Vortex dynamics and hydrodynamic performance enhancement mechanism in batoid fish oscillatory swimming
The effects of chordwise deformation and the half-amplitude asymmetry on the hydrodynamic performance and vortex dynamics of batoid fish have been numerically investigated, in which the two parameters were represented by the wavenumber ($W$) and the ratio of the half-amplitude above the longitudinal...
Saved in:
Published in | Journal of fluid mechanics Vol. 930 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
10.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The effects of chordwise deformation and the half-amplitude asymmetry on the hydrodynamic performance and vortex dynamics of batoid fish have been numerically investigated, in which the two parameters were represented by the wavenumber ($W$) and the ratio of the half-amplitude above the longitudinal axis to that below ($HAR$). Fin kinematics were prescribed based on biological data. Simulations were conducted using the immersed boundary method. It was found that moderate chordwise deformation enhances the thrust, saves the power and increases the efficiency. A large $HAR$ can also increase thrust performance. By using the derivative-moment transformation theory at several subdomains to capture the local vortical structures and a force decomposition, it was shown that, at high Strouhal numbers ($St$), the tip vortex is the main source of thrust, whereas the leading-edge vortex (LEV) and trailing-edge vortex weaken the thrust generation. However, at lower $St$, the LEV would enhance the thrust. The least deformation ($W=0$) leads to the largest effective angle of attack, and thus the strongest vortices. However, moderate deformation ($W=0.4$) has an optimal balance between the performance enhancement and the opposite effect of different local structures. The performance enhancement of $HAR$ was also due to the increase of the vortical contributions. This work provides a new insight into the role of vortices and the force enhancement mechanism in aquatic swimming. |
---|---|
AbstractList | The effects of chordwise deformation and the half-amplitude asymmetry on the hydrodynamic performance and vortex dynamics of batoid fish have been numerically investigated, in which the two parameters were represented by the wavenumber (\(W\)) and the ratio of the half-amplitude above the longitudinal axis to that below (\(HAR\)). Fin kinematics were prescribed based on biological data. Simulations were conducted using the immersed boundary method. It was found that moderate chordwise deformation enhances the thrust, saves the power and increases the efficiency. A large \(HAR\) can also increase thrust performance. By using the derivative-moment transformation theory at several subdomains to capture the local vortical structures and a force decomposition, it was shown that, at high Strouhal numbers (\(St\)), the tip vortex is the main source of thrust, whereas the leading-edge vortex (LEV) and trailing-edge vortex weaken the thrust generation. However, at lower \(St\), the LEV would enhance the thrust. The least deformation (\(W=0\)) leads to the largest effective angle of attack, and thus the strongest vortices. However, moderate deformation (\(W=0.4\)) has an optimal balance between the performance enhancement and the opposite effect of different local structures. The performance enhancement of \(HAR\) was also due to the increase of the vortical contributions. This work provides a new insight into the role of vortices and the force enhancement mechanism in aquatic swimming. The effects of chordwise deformation and the half-amplitude asymmetry on the hydrodynamic performance and vortex dynamics of batoid fish have been numerically investigated, in which the two parameters were represented by the wavenumber ( $W$ ) and the ratio of the half-amplitude above the longitudinal axis to that below ( $HAR$ ). Fin kinematics were prescribed based on biological data. Simulations were conducted using the immersed boundary method. It was found that moderate chordwise deformation enhances the thrust, saves the power and increases the efficiency. A large $HAR$ can also increase thrust performance. By using the derivative-moment transformation theory at several subdomains to capture the local vortical structures and a force decomposition, it was shown that, at high Strouhal numbers ( $St$ ), the tip vortex is the main source of thrust, whereas the leading-edge vortex (LEV) and trailing-edge vortex weaken the thrust generation. However, at lower $St$ , the LEV would enhance the thrust. The least deformation ( $W=0$ ) leads to the largest effective angle of attack, and thus the strongest vortices. However, moderate deformation ( $W=0.4$ ) has an optimal balance between the performance enhancement and the opposite effect of different local structures. The performance enhancement of $HAR$ was also due to the increase of the vortical contributions. This work provides a new insight into the role of vortices and the force enhancement mechanism in aquatic swimming. |
ArticleNumber | A28 |
Author | Zhang, Dong Huang, Qiao-Gao Pan, Guang Yang, Li-Ming Huang, Wei-Xi |
Author_xml | – sequence: 1 givenname: Dong orcidid: 0000-0002-6182-0737 surname: Zhang fullname: Zhang, Dong organization: 1School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, PR China – sequence: 2 givenname: Qiao-Gao surname: Huang fullname: Huang, Qiao-Gao email: huangqiaogao@nwpu.edu.cn organization: 1School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, PR China – sequence: 3 givenname: Guang orcidid: 0000-0003-1932-8252 surname: Pan fullname: Pan, Guang organization: 1School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, PR China – sequence: 4 givenname: Li-Ming surname: Yang fullname: Yang, Li-Ming organization: 4Department of Aerodynamics, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China – sequence: 5 givenname: Wei-Xi orcidid: 0000-0003-4149-3369 surname: Huang fullname: Huang, Wei-Xi email: huangqiaogao@nwpu.edu.cn organization: 3AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China |
BookMark | eNp1kE1LAzEQhoNUsFZv_oCAV3fNZLMfOUrxCwpeiteQzWbblCapyRbdf29KC4LoaZh3nndmeC_RxHmnEboBkgOB-n7T25wSCjmH-gxNgVU8qytWTtCUEEozAEou0GWMG0KgILyeov7dh0F_4W500hoVsXQdXo9d8CcF73TofbDSKY21Wx-q1W7AVqvUmGixcbiVgzcd7k1cYx-V2W6TEEYcP421xq2u0Hkvt1Ffn-oMLZ8el_OXbPH2_Dp_WGSqIHTIWC1BAZOshVL2uuyUVCSNWEV5o1voIAHAALRmRds0vGFVKRula1VyWhQzdHtcuwv-Y6_jIDZ-H1y6KGjJSw7AgSWKHikVfIxB90KZQQ7GuyFIsxVAxCFOkeIUhzhFijOZ7n6ZdsFYGcb_8PyES9sG0630zyt_Gr4BcxiJ7Q |
CitedBy_id | crossref_primary_10_1016_j_oceaneng_2024_116799 crossref_primary_10_1142_S0217979222502356 crossref_primary_10_1063_5_0257979 crossref_primary_10_3390_jmse10070981 crossref_primary_10_3390_jmse12122125 crossref_primary_10_1063_5_0161749 crossref_primary_10_1016_j_oceaneng_2024_119039 crossref_primary_10_1088_1757_899X_1288_1_012035 crossref_primary_10_1063_5_0233213 crossref_primary_10_1063_5_0147776 crossref_primary_10_1063_5_0180621 crossref_primary_10_3390_jmse10070908 crossref_primary_10_1007_s00707_022_03192_9 crossref_primary_10_1016_j_oceaneng_2022_112342 crossref_primary_10_1016_j_oceaneng_2022_113314 crossref_primary_10_1063_5_0090718 crossref_primary_10_1016_j_oceaneng_2023_114389 crossref_primary_10_1063_5_0228786 crossref_primary_10_1063_5_0174659 crossref_primary_10_1016_j_compfluid_2024_106338 crossref_primary_10_1017_jfm_2023_907 crossref_primary_10_3390_jmse10091186 crossref_primary_10_3390_app13074208 crossref_primary_10_1016_j_oceaneng_2024_119008 crossref_primary_10_3390_biomimetics9010045 crossref_primary_10_1063_5_0125374 crossref_primary_10_1063_5_0224238 crossref_primary_10_1063_5_0228318 crossref_primary_10_1063_5_0232615 crossref_primary_10_3390_jmse12112024 crossref_primary_10_1017_jfm_2023_1028 crossref_primary_10_7498_aps_73_20240399 crossref_primary_10_3390_biomimetics10030148 crossref_primary_10_1063_5_0215407 crossref_primary_10_1063_5_0238329 crossref_primary_10_1063_5_0154914 crossref_primary_10_1016_j_oceaneng_2024_119415 crossref_primary_10_1063_5_0246934 crossref_primary_10_1016_j_oceaneng_2024_118769 crossref_primary_10_1063_5_0188125 crossref_primary_10_1088_1748_3190_ad1b2e crossref_primary_10_1063_5_0201926 crossref_primary_10_1016_j_oceaneng_2024_117577 crossref_primary_10_1063_5_0179211 crossref_primary_10_1016_j_oceaneng_2023_116068 crossref_primary_10_1063_5_0170156 crossref_primary_10_3390_jmse13030462 crossref_primary_10_1063_5_0235768 crossref_primary_10_1017_flo_2023_27 crossref_primary_10_1017_jfm_2023_325 crossref_primary_10_1063_5_0243579 crossref_primary_10_1007_s10409_024_23492_x crossref_primary_10_1063_5_0123371 crossref_primary_10_3390_biomimetics7020045 |
Cites_doi | 10.1093/icb/42.5.1018 10.1242/jeb.00848 10.1063/5.0010938 10.1017/S0022112009992941 10.1038/384626a0 10.1016/j.compfluid.2011.05.011 10.1038/nature21727 10.1016/j.jfluidstructs.2012.02.008 10.1063/1.5130698 10.1109/ACCESS.2020.2970942 10.1017/jfm.2020.955 10.1126/science.1104682 10.1088/1748-3190/ab2208 10.1242/jeb.022269 10.1103/PhysRevFluids.2.083102 10.1017/jfm.2012.443 10.1103/PhysRevFluids.3.013103 10.1242/jeb.00663 10.1017/jfm.2015.702 10.1063/1.858173 10.1017/jfm.2019.284 10.2514/1.J056635 10.1088/1748-3190/ab597e 10.1088/1748-3182/7/3/036012 10.1098/rsif.2015.0051 10.1016/j.jcp.2015.03.058 10.1017/jfm.2014.481 10.1017/jfm.2015.460 10.56021/9780801860485 10.1017/jfm.2021.434 10.1109/48.757275 10.2514/1.J050326 10.1103/PhysRevFluids.4.054101 10.1063/1.5034439 10.1063/1.5120050 10.1038/35089071 10.1103/PhysRevFluids.2.053101 10.1242/jeb.063016 10.1017/S0022112009007046 10.1017/S002211200600190X 10.1017/S0022112060001110 10.1126/science.1088295 10.1017/jfm.2020.386 10.1017/jfm.2017.533 10.1017/jfm.2016.175 10.1017/jfm.2019.962 10.1016/j.jfluidstructs.2007.08.003 10.1242/jeb.10.1.88 10.1017/jfm.2017.302 10.1088/1748-3190/10/4/046013 10.1063/1.5129274 10.1063/1.5010008 10.1038/nphys3078 10.1017/S0022112097008392 10.1242/jeb.02614 10.1017/jfm.2019.612 10.1063/5.0029340 10.1242/jeb.204.2.379 10.2514/1.J058371 10.1016/j.jfluidstructs.2020.102875 10.1063/1.5090878 10.1063/1.1512918 10.1016/j.jfluidstructs.2005.05.009 10.1017/S0022112006004551 10.1007/s00348-015-2049-9 10.1088/1748-3190/aad5a3 10.1016/j.oceaneng.2016.11.055 10.1126/science.1153019 10.1016/j.jcp.2016.05.018 10.1063/1.4997085 10.1103/PhysRevLett.114.018102 10.1016/S1672-6529(08)60114-6 10.1063/1.4802193 10.1063/1.5109456 10.3390/aerospace3030020 10.1073/pnas.1805941115 10.1017/jfm.2020.361 10.1063/1.4794753 10.1017/jfm.2019.954 10.1017/S0022112007005976 10.1017/jfm.2018.305 10.1146/annurev-marine-010814-015614 10.1103/PhysRevFluids.5.023101 |
ContentType | Journal Article |
Copyright | The Author(s), 2021. Published by Cambridge University Press |
Copyright_xml | – notice: The Author(s), 2021. Published by Cambridge University Press |
DBID | AAYXX CITATION 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
DOI | 10.1017/jfm.2021.917 |
DatabaseName | CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Research Library Prep Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) |
DatabaseTitleList | Research Library Prep CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1469-7645 |
ExternalDocumentID | 10_1017_jfm_2021_917 |
GroupedDBID | -DZ -E. -~X .DC .FH 09C 09E 0E1 0R~ 29K 4.4 5GY 5VS 74X 74Y 7~V 88I 8FE 8FG 8FH 8G5 8R4 8R5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AANRG AARAB AASVR AAUIS AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABZCX ACBEA ACBMC ACCHT ACGFO ACGFS ACGOD ACIMK ACIWK ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADGEJ ADKIL ADOCW ADVJH AEBAK AEMTW AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFRAH AFUTZ AGABE AGBYD AGJUD AGOOT AHQXX AHRGI AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BHPHI BKSAR BLZWO BMAJL BPHCQ C0O CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC CS3 D-I DC4 DOHLZ DU5 DWQXO E.L EBS F5P GNUQQ GUQSH HCIFZ HG- HST HZ~ I.6 IH6 IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L6V L98 LK5 LW7 M-V M2O M2P M7R M7S NIKVX O9- OYBOY P2P P62 PCBAR PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RNS ROL RR0 S0W S6- S6U SAAAG SC5 T9M TAE TN5 UT1 WFFJZ WH7 WQ3 WXU WXY WYP ZYDXJ ~02 AAYXX ABVKB ABVZP ABXAU ABXHF ACDLN ADMLS AEUYN AFZFC AKMAY CITATION PHGZM PHGZT 3V. 7TB 7U5 7UA 7XB 8FD 8FK C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c302t-47a1c14a4b15afe5dcac0c3046298eb1d17a11411ee43b8898465a8ce7c59233 |
IEDL.DBID | BENPR |
ISSN | 0022-1120 |
IngestDate | Sat Aug 16 19:50:51 EDT 2025 Tue Jul 01 03:01:28 EDT 2025 Thu Apr 24 23:08:25 EDT 2025 Wed Mar 13 05:59:02 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | propulsion swimming/flying vortex dynamics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c302t-47a1c14a4b15afe5dcac0c3046298eb1d17a11411ee43b8898465a8ce7c59233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4149-3369 0000-0002-6182-0737 0000-0003-1932-8252 |
PQID | 2595911914 |
PQPubID | 34769 |
PageCount | 32 |
ParticipantIDs | proquest_journals_2595911914 crossref_citationtrail_10_1017_jfm_2021_917 crossref_primary_10_1017_jfm_2021_917 cambridge_journals_10_1017_jfm_2021_917 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-10 |
PublicationDateYYYYMMDD | 2022-01-10 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Journal of fluid mechanics |
PublicationTitleAlternate | J. Fluid Mech |
PublicationYear | 2022 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | 2002; 14 2013; 25 2017; 2 1926; 4 2019; 57 2021; 920 2007; 581 2015; 780 2019; 14 2020; 885 2005; 20 2020; 15 2019; 884 2016; 788 2018; 847 1996; 384 1960; 9 2013; 280 2004; 207 2009; 631 2005; 23 2020; 8 2007; 576 2015; 295 2020; 5 2018; 3 2003; 206 2006; 209 2016; 319 2002; 42 2020; 93 2008; 319 2016; 795 2019; 874 2020; 896 2008; 24 2020; 898 2018; 30 2019; 878 2006; 566 2012; 215 1998; 360 2001; 412 2014; 10 2014; 756 2015; 56 2015; 12 1991; 3 2019; 4 2021; 907 2019; 31 2010; 645 2015; 10 1999; 24 2009; 212 2017; 130 2017; 29 2020; 32 2004; 306 2015; 7 2012; 30 2001; 204 1933; 10 2010; 48 2017; 829 2016; 3 2015; 114 2018; 115 2009; 6 2003; 302 2011; 49 2012; 7 2017; 544 2012; 712 2017; 822 2018; 13 S0022112021009174_ref56 S0022112021009174_ref12 S0022112021009174_ref57 S0022112021009174_ref13 S0022112021009174_ref10 S0022112021009174_ref54 S0022112021009174_ref55 S0022112021009174_ref11 S0022112021009174_ref16 S0022112021009174_ref17 S0022112021009174_ref14 S0022112021009174_ref58 S0022112021009174_ref15 S0022112021009174_ref59 S0022112021009174_ref53 S0022112021009174_ref50 S0022112021009174_ref51 S0022112021009174_ref7 S0022112021009174_ref8 S0022112021009174_ref6 S0022112021009174_ref3 S0022112021009174_ref4 S0022112021009174_ref1 S0022112021009174_ref2 S0022112021009174_ref18 S0022112021009174_ref19 Breder (S0022112021009174_ref9) 1926; 4 Wang (S0022112021009174_ref77) 2020; 32 Lauder (S0022112021009174_ref32) 2005; 23 S0022112021009174_ref67 S0022112021009174_ref23 S0022112021009174_ref24 S0022112021009174_ref68 S0022112021009174_ref21 S0022112021009174_ref65 S0022112021009174_ref66 S0022112021009174_ref27 S0022112021009174_ref25 S0022112021009174_ref69 S0022112021009174_ref26 S0022112021009174_ref60 S0022112021009174_ref63 S0022112021009174_ref64 S0022112021009174_ref61 S0022112021009174_ref62 S0022112021009174_ref29 Hamlett (S0022112021009174_ref20) 1999 S0022112021009174_ref78 S0022112021009174_ref34 S0022112021009174_ref79 S0022112021009174_ref35 S0022112021009174_ref76 S0022112021009174_ref33 S0022112021009174_ref38 S0022112021009174_ref39 S0022112021009174_ref36 S0022112021009174_ref37 Ryu (S0022112021009174_ref52) 2019; 31 S0022112021009174_ref70 S0022112021009174_ref71 Han (S0022112021009174_ref22) 2020; 32 S0022112021009174_ref74 S0022112021009174_ref30 S0022112021009174_ref75 S0022112021009174_ref31 S0022112021009174_ref72 S0022112021009174_ref73 Kim (S0022112021009174_ref28) 2019; 31 S0022112021009174_ref45 S0022112021009174_ref46 S0022112021009174_ref43 S0022112021009174_ref87 Zhang (S0022112021009174_ref85) 2019; 31 S0022112021009174_ref44 S0022112021009174_ref88 S0022112021009174_ref49 Borazjani (S0022112021009174_ref5) 2013; 280 S0022112021009174_ref47 S0022112021009174_ref48 S0022112021009174_ref81 S0022112021009174_ref82 S0022112021009174_ref80 S0022112021009174_ref41 S0022112021009174_ref86 S0022112021009174_ref42 S0022112021009174_ref83 S0022112021009174_ref40 S0022112021009174_ref84 |
References_xml | – volume: 42 start-page: 1018 issue: 5 year: 2002 end-page: 1025 article-title: Power requirements of swimming: Do new methods resolve old questions? publication-title: Integr. Compar. Biol. – volume: 576 start-page: 265 year: 2007 end-page: 286 article-title: Integral force acting on a body due to local flow structures publication-title: J. Fluid Mech. – volume: 896 start-page: A22 year: 2020 article-title: Forward flight and sideslip manoeuvre of a model hawkmoth publication-title: J. Fluid Mech. – volume: 780 start-page: 120 year: 2015 end-page: 142 article-title: Actively flapping tandem flexible flags in a viscous flow publication-title: J. Fluid Mech. – volume: 10 start-page: 758 issue: 10 year: 2014 end-page: 761 article-title: Scaling macroscopic aquatic locomotion publication-title: Nat. Phys. – volume: 756 start-page: 758 year: 2014 end-page: 770 article-title: Vortex force decomposition in the tip region of impulsively-started flat plates publication-title: J. Fluid Mech. – volume: 31 start-page: 091901 year: 2019 article-title: Flapping dynamics of a flexible plate with Navier slip publication-title: Phys. Fluids – volume: 14 start-page: 4012 issue: 11 year: 2002 end-page: 4025 article-title: Particle imaging velocimetry experiments and lattice-Botlzmann simulations on a single sphere settling under gravity publication-title: Phys. Fluids – volume: 13 start-page: 056015 year: 2018 article-title: The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency publication-title: Bioinspir. Biomim. – volume: 384 start-page: 626 issue: 6610 year: 1996 end-page: 630 article-title: Leading-edge vortices in insect flight publication-title: Nature – volume: 206 start-page: 4191 issue: 23 year: 2003 end-page: 4208 article-title: The aerodynamics of insect flight publication-title: J. Expl. Biol. – volume: 884 start-page: R1 year: 2019 article-title: Self-organization of multiple self-propelling flapping foils: energy saving and increased speed publication-title: J. Fluid Mech. – volume: 795 start-page: 634 year: 2016 end-page: 651 article-title: Vortex dynamics and new lift enhancement mechanism of wing-body interaction in insect forward flight publication-title: J. Fluid Mech. – volume: 581 start-page: 453 year: 2007 end-page: 468 article-title: Role of the tip vortex in the force generation of low-aspect-ratio normal flat plates publication-title: J. Fluid Mech. – volume: 25 start-page: 041901 year: 2013 article-title: Performance of a wing with nonuniform flexibility in hovering flight publication-title: Phys. Fluids – volume: 295 start-page: 322 issue: 15 year: 2015 end-page: 339 article-title: A three-dimensional explicit sphere function-based gas-kinetic flux solver for simulation of inviscid compressible flows publication-title: J. Comput. Phys. – volume: 209 start-page: 5005 issue: 24 year: 2006 end-page: 5016 article-title: Dual leading-edge vortices on flapping wings publication-title: J. Expl Biol. – volume: 32 start-page: 111902 year: 2020 article-title: Specialization of tuna: a numerical study on the function of caudal keels publication-title: Phys. Fluids – volume: 3 start-page: 2835 year: 1991 end-page: 2837 article-title: Wake mechanics for thrust generation in oscillating foils publication-title: Phys. Fluids – volume: 30 start-page: 205 year: 2012 end-page: 218 article-title: Optimal Strouhal number for swimming animals publication-title: J. Fluids Struct. – volume: 30 start-page: 071902 year: 2018 article-title: Effects of Reynolds number and thickness on an undulatory self-propelled foil publication-title: Phys. Fluids – volume: 24 start-page: 183 issue: 2 year: 2008 end-page: 199 article-title: Effect of spanwise flexibility on flapping wing propulsion publication-title: J. Fluids Struct. – volume: 9 start-page: 305 issue: 2 year: 1960 end-page: 317 article-title: Note on the swimming of slender fish publication-title: J. Fluid Mech. – volume: 115 start-page: 8116 issue: 32 year: 2018 end-page: 8118 article-title: Efficient cruising for swimming and flying animals is dictated by fluid drag publication-title: Proc. Natl Acad. Sci. USA – volume: 10 start-page: 046013 year: 2015 article-title: Efficiency of fish propulsion publication-title: Bioinspir. Biomim. – volume: 885 start-page: A18 year: 2020 article-title: A numerical and theoretical study of the aerodynamic performance of a hovering rhinoceros beetle (Trypoxylus dichotomus) publication-title: J. Fluid Mech. – volume: 878 start-page: 370 year: 2019 end-page: 385 article-title: How dorsal fin sharpness affects swimming speed and economy publication-title: J. Fluid Mech. – volume: 822 start-page: 386 year: 2017 end-page: 397 article-title: Scaling the propulsive performance of heaving and pitching foils publication-title: J. Fluid Mech. – volume: 319 start-page: 1250 issue: 5867 year: 2008 end-page: 1253 article-title: Leading-edge vortex improves lift in slow-flying bats publication-title: Science – volume: 32 start-page: 011902 year: 2020 article-title: Hydrodynamics of median-fin interactions in fish-like locomotion: effects of fin shape and movement publication-title: Phys. Fluids – volume: 829 start-page: 65 year: 2017 end-page: 88 article-title: Computational analysis of vortex dynamics and performance enhancement due to body-fin and fin-fin interactions in fish-like locomotion publication-title: J. Fluid Mech. – volume: 3 start-page: 013103 year: 2018 article-title: Flow speed has little impact on propulsive characteristics of oscillating foils publication-title: Phys. Rev. Fluids – volume: 3 start-page: 1 issue: 3 year: 2016 end-page: 24 article-title: Hydrodynamic performance of aquatic flapping: efficiency of underwater flight in the manta publication-title: Aerospace – volume: 2 start-page: 053101 year: 2017 article-title: Nonsinusoidal gaits for unsteady propulsion publication-title: Phys. Rev. Fluids – volume: 920 start-page: A10 year: 2021 article-title: Estimating thrust from shedding vortex surfaces in the wake of a flapping plate publication-title: J. Fluid Mech. – volume: 898 start-page: A19 year: 2020 article-title: Aerodynamic-force production mechanisms in hovering mosquitoes publication-title: J. Fluid Mech. – volume: 130 start-page: 437 year: 2017 end-page: 453 article-title: BCF swimming locomotion for autonomous underwater robots: a review and a novel solution to improve control and efficiency publication-title: Ocean Engng – volume: 31 start-page: 051906 year: 2019 article-title: On the role of vortical structures in aerodynamic performance of a hovering mosquito publication-title: Phys. Fluids – volume: 6 start-page: 174 issue: 2 year: 2009 end-page: 179 article-title: Kinematics modeling and experiments of pectoral oscillation propulsion robotic fish publication-title: J. Bionic. Engng – volume: 93 start-page: 102875 year: 2020 article-title: Self-propulsion of fishes-like undulating hydrofoil: a unified kinematics based unsteady hydrodynamics study publication-title: J. Fluids Struct. – volume: 31 start-page: 111906 year: 2019 article-title: Wake transitions of flexible foils in a viscous uniform flow publication-title: Phys. Fluids – volume: 204 start-page: 379 issue: 2 year: 2001 end-page: 394 article-title: Pectoral fin locomotion in batoid fishes: undulation versus oscillation publication-title: J. Expl Biol. – volume: 306 start-page: 1960 issue: 5703 year: 2004 end-page: 1962 article-title: Leading-edge vortex lifts swifts publication-title: Science – volume: 788 start-page: 407 year: 2016 end-page: 443 article-title: Hydrodynamics of swimming in stingrays: numerical simulations and the role of the leading-edge vortex publication-title: J. Fluid Mech. – volume: 7 start-page: 521 issue: 1 year: 2015 end-page: 545 article-title: Fish locomotion: recent advances and new directions publication-title: Ann. Rev. Mar. Sci. – volume: 4 start-page: 054101 year: 2019 article-title: Phase difference effect on collective locomotion of two tandem autopropelled flapping foils publication-title: Phys. Rev. Fluids – volume: 5 start-page: 023101 year: 2020 article-title: Three-dimensional biological hydrodynamics study on various types of batoid fishlike locomotion publication-title: Phys. Rev. Fluids – volume: 57 start-page: 2663 issue: 7 year: 2019 end-page: 2669 article-title: Reynolds number scaling of the propulsive performance of a pitching airfoil publication-title: AIAA J. – volume: 57 start-page: 3666 issue: 9 year: 2019 end-page: 3677 article-title: Scaling and performance of simultaneously heaving and pitching foils publication-title: AIAA J. – volume: 20 start-page: 949 issue: 7 year: 2005 end-page: 959 article-title: Performance of flapping foil propulsion publication-title: J. Fluids Struct. – volume: 12 start-page: 20150051 issue: 105 year: 2015 article-title: Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio publication-title: J. R. Soc. Interface – volume: 10 start-page: 88 issue: 1 year: 1933 end-page: 104 article-title: Studies in animal locomotion publication-title: J. Expl Biol. – volume: 874 start-page: P1 year: 2019 article-title: Undulatory and oscillatory swimming publication-title: J. Fluid Mech. – volume: 32 start-page: 021906 year: 2020 article-title: A self-propelled flexible plate with a Navier slip surface publication-title: Phys. Fluids – volume: 7 start-page: 036012 year: 2012 article-title: Hydrodynamic investigation of a self-propelled robotic fish based on a force-feedback control method publication-title: Bioinspir. Biomim. – volume: 712 start-page: 598 year: 2012 end-page: 613 article-title: Force and power of flapping plates in a fluid publication-title: J. Fluid Mech. – volume: 48 start-page: 2543 issue: 11 year: 2010 end-page: 2555 article-title: Far-field analysis of the aerodynamic force by Lamb vector integrals publication-title: AIAA J. – volume: 23 start-page: 425 year: 2005 end-page: 468 article-title: Hydrodynamics of undulatory propulsion publication-title: Fish Biol. – volume: 2 start-page: 083102 year: 2017 article-title: On the rules for aquatic locomotion publication-title: Phys. Rev. Fluids – volume: 114 start-page: 018102 year: 2015 article-title: Lateral line layout correlates with the differential hydrodynamic pressure on swimming fish publication-title: Phys. Rev. Lett. – volume: 847 start-page: 386 year: 2018 end-page: 416 article-title: Swimming performance, resonance and shape evolution in heaving flexible panels publication-title: J. Fluid Mech. – volume: 29 start-page: 083605 issue: 8 year: 2017 article-title: An immersed boundary-simplified sphere function-based gas kinetic scheme for simulation of 3D incompressible flows publication-title: Phys. Fluids – volume: 215 start-page: 671 issue: 4 year: 2012 end-page: 684 article-title: Hydrodynamics of the bluegill sunfish c-start escape response: three-dimensional simulations and comparison with experimental data publication-title: J. Expl Biol. – volume: 212 start-page: 2705 issue: 16 year: 2009 end-page: 2719 article-title: Rotational accelerations stabilize leading edge vortices on revolving fly wings publication-title: J. Expl Biol. – volume: 544 start-page: 92 issue: 7648 year: 2017 end-page: 95 article-title: Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight publication-title: Nature – volume: 56 start-page: 181 year: 2015 article-title: Vortices behavior depending on the aspect ratio of an insect-like flapping wing in hover publication-title: Exp. Fluids – volume: 49 start-page: 173 issue: 1 year: 2011 end-page: 187 article-title: Effect of internal mass in the simulation of a moving body by the immersed boundary method publication-title: Comput. Fluids – volume: 24 start-page: 237 issue: 2 year: 1999 end-page: 252 article-title: Review of fish swimming modes for aquatic locomotion publication-title: IEEE J. Ocean Engng – volume: 280 start-page: 20122071 issue: 1756 year: 2013 article-title: The fish tail motion forms an attached leading edge vortex publication-title: Proc. R. Soc. Lond. B – volume: 207 start-page: 1063 issue: 7 year: 2004 end-page: 1072 article-title: Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers publication-title: J. Expl Biol. – volume: 302 start-page: 1566 issue: 5650 year: 2003 end-page: 1569 article-title: Fish exploiting vortices decrease muscle activity publication-title: Science – volume: 25 start-page: 034101 year: 2013 article-title: Three-dimensional flow structure and aerodynamic loading on a revolving wing publication-title: Phys. Fluids – volume: 8 start-page: 30410 year: 2020 end-page: 30420 article-title: Computational model construction and analysis of the hydrodynamics of a rhinoptera javanica publication-title: IEEE Access – volume: 15 start-page: 026005 year: 2020 article-title: The impact of dragonfly wing deformations on aerodynamic performance during forward flight publication-title: Bioinspir. Biomim. – volume: 566 start-page: 309 year: 2006 end-page: 343 article-title: Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils publication-title: J. Fluid Mech. – volume: 360 start-page: 41 year: 1998 end-page: 72 article-title: Oscillating foils of high propulsive efficiency publication-title: J. Fluid Mech. – volume: 4 start-page: 159 issue: 5 year: 1926 end-page: 297 article-title: The locomotion of fishes publication-title: Zool. Sci. Contrib. N.Y. Zool. Soc. – volume: 645 start-page: 345 year: 2010 end-page: 373 article-title: Computational modelling and analysis of the hydrodynamics of a highly deformable fish pectoral fin publication-title: J. Fluid Mech. – volume: 412 start-page: 729 issue: 6848 year: 2001 end-page: 733 article-title: Spanwise flow and the attachment of the leading-edge vortex on insect wings publication-title: Nature – volume: 631 start-page: 311 year: 2009 end-page: 342 article-title: Low-dimensional models and performance scaling of a highly deformable fish pectoral fin publication-title: J. Fluid Mech. – volume: 30 start-page: 016107 issue: 1 year: 2018 article-title: Minimum-domain impulse theory for unsteady aerodynamic force publication-title: Phys. Fluids – volume: 907 start-page: R3 year: 2021 article-title: Self-directed propulsion of an unconstrained flapping swimmer at low Reynolds number: hydrodynamic behaviour and scaling laws publication-title: J. Fluid Mech. – volume: 32 start-page: 071904 year: 2020 article-title: Propulsive performance and flow-field characteristics of a jellyfish-like ornithopter with asymmetric pitching motion publication-title: Phys. Fluids – volume: 14 start-page: 046010 year: 2019 article-title: Computational investigation of wing-body interaction and its lift enhancement effect in hummingbird forward flight publication-title: Bioinspir. Biomim. – volume: 319 start-page: 129 issue: 15 year: 2016 end-page: 144 article-title: Development of discrete gas kinetic scheme for simulation of 3D viscous incompressible and compressible flows publication-title: J. Comput. Phys. – ident: S0022112021009174_ref58 doi: 10.1093/icb/42.5.1018 – ident: S0022112021009174_ref3 doi: 10.1242/jeb.00848 – ident: S0022112021009174_ref42 doi: 10.1063/5.0010938 – ident: S0022112021009174_ref10 doi: 10.1017/S0022112009992941 – ident: S0022112021009174_ref12 doi: 10.1038/384626a0 – ident: S0022112021009174_ref64 doi: 10.1016/j.compfluid.2011.05.011 – ident: S0022112021009174_ref4 doi: 10.1038/nature21727 – ident: S0022112021009174_ref13 doi: 10.1016/j.jfluidstructs.2012.02.008 – volume: 32 start-page: 021906 year: 2020 ident: S0022112021009174_ref77 article-title: A self-propelled flexible plate with a Navier slip surface publication-title: Phys. Fluids doi: 10.1063/1.5130698 – ident: S0022112021009174_ref25 doi: 10.1109/ACCESS.2020.2970942 – ident: S0022112021009174_ref37 doi: 10.1017/jfm.2020.955 – ident: S0022112021009174_ref75 doi: 10.1126/science.1104682 – ident: S0022112021009174_ref76 doi: 10.1088/1748-3190/ab2208 – ident: S0022112021009174_ref33 doi: 10.1242/jeb.022269 – ident: S0022112021009174_ref53 doi: 10.1103/PhysRevFluids.2.083102 – ident: S0022112021009174_ref34 doi: 10.1017/jfm.2012.443 – ident: S0022112021009174_ref74 doi: 10.1103/PhysRevFluids.3.013103 – ident: S0022112021009174_ref54 doi: 10.1242/jeb.00663 – ident: S0022112021009174_ref7 doi: 10.1017/jfm.2015.702 – ident: S0022112021009174_ref70 doi: 10.1063/1.858173 – ident: S0022112021009174_ref63 doi: 10.1017/jfm.2019.284 – ident: S0022112021009174_ref73 doi: 10.2514/1.J056635 – ident: S0022112021009174_ref62 doi: 10.1088/1748-3190/ab597e – ident: S0022112021009174_ref78 doi: 10.1088/1748-3182/7/3/036012 – ident: S0022112021009174_ref30 doi: 10.1098/rsif.2015.0051 – ident: S0022112021009174_ref82 doi: 10.1016/j.jcp.2015.03.058 – ident: S0022112021009174_ref29 doi: 10.1017/jfm.2014.481 – ident: S0022112021009174_ref71 doi: 10.1017/jfm.2015.460 – volume-title: Sharks, Skates, and Rays: The Biology of Elasmobranch Fishes year: 1999 ident: S0022112021009174_ref20 doi: 10.56021/9780801860485 – volume: 4 start-page: 159 year: 1926 ident: S0022112021009174_ref9 article-title: The locomotion of fishes publication-title: Zool. Sci. Contrib. N.Y. Zool. Soc. – ident: S0022112021009174_ref69 doi: 10.1017/jfm.2021.434 – ident: S0022112021009174_ref60 doi: 10.1109/48.757275 – ident: S0022112021009174_ref46 doi: 10.2514/1.J050326 – ident: S0022112021009174_ref38 doi: 10.1103/PhysRevFluids.4.054101 – ident: S0022112021009174_ref86 doi: 10.1063/1.5034439 – volume: 280 start-page: 20122071 year: 2013 ident: S0022112021009174_ref5 article-title: The fish tail motion forms an attached leading edge vortex publication-title: Proc. R. Soc. Lond. B – volume: 31 start-page: 111906 year: 2019 ident: S0022112021009174_ref28 article-title: Wake transitions of flexible foils in a viscous uniform flow publication-title: Phys. Fluids doi: 10.1063/1.5120050 – ident: S0022112021009174_ref2 doi: 10.1038/35089071 – ident: S0022112021009174_ref72 doi: 10.1103/PhysRevFluids.2.053101 – ident: S0022112021009174_ref6 doi: 10.1242/jeb.063016 – volume: 23 start-page: 425 year: 2005 ident: S0022112021009174_ref32 article-title: Hydrodynamics of undulatory propulsion publication-title: Fish Biol. – ident: S0022112021009174_ref8 doi: 10.1017/S0022112009007046 – ident: S0022112021009174_ref11 doi: 10.1017/S002211200600190X – ident: S0022112021009174_ref36 doi: 10.1017/S0022112060001110 – ident: S0022112021009174_ref35 doi: 10.1126/science.1088295 – ident: S0022112021009174_ref41 doi: 10.1017/jfm.2020.386 – ident: S0022112021009174_ref43 doi: 10.1017/jfm.2017.533 – ident: S0022112021009174_ref40 doi: 10.1017/jfm.2016.175 – ident: S0022112021009174_ref48 doi: 10.1017/jfm.2019.962 – ident: S0022112021009174_ref23 doi: 10.1016/j.jfluidstructs.2007.08.003 – ident: S0022112021009174_ref19 doi: 10.1242/jeb.10.1.88 – ident: S0022112021009174_ref15 doi: 10.1017/jfm.2017.302 – ident: S0022112021009174_ref45 doi: 10.1088/1748-3190/10/4/046013 – volume: 32 start-page: 011902 year: 2020 ident: S0022112021009174_ref22 article-title: Hydrodynamics of median-fin interactions in fish-like locomotion: effects of fin shape and movement publication-title: Phys. Fluids doi: 10.1063/1.5129274 – ident: S0022112021009174_ref27 doi: 10.1063/1.5010008 – ident: S0022112021009174_ref18 doi: 10.1038/nphys3078 – ident: S0022112021009174_ref1 doi: 10.1017/S0022112097008392 – ident: S0022112021009174_ref44 doi: 10.1242/jeb.02614 – ident: S0022112021009174_ref88 doi: 10.1017/jfm.2019.612 – ident: S0022112021009174_ref87 doi: 10.1063/5.0029340 – ident: S0022112021009174_ref51 doi: 10.1242/jeb.204.2.379 – ident: S0022112021009174_ref59 doi: 10.2514/1.J058371 – ident: S0022112021009174_ref66 doi: 10.1016/j.jfluidstructs.2020.102875 – volume: 31 start-page: 051906 year: 2019 ident: S0022112021009174_ref85 article-title: On the role of vortical structures in aerodynamic performance of a hovering mosquito publication-title: Phys. Fluids doi: 10.1063/1.5090878 – ident: S0022112021009174_ref65 doi: 10.1063/1.1512918 – ident: S0022112021009174_ref56 doi: 10.1016/j.jfluidstructs.2005.05.009 – ident: S0022112021009174_ref79 doi: 10.1017/S0022112006004551 – ident: S0022112021009174_ref26 – ident: S0022112021009174_ref21 doi: 10.1007/s00348-015-2049-9 – ident: S0022112021009174_ref68 doi: 10.1088/1748-3190/aad5a3 – ident: S0022112021009174_ref55 doi: 10.1016/j.oceaneng.2016.11.055 – ident: S0022112021009174_ref47 doi: 10.1126/science.1153019 – ident: S0022112021009174_ref81 doi: 10.1016/j.jcp.2016.05.018 – ident: S0022112021009174_ref83 doi: 10.1063/1.4997085 – ident: S0022112021009174_ref50 doi: 10.1103/PhysRevLett.114.018102 – ident: S0022112021009174_ref80 doi: 10.1016/S1672-6529(08)60114-6 – ident: S0022112021009174_ref61 doi: 10.1063/1.4802193 – volume: 31 start-page: 091901 year: 2019 ident: S0022112021009174_ref52 article-title: Flapping dynamics of a flexible plate with Navier slip publication-title: Phys. Fluids doi: 10.1063/1.5109456 – ident: S0022112021009174_ref14 doi: 10.3390/aerospace3030020 – ident: S0022112021009174_ref57 doi: 10.1016/j.jfluidstructs.2005.05.009 – ident: S0022112021009174_ref16 doi: 10.1073/pnas.1805941115 – ident: S0022112021009174_ref84 doi: 10.1017/jfm.2020.361 – ident: S0022112021009174_ref17 doi: 10.1063/1.4794753 – ident: S0022112021009174_ref39 doi: 10.1017/jfm.2019.954 – ident: S0022112021009174_ref49 doi: 10.1017/S0022112007005976 – ident: S0022112021009174_ref24 doi: 10.1017/jfm.2018.305 – ident: S0022112021009174_ref31 doi: 10.1146/annurev-marine-010814-015614 – ident: S0022112021009174_ref67 doi: 10.1103/PhysRevFluids.5.023101 |
SSID | ssj0013097 |
Score | 2.5796342 |
Snippet | The effects of chordwise deformation and the half-amplitude asymmetry on the hydrodynamic performance and vortex dynamics of batoid fish have been numerically... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Amplitude Amplitudes Angle of attack Biological data Deformation Deformation effects Dynamics Fins Fish Hydrodynamics Investigations JFM Papers Kinematics Numerical analysis Performance enhancement Pressure distribution Reynolds number Swimming Thrust Vortices Wavelengths |
Title | Vortex dynamics and hydrodynamic performance enhancement mechanism in batoid fish oscillatory swimming |
URI | https://www.cambridge.org/core/product/identifier/S0022112021009174/type/journal_article https://www.proquest.com/docview/2595911914 |
Volume | 930 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEB3RREhwoDSlohCiPRRxqAzeeNcfp6pAQ4WgQm1a9Wat90MxIm7AQdB_3xl7U5NDOFmyR1rJMzv7duftG4ADk6hUKykDozRuUAougiy2NojiKC5i5XRSNCzfs_j0Uny-ltf-wK32tMpVTmwStbnRdEb-DmG6zBo1sqPFz4C6RlF11bfQ2II-puA07UH__cnZt_OujhBmyUovHJFF6KnvJBr93dFF9DF_m1Gzsk5YYX2BWs_PzaIzeQpPPFpkx617d-CBrQaw7ZEj8_OyHsDjf2QFB_CwoXXqehfcFXFp_zLT9p2vmaoMm90azJrtG7boLg4wW83oSeeFbG7pSnBZz1lZsQJ35qVhrqxnjMQvMXSoNs_qP-V8jkM-g-nkZPrhNPCdFQIdheNlIBLFNRcKfSOVs9JopUNNRdJxlmL2NhwNuODcWhEVaZohSpHoVJtoiYgw2oNedVPZ58CySEQusbHiJhMmUoUpnNQudU6IJJR2H97c_9ncT486b6llSY4-yMkHOfpgHw5X_z3XXp-c2mT82GD9-t560epybLAbrlzYDd_F0ov_f34Jj8YUOiHR_obQW_76bV8hCFkWI9hKJ59G0D_--PXLxcjH3R1zit_6 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQcCiwgSgv4QMUBpcSxncehQghYtrT0tKDeIscPbapudiGLSn8U_7EzeTT0UG49RUpGeXgmM2P7m28AXttEp0YrFVhtcIJScBlksXOBiEVcxNqbpGhQvkfx5Lv8eqyO1-BvXwtDsMreJzaO2i4MrZG_wzRdZQ0b2fvlz4C6RtHuat9CozWLA3d-hlO2em__E-p3J4rGn6cfJ0HXVSAwIoxWgUw0N1xqfC-lvVPWaBMa2iCMshQ9l-UowCXnzklRpGmGEVrhB7nEKMyGBN72FtyWAgM5FaaPvwybFmGW9OTkmMaEHc6eGKpPPFW9R3w3o85oA4vD1Wh4NRg0EW78EDa61JR9aG3pEay5agQPujSVdU6gHsH9fzgMR3CnwZCa-jH4HwTc_cNs2-S-ZrqybHZu0UW3Z9hyqFJgrprRkRYn2dxR_XFZz1lZsUKvFqVlvqxnjJg20U4JCMDqs3I-x0c-gelNDPhTWK8WlXsGLBNS-MTFmttMWqELW3hlfOq9lEmo3Ca8uRzZvPsX67zFsSU56iAnHeSog0142497bjoydOrJcXqN9M6l9LIlAblGbrtX4fD4wXCf___yK7g7mX47zA_3jw624F5EZhQS3nAb1le_frsXmP2sipeNzTHIb9jGLwAf0RfZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vortex+dynamics+and+hydrodynamic+performance+enhancement+mechanism+in+batoid+fish+oscillatory+swimming&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Zhang%2C+Dong&rft.au=Qiao-Gao%2C+Huang&rft.au=Pan%2C+Guang&rft.au=Li-Ming%2C+Yang&rft.date=2022-01-10&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=930&rft_id=info:doi/10.1017%2Fjfm.2021.917 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |