Human-in-the-Loop Optimization of Hip Exoskeleton Assistance During Stair Climbing

Objective: This study applies human-in-the-loop optimization to identify optimal hip exoskeleton assistance patterns for stair climbing. Methods: Ten participants underwent optimization to individualize hip flexion and extension assistance, followed by a validation comparing optimized assistance (OP...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 72; no. 7; pp. 2147 - 2156
Main Authors Park, Dongho, An, Jimin, Lee, Dawit, Kang, Inseung, Young, Aaron J.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2025.3536516

Cover

Loading…
Abstract Objective: This study applies human-in-the-loop optimization to identify optimal hip exoskeleton assistance patterns for stair climbing. Methods: Ten participants underwent optimization to individualize hip flexion and extension assistance, followed by a validation comparing optimized assistance (OPT) to biological hip moment-based assistance (BIO), no assistance (No-Assist), and no exoskeleton (No-Exo) conditions. Results: OPT reduced metabolic cost by 4.5% compared to No-Exo, 11.44% compared to No-Assist, and 5.02% compared to BIO, demonstrating the effectiveness of the optimization approach. Statistical analysis revealed distinct characteristics in optimal assistance timing and magnitude that deviated systematically from biological hip moment patterns. Compared to BIO, OPT exhibited later peak flexion timing (76.4 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 3.7% vs 65.0%), shorter flexion duration (29.2 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 3.6% vs 40.0%), later peak extension timing (26.7 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 3.8% vs 20.0% of gait cycle), and higher peak flexion magnitude (11.1 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 1.5 Nm vs 10.0 Nm). While individual optimal assistance profiles varied across participants, comparison between individually optimized parameters and the best subject-independent parameters identified through post-hoc analysis showed consistency. On average, metabolic rate convergence was achieved after 18 iterations, while most exoskeleton control parameters did not reach our convergence criteria within 20 iterations. Conclusion: These findings demonstrate that human-in-the-loop optimization can effectively identify task-specific assistance patterns for stair climbing, while the consistency between individual and subject-independent parameters suggests the potential for developing generalized assistance strategies. The systematic differences between optimized and biological moment-based assistance underscore the fundamental distinctions between biological torque-based control and optimal control for exoskeleton assistance.
AbstractList This study applies human-in-the-loop optimization to identify optimal hip exoskeleton assistance patterns for stair climbing. Ten participants underwent optimization to individualize hip flexion and extension assistance, followed by a validation comparing optimized assistance (OPT) to biological hip moment-based assistance (BIO), no assistance (No-Assist), and no exoskeleton (No-Exo) conditions. OPT reduced metabolic cost by 4.5% compared to No-Exo, 11.44% compared to No-Assist, and 5.02% compared to BIO, demonstrating the effectiveness of the optimization approach. Statistical analysis revealed distinct characteristics in optimal assistance timing and magnitude that deviated systematically from biological hip moment patterns. Compared to BIO, OPT exhibited later peak flexion timing (76.4 $\pm$ 3.7% vs 65.0%), shorter flexion duration (29.2 $\pm$ 3.6% vs 40.0%), later peak extension timing (26.7 $\pm$ 3.8% vs 20.0% of gait cycle), and higher peak flexion magnitude (11.1 $\pm$ 1.5 Nm vs 10.0 Nm). While individual optimal assistance profiles varied across participants, comparison between individually optimized parameters and the best subject-independent parameters identified through post-hoc analysis showed consistency. On average, metabolic rate convergence was achieved after 18 iterations, while most exoskeleton control parameters did not reach our convergence criteria within 20 iterations. These findings demonstrate that human-in-the-loop optimization can effectively identify task-specific assistance patterns for stair climbing, while the consistency between individual and subject-independent parameters suggests the potential for developing generalized assistance strategies. The systematic differences between optimized and biological moment-based assistance underscore the fundamental distinctions between biological torque-based control and optimal control for exoskeleton assistance.
Objective: This study applies human-in-the-loop optimization to identify optimal hip exoskeleton assistance patterns for stair climbing. Methods: Ten participants underwent optimization to individualize hip flexion and extension assistance, followed by a validation comparing optimized assistance (OPT) to biological hip moment-based assistance (BIO), no assistance (No-Assist), and no exoskeleton (No-Exo) conditions. Results: OPT reduced metabolic cost by 4.5% compared to No-Exo, 11.44% compared to No-Assist, and 5.02% compared to BIO, demonstrating the effectiveness of the optimization approach. Statistical analysis revealed distinct characteristics in optimal assistance timing and magnitude that deviated systematically from biological hip moment patterns. Compared to BIO, OPT exhibited later peak flexion timing (76.4 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 3.7% vs 65.0%), shorter flexion duration (29.2 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 3.6% vs 40.0%), later peak extension timing (26.7 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 3.8% vs 20.0% of gait cycle), and higher peak flexion magnitude (11.1 <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula> 1.5 Nm vs 10.0 Nm). While individual optimal assistance profiles varied across participants, comparison between individually optimized parameters and the best subject-independent parameters identified through post-hoc analysis showed consistency. On average, metabolic rate convergence was achieved after 18 iterations, while most exoskeleton control parameters did not reach our convergence criteria within 20 iterations. Conclusion: These findings demonstrate that human-in-the-loop optimization can effectively identify task-specific assistance patterns for stair climbing, while the consistency between individual and subject-independent parameters suggests the potential for developing generalized assistance strategies. The systematic differences between optimized and biological moment-based assistance underscore the fundamental distinctions between biological torque-based control and optimal control for exoskeleton assistance.
This study applies human-in-the-loop optimization to identify optimal hip exoskeleton assistance patterns for stair climbing. Ten participants underwent optimization to individualize hip flexion and extension assistance, followed by a validation comparing optimized assistance (OPT) to biological hip moment-based assistance (BIO), no assistance (No-Assist), and no exoskeleton (No-Exo) conditions. OPT reduced metabolic cost by 4.5% compared to No-Exo, 11.44% compared to No-Assist, and 5.02% compared to BIO, demonstrating the effectiveness of the optimization approach. Statistical analysis revealed distinct characteristics in optimal assistance timing and magnitude that deviated systematically from biological hip moment patterns. Compared to BIO, OPT exhibited later peak flexion timing (76.4 ± 3.7% vs 65.0%), shorter flexion duration (29.2 ± 3.6% vs 40.0%), later peak extension timing (26.7 ± 3.8% vs 20.0% of gait cycle), and higher peak flexion magnitude (11.1 ± 1.5 Nm vs 10.0 Nm). While individual optimal assistance profiles varied across participants, comparison between individually optimized parameters and the best subject-independent parameters identified through post-hoc analysis showed consistency. On average, metabolic rate convergence was achieved after 18 iterations, while most exoskeleton control parameters did not reach our convergence criteria within 20 iterations. These findings demonstrate that human-in-the-loop optimization can effectively identify task-specific assistance patterns for stair climbing, while the consistency between individual and subject-independent parameters suggests the potential for developing generalized assistance strategies. The systematic differences between optimized and biological moment-based assistance underscore the fundamental distinctions between biological torque-based control and optimal control for exoskeleton assistance.This study applies human-in-the-loop optimization to identify optimal hip exoskeleton assistance patterns for stair climbing. Ten participants underwent optimization to individualize hip flexion and extension assistance, followed by a validation comparing optimized assistance (OPT) to biological hip moment-based assistance (BIO), no assistance (No-Assist), and no exoskeleton (No-Exo) conditions. OPT reduced metabolic cost by 4.5% compared to No-Exo, 11.44% compared to No-Assist, and 5.02% compared to BIO, demonstrating the effectiveness of the optimization approach. Statistical analysis revealed distinct characteristics in optimal assistance timing and magnitude that deviated systematically from biological hip moment patterns. Compared to BIO, OPT exhibited later peak flexion timing (76.4 ± 3.7% vs 65.0%), shorter flexion duration (29.2 ± 3.6% vs 40.0%), later peak extension timing (26.7 ± 3.8% vs 20.0% of gait cycle), and higher peak flexion magnitude (11.1 ± 1.5 Nm vs 10.0 Nm). While individual optimal assistance profiles varied across participants, comparison between individually optimized parameters and the best subject-independent parameters identified through post-hoc analysis showed consistency. On average, metabolic rate convergence was achieved after 18 iterations, while most exoskeleton control parameters did not reach our convergence criteria within 20 iterations. These findings demonstrate that human-in-the-loop optimization can effectively identify task-specific assistance patterns for stair climbing, while the consistency between individual and subject-independent parameters suggests the potential for developing generalized assistance strategies. The systematic differences between optimized and biological moment-based assistance underscore the fundamental distinctions between biological torque-based control and optimal control for exoskeleton assistance.
Objective: This study applies human-in-the-loop optimization to identify optimal hip exoskeleton assistance patterns for stair climbing. Methods: Ten participants underwent optimization to individualize hip flexion and extension assistance, followed by a validation comparing optimized assistance (OPT) to biological hip moment-based assistance (BIO), no assistance (No-Assist), and no exoskeleton (No-Exo) conditions. Results: OPT reduced metabolic cost by 4.5% compared to No-Exo, 11.44% compared to No-Assist, and 5.02% compared to BIO, demonstrating the effectiveness of the optimization approach. Statistical analysis revealed distinct characteristics in optimal assistance timing and magnitude that deviated systematically from biological hip moment patterns. Compared to BIO, OPT exhibited later peak flexion timing (76.4 [Formula Omitted] 3.7% vs 65.0%), shorter flexion duration (29.2 [Formula Omitted] 3.6% vs 40.0%), later peak extension timing (26.7 [Formula Omitted] 3.8% vs 20.0% of gait cycle), and higher peak flexion magnitude (11.1 [Formula Omitted] 1.5 Nm vs 10.0 Nm). While individual optimal assistance profiles varied across participants, comparison between individually optimized parameters and the best subject-independent parameters identified through post-hoc analysis showed consistency. On average, metabolic rate convergence was achieved after 18 iterations, while most exoskeleton control parameters did not reach our convergence criteria within 20 iterations. Conclusion: These findings demonstrate that human-in-the-loop optimization can effectively identify task-specific assistance patterns for stair climbing, while the consistency between individual and subject-independent parameters suggests the potential for developing generalized assistance strategies. The systematic differences between optimized and biological moment-based assistance underscore the fundamental distinctions between biological torque-based control and optimal control for exoskeleton assistance.
Author An, Jimin
Lee, Dawit
Kang, Inseung
Young, Aaron J.
Park, Dongho
Author_xml – sequence: 1
  givenname: Dongho
  orcidid: 0000-0002-9308-2222
  surname: Park
  fullname: Park, Dongho
  email: dpark@gatech.edu
  organization: Woodruff School of Mechanical Engineering and the Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, USA
– sequence: 2
  givenname: Jimin
  surname: An
  fullname: An, Jimin
  organization: Department of Mechanical Engineering, Carnegie Mellon University, USA
– sequence: 3
  givenname: Dawit
  orcidid: 0000-0002-2972-0082
  surname: Lee
  fullname: Lee, Dawit
  organization: Woodruff School of Mechanical Engineering, Georgia Institute of Technology, USA
– sequence: 4
  givenname: Inseung
  orcidid: 0000-0002-5846-1550
  surname: Kang
  fullname: Kang, Inseung
  organization: Department of Mechanical Engineering, Carnegie Mellon University, USA
– sequence: 5
  givenname: Aaron J.
  orcidid: 0000-0002-5376-2258
  surname: Young
  fullname: Young, Aaron J.
  organization: Woodruff School of Mechanical Engineering and the Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40031367$$D View this record in MEDLINE/PubMed
BookMark eNpdkUFr3DAQhUVJaTZpf0CgFEMvuXij0UiyfUy3m2xhSyBNz0J2xqlSW3ItG5L8-mrZbSk9DW_43jAz74Qd-eCJsTPgSwBeXdx9-rpeCi7UEhVqBfoVW4BSZS4UwhFbcA5lXolKHrOTGB-TlKXUb9ix5BwBdbFgt5u5tz53Pp9-UL4NYchuhsn17sVOLvgstNnGDdn6KcSf1NGUWpcxujhZ31D2eR6df8i-TdaN2apzfZ3kW_a6tV2kd4d6yr5fre9Wm3x7c_1ldbnNG-RiyiVI3SpodVXyGguEWivNueKqsLy0FmtBJWCl2xrum7rQQhM0qtISGwk14Sk7388dxvBrpjiZ3sWGus56CnM0CAVKjun-hH78D30M8-jTdgaFEFpXUshEfThQc93TvRlG19vx2fz5VgJgDzRjiHGk9i8C3OwSMbtEzC4Rc0gked7vPY6I_uFLVUol8DcS-YP3
CODEN IEBEAX
Cites_doi 10.1016/j.clinbiomech.2006.09.010
10.1126/scirobotics.aar5438
10.1038/s41586-022-05191-1
10.1186/s12984-020-00663-9
10.1111/j.1532-5415.2000.tb05006.x
10.1109/JPROC.2015.2494218
10.1152/japplphysiol.01133.2014
10.1109/TNSRE.2017.2656467
10.1126/science.aal5054
10.1186/s12877-018-0921-1
10.1109/LRA.2022.3145580
10.1023/A:1008306431147
10.1016/S0966-6362(01)00162-X
10.1017/wtc.2021.14
10.1126/scirobotics.adi8852
10.1109/EMBC.2012.6346326
10.1109/ICMA.2017.8016052
10.1038/s41586-024-07697-2
10.1186/1743-0003-11-80
10.1109/TBME.2021.3083580
10.1016/S0268-0033(03)00179-7
10.1016/j.dt.2019.07.016
10.1109/TNSRE.2016.2521160
10.1016/0021-9290(88)90282-5
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2025.3536516
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 2156
ExternalDocumentID 40031367
10_1109_TBME_2025_3536516
10858452
Genre orig-research
Journal Article
GrantInformation_xml – fundername: NSF FRR
– fundername: NSF NRI
  grantid: 1830215
– fundername: NICHD NIH HHS
  grantid: DP2 HD111709
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c302t-4146f51f6980b3731b656005057a08aa3b2e81396fb1dcb7626e1c59643c41be3
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Thu Jul 10 18:53:11 EDT 2025
Wed Aug 06 19:08:48 EDT 2025
Thu Aug 28 04:47:21 EDT 2025
Thu Jul 03 08:28:38 EDT 2025
Wed Aug 27 01:46:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c302t-4146f51f6980b3731b656005057a08aa3b2e81396fb1dcb7626e1c59643c41be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9308-2222
0000-0002-2972-0082
0000-0002-5846-1550
0000-0002-5376-2258
PMID 40031367
PQID 3222669424
PQPubID 85474
PageCount 10
ParticipantIDs proquest_journals_3222669424
proquest_miscellaneous_3173403929
crossref_primary_10_1109_TBME_2025_3536516
pubmed_primary_40031367
ieee_primary_10858452
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
Williams (ref26) 2006; 2
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref7
ref9
Brochu (ref15) 2010
ref4
ref3
ref6
ref5
Brockway (ref23) 1987; 41
Snoek (ref14) 2012; 25
References_xml – ident: ref2
  doi: 10.1016/j.clinbiomech.2006.09.010
– ident: ref10
  doi: 10.1126/scirobotics.aar5438
– ident: ref28
  doi: 10.1038/s41586-022-05191-1
– ident: ref6
  doi: 10.1186/s12984-020-00663-9
– ident: ref3
  doi: 10.1111/j.1532-5415.2000.tb05006.x
– volume: 25
  start-page: 2951
  volume-title: Proc 26th Int. Conf. Neural Inf. Process. Syst.
  year: 2012
  ident: ref14
  article-title: Practical Bayesian optimization of machine learning algorithms
– ident: ref24
  doi: 10.1109/JPROC.2015.2494218
– ident: ref16
  doi: 10.1152/japplphysiol.01133.2014
– ident: ref21
  doi: 10.1109/TNSRE.2017.2656467
– volume: 2
  volume-title: Gaussian Processes for Machine Learning
  year: 2006
  ident: ref26
– ident: ref11
  doi: 10.1126/science.aal5054
– ident: ref9
  doi: 10.1186/s12877-018-0921-1
– ident: ref19
  doi: 10.1109/LRA.2022.3145580
– ident: ref25
  doi: 10.1023/A:1008306431147
– ident: ref1
  doi: 10.1016/S0966-6362(01)00162-X
– ident: ref12
  doi: 10.1017/wtc.2021.14
– year: 2010
  ident: ref15
  article-title: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning
  publication-title: arXiv:1012.2599
– ident: ref18
  doi: 10.1126/scirobotics.adi8852
– ident: ref7
  doi: 10.1109/EMBC.2012.6346326
– volume: 41
  start-page: 463
  issue: 6
  year: 1987
  ident: ref23
  article-title: Derivation of formulae used to calculate energy expenditure in man
  publication-title: Hum. Nutr. Clin. Nutr.
– ident: ref8
  doi: 10.1109/ICMA.2017.8016052
– ident: ref13
  doi: 10.1038/s41586-024-07697-2
– ident: ref27
  doi: 10.1186/1743-0003-11-80
– ident: ref20
  doi: 10.1109/TBME.2021.3083580
– ident: ref4
  doi: 10.1016/S0268-0033(03)00179-7
– ident: ref22
  doi: 10.1016/j.dt.2019.07.016
– ident: ref5
  doi: 10.1109/TNSRE.2016.2521160
– ident: ref17
  doi: 10.1016/0021-9290(88)90282-5
SSID ssj0014846
Score 2.475122
Snippet Objective: This study applies human-in-the-loop optimization to identify optimal hip exoskeleton assistance patterns for stair climbing. Methods: Ten...
This study applies human-in-the-loop optimization to identify optimal hip exoskeleton assistance patterns for stair climbing. Ten participants underwent...
This study applies human-in-the-loop optimization to identify optimal hip exoskeleton assistance patterns for stair climbing. Ten participants underwent...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 2147
SubjectTerms Adult
Bayesian optimization
Biomechanical Phenomena - physiology
Climbing
Convergence
Costs
Exoskeleton
Exoskeleton Device
Exoskeletons
Female
Flexible printed circuits
Hip
Hip - physiology
hip exoskeleton
human-in-the-loop optimization
Humans
Legged locomotion
Male
metabolic cost
Metabolic rate
Metabolism
Optimal control
Optimization
Parameter identification
Pelvis
personalized assistance
stair climbing
Stair Climbing - physiology
Stairs
Statistical analysis
Timing
Torque
Young Adult
Title Human-in-the-Loop Optimization of Hip Exoskeleton Assistance During Stair Climbing
URI https://ieeexplore.ieee.org/document/10858452
https://www.ncbi.nlm.nih.gov/pubmed/40031367
https://www.proquest.com/docview/3222669424
https://www.proquest.com/docview/3173403929
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFH6oB9GD-1I3IngSMiZp0uXoMjKIoyAK3kqTpjKo7aAzIP56X9LOKILgpRQa2jRvyffyNoAjbktpRaJpodBclWmZUI04gQruQr6lKZkvu9i_iXoP8upRPbbJ6j4Xxlrrg89sx916X35Rm7E7KjtxkfKJVKhxZ9Fya5K1pi4DmTRZOYyjBItUti5MztKT-7N-F01BoTqhCiPFXd8i6asW-vby3_uRb7DyN9b0e87lMtxMZtuEmjx3xiPdMZ-_Cjn--3dWYKlFn-S0YZdVmLHVGiz-qEm4BvP91tu-Dnf-hJ8OKoookV7X9ZDcooZ5bVM3SV2S3mBIuh_1-zPuXogiCVLbAVLkJHLhEyAJotnBGzl_GbyiDf60AQ-X3fvzHm17MFATMjGiEjVpqXgZpQnTYRxy7ar1uPZ3cc6SPA-1sAmiyKjUvDAaVWtkuVGuypeRXNtwE-aqurLbQApEM7qwcZ6KQiIQ1RFehCmV0SZmMg_geEKJbNiU2si8icLSzFEwcxTMWgoGsOEW9MfAZi0D2JsQL2ul8T1z3qQoSqWQARxOH6McOedIXtl6jGN4HErm0GIAWw3Rpy-f8MrOHx_dhQU3tyaKdw_mRm9ju49YZaQPPI9-AQCQ4LM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS-QwEB_EA897OD31vPp1Ee7pIGuSJv149GNl79zdA1nBt9Kk6bGo7aK7IP71TtLuKoLgSyk0tGlmMvObzBfAL25LaUWiaaHQXJVpmVCNOIEK7kK-pSmZL7s4GEa9K_n3Wl23yeo-F8Za64PPbMfdel9-UZuZOyo7cpHyiVQocT-h4le8SddaOA1k0uTlMI57WKSydWJylh6NTgZdNAaF6oQqjBR3nYukr1voG8y_aCTfYuV9tOm1zvkaDOfzbYJNbjqzqe6YpzelHD_8Q-vwtcWf5LhhmG-wZKsN-PKqKuEGrAxaf_smXPozfjquKOJE2q_rCfmHMuauTd4kdUl64wnpPtYPN6i_EEcSpLeDpMhL5MynQBLEs-N7cno7vkMr_P8WXJ13R6c92nZhoCZkYkolytJS8TJKE6bDOOTa1etxDfDinCV5HmphE8SRUal5YTQK18hyo1ydLyO5tuF3WK7qyv4AUiCe0YWN81QUEqGojvAiTKmMNjGTeQC_55TIJk2xjcwbKSzNHAUzR8GspWAAW25BXw1s1jKAvTnxsnY_PmTOnxRFqRQygMPFY9xJzj2SV7ae4Rgeh5I5vBjAdkP0xcvnvLLzzkd_wufeaNDP-n-GF7uw6ubZxPTuwfL0fmb3EblM9YHn12fmb-P8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human-in-the-Loop+Optimization+of+Hip+Exoskeleton+Assistance+During+Stair+Climbing&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Park%2C+Dongho&rft.au=An%2C+Jimin&rft.au=Lee%2C+Dawit&rft.au=Kang%2C+Inseung&rft.date=2025-07-01&rft.eissn=1558-2531&rft.volume=72&rft.issue=7&rft.spage=2147&rft_id=info:doi/10.1109%2FTBME.2025.3536516&rft_id=info%3Apmid%2F40031367&rft.externalDocID=40031367
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon