19 pairs of chromosomes, one pair fewer than is standard in this species. —DJ The ability to perform karyotype engineering in laboratory mice has been developed using haploid stem cells and gene editing.
Chromosome engineering has been attempted successfully in yeast but remains challenging in higher eukaryotes, including mammals. Here, we report programmed chromosome ligation in mice that resulted in the creation of new karyotypes in the lab. Using haploid embryonic stem cells and gene editing, we fused the two largest mouse chromosomes, chromosomes 1 and 2, and two medium-size chromosomes, chromosomes 4 and 5. Chromatin conformation and stem cell differentiation were minimally affected. However, karyotypes carrying fused chromosomes 1 and 2 resulted in arrested mitosis, polyploidization, and embryonic lethality, whereas a smaller fused chromosome composed of chromosomes 4 and 5 was able to be passed on to homozygous offspring. Our results suggest the feasibility of chromosome-level engineering in mammals.Chromosome engineering has been attempted successfully in yeast but remains challenging in higher eukaryotes, including mammals. Here, we report programmed chromosome ligation in mice that resulted in the creation of new karyotypes in the lab. Using haploid embryonic stem cells and gene editing, we fused the two largest mouse chromosomes, chromosomes 1 and 2, and two medium-size chromosomes, chromosomes 4 and 5. Chromatin conformation and stem cell differentiation were minimally affected. However, karyotypes carrying fused chromosomes 1 and 2 resulted in arrested mitosis, polyploidization, and embryonic lethality, whereas a smaller fused chromosome composed of chromosomes 4 and 5 was able to be passed on to homozygous offspring. Our results suggest the feasibility of chromosome-level engineering in mammals.
Author Fan, Xu-Ning
Zhou, Qi
Liu, Chao
Mao, Yi-Huan
Xu, Kai
Ji, Tian-Tian
Wang, Li-Bin
Li, Wei
Li, Zhi-Kun
Tu, Cheng-Fang
Ma, Si-Nan
Shu, You-Jia
Zhao, Qian
Wang, Li-Ying
Wang, Le-Yun
Liu, Tao
Yang, Ning
Author_xml – sequence: 1
  givenname: Li-Bin
  orcidid: 0000-0002-2462-5342
  surname: Wang
  fullname: Wang, Li-Bin
  organization: State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China., Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China., Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
– sequence: 2
  givenname: Zhi-Kun
  orcidid: 0000-0002-0542-2339
  surname: Li
  fullname: Li, Zhi-Kun
  organization: State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China., Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China., Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
– sequence: 3
  givenname: Le-Yun
  orcidid: 0000-0003-4448-0141
  surname: Wang
  fullname: Wang, Le-Yun
  organization: State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China., Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China., Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
– sequence: 4
  givenname: Kai
  orcidid: 0000-0002-5648-605X
  surname: Xu
  fullname: Xu, Kai
  organization: State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China., Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China., Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
– sequence: 5
  givenname: Tian-Tian
  orcidid: 0000-0002-5562-9717
  surname: Ji
  fullname: Ji, Tian-Tian
  organization: State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China., University of Chinese Academy of Sciences, Beijing 100049, China
– sequence: 6
  givenname: Yi-Huan
  surname: Mao
  fullname: Mao, Yi-Huan
  organization: State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China., Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China., Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
– sequence: 7
  givenname: Si-Nan
  surname: Ma
  fullname: Ma, Si-Nan
  organization: State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China., College of Life Science, Northeast Agricultural University, Harbin 150030, China
– sequence: 8
  givenname: Tao
  surname: Liu
  fullname: Liu, Tao
  organization: Annoroad Gene Technology (Beijing) Co., Ltd., Beijing 100176, China
– sequence: 9
  givenname: Cheng-Fang
  surname: Tu
  fullname: Tu, Cheng-Fang
  organization: Annoroad Gene Technology (Beijing) Co., Ltd., Beijing 100176, China
– sequence: 10
  givenname: Qian
  surname: Zhao
  fullname: Zhao, Qian
  organization: Annoroad Gene Technology (Beijing) Co., Ltd., Beijing 100176, China
– sequence: 11
  givenname: Xu-Ning
  surname: Fan
  fullname: Fan, Xu-Ning
  organization: Annoroad Gene Technology (Beijing) Co., Ltd., Beijing 100176, China
– sequence: 12
  givenname: Chao
  surname: Liu
  fullname: Liu, Chao
  organization: State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China., Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China., Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
– sequence: 13
  givenname: Li-Ying
  surname: Wang
  fullname: Wang, Li-Ying
  organization: State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 14
  givenname: You-Jia
  surname: Shu
  fullname: Shu, You-Jia
  organization: State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China., University of Chinese Academy of Sciences, Beijing 100049, China
– sequence: 15
  givenname: Ning
  surname: Yang
  fullname: Yang, Ning
  organization: State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China., University of Chinese Academy of Sciences, Beijing 100049, China
– sequence: 16
  givenname: Qi
  orcidid: 0000-0001-6185-6695
  surname: Zhou
  fullname: Zhou, Qi
  organization: State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China., Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China., Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
– sequence: 17
  givenname: Wei
  orcidid: 0000-0001-7864-404X
  surname: Li
  fullname: Li, Wei
  organization: State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China., Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China., Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
BookMark eNp1kL1PwzAQxS1UJEphZo3EwpL2nA_bGauqfEiVWLpHF_cCKXFcbGfof4-hnSox3Z3u907v3i2bDHYgxh44zDnPxMLrjgZNc2wMr0RxxaYcqjKtMsgnbAqQi1SBLG_Yrfd7gLir8ilbLxM_-oDdgE1PibGjp-QL3dGG44ES7QgD7ZLmmByc_XBoTJz0p7PGemsoaUff2eGOXbfYe7o_1xnbPq-3q9d08_7ytlpuUp1DFtICM6kkLxsoJe5ir0FxgdkOMy5FQ1AoFATYlkrkbdFWcSd2UgEVbaEhn7Gn09no5XskH2rTeU19jwNF43UmQQoQSqiIPl6gezu6IZr7o8qKi7yI1OJEaWe9d9TWB9eZ-H3Nof5NtT6nWp9TjYryQqG7gCFmEBx2_b-6H0kJgUU
CitedBy_id crossref_primary_10_1681_ASN_0000000577
crossref_primary_10_1038_s41467_024_49061_y
crossref_primary_10_4252_wjsc_v15_i7_734
crossref_primary_10_1186_s13059_025_03523_8
crossref_primary_10_1038_s41556_024_01485_w
crossref_primary_10_1093_synbio_ysac024
crossref_primary_10_1002_ece3_70400
crossref_primary_10_1038_s41421_022_00511_1
crossref_primary_10_1051_bcas_2024020
crossref_primary_10_3897_compcytogen_v7_i1_97165
crossref_primary_10_1186_s13619_024_00220_y
crossref_primary_10_1016_j_jare_2023_07_006
crossref_primary_10_1016_j_tibtech_2024_08_012
crossref_primary_10_1016_j_gde_2022_102020
crossref_primary_10_1016_j_stem_2025_01_005
crossref_primary_10_1146_annurev_animal_111523_102225
Cites_doi 10.1038/cr.2013.126
10.1038/nature11435
10.1073/pnas.1204799109
10.1038/nmeth.1923
10.1530/rep.1.01063
10.1038/s41586-018-0382-x
10.1038/nrg.2017.59
10.1186/s13059-015-0831-x
10.1101/gr.181101
10.1016/j.molcel.2018.02.007
10.1038/nature08267
10.1371/journal.pcbi.1005665
10.1016/j.stem.2013.11.016
10.1038/s41586-018-0374-x
10.1152/japplphysiol.00148.2004
10.3389/fnmol.2018.00250
10.1093/bioinformatics/btu268
10.1101/gr.220640.117
10.1038/s41467-021-23270-1
10.1038/35093564
10.1016/j.bbrc.2005.11.164
10.1038/cr.2013.93
10.1016/j.tig.2008.08.007
10.1101/gr.337602
10.1038/nrc1164
10.1530/REP-09-0069
10.1371/journal.pgen.1008332
10.1093/nar/gkaa220
10.1038/nature17408
10.1016/j.stem.2018.09.004
10.1038/nature10448
10.1038/nature18589
10.1016/j.stem.2011.10.012
10.1038/nrg2199
10.1186/s12864-017-4353-7
10.1146/annurev.es.14.110183.001035
10.1038/nprot.2010.195
10.1016/j.cell.2012.04.002
10.1186/gb-2008-9-9-r137
10.1093/humrep/16.11.2267
10.1007/s00412-006-0077-1
10.1038/s41587-019-0201-4
10.1186/s13059-014-0550-8
10.1126/science.1236083
10.1016/j.tig.2005.09.009
10.1038/cr.2015.151
10.1016/S0169-5347(01)02187-5
ContentType Journal Article
Copyright Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.abm1964
DatabaseName CrossRef
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 975
ExternalDocumentID 10_1126_science_abm1964
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c302t-4a278715b057ad278c0816a2da2176be048a6e0af5863f4f96a26d780e4f4c03
ISSN 0036-8075
1095-9203
IngestDate Tue Aug 05 10:52:02 EDT 2025
Fri Jul 25 19:11:08 EDT 2025
Thu Apr 24 22:56:56 EDT 2025
Tue Jul 01 02:24:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6609
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c302t-4a278715b057ad278c0816a2da2176be048a6e0af5863f4f96a26d780e4f4c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2462-5342
0000-0002-5648-605X
0000-0002-0542-2339
0000-0001-7864-404X
0000-0001-6185-6695
0000-0002-5562-9717
0000-0003-4448-0141
PQID 2707591634
PQPubID 1256
PageCount 9
ParticipantIDs proquest_miscellaneous_2707606868
proquest_journals_2707591634
crossref_primary_10_1126_science_abm1964
crossref_citationtrail_10_1126_science_abm1964
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-26
20220826
PublicationDateYYYYMMDD 2022-08-26
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-26
  day: 26
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationYear 2022
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_49_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
References_xml – ident: e_1_3_3_20_2
  doi: 10.1038/cr.2013.126
– ident: e_1_3_3_19_2
  doi: 10.1038/nature11435
– ident: e_1_3_3_27_2
  doi: 10.1073/pnas.1204799109
– ident: e_1_3_3_41_2
  doi: 10.1038/nmeth.1923
– ident: e_1_3_3_6_2
  doi: 10.1530/rep.1.01063
– ident: e_1_3_3_10_2
  doi: 10.1038/s41586-018-0382-x
– ident: e_1_3_3_33_2
  doi: 10.1038/nrg.2017.59
– ident: e_1_3_3_44_2
  doi: 10.1186/s13059-015-0831-x
– ident: e_1_3_3_5_2
  doi: 10.1101/gr.181101
– ident: e_1_3_3_22_2
  doi: 10.1016/j.molcel.2018.02.007
– ident: e_1_3_3_35_2
  doi: 10.1038/nature08267
– ident: e_1_3_3_47_2
  doi: 10.1371/journal.pcbi.1005665
– ident: e_1_3_3_16_2
  doi: 10.1016/j.stem.2013.11.016
– ident: e_1_3_3_11_2
  doi: 10.1038/s41586-018-0374-x
– ident: e_1_3_3_24_2
  doi: 10.1152/japplphysiol.00148.2004
– ident: e_1_3_3_25_2
  doi: 10.3389/fnmol.2018.00250
– ident: e_1_3_3_49_2
  doi: 10.1093/bioinformatics/btu268
– ident: e_1_3_3_45_2
  doi: 10.1101/gr.220640.117
– ident: e_1_3_3_28_2
  doi: 10.1038/s41467-021-23270-1
– ident: e_1_3_3_9_2
  doi: 10.1038/35093564
– ident: e_1_3_3_36_2
  doi: 10.1016/j.bbrc.2005.11.164
– ident: e_1_3_3_2_2
– ident: e_1_3_3_17_2
  doi: 10.1038/cr.2013.93
– ident: e_1_3_3_23_2
  doi: 10.1016/j.tig.2008.08.007
– ident: e_1_3_3_4_2
  doi: 10.1101/gr.337602
– ident: e_1_3_3_7_2
  doi: 10.1038/nrc1164
– ident: e_1_3_3_38_2
  doi: 10.1530/REP-09-0069
– ident: e_1_3_3_12_2
  doi: 10.1371/journal.pgen.1008332
– ident: e_1_3_3_46_2
  doi: 10.1093/nar/gkaa220
– ident: e_1_3_3_15_2
  doi: 10.1038/nature17408
– ident: e_1_3_3_21_2
  doi: 10.1016/j.stem.2018.09.004
– ident: e_1_3_3_13_2
  doi: 10.1038/nature10448
– ident: e_1_3_3_48_2
  doi: 10.1038/nature18589
– ident: e_1_3_3_14_2
  doi: 10.1016/j.stem.2011.10.012
– ident: e_1_3_3_30_2
  doi: 10.1038/nrg2199
– ident: e_1_3_3_26_2
  doi: 10.1186/s12864-017-4353-7
– ident: e_1_3_3_32_2
  doi: 10.1146/annurev.es.14.110183.001035
– ident: e_1_3_3_34_2
  doi: 10.1038/nprot.2010.195
– ident: e_1_3_3_18_2
  doi: 10.1016/j.cell.2012.04.002
– ident: e_1_3_3_42_2
  doi: 10.1186/gb-2008-9-9-r137
– ident: e_1_3_3_8_2
  doi: 10.1093/humrep/16.11.2267
– ident: e_1_3_3_29_2
  doi: 10.1007/s00412-006-0077-1
– ident: e_1_3_3_39_2
  doi: 10.1038/s41587-019-0201-4
– ident: e_1_3_3_40_2
  doi: 10.1186/s13059-014-0550-8
– ident: e_1_3_3_43_2
  doi: 10.1126/science.1236083
– ident: e_1_3_3_3_2
  doi: 10.1016/j.tig.2005.09.009
– ident: e_1_3_3_37_2
  doi: 10.1038/cr.2015.151
– ident: e_1_3_3_31_2
  doi: 10.1016/S0169-5347(01)02187-5
SSID ssj0009593
Score 2.498371
Snippet Chromosome engineering has been attempted successfully in yeast but remains challenging in higher eukaryotes, including mammals. Here, we report programmed...
Designer chromosomesOne of the goals in synthetic biology is to generate complex multicellular life with designed DNA sequences. Being able to manipulate DNA...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 967
SubjectTerms Chromosomes
Deoxyribonucleic acid
DNA
Embryo cells
Gene sequencing
Genetic engineering
Genetic modification
Karyotypes
Nucleotide sequence
Stem cell transplantation
Stem cells
Yeast
Title A sustainable mouse karyotype created by programmed chromosome fusion
URI https://www.proquest.com/docview/2707591634
https://www.proquest.com/docview/2707606868
Volume 377
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Nb9Mw1CqbkLggNkAMBjISh6HKleu4bnJM2arCxoREEeUU2Y4jKliLluZQfhU_kefYSTyNIcYliuKPRO89v6-8D4RegQgfD7XQJGaGEZ7Hgijr5qCFNImJjZS5dQ28PxezT_zdYrTo9X4FUUvVRg30zz_mlfwPVuEZ4NVmyd4Cs-2m8ADuAb9wBQzD9Z9wnPbLIP_JGvGm_01ebte1Y7XWB52C6aOwQPL19VcbgFeuL0y_qMoGK149bU46qJ3tr5wAgW1MYuoiB5pAAr8s8CqcLcnEVSf4LL1srL3TS3JauWSHZRcKRL5U16YuKhfrsQzdEmDRUsCNaAlp3uXF3OZDQ1btKyU7QeW4M7WNJRmNQvYd-TYwjk6FoEnAjxPX68OL9sTtdl1qBH0uzUCqC1ulrBOQTVDALP2YfTieZmdvz0_voF0Ghglw1t10cjyZ3ljo2ZeTChK1mhdc1YSuKgK1djN_gO57swSnjsb2UM-s9tFd16h0u4_2POBKfOTrlL9-iE5SHJAfrskPt-SHPflhtcUd-eGO_LAjv0doPj2Zv5kR35WD6IiyDeGSAZMfjhRo-jKHe217t0iWS7BuhTIgEqQwVBajWEQFLxIYE_k4poYXXNPoMdpZrVfmCcJasKFhiuWKa66LOOZJBPozi-xyVagDNGgAlGlfsd42Tvme1ZYrE5mHaOYheoCO2gU_XLGWm6ceNhDP_IkuMzYGhIG9FMHwy3YY-K39iSZXBuBYzxE2ryp--vctnqF73bk4RDuby8o8BwV2o154mvkNvruhpQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+sustainable+mouse+karyotype+created+by+programmed+chromosome+fusion&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Li-Bin%2C+Wang&rft.au=Zhi-Kun%2C+Li&rft.au=Le-Yun%2C+Wang&rft.au=Xu%2C+Kai&rft.date=2022-08-26&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=377&rft.issue=6609&rft.spage=967&rft.epage=975&rft_id=info:doi/10.1126%2Fscience.abm1964&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon