Vortex dynamics and hydrodynamic performance enhancement mechanism in batoid fish oscillatory swimming

The effects of chordwise deformation and the half-amplitude asymmetry on the hydrodynamic performance and vortex dynamics of batoid fish have been numerically investigated, in which the two parameters were represented by the wavenumber ($W$) and the ratio of the half-amplitude above the longitudinal...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 930
Main Authors Zhang, Dong, Huang, Qiao-Gao, Pan, Guang, Yang, Li-Ming, Huang, Wei-Xi
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 10.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The effects of chordwise deformation and the half-amplitude asymmetry on the hydrodynamic performance and vortex dynamics of batoid fish have been numerically investigated, in which the two parameters were represented by the wavenumber ($W$) and the ratio of the half-amplitude above the longitudinal axis to that below ($HAR$). Fin kinematics were prescribed based on biological data. Simulations were conducted using the immersed boundary method. It was found that moderate chordwise deformation enhances the thrust, saves the power and increases the efficiency. A large $HAR$ can also increase thrust performance. By using the derivative-moment transformation theory at several subdomains to capture the local vortical structures and a force decomposition, it was shown that, at high Strouhal numbers ($St$), the tip vortex is the main source of thrust, whereas the leading-edge vortex (LEV) and trailing-edge vortex weaken the thrust generation. However, at lower $St$, the LEV would enhance the thrust. The least deformation ($W=0$) leads to the largest effective angle of attack, and thus the strongest vortices. However, moderate deformation ($W=0.4$) has an optimal balance between the performance enhancement and the opposite effect of different local structures. The performance enhancement of $HAR$ was also due to the increase of the vortical contributions. This work provides a new insight into the role of vortices and the force enhancement mechanism in aquatic swimming.
AbstractList The effects of chordwise deformation and the half-amplitude asymmetry on the hydrodynamic performance and vortex dynamics of batoid fish have been numerically investigated, in which the two parameters were represented by the wavenumber (\(W\)) and the ratio of the half-amplitude above the longitudinal axis to that below (\(HAR\)). Fin kinematics were prescribed based on biological data. Simulations were conducted using the immersed boundary method. It was found that moderate chordwise deformation enhances the thrust, saves the power and increases the efficiency. A large \(HAR\) can also increase thrust performance. By using the derivative-moment transformation theory at several subdomains to capture the local vortical structures and a force decomposition, it was shown that, at high Strouhal numbers (\(St\)), the tip vortex is the main source of thrust, whereas the leading-edge vortex (LEV) and trailing-edge vortex weaken the thrust generation. However, at lower \(St\), the LEV would enhance the thrust. The least deformation (\(W=0\)) leads to the largest effective angle of attack, and thus the strongest vortices. However, moderate deformation (\(W=0.4\)) has an optimal balance between the performance enhancement and the opposite effect of different local structures. The performance enhancement of \(HAR\) was also due to the increase of the vortical contributions. This work provides a new insight into the role of vortices and the force enhancement mechanism in aquatic swimming.
The effects of chordwise deformation and the half-amplitude asymmetry on the hydrodynamic performance and vortex dynamics of batoid fish have been numerically investigated, in which the two parameters were represented by the wavenumber ( $W$ ) and the ratio of the half-amplitude above the longitudinal axis to that below ( $HAR$ ). Fin kinematics were prescribed based on biological data. Simulations were conducted using the immersed boundary method. It was found that moderate chordwise deformation enhances the thrust, saves the power and increases the efficiency. A large $HAR$ can also increase thrust performance. By using the derivative-moment transformation theory at several subdomains to capture the local vortical structures and a force decomposition, it was shown that, at high Strouhal numbers ( $St$ ), the tip vortex is the main source of thrust, whereas the leading-edge vortex (LEV) and trailing-edge vortex weaken the thrust generation. However, at lower $St$ , the LEV would enhance the thrust. The least deformation ( $W=0$ ) leads to the largest effective angle of attack, and thus the strongest vortices. However, moderate deformation ( $W=0.4$ ) has an optimal balance between the performance enhancement and the opposite effect of different local structures. The performance enhancement of $HAR$ was also due to the increase of the vortical contributions. This work provides a new insight into the role of vortices and the force enhancement mechanism in aquatic swimming.
ArticleNumber A28
Author Zhang, Dong
Huang, Qiao-Gao
Pan, Guang
Yang, Li-Ming
Huang, Wei-Xi
Author_xml – sequence: 1
  givenname: Dong
  orcidid: 0000-0002-6182-0737
  surname: Zhang
  fullname: Zhang, Dong
  organization: 1School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, PR China
– sequence: 2
  givenname: Qiao-Gao
  surname: Huang
  fullname: Huang, Qiao-Gao
  email: huangqiaogao@nwpu.edu.cn
  organization: 1School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, PR China
– sequence: 3
  givenname: Guang
  orcidid: 0000-0003-1932-8252
  surname: Pan
  fullname: Pan, Guang
  organization: 1School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, PR China
– sequence: 4
  givenname: Li-Ming
  surname: Yang
  fullname: Yang, Li-Ming
  organization: 4Department of Aerodynamics, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
– sequence: 5
  givenname: Wei-Xi
  orcidid: 0000-0003-4149-3369
  surname: Huang
  fullname: Huang, Wei-Xi
  email: huangqiaogao@nwpu.edu.cn
  organization: 3AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
BookMark eNp1kE1LAzEQhoNUsFZv_oCAV3fNZLMfOUrxCwpeiteQzWbblCapyRbdf29KC4LoaZh3nndmeC_RxHmnEboBkgOB-n7T25wSCjmH-gxNgVU8qytWTtCUEEozAEou0GWMG0KgILyeov7dh0F_4W500hoVsXQdXo9d8CcF73TofbDSKY21Wx-q1W7AVqvUmGixcbiVgzcd7k1cYx-V2W6TEEYcP421xq2u0Hkvt1Ffn-oMLZ8el_OXbPH2_Dp_WGSqIHTIWC1BAZOshVL2uuyUVCSNWEV5o1voIAHAALRmRds0vGFVKRula1VyWhQzdHtcuwv-Y6_jIDZ-H1y6KGjJSw7AgSWKHikVfIxB90KZQQ7GuyFIsxVAxCFOkeIUhzhFijOZ7n6ZdsFYGcb_8PyES9sG0630zyt_Gr4BcxiJ7Q
CitedBy_id crossref_primary_10_1016_j_oceaneng_2024_116799
crossref_primary_10_1142_S0217979222502356
crossref_primary_10_1063_5_0257979
crossref_primary_10_3390_jmse10070981
crossref_primary_10_3390_jmse12122125
crossref_primary_10_1063_5_0161749
crossref_primary_10_1016_j_oceaneng_2024_119039
crossref_primary_10_1088_1757_899X_1288_1_012035
crossref_primary_10_1063_5_0233213
crossref_primary_10_1063_5_0147776
crossref_primary_10_1063_5_0180621
crossref_primary_10_3390_jmse10070908
crossref_primary_10_1007_s00707_022_03192_9
crossref_primary_10_1016_j_oceaneng_2022_112342
crossref_primary_10_1016_j_oceaneng_2022_113314
crossref_primary_10_1063_5_0090718
crossref_primary_10_1016_j_oceaneng_2023_114389
crossref_primary_10_1063_5_0228786
crossref_primary_10_1063_5_0174659
crossref_primary_10_1016_j_compfluid_2024_106338
crossref_primary_10_1017_jfm_2023_907
crossref_primary_10_3390_jmse10091186
crossref_primary_10_3390_app13074208
crossref_primary_10_1016_j_oceaneng_2024_119008
crossref_primary_10_3390_biomimetics9010045
crossref_primary_10_1063_5_0125374
crossref_primary_10_1063_5_0224238
crossref_primary_10_1063_5_0228318
crossref_primary_10_1063_5_0232615
crossref_primary_10_3390_jmse12112024
crossref_primary_10_1017_jfm_2023_1028
crossref_primary_10_7498_aps_73_20240399
crossref_primary_10_3390_biomimetics10030148
crossref_primary_10_1063_5_0215407
crossref_primary_10_1063_5_0238329
crossref_primary_10_1063_5_0154914
crossref_primary_10_1016_j_oceaneng_2024_119415
crossref_primary_10_1063_5_0246934
crossref_primary_10_1016_j_oceaneng_2024_118769
crossref_primary_10_1063_5_0188125
crossref_primary_10_1088_1748_3190_ad1b2e
crossref_primary_10_1063_5_0201926
crossref_primary_10_1016_j_oceaneng_2024_117577
crossref_primary_10_1063_5_0179211
crossref_primary_10_1016_j_oceaneng_2023_116068
crossref_primary_10_1063_5_0170156
crossref_primary_10_3390_jmse13030462
crossref_primary_10_1063_5_0235768
crossref_primary_10_1017_flo_2023_27
crossref_primary_10_1017_jfm_2023_325
crossref_primary_10_1063_5_0243579
crossref_primary_10_1007_s10409_024_23492_x
crossref_primary_10_1063_5_0123371
crossref_primary_10_3390_biomimetics7020045
Cites_doi 10.1093/icb/42.5.1018
10.1242/jeb.00848
10.1063/5.0010938
10.1017/S0022112009992941
10.1038/384626a0
10.1016/j.compfluid.2011.05.011
10.1038/nature21727
10.1016/j.jfluidstructs.2012.02.008
10.1063/1.5130698
10.1109/ACCESS.2020.2970942
10.1017/jfm.2020.955
10.1126/science.1104682
10.1088/1748-3190/ab2208
10.1242/jeb.022269
10.1103/PhysRevFluids.2.083102
10.1017/jfm.2012.443
10.1103/PhysRevFluids.3.013103
10.1242/jeb.00663
10.1017/jfm.2015.702
10.1063/1.858173
10.1017/jfm.2019.284
10.2514/1.J056635
10.1088/1748-3190/ab597e
10.1088/1748-3182/7/3/036012
10.1098/rsif.2015.0051
10.1016/j.jcp.2015.03.058
10.1017/jfm.2014.481
10.1017/jfm.2015.460
10.56021/9780801860485
10.1017/jfm.2021.434
10.1109/48.757275
10.2514/1.J050326
10.1103/PhysRevFluids.4.054101
10.1063/1.5034439
10.1063/1.5120050
10.1038/35089071
10.1103/PhysRevFluids.2.053101
10.1242/jeb.063016
10.1017/S0022112009007046
10.1017/S002211200600190X
10.1017/S0022112060001110
10.1126/science.1088295
10.1017/jfm.2020.386
10.1017/jfm.2017.533
10.1017/jfm.2016.175
10.1017/jfm.2019.962
10.1016/j.jfluidstructs.2007.08.003
10.1242/jeb.10.1.88
10.1017/jfm.2017.302
10.1088/1748-3190/10/4/046013
10.1063/1.5129274
10.1063/1.5010008
10.1038/nphys3078
10.1017/S0022112097008392
10.1242/jeb.02614
10.1017/jfm.2019.612
10.1063/5.0029340
10.1242/jeb.204.2.379
10.2514/1.J058371
10.1016/j.jfluidstructs.2020.102875
10.1063/1.5090878
10.1063/1.1512918
10.1016/j.jfluidstructs.2005.05.009
10.1017/S0022112006004551
10.1007/s00348-015-2049-9
10.1088/1748-3190/aad5a3
10.1016/j.oceaneng.2016.11.055
10.1126/science.1153019
10.1016/j.jcp.2016.05.018
10.1063/1.4997085
10.1103/PhysRevLett.114.018102
10.1016/S1672-6529(08)60114-6
10.1063/1.4802193
10.1063/1.5109456
10.3390/aerospace3030020
10.1073/pnas.1805941115
10.1017/jfm.2020.361
10.1063/1.4794753
10.1017/jfm.2019.954
10.1017/S0022112007005976
10.1017/jfm.2018.305
10.1146/annurev-marine-010814-015614
10.1103/PhysRevFluids.5.023101
ContentType Journal Article
Copyright The Author(s), 2021. Published by Cambridge University Press
Copyright_xml – notice: The Author(s), 2021. Published by Cambridge University Press
DBID AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/jfm.2021.917
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList Research Library Prep
CrossRef

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1469-7645
ExternalDocumentID 10_1017_jfm_2021_917
GroupedDBID -DZ
-E.
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABZCX
ACBEA
ACBMC
ACCHT
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADVJH
AEBAK
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGOOT
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZYDXJ
~02
AAYXX
ABVKB
ABVZP
ABXAU
ABXHF
ACDLN
ADMLS
AEUYN
AFZFC
AKMAY
CITATION
PHGZM
PHGZT
3V.
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c302t-47a1c14a4b15afe5dcac0c3046298eb1d17a11411ee43b8898465a8ce7c59233
IEDL.DBID BENPR
ISSN 0022-1120
IngestDate Sat Aug 16 19:50:51 EDT 2025
Tue Jul 01 03:01:28 EDT 2025
Thu Apr 24 23:08:25 EDT 2025
Wed Mar 13 05:59:02 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords propulsion
swimming/flying
vortex dynamics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c302t-47a1c14a4b15afe5dcac0c3046298eb1d17a11411ee43b8898465a8ce7c59233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4149-3369
0000-0002-6182-0737
0000-0003-1932-8252
PQID 2595911914
PQPubID 34769
PageCount 32
ParticipantIDs proquest_journals_2595911914
crossref_citationtrail_10_1017_jfm_2021_917
crossref_primary_10_1017_jfm_2021_917
cambridge_journals_10_1017_jfm_2021_917
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-10
PublicationDateYYYYMMDD 2022-01-10
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-10
  day: 10
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2022
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2002; 14
2013; 25
2017; 2
1926; 4
2019; 57
2021; 920
2007; 581
2015; 780
2019; 14
2020; 885
2005; 20
2020; 15
2019; 884
2016; 788
2018; 847
1996; 384
1960; 9
2013; 280
2004; 207
2009; 631
2005; 23
2020; 8
2007; 576
2015; 295
2020; 5
2018; 3
2003; 206
2006; 209
2016; 319
2002; 42
2020; 93
2008; 319
2016; 795
2019; 874
2020; 896
2008; 24
2020; 898
2018; 30
2019; 878
2006; 566
2012; 215
1998; 360
2001; 412
2014; 10
2014; 756
2015; 56
2015; 12
1991; 3
2019; 4
2021; 907
2019; 31
2010; 645
2015; 10
1999; 24
2009; 212
2017; 130
2017; 29
2020; 32
2004; 306
2015; 7
2012; 30
2001; 204
1933; 10
2010; 48
2017; 829
2016; 3
2015; 114
2018; 115
2009; 6
2003; 302
2011; 49
2012; 7
2017; 544
2012; 712
2017; 822
2018; 13
S0022112021009174_ref56
S0022112021009174_ref12
S0022112021009174_ref57
S0022112021009174_ref13
S0022112021009174_ref10
S0022112021009174_ref54
S0022112021009174_ref55
S0022112021009174_ref11
S0022112021009174_ref16
S0022112021009174_ref17
S0022112021009174_ref14
S0022112021009174_ref58
S0022112021009174_ref15
S0022112021009174_ref59
S0022112021009174_ref53
S0022112021009174_ref50
S0022112021009174_ref51
S0022112021009174_ref7
S0022112021009174_ref8
S0022112021009174_ref6
S0022112021009174_ref3
S0022112021009174_ref4
S0022112021009174_ref1
S0022112021009174_ref2
S0022112021009174_ref18
S0022112021009174_ref19
Breder (S0022112021009174_ref9) 1926; 4
Wang (S0022112021009174_ref77) 2020; 32
Lauder (S0022112021009174_ref32) 2005; 23
S0022112021009174_ref67
S0022112021009174_ref23
S0022112021009174_ref24
S0022112021009174_ref68
S0022112021009174_ref21
S0022112021009174_ref65
S0022112021009174_ref66
S0022112021009174_ref27
S0022112021009174_ref25
S0022112021009174_ref69
S0022112021009174_ref26
S0022112021009174_ref60
S0022112021009174_ref63
S0022112021009174_ref64
S0022112021009174_ref61
S0022112021009174_ref62
S0022112021009174_ref29
Hamlett (S0022112021009174_ref20) 1999
S0022112021009174_ref78
S0022112021009174_ref34
S0022112021009174_ref79
S0022112021009174_ref35
S0022112021009174_ref76
S0022112021009174_ref33
S0022112021009174_ref38
S0022112021009174_ref39
S0022112021009174_ref36
S0022112021009174_ref37
Ryu (S0022112021009174_ref52) 2019; 31
S0022112021009174_ref70
S0022112021009174_ref71
Han (S0022112021009174_ref22) 2020; 32
S0022112021009174_ref74
S0022112021009174_ref30
S0022112021009174_ref75
S0022112021009174_ref31
S0022112021009174_ref72
S0022112021009174_ref73
Kim (S0022112021009174_ref28) 2019; 31
S0022112021009174_ref45
S0022112021009174_ref46
S0022112021009174_ref43
S0022112021009174_ref87
Zhang (S0022112021009174_ref85) 2019; 31
S0022112021009174_ref44
S0022112021009174_ref88
S0022112021009174_ref49
Borazjani (S0022112021009174_ref5) 2013; 280
S0022112021009174_ref47
S0022112021009174_ref48
S0022112021009174_ref81
S0022112021009174_ref82
S0022112021009174_ref80
S0022112021009174_ref41
S0022112021009174_ref86
S0022112021009174_ref42
S0022112021009174_ref83
S0022112021009174_ref40
S0022112021009174_ref84
References_xml – volume: 42
  start-page: 1018
  issue: 5
  year: 2002
  end-page: 1025
  article-title: Power requirements of swimming: Do new methods resolve old questions?
  publication-title: Integr. Compar. Biol.
– volume: 576
  start-page: 265
  year: 2007
  end-page: 286
  article-title: Integral force acting on a body due to local flow structures
  publication-title: J. Fluid Mech.
– volume: 896
  start-page: A22
  year: 2020
  article-title: Forward flight and sideslip manoeuvre of a model hawkmoth
  publication-title: J. Fluid Mech.
– volume: 780
  start-page: 120
  year: 2015
  end-page: 142
  article-title: Actively flapping tandem flexible flags in a viscous flow
  publication-title: J. Fluid Mech.
– volume: 10
  start-page: 758
  issue: 10
  year: 2014
  end-page: 761
  article-title: Scaling macroscopic aquatic locomotion
  publication-title: Nat. Phys.
– volume: 756
  start-page: 758
  year: 2014
  end-page: 770
  article-title: Vortex force decomposition in the tip region of impulsively-started flat plates
  publication-title: J. Fluid Mech.
– volume: 31
  start-page: 091901
  year: 2019
  article-title: Flapping dynamics of a flexible plate with Navier slip
  publication-title: Phys. Fluids
– volume: 14
  start-page: 4012
  issue: 11
  year: 2002
  end-page: 4025
  article-title: Particle imaging velocimetry experiments and lattice-Botlzmann simulations on a single sphere settling under gravity
  publication-title: Phys. Fluids
– volume: 13
  start-page: 056015
  year: 2018
  article-title: The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency
  publication-title: Bioinspir. Biomim.
– volume: 384
  start-page: 626
  issue: 6610
  year: 1996
  end-page: 630
  article-title: Leading-edge vortices in insect flight
  publication-title: Nature
– volume: 206
  start-page: 4191
  issue: 23
  year: 2003
  end-page: 4208
  article-title: The aerodynamics of insect flight
  publication-title: J. Expl. Biol.
– volume: 884
  start-page: R1
  year: 2019
  article-title: Self-organization of multiple self-propelling flapping foils: energy saving and increased speed
  publication-title: J. Fluid Mech.
– volume: 795
  start-page: 634
  year: 2016
  end-page: 651
  article-title: Vortex dynamics and new lift enhancement mechanism of wing-body interaction in insect forward flight
  publication-title: J. Fluid Mech.
– volume: 581
  start-page: 453
  year: 2007
  end-page: 468
  article-title: Role of the tip vortex in the force generation of low-aspect-ratio normal flat plates
  publication-title: J. Fluid Mech.
– volume: 25
  start-page: 041901
  year: 2013
  article-title: Performance of a wing with nonuniform flexibility in hovering flight
  publication-title: Phys. Fluids
– volume: 295
  start-page: 322
  issue: 15
  year: 2015
  end-page: 339
  article-title: A three-dimensional explicit sphere function-based gas-kinetic flux solver for simulation of inviscid compressible flows
  publication-title: J. Comput. Phys.
– volume: 209
  start-page: 5005
  issue: 24
  year: 2006
  end-page: 5016
  article-title: Dual leading-edge vortices on flapping wings
  publication-title: J. Expl Biol.
– volume: 32
  start-page: 111902
  year: 2020
  article-title: Specialization of tuna: a numerical study on the function of caudal keels
  publication-title: Phys. Fluids
– volume: 3
  start-page: 2835
  year: 1991
  end-page: 2837
  article-title: Wake mechanics for thrust generation in oscillating foils
  publication-title: Phys. Fluids
– volume: 30
  start-page: 205
  year: 2012
  end-page: 218
  article-title: Optimal Strouhal number for swimming animals
  publication-title: J. Fluids Struct.
– volume: 30
  start-page: 071902
  year: 2018
  article-title: Effects of Reynolds number and thickness on an undulatory self-propelled foil
  publication-title: Phys. Fluids
– volume: 24
  start-page: 183
  issue: 2
  year: 2008
  end-page: 199
  article-title: Effect of spanwise flexibility on flapping wing propulsion
  publication-title: J. Fluids Struct.
– volume: 9
  start-page: 305
  issue: 2
  year: 1960
  end-page: 317
  article-title: Note on the swimming of slender fish
  publication-title: J. Fluid Mech.
– volume: 115
  start-page: 8116
  issue: 32
  year: 2018
  end-page: 8118
  article-title: Efficient cruising for swimming and flying animals is dictated by fluid drag
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 10
  start-page: 046013
  year: 2015
  article-title: Efficiency of fish propulsion
  publication-title: Bioinspir. Biomim.
– volume: 885
  start-page: A18
  year: 2020
  article-title: A numerical and theoretical study of the aerodynamic performance of a hovering rhinoceros beetle (Trypoxylus dichotomus)
  publication-title: J. Fluid Mech.
– volume: 878
  start-page: 370
  year: 2019
  end-page: 385
  article-title: How dorsal fin sharpness affects swimming speed and economy
  publication-title: J. Fluid Mech.
– volume: 822
  start-page: 386
  year: 2017
  end-page: 397
  article-title: Scaling the propulsive performance of heaving and pitching foils
  publication-title: J. Fluid Mech.
– volume: 319
  start-page: 1250
  issue: 5867
  year: 2008
  end-page: 1253
  article-title: Leading-edge vortex improves lift in slow-flying bats
  publication-title: Science
– volume: 32
  start-page: 011902
  year: 2020
  article-title: Hydrodynamics of median-fin interactions in fish-like locomotion: effects of fin shape and movement
  publication-title: Phys. Fluids
– volume: 829
  start-page: 65
  year: 2017
  end-page: 88
  article-title: Computational analysis of vortex dynamics and performance enhancement due to body-fin and fin-fin interactions in fish-like locomotion
  publication-title: J. Fluid Mech.
– volume: 3
  start-page: 013103
  year: 2018
  article-title: Flow speed has little impact on propulsive characteristics of oscillating foils
  publication-title: Phys. Rev. Fluids
– volume: 3
  start-page: 1
  issue: 3
  year: 2016
  end-page: 24
  article-title: Hydrodynamic performance of aquatic flapping: efficiency of underwater flight in the manta
  publication-title: Aerospace
– volume: 2
  start-page: 053101
  year: 2017
  article-title: Nonsinusoidal gaits for unsteady propulsion
  publication-title: Phys. Rev. Fluids
– volume: 920
  start-page: A10
  year: 2021
  article-title: Estimating thrust from shedding vortex surfaces in the wake of a flapping plate
  publication-title: J. Fluid Mech.
– volume: 898
  start-page: A19
  year: 2020
  article-title: Aerodynamic-force production mechanisms in hovering mosquitoes
  publication-title: J. Fluid Mech.
– volume: 130
  start-page: 437
  year: 2017
  end-page: 453
  article-title: BCF swimming locomotion for autonomous underwater robots: a review and a novel solution to improve control and efficiency
  publication-title: Ocean Engng
– volume: 31
  start-page: 051906
  year: 2019
  article-title: On the role of vortical structures in aerodynamic performance of a hovering mosquito
  publication-title: Phys. Fluids
– volume: 6
  start-page: 174
  issue: 2
  year: 2009
  end-page: 179
  article-title: Kinematics modeling and experiments of pectoral oscillation propulsion robotic fish
  publication-title: J. Bionic. Engng
– volume: 93
  start-page: 102875
  year: 2020
  article-title: Self-propulsion of fishes-like undulating hydrofoil: a unified kinematics based unsteady hydrodynamics study
  publication-title: J. Fluids Struct.
– volume: 31
  start-page: 111906
  year: 2019
  article-title: Wake transitions of flexible foils in a viscous uniform flow
  publication-title: Phys. Fluids
– volume: 204
  start-page: 379
  issue: 2
  year: 2001
  end-page: 394
  article-title: Pectoral fin locomotion in batoid fishes: undulation versus oscillation
  publication-title: J. Expl Biol.
– volume: 306
  start-page: 1960
  issue: 5703
  year: 2004
  end-page: 1962
  article-title: Leading-edge vortex lifts swifts
  publication-title: Science
– volume: 788
  start-page: 407
  year: 2016
  end-page: 443
  article-title: Hydrodynamics of swimming in stingrays: numerical simulations and the role of the leading-edge vortex
  publication-title: J. Fluid Mech.
– volume: 7
  start-page: 521
  issue: 1
  year: 2015
  end-page: 545
  article-title: Fish locomotion: recent advances and new directions
  publication-title: Ann. Rev. Mar. Sci.
– volume: 4
  start-page: 054101
  year: 2019
  article-title: Phase difference effect on collective locomotion of two tandem autopropelled flapping foils
  publication-title: Phys. Rev. Fluids
– volume: 5
  start-page: 023101
  year: 2020
  article-title: Three-dimensional biological hydrodynamics study on various types of batoid fishlike locomotion
  publication-title: Phys. Rev. Fluids
– volume: 57
  start-page: 2663
  issue: 7
  year: 2019
  end-page: 2669
  article-title: Reynolds number scaling of the propulsive performance of a pitching airfoil
  publication-title: AIAA J.
– volume: 57
  start-page: 3666
  issue: 9
  year: 2019
  end-page: 3677
  article-title: Scaling and performance of simultaneously heaving and pitching foils
  publication-title: AIAA J.
– volume: 20
  start-page: 949
  issue: 7
  year: 2005
  end-page: 959
  article-title: Performance of flapping foil propulsion
  publication-title: J. Fluids Struct.
– volume: 12
  start-page: 20150051
  issue: 105
  year: 2015
  article-title: Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio
  publication-title: J. R. Soc. Interface
– volume: 10
  start-page: 88
  issue: 1
  year: 1933
  end-page: 104
  article-title: Studies in animal locomotion
  publication-title: J. Expl Biol.
– volume: 874
  start-page: P1
  year: 2019
  article-title: Undulatory and oscillatory swimming
  publication-title: J. Fluid Mech.
– volume: 32
  start-page: 021906
  year: 2020
  article-title: A self-propelled flexible plate with a Navier slip surface
  publication-title: Phys. Fluids
– volume: 7
  start-page: 036012
  year: 2012
  article-title: Hydrodynamic investigation of a self-propelled robotic fish based on a force-feedback control method
  publication-title: Bioinspir. Biomim.
– volume: 712
  start-page: 598
  year: 2012
  end-page: 613
  article-title: Force and power of flapping plates in a fluid
  publication-title: J. Fluid Mech.
– volume: 48
  start-page: 2543
  issue: 11
  year: 2010
  end-page: 2555
  article-title: Far-field analysis of the aerodynamic force by Lamb vector integrals
  publication-title: AIAA J.
– volume: 23
  start-page: 425
  year: 2005
  end-page: 468
  article-title: Hydrodynamics of undulatory propulsion
  publication-title: Fish Biol.
– volume: 2
  start-page: 083102
  year: 2017
  article-title: On the rules for aquatic locomotion
  publication-title: Phys. Rev. Fluids
– volume: 114
  start-page: 018102
  year: 2015
  article-title: Lateral line layout correlates with the differential hydrodynamic pressure on swimming fish
  publication-title: Phys. Rev. Lett.
– volume: 847
  start-page: 386
  year: 2018
  end-page: 416
  article-title: Swimming performance, resonance and shape evolution in heaving flexible panels
  publication-title: J. Fluid Mech.
– volume: 29
  start-page: 083605
  issue: 8
  year: 2017
  article-title: An immersed boundary-simplified sphere function-based gas kinetic scheme for simulation of 3D incompressible flows
  publication-title: Phys. Fluids
– volume: 215
  start-page: 671
  issue: 4
  year: 2012
  end-page: 684
  article-title: Hydrodynamics of the bluegill sunfish c-start escape response: three-dimensional simulations and comparison with experimental data
  publication-title: J. Expl Biol.
– volume: 212
  start-page: 2705
  issue: 16
  year: 2009
  end-page: 2719
  article-title: Rotational accelerations stabilize leading edge vortices on revolving fly wings
  publication-title: J. Expl Biol.
– volume: 544
  start-page: 92
  issue: 7648
  year: 2017
  end-page: 95
  article-title: Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight
  publication-title: Nature
– volume: 56
  start-page: 181
  year: 2015
  article-title: Vortices behavior depending on the aspect ratio of an insect-like flapping wing in hover
  publication-title: Exp. Fluids
– volume: 49
  start-page: 173
  issue: 1
  year: 2011
  end-page: 187
  article-title: Effect of internal mass in the simulation of a moving body by the immersed boundary method
  publication-title: Comput. Fluids
– volume: 24
  start-page: 237
  issue: 2
  year: 1999
  end-page: 252
  article-title: Review of fish swimming modes for aquatic locomotion
  publication-title: IEEE J. Ocean Engng
– volume: 280
  start-page: 20122071
  issue: 1756
  year: 2013
  article-title: The fish tail motion forms an attached leading edge vortex
  publication-title: Proc. R. Soc. Lond. B
– volume: 207
  start-page: 1063
  issue: 7
  year: 2004
  end-page: 1072
  article-title: Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers
  publication-title: J. Expl Biol.
– volume: 302
  start-page: 1566
  issue: 5650
  year: 2003
  end-page: 1569
  article-title: Fish exploiting vortices decrease muscle activity
  publication-title: Science
– volume: 25
  start-page: 034101
  year: 2013
  article-title: Three-dimensional flow structure and aerodynamic loading on a revolving wing
  publication-title: Phys. Fluids
– volume: 8
  start-page: 30410
  year: 2020
  end-page: 30420
  article-title: Computational model construction and analysis of the hydrodynamics of a rhinoptera javanica
  publication-title: IEEE Access
– volume: 15
  start-page: 026005
  year: 2020
  article-title: The impact of dragonfly wing deformations on aerodynamic performance during forward flight
  publication-title: Bioinspir. Biomim.
– volume: 566
  start-page: 309
  year: 2006
  end-page: 343
  article-title: Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils
  publication-title: J. Fluid Mech.
– volume: 360
  start-page: 41
  year: 1998
  end-page: 72
  article-title: Oscillating foils of high propulsive efficiency
  publication-title: J. Fluid Mech.
– volume: 4
  start-page: 159
  issue: 5
  year: 1926
  end-page: 297
  article-title: The locomotion of fishes
  publication-title: Zool. Sci. Contrib. N.Y. Zool. Soc.
– volume: 645
  start-page: 345
  year: 2010
  end-page: 373
  article-title: Computational modelling and analysis of the hydrodynamics of a highly deformable fish pectoral fin
  publication-title: J. Fluid Mech.
– volume: 412
  start-page: 729
  issue: 6848
  year: 2001
  end-page: 733
  article-title: Spanwise flow and the attachment of the leading-edge vortex on insect wings
  publication-title: Nature
– volume: 631
  start-page: 311
  year: 2009
  end-page: 342
  article-title: Low-dimensional models and performance scaling of a highly deformable fish pectoral fin
  publication-title: J. Fluid Mech.
– volume: 30
  start-page: 016107
  issue: 1
  year: 2018
  article-title: Minimum-domain impulse theory for unsteady aerodynamic force
  publication-title: Phys. Fluids
– volume: 907
  start-page: R3
  year: 2021
  article-title: Self-directed propulsion of an unconstrained flapping swimmer at low Reynolds number: hydrodynamic behaviour and scaling laws
  publication-title: J. Fluid Mech.
– volume: 32
  start-page: 071904
  year: 2020
  article-title: Propulsive performance and flow-field characteristics of a jellyfish-like ornithopter with asymmetric pitching motion
  publication-title: Phys. Fluids
– volume: 14
  start-page: 046010
  year: 2019
  article-title: Computational investigation of wing-body interaction and its lift enhancement effect in hummingbird forward flight
  publication-title: Bioinspir. Biomim.
– volume: 319
  start-page: 129
  issue: 15
  year: 2016
  end-page: 144
  article-title: Development of discrete gas kinetic scheme for simulation of 3D viscous incompressible and compressible flows
  publication-title: J. Comput. Phys.
– ident: S0022112021009174_ref58
  doi: 10.1093/icb/42.5.1018
– ident: S0022112021009174_ref3
  doi: 10.1242/jeb.00848
– ident: S0022112021009174_ref42
  doi: 10.1063/5.0010938
– ident: S0022112021009174_ref10
  doi: 10.1017/S0022112009992941
– ident: S0022112021009174_ref12
  doi: 10.1038/384626a0
– ident: S0022112021009174_ref64
  doi: 10.1016/j.compfluid.2011.05.011
– ident: S0022112021009174_ref4
  doi: 10.1038/nature21727
– ident: S0022112021009174_ref13
  doi: 10.1016/j.jfluidstructs.2012.02.008
– volume: 32
  start-page: 021906
  year: 2020
  ident: S0022112021009174_ref77
  article-title: A self-propelled flexible plate with a Navier slip surface
  publication-title: Phys. Fluids
  doi: 10.1063/1.5130698
– ident: S0022112021009174_ref25
  doi: 10.1109/ACCESS.2020.2970942
– ident: S0022112021009174_ref37
  doi: 10.1017/jfm.2020.955
– ident: S0022112021009174_ref75
  doi: 10.1126/science.1104682
– ident: S0022112021009174_ref76
  doi: 10.1088/1748-3190/ab2208
– ident: S0022112021009174_ref33
  doi: 10.1242/jeb.022269
– ident: S0022112021009174_ref53
  doi: 10.1103/PhysRevFluids.2.083102
– ident: S0022112021009174_ref34
  doi: 10.1017/jfm.2012.443
– ident: S0022112021009174_ref74
  doi: 10.1103/PhysRevFluids.3.013103
– ident: S0022112021009174_ref54
  doi: 10.1242/jeb.00663
– ident: S0022112021009174_ref7
  doi: 10.1017/jfm.2015.702
– ident: S0022112021009174_ref70
  doi: 10.1063/1.858173
– ident: S0022112021009174_ref63
  doi: 10.1017/jfm.2019.284
– ident: S0022112021009174_ref73
  doi: 10.2514/1.J056635
– ident: S0022112021009174_ref62
  doi: 10.1088/1748-3190/ab597e
– ident: S0022112021009174_ref78
  doi: 10.1088/1748-3182/7/3/036012
– ident: S0022112021009174_ref30
  doi: 10.1098/rsif.2015.0051
– ident: S0022112021009174_ref82
  doi: 10.1016/j.jcp.2015.03.058
– ident: S0022112021009174_ref29
  doi: 10.1017/jfm.2014.481
– ident: S0022112021009174_ref71
  doi: 10.1017/jfm.2015.460
– volume-title: Sharks, Skates, and Rays: The Biology of Elasmobranch Fishes
  year: 1999
  ident: S0022112021009174_ref20
  doi: 10.56021/9780801860485
– volume: 4
  start-page: 159
  year: 1926
  ident: S0022112021009174_ref9
  article-title: The locomotion of fishes
  publication-title: Zool. Sci. Contrib. N.Y. Zool. Soc.
– ident: S0022112021009174_ref69
  doi: 10.1017/jfm.2021.434
– ident: S0022112021009174_ref60
  doi: 10.1109/48.757275
– ident: S0022112021009174_ref46
  doi: 10.2514/1.J050326
– ident: S0022112021009174_ref38
  doi: 10.1103/PhysRevFluids.4.054101
– ident: S0022112021009174_ref86
  doi: 10.1063/1.5034439
– volume: 280
  start-page: 20122071
  year: 2013
  ident: S0022112021009174_ref5
  article-title: The fish tail motion forms an attached leading edge vortex
  publication-title: Proc. R. Soc. Lond. B
– volume: 31
  start-page: 111906
  year: 2019
  ident: S0022112021009174_ref28
  article-title: Wake transitions of flexible foils in a viscous uniform flow
  publication-title: Phys. Fluids
  doi: 10.1063/1.5120050
– ident: S0022112021009174_ref2
  doi: 10.1038/35089071
– ident: S0022112021009174_ref72
  doi: 10.1103/PhysRevFluids.2.053101
– ident: S0022112021009174_ref6
  doi: 10.1242/jeb.063016
– volume: 23
  start-page: 425
  year: 2005
  ident: S0022112021009174_ref32
  article-title: Hydrodynamics of undulatory propulsion
  publication-title: Fish Biol.
– ident: S0022112021009174_ref8
  doi: 10.1017/S0022112009007046
– ident: S0022112021009174_ref11
  doi: 10.1017/S002211200600190X
– ident: S0022112021009174_ref36
  doi: 10.1017/S0022112060001110
– ident: S0022112021009174_ref35
  doi: 10.1126/science.1088295
– ident: S0022112021009174_ref41
  doi: 10.1017/jfm.2020.386
– ident: S0022112021009174_ref43
  doi: 10.1017/jfm.2017.533
– ident: S0022112021009174_ref40
  doi: 10.1017/jfm.2016.175
– ident: S0022112021009174_ref48
  doi: 10.1017/jfm.2019.962
– ident: S0022112021009174_ref23
  doi: 10.1016/j.jfluidstructs.2007.08.003
– ident: S0022112021009174_ref19
  doi: 10.1242/jeb.10.1.88
– ident: S0022112021009174_ref15
  doi: 10.1017/jfm.2017.302
– ident: S0022112021009174_ref45
  doi: 10.1088/1748-3190/10/4/046013
– volume: 32
  start-page: 011902
  year: 2020
  ident: S0022112021009174_ref22
  article-title: Hydrodynamics of median-fin interactions in fish-like locomotion: effects of fin shape and movement
  publication-title: Phys. Fluids
  doi: 10.1063/1.5129274
– ident: S0022112021009174_ref27
  doi: 10.1063/1.5010008
– ident: S0022112021009174_ref18
  doi: 10.1038/nphys3078
– ident: S0022112021009174_ref1
  doi: 10.1017/S0022112097008392
– ident: S0022112021009174_ref44
  doi: 10.1242/jeb.02614
– ident: S0022112021009174_ref88
  doi: 10.1017/jfm.2019.612
– ident: S0022112021009174_ref87
  doi: 10.1063/5.0029340
– ident: S0022112021009174_ref51
  doi: 10.1242/jeb.204.2.379
– ident: S0022112021009174_ref59
  doi: 10.2514/1.J058371
– ident: S0022112021009174_ref66
  doi: 10.1016/j.jfluidstructs.2020.102875
– volume: 31
  start-page: 051906
  year: 2019
  ident: S0022112021009174_ref85
  article-title: On the role of vortical structures in aerodynamic performance of a hovering mosquito
  publication-title: Phys. Fluids
  doi: 10.1063/1.5090878
– ident: S0022112021009174_ref65
  doi: 10.1063/1.1512918
– ident: S0022112021009174_ref56
  doi: 10.1016/j.jfluidstructs.2005.05.009
– ident: S0022112021009174_ref79
  doi: 10.1017/S0022112006004551
– ident: S0022112021009174_ref26
– ident: S0022112021009174_ref21
  doi: 10.1007/s00348-015-2049-9
– ident: S0022112021009174_ref68
  doi: 10.1088/1748-3190/aad5a3
– ident: S0022112021009174_ref55
  doi: 10.1016/j.oceaneng.2016.11.055
– ident: S0022112021009174_ref47
  doi: 10.1126/science.1153019
– ident: S0022112021009174_ref81
  doi: 10.1016/j.jcp.2016.05.018
– ident: S0022112021009174_ref83
  doi: 10.1063/1.4997085
– ident: S0022112021009174_ref50
  doi: 10.1103/PhysRevLett.114.018102
– ident: S0022112021009174_ref80
  doi: 10.1016/S1672-6529(08)60114-6
– ident: S0022112021009174_ref61
  doi: 10.1063/1.4802193
– volume: 31
  start-page: 091901
  year: 2019
  ident: S0022112021009174_ref52
  article-title: Flapping dynamics of a flexible plate with Navier slip
  publication-title: Phys. Fluids
  doi: 10.1063/1.5109456
– ident: S0022112021009174_ref14
  doi: 10.3390/aerospace3030020
– ident: S0022112021009174_ref57
  doi: 10.1016/j.jfluidstructs.2005.05.009
– ident: S0022112021009174_ref16
  doi: 10.1073/pnas.1805941115
– ident: S0022112021009174_ref84
  doi: 10.1017/jfm.2020.361
– ident: S0022112021009174_ref17
  doi: 10.1063/1.4794753
– ident: S0022112021009174_ref39
  doi: 10.1017/jfm.2019.954
– ident: S0022112021009174_ref49
  doi: 10.1017/S0022112007005976
– ident: S0022112021009174_ref24
  doi: 10.1017/jfm.2018.305
– ident: S0022112021009174_ref31
  doi: 10.1146/annurev-marine-010814-015614
– ident: S0022112021009174_ref67
  doi: 10.1103/PhysRevFluids.5.023101
SSID ssj0013097
Score 2.5796342
Snippet The effects of chordwise deformation and the half-amplitude asymmetry on the hydrodynamic performance and vortex dynamics of batoid fish have been numerically...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Amplitude
Amplitudes
Angle of attack
Biological data
Deformation
Deformation effects
Dynamics
Fins
Fish
Hydrodynamics
Investigations
JFM Papers
Kinematics
Numerical analysis
Performance enhancement
Pressure distribution
Reynolds number
Swimming
Thrust
Vortices
Wavelengths
Title Vortex dynamics and hydrodynamic performance enhancement mechanism in batoid fish oscillatory swimming
URI https://www.cambridge.org/core/product/identifier/S0022112021009174/type/journal_article
https://www.proquest.com/docview/2595911914
Volume 930
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEB3RREhwoDSlohCiPRRxqAzeeNcfp6pAQ4WgQm1a9Wat90MxIm7AQdB_3xl7U5NDOFmyR1rJMzv7duftG4ADk6hUKykDozRuUAougiy2NojiKC5i5XRSNCzfs_j0Uny-ltf-wK32tMpVTmwStbnRdEb-DmG6zBo1sqPFz4C6RlF11bfQ2II-puA07UH__cnZt_OujhBmyUovHJFF6KnvJBr93dFF9DF_m1Gzsk5YYX2BWs_PzaIzeQpPPFpkx617d-CBrQaw7ZEj8_OyHsDjf2QFB_CwoXXqehfcFXFp_zLT9p2vmaoMm90azJrtG7boLg4wW83oSeeFbG7pSnBZz1lZsQJ35qVhrqxnjMQvMXSoNs_qP-V8jkM-g-nkZPrhNPCdFQIdheNlIBLFNRcKfSOVs9JopUNNRdJxlmL2NhwNuODcWhEVaZohSpHoVJtoiYgw2oNedVPZ58CySEQusbHiJhMmUoUpnNQudU6IJJR2H97c_9ncT486b6llSY4-yMkHOfpgHw5X_z3XXp-c2mT82GD9-t560epybLAbrlzYDd_F0ov_f34Jj8YUOiHR_obQW_76bV8hCFkWI9hKJ59G0D_--PXLxcjH3R1zit_6
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQcCiwgSgv4QMUBpcSxncehQghYtrT0tKDeIscPbapudiGLSn8U_7EzeTT0UG49RUpGeXgmM2P7m28AXttEp0YrFVhtcIJScBlksXOBiEVcxNqbpGhQvkfx5Lv8eqyO1-BvXwtDsMreJzaO2i4MrZG_wzRdZQ0b2fvlz4C6RtHuat9CozWLA3d-hlO2em__E-p3J4rGn6cfJ0HXVSAwIoxWgUw0N1xqfC-lvVPWaBMa2iCMshQ9l-UowCXnzklRpGmGEVrhB7nEKMyGBN72FtyWAgM5FaaPvwybFmGW9OTkmMaEHc6eGKpPPFW9R3w3o85oA4vD1Wh4NRg0EW78EDa61JR9aG3pEay5agQPujSVdU6gHsH9fzgMR3CnwZCa-jH4HwTc_cNs2-S-ZrqybHZu0UW3Z9hyqFJgrprRkRYn2dxR_XFZz1lZsUKvFqVlvqxnjJg20U4JCMDqs3I-x0c-gelNDPhTWK8WlXsGLBNS-MTFmttMWqELW3hlfOq9lEmo3Ca8uRzZvPsX67zFsSU56iAnHeSog0142497bjoydOrJcXqN9M6l9LIlAblGbrtX4fD4wXCf___yK7g7mX47zA_3jw624F5EZhQS3nAb1le_frsXmP2sipeNzTHIb9jGLwAf0RfZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vortex+dynamics+and+hydrodynamic+performance+enhancement+mechanism+in+batoid+fish+oscillatory+swimming&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Zhang%2C+Dong&rft.au=Qiao-Gao%2C+Huang&rft.au=Pan%2C+Guang&rft.au=Li-Ming%2C+Yang&rft.date=2022-01-10&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=930&rft_id=info:doi/10.1017%2Fjfm.2021.917
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon