Mode coupling between two different interfaces of a gas layer subject to a shock
Shock-tube experiments and theoretical studies have been performed to highlight mode-coupling in an air–SF$_6$–air fluid layer. Initially, the two interfaces of the layer are designed as single mode with different basic modes. It is found that as the two perturbed interfaces become closer, interface...
Saved in:
Published in | Journal of fluid mechanics Vol. 984 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
03.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Shock-tube experiments and theoretical studies have been performed to highlight mode-coupling in an air–SF$_6$–air fluid layer. Initially, the two interfaces of the layer are designed as single mode with different basic modes. It is found that as the two perturbed interfaces become closer, interface coupling induces a different mode from the basic mode on each interface. Then mode coupling further generates new modes. Based on the linear model (Jacobs et al., J. Fluid Mech., vol. 295, 1995, pp. 23–42), a modified model is established by considering the different accelerations of two interfaces and the waves’ effects in the layer, and provides good predictions to the linear growth rates of the basic modes and the modes generated by interface coupling. It is observed that interface coupling behaves differently to the nonlinear growth of the basic modes, which can be characterized generally by the existing or modified nonlinear model. Moreover, a new modal model is established to quantify the mode-coupling effect in the layer. The mode-coupling effect on the amplitude growth is negligible for the basic modes, but is significant for the interface-coupling modes when the initial wavenumber of one interface is twice the wavenumber of the other interface. Finally, amplitude freeze-out of the second single-mode interface is achieved theoretically and experimentally through interface coupling. These findings may be helpful for designing the target in inertial confinement fusion to suppress the hydrodynamic instabilities. |
---|---|
AbstractList | Shock-tube experiments and theoretical studies have been performed to highlight mode-coupling in an air–SF
$_6$
–air fluid layer. Initially, the two interfaces of the layer are designed as single mode with different basic modes. It is found that as the two perturbed interfaces become closer, interface coupling induces a different mode from the basic mode on each interface. Then mode coupling further generates new modes. Based on the linear model (Jacobs
et al.
,
J. Fluid Mech.
, vol. 295, 1995, pp. 23–42), a modified model is established by considering the different accelerations of two interfaces and the waves’ effects in the layer, and provides good predictions to the linear growth rates of the basic modes and the modes generated by interface coupling. It is observed that interface coupling behaves differently to the nonlinear growth of the basic modes, which can be characterized generally by the existing or modified nonlinear model. Moreover, a new modal model is established to quantify the mode-coupling effect in the layer. The mode-coupling effect on the amplitude growth is negligible for the basic modes, but is significant for the interface-coupling modes when the initial wavenumber of one interface is twice the wavenumber of the other interface. Finally, amplitude freeze-out of the second single-mode interface is achieved theoretically and experimentally through interface coupling. These findings may be helpful for designing the target in inertial confinement fusion to suppress the hydrodynamic instabilities. Shock-tube experiments and theoretical studies have been performed to highlight mode-coupling in an air–SF$_6$–air fluid layer. Initially, the two interfaces of the layer are designed as single mode with different basic modes. It is found that as the two perturbed interfaces become closer, interface coupling induces a different mode from the basic mode on each interface. Then mode coupling further generates new modes. Based on the linear model (Jacobs et al., J. Fluid Mech., vol. 295, 1995, pp. 23–42), a modified model is established by considering the different accelerations of two interfaces and the waves’ effects in the layer, and provides good predictions to the linear growth rates of the basic modes and the modes generated by interface coupling. It is observed that interface coupling behaves differently to the nonlinear growth of the basic modes, which can be characterized generally by the existing or modified nonlinear model. Moreover, a new modal model is established to quantify the mode-coupling effect in the layer. The mode-coupling effect on the amplitude growth is negligible for the basic modes, but is significant for the interface-coupling modes when the initial wavenumber of one interface is twice the wavenumber of the other interface. Finally, amplitude freeze-out of the second single-mode interface is achieved theoretically and experimentally through interface coupling. These findings may be helpful for designing the target in inertial confinement fusion to suppress the hydrodynamic instabilities. |
ArticleNumber | A38 |
Author | Zhai, Zhigang Wang, He Luo, Xisheng Chen, Chenren |
Author_xml | – sequence: 1 givenname: Chenren surname: Chen fullname: Chen, Chenren organization: 1Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China – sequence: 2 givenname: He orcidid: 0000-0002-6497-6673 surname: Wang fullname: Wang, He organization: 1Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China – sequence: 3 givenname: Zhigang orcidid: 0000-0002-0094-5210 surname: Zhai fullname: Zhai, Zhigang email: sanjing@ustc.edu.cn organization: 1Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China – sequence: 4 givenname: Xisheng orcidid: 0000-0002-4303-8290 surname: Luo fullname: Luo, Xisheng email: sanjing@ustc.edu.cn organization: 1Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China |
BookMark | eNp1kMtKAzEUhoNUsK3ufICAW2fMZS6dpRRvUNGFrkOSOakZ26QmGUrf3iktCKKrA4fvP-fnm6CR8w4QuqQkp4TWN51Z54ywImecnaAxLaomq6uiHKExIYxllDJyhiYxdoRQTpp6jF6ffQtY-36zsm6JFaQtgMNp63FrjYEALmHrEgQjNUTsDZZ4KSNeyR0EHHvVgU44-WEdP7z-PEenRq4iXBznFL3f373NH7PFy8PT_HaRaU5YyngjCciqarkyvGLMDDVLWZW1VM1MQSMVB1MWLeWVnhVtUdaUaTOTrTKNUsD4FF0d7m6C_-ohJtH5PrjhpeCEU0IKUvOBYgdKBx9jACO0TTJZ71KQdiUoEXtzYjAn9ubEYG4IXf8KbYJdy7D7D8-PuFyrYNsl_FT5M_AN5r6BAA |
CitedBy_id | crossref_primary_10_1007_s11433_024_2592_5 crossref_primary_10_1063_5_0215839 crossref_primary_10_1063_5_0243145 crossref_primary_10_1103_PhysRevFluids_10_023904 |
Cites_doi | 10.1103/PhysRevLett.84.4353 10.1146/annurev-fluid-122109-160744 10.1017/jfm.2023.395 10.1103/PhysRevE.67.026307 10.1017/jfm.2018.628 10.1017/jfm.2023.161 10.1017/jfm.2021.438 10.1063/1.868889 10.1017/jfm.2020.620 10.1017/jfm.2023.578 10.1007/s11433-023-2162-0 10.1017/jfm.2023.3 10.1017/jfm.2022.357 10.1016/j.physd.2020.132838 10.1103/PhysRevA.31.410 10.1038/nphys3736 10.1063/1.868611 10.1007/BF01015969 10.1103/PhysRevLett.126.185001 10.1017/jfm.2022.945 10.1103/PhysRevLett.78.1920 10.1063/1.859603 10.1017/jfm.2019.330 10.1063/1.3276269 10.1063/5.0082945 10.2514/3.11696 10.1063/1.868091 10.1177/0954406217727305 10.1017/jfm.2023.9 10.1063/1.868898 10.1017/jfm.2015.641 10.1063/1.1447914 10.1146/annurev.fluid.31.1.495 10.1088/0741-3335/43/9/301 10.1002/cpa.3160130207 10.1017/S002211209500187X 10.1103/PhysRevLett.80.1654 10.1017/jfm.2020.732 10.1038/s41467-018-03548-7 10.1063/1.5053766 10.1063/1.4915303 10.1063/1.869202 10.1103/PhysRevE.92.013023 10.1063/1.871655 10.1017/jfm.2021.849 10.1103/PhysRevLett.70.583 10.1146/annurev.fluid.34.090101.162238 10.1063/1.1693980 10.1063/1.4865400 10.1103/PhysRevE.58.7410 10.1063/5.0132145 10.1103/PhysRevLett.73.545 10.1098/rspa.1950.0052 |
ContentType | Journal Article |
Copyright | The Author(s), 2024. Published by Cambridge University Press |
Copyright_xml | – notice: The Author(s), 2024. Published by Cambridge University Press |
DBID | AAYXX CITATION 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
DOI | 10.1017/jfm.2024.232 |
DatabaseName | CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student ProQuest Research Library Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Research Library Prep |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1469-7645 |
ExternalDocumentID | 10_1017_jfm_2024_232 |
GroupedDBID | -DZ -E. -~X .DC .FH 09C 09E 0E1 0R~ 4.4 5GY 5VS 74X 74Y 7~V 8G5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AARAB AASVR AAUIS AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABQTM ABQWD ABROB ABTCQ ABZCX ACBEA ACBMC ACCHT ACGFO ACGFS ACGOD ACIMK ACIWK ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADGEJ ADKIL ADOCW ADVJH AEBAK AEMTW AENEX AENGE AEYYC AFFUJ AFKQG AFKSM AFLOS AFLVW AFRAH AFUTZ AGABE AGBYD AGJUD AGOOT AHQXX AHRGI AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV BBLKV BENPR BGHMG BHPHI BLZWO BMAJL C0O CBIIA CCQAD CFAFE CHEAL CJCSC CS3 DOHLZ DU5 E.L EBS F5P HCIFZ HG- HST HZ~ I.6 IH6 IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L98 LW7 M-V M2O NIKVX O9- OYBOY P2P PYCCK RAMDC RCA RNS ROL RR0 S6- S6U SAAAG SC5 T9M TAE TN5 UT1 WFFJZ WH7 WQ3 WXU WXY WYP ZYDXJ ~02 29K 88I 8FE 8FG 8FH 8R4 8R5 AAYXX ABUWG ABVKB ABVZP ABXAU ABXHF ACDLN ADMLS AEUYN AFKRA AFZFC AKMAY AZQEC BGLVJ BKSAR BPHCQ CCPQU CITATION D-I DWQXO GNUQQ GUQSH L6V LK5 M2P M7R M7S P62 PCBAR PHGZM PHGZT PQQKQ PROAC PTHSS Q2X S0W 3V. 7TB 7U5 7UA 7XB 8FD 8FK C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c302t-39a0ea66d3bf3622f6455a657ab98be9ab3ef54d136c84d45712cf8adbf9bbe23 |
IEDL.DBID | BENPR |
ISSN | 0022-1120 |
IngestDate | Sat Aug 16 19:51:16 EDT 2025 Tue Jul 01 03:01:44 EDT 2025 Thu Apr 24 22:51:07 EDT 2025 Thu Apr 04 09:35:08 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | shock waves |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c302t-39a0ea66d3bf3622f6455a657ab98be9ab3ef54d136c84d45712cf8adbf9bbe23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0094-5210 0000-0002-6497-6673 0000-0002-4303-8290 |
PQID | 3031004073 |
PQPubID | 34769 |
PageCount | 25 |
ParticipantIDs | proquest_journals_3031004073 crossref_citationtrail_10_1017_jfm_2024_232 crossref_primary_10_1017_jfm_2024_232 cambridge_journals_10_1017_jfm_2024_232 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-03 |
PublicationDateYYYYMMDD | 2024-04-03 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Journal of fluid mechanics |
PublicationTitleAlternate | J. Fluid Mech |
PublicationYear | 2024 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | 2002; 14 2021; 928 2023; 35 2021; 126 2021; 920 1998; 80 2015; 106 2016; 786 1995; 295 1997; 9 2014; 21 2001; 43 2010; 22 2018; 9 2023; 66 2018; 853 1993; 70 1969; 4 1993; 31 2022; 34 2017; 723–725 1996; 3 1996; 8 2019; 871 1994; 73 1998; 58 1972; 15 1991; 3 2015; 92 2021; 423 1960; 13 2002; 34 2017; 720–722 2023; 965 2020; 905 2020; 904 2022; 953 2023; 969 2016; 12 2018; 25 1995; 7 2018; 232 1883; 14 1997; 78 2000; 84 2011; 43 1999; 31 2023; 956 2023; 955 1950; 201 1985; 31 2023; 959 2022; 941 1994; 6 2003; 67 S0022112024002325_ref49 S0022112024002325_ref43 S0022112024002325_ref44 S0022112024002325_ref41 S0022112024002325_ref47 S0022112024002325_ref48 S0022112024002325_ref45 S0022112024002325_ref46 S0022112024002325_ref40 S0022112024002325_ref7 S0022112024002325_ref8 S0022112024002325_ref9 S0022112024002325_ref3 S0022112024002325_ref4 S0022112024002325_ref5 S0022112024002325_ref6 S0022112024002325_ref18 S0022112024002325_ref19 S0022112024002325_ref1 S0022112024002325_ref16 S0022112024002325_ref17 S0022112024002325_ref2 S0022112024002325_ref10 S0022112024002325_ref11 S0022112024002325_ref52 S0022112024002325_ref53 S0022112024002325_ref14 S0022112024002325_ref15 S0022112024002325_ref56 S0022112024002325_ref12 S0022112024002325_ref13 S0022112024002325_ref50 S0022112024002325_ref51 Zhou (S0022112024002325_ref54) 2017; 720–722 S0022112024002325_ref29 S0022112024002325_ref27 S0022112024002325_ref28 S0022112024002325_ref21 S0022112024002325_ref22 S0022112024002325_ref20 S0022112024002325_ref25 S0022112024002325_ref26 S0022112024002325_ref23 S0022112024002325_ref24 Taylor (S0022112024002325_ref42) 1950; 201 S0022112024002325_ref38 S0022112024002325_ref39 S0022112024002325_ref32 Rayleigh (S0022112024002325_ref36) 1883; 14 S0022112024002325_ref33 S0022112024002325_ref30 S0022112024002325_ref31 S0022112024002325_ref37 Zhou (S0022112024002325_ref55) 2017; 723–725 S0022112024002325_ref34 S0022112024002325_ref35 |
References_xml | – volume: 22 start-page: 014104 year: 2010 article-title: Simulations and model of the nonlinear Richtmyer–Meshkov instability publication-title: Phys. Fluids – volume: 9 start-page: 1106 year: 1997 end-page: 1124 article-title: Nonlinear theory of unstable fluid mixing driven by shock wave publication-title: Phys. Fluids – volume: 723–725 start-page: 1 year: 2017 end-page: 160 article-title: Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II publication-title: Phys. Rep. – volume: 15 start-page: 753 year: 1972 end-page: 759 article-title: Numerical investigation of the stability of a shock-accelerated interface between two fluids publication-title: Phys. Fluids – volume: 786 start-page: 47 year: 2016 end-page: 61 article-title: Universality of finger growth in two-dimensional Rayleigh–Taylor and Richtmyer–Meshkov instabilities with all density ratios publication-title: J. Fluid Mech. – volume: 959 start-page: A37 year: 2023 article-title: Divergent Richtmyer–Meshkov instability on a heavy gas layer publication-title: J. Fluid Mech. – volume: 43 start-page: 117 year: 2011 end-page: 140 article-title: Shock–bubble interactions publication-title: Annu. Rev. Fluid Mech. – volume: 12 start-page: 435 year: 2016 end-page: 448 article-title: Inertial-confinement fusion with lasers publication-title: Nat. Phys. – volume: 73 start-page: 545 year: 1994 end-page: 548 article-title: Multimode Rayleigh–Taylor experiments on Nova publication-title: Phys. Rev. Lett. – volume: 80 start-page: 1654 year: 1998 end-page: 1657 article-title: Study of nonlinear evolution of single-mode and two-bubble interaction under Richtmyer–Meshkov instability publication-title: Phys. Rev. Lett. – volume: 106 start-page: 114103 year: 2015 article-title: Richtmyer–Meshkov evolution under steady shock conditions in the high-energy-density regime publication-title: Appl. Phys. Lett. – volume: 31 start-page: 495 year: 1999 end-page: 536 article-title: Vortex paradigm for accelerated inhomogeneous flows: visiometrics for the Rayleigh–Taylor and Richtmyer–Meshkov environments publication-title: Annu. Rev. Fluid Mech. – volume: 928 start-page: A37 year: 2021 article-title: Richtmyer–Meshkov instability on two-dimensional multi-mode interfaces publication-title: J. Fluid Mech. – volume: 78 start-page: 1920 year: 1997 end-page: 1923 article-title: Propagation of a rippled shock wave driven by nonuniform laser ablation publication-title: Phys. Rev. Lett. – volume: 8 start-page: 1107 year: 1996 end-page: 1118 article-title: Instability of a plane centered rarefaction wave publication-title: Phys. Fluids – volume: 905 start-page: A5 year: 2020 article-title: Richtmyer–Meshkov instability on a dual-mode interface publication-title: J. Fluid Mech. – volume: 13 start-page: 297 year: 1960 end-page: 319 article-title: Taylor instability in shock acceleration of compressible fluids publication-title: Commun. Pure Appl. Maths – volume: 34 start-page: 445 year: 2002 end-page: 468 article-title: The Richtmyer–Meshkov instability publication-title: Annu. Rev. Fluid Mech. – volume: 941 start-page: A65 year: 2022 article-title: Shock-tube studies of single- and quasi-single-mode perturbation growth in Richtmyer–Meshkov flows with reshock publication-title: J. Fluid Mech. – volume: 8 start-page: 1269 year: 1996 end-page: 1292 article-title: Numerical simulations of Richtmyer–Meshkov instabilities in finite-thickness fluid layers publication-title: Phys. Fluids – volume: 3 start-page: 3073 year: 1996 end-page: 3090 article-title: Modal model for the nonlinear multimode Rayleigh–Taylor instability publication-title: Phys. Plasmas – volume: 953 start-page: A15 year: 2022 article-title: Experimental study on a light–heavy interface evolution induced by two successive shock waves publication-title: J. Fluid Mech. – volume: 295 start-page: 23 year: 1995 end-page: 42 article-title: Nonlinear growth of the shock-accelerated instability of a thin fluid layer publication-title: J. Fluid Mech. – volume: 955 start-page: A40 year: 2023 article-title: Hydrodynamic instabilities of two successive slow/fast interfaces induced by a weak shock publication-title: J. Fluid Mech. – volume: 853 start-page: R2 year: 2018 article-title: An elaborate experiment on the single-mode Richtmyer–Meshkov instability publication-title: J. Fluid Mech. – volume: 31 start-page: 410 year: 1985 end-page: 419 article-title: Richtmyer–Meshkov instabilities in stratified fluids publication-title: Phys. Rev. A – volume: 25 start-page: 122103 year: 2018 article-title: Theoretical study on finite-thickness effect on harmonics in Richtmyer–Meshkov instability for arbitrary Atwood numbers publication-title: Phys. Plasmas – volume: 9 start-page: 1564 year: 2018 article-title: How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants publication-title: Nat. Commun. – volume: 14 start-page: 170 year: 1883 end-page: 177 article-title: Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density publication-title: Proc. Lond. Math. Soc. – volume: 920 start-page: A13 year: 2021 article-title: On shock-induced heavy-fluid-layer evolution publication-title: J. Fluid Mech. – volume: 969 start-page: R1 year: 2023 article-title: Attenuation of perturbation growth of single-mode $\textrm {SF}_6$–air interface through reflected rarefaction waves publication-title: J. Fluid Mech. – volume: 423 start-page: 132838 year: 2021 article-title: Rayleigh–Taylor and Richtmyer–Meshkov instabilities: a journey through scales publication-title: Physica D – volume: 35 start-page: 016106 year: 2023 article-title: High-amplitude effect on single-mode Richtmyer–Meshkov instability of a light–heavy interface publication-title: Phys. Fluids – volume: 34 start-page: 034106 year: 2022 article-title: The phase effect on the Richtmyer–Meshkov instability of a fluid layer publication-title: Phys. Fluids – volume: 720–722 start-page: 1 year: 2017 end-page: 136 article-title: Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I publication-title: Phys. Rep. – volume: 871 start-page: 595 year: 2019 end-page: 635 article-title: The transition to turbulence in shock-driven mixing: effects of Mach number and initial conditions publication-title: J. Fluid Mech. – volume: 92 start-page: 013023 year: 2015 article-title: Modal interactions between a large-wavelength inclined interface and small-wavelength multimode perturbations in a Richtmyer–Meshkov instability publication-title: Phys. Rev. E – volume: 956 start-page: R2 year: 2023 article-title: Freeze-out of perturbation growth of single-mode helium–air interface through reflected shock in Richtmyer–Meshkov flows publication-title: J. Fluid Mech. – volume: 58 start-page: 7410 year: 1998 end-page: 7418 article-title: Vortex model for the nonlinear evolution of the multimode Richtmyer–Meshkov instability at low Atwood numbers publication-title: Phys. Rev. E – volume: 904 start-page: A3 year: 2020 article-title: The effect of initial conditions on mixing transition of the Richtmyer–Meshkov instability publication-title: J. Fluid Mech. – volume: 70 start-page: 583 year: 1993 end-page: 586 article-title: Instability growth patterns of a shock-accelerated thin fluid layer publication-title: Phys. Rev. Lett. – volume: 7 start-page: 888 year: 1995 end-page: 890 article-title: Rayleigh–Taylor and Richtmyer–Meshkov instabilities in finite-thickness fluid layers publication-title: Phys. Fluids – volume: 201 start-page: 192 year: 1950 end-page: 196 article-title: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I publication-title: Proc. R. Soc. Lond. A – volume: 965 start-page: A8 year: 2023 article-title: Convergent Richtmyer–Meshkov instability on two-dimensional dual-mode interfaces publication-title: J. Fluid Mech. – volume: 126 start-page: 185001 year: 2021 article-title: Novel target designs to mitigate hydrodynamic instabilities growth in inertial confinement fusion publication-title: Phys. Rev. Lett. – volume: 6 start-page: 356 year: 1994 end-page: 368 article-title: Freeze-out and the effect of compressibility in the Richtmyer–Meshkov instability publication-title: Phys. Fluids – volume: 84 start-page: 4353 year: 2000 end-page: 4356 article-title: Validation of an instability growth model using particle image velocimetry measurements publication-title: Phys. Rev. Lett. – volume: 232 start-page: 2830 year: 2018 end-page: 2849 article-title: Review of experimental Richtmyer–Meshkov instability in shock tube: from simple to complex publication-title: Proc. Inst. Mech. Engng C – volume: 43 start-page: 1169 year: 2001 end-page: 1179 article-title: Reshocking at the non-linear stage of Richtmyer–Meshkov instability publication-title: Plasma Phys. Control. Fusion – volume: 66 start-page: 104701 year: 2023 article-title: Review on hydrodynamic instabilities of a shocked gas layer publication-title: Sci. China-Phys. Mech. Astron. – volume: 67 start-page: 026307 year: 2003 article-title: High initial amplitude and high Mach number effects on the evolution of the single-mode Richtmyer–Meshkov instability publication-title: Phys. Rev. E – volume: 3 start-page: 2349 year: 1991 end-page: 2355 article-title: Weakly nonlinear hydrodynamic instabilities in inertial fusion publication-title: Phys. Fluids B – volume: 14 start-page: 1111 year: 2002 end-page: 1122 article-title: Nonlinear regime of a multimode Richtmyer–Meshkov instability: a simplified perturbation theory publication-title: Phys. Fluids – volume: 21 start-page: 020501 year: 2014 article-title: Review of the national ignition campaign 2009–2012 publication-title: Phys. Plasmas – volume: 4 start-page: 101 year: 1969 end-page: 104 article-title: Instability of the interface of two gases accelerated by a shock wave publication-title: Fluid Dyn. – volume: 31 start-page: 854 year: 1993 end-page: 862 article-title: Applications of shock-induced mixing to supersonic combustion publication-title: AIAA J. – ident: S0022112024002325_ref33 doi: 10.1103/PhysRevLett.84.4353 – ident: S0022112024002325_ref35 doi: 10.1146/annurev-fluid-122109-160744 – ident: S0022112024002325_ref47 doi: 10.1017/jfm.2023.395 – ident: S0022112024002325_ref40 doi: 10.1103/PhysRevE.67.026307 – ident: S0022112024002325_ref21 doi: 10.1017/jfm.2018.628 – ident: S0022112024002325_ref51 doi: 10.1017/jfm.2023.161 – ident: S0022112024002325_ref16 doi: 10.1017/jfm.2021.438 – ident: S0022112024002325_ref44 doi: 10.1063/1.868889 – ident: S0022112024002325_ref23 doi: 10.1017/jfm.2020.620 – ident: S0022112024002325_ref4 doi: 10.1017/jfm.2023.578 – ident: S0022112024002325_ref18 doi: 10.1007/s11433-023-2162-0 – ident: S0022112024002325_ref17 doi: 10.1017/jfm.2023.3 – ident: S0022112024002325_ref8 doi: 10.1017/jfm.2022.357 – ident: S0022112024002325_ref56 doi: 10.1016/j.physd.2020.132838 – ident: S0022112024002325_ref27 doi: 10.1103/PhysRevA.31.410 – ident: S0022112024002325_ref1 doi: 10.1038/nphys3736 – ident: S0022112024002325_ref29 doi: 10.1063/1.868611 – ident: S0022112024002325_ref25 doi: 10.1007/BF01015969 – ident: S0022112024002325_ref34 doi: 10.1103/PhysRevLett.126.185001 – ident: S0022112024002325_ref45 doi: 10.1017/jfm.2022.945 – ident: S0022112024002325_ref10 doi: 10.1103/PhysRevLett.78.1920 – ident: S0022112024002325_ref9 doi: 10.1063/1.859603 – ident: S0022112024002325_ref31 doi: 10.1017/jfm.2019.330 – ident: S0022112024002325_ref7 doi: 10.1063/1.3276269 – ident: S0022112024002325_ref14 doi: 10.1063/5.0082945 – ident: S0022112024002325_ref48 doi: 10.2514/3.11696 – ident: S0022112024002325_ref28 doi: 10.1063/1.868091 – ident: S0022112024002325_ref50 doi: 10.1177/0954406217727305 – ident: S0022112024002325_ref5 doi: 10.1017/jfm.2023.9 – ident: S0022112024002325_ref30 doi: 10.1063/1.868898 – ident: S0022112024002325_ref52 doi: 10.1017/jfm.2015.641 – ident: S0022112024002325_ref43 doi: 10.1063/1.1447914 – ident: S0022112024002325_ref49 doi: 10.1146/annurev.fluid.31.1.495 – ident: S0022112024002325_ref3 doi: 10.1088/0741-3335/43/9/301 – ident: S0022112024002325_ref38 doi: 10.1002/cpa.3160130207 – ident: S0022112024002325_ref11 doi: 10.1017/S002211209500187X – ident: S0022112024002325_ref41 doi: 10.1103/PhysRevLett.80.1654 – ident: S0022112024002325_ref22 doi: 10.1017/jfm.2020.732 – ident: S0022112024002325_ref13 doi: 10.1038/s41467-018-03548-7 – ident: S0022112024002325_ref20 doi: 10.1063/1.5053766 – ident: S0022112024002325_ref6 doi: 10.1063/1.4915303 – ident: S0022112024002325_ref53 doi: 10.1063/1.869202 – volume: 723–725 start-page: 1 year: 2017 ident: S0022112024002325_ref55 article-title: Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II publication-title: Phys. Rep. – volume: 720–722 start-page: 1 year: 2017 ident: S0022112024002325_ref54 article-title: Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I publication-title: Phys. Rep. – ident: S0022112024002325_ref24 doi: 10.1103/PhysRevE.92.013023 – ident: S0022112024002325_ref32 doi: 10.1063/1.871655 – ident: S0022112024002325_ref15 doi: 10.1017/jfm.2021.849 – ident: S0022112024002325_ref12 doi: 10.1103/PhysRevLett.70.583 – ident: S0022112024002325_ref2 doi: 10.1146/annurev.fluid.34.090101.162238 – volume: 14 start-page: 170 year: 1883 ident: S0022112024002325_ref36 article-title: Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density publication-title: Proc. Lond. Math. Soc. – ident: S0022112024002325_ref26 doi: 10.1063/1.1693980 – ident: S0022112024002325_ref19 doi: 10.1063/1.4865400 – ident: S0022112024002325_ref39 doi: 10.1103/PhysRevE.58.7410 – ident: S0022112024002325_ref46 doi: 10.1063/5.0132145 – ident: S0022112024002325_ref37 doi: 10.1103/PhysRevLett.73.545 – volume: 201 start-page: 192 year: 1950 ident: S0022112024002325_ref42 article-title: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1950.0052 |
SSID | ssj0013097 |
Score | 2.476241 |
Snippet | Shock-tube experiments and theoretical studies have been performed to highlight mode-coupling in an air–SF$_6$–air fluid layer. Initially, the two interfaces... Shock-tube experiments and theoretical studies have been performed to highlight mode-coupling in an air–SF $_6$ –air fluid layer. Initially, the two interfaces... Shock-tube experiments and theoretical studies have been performed to highlight mode-coupling in an air–SF\(_6\)–air fluid layer. Initially, the two interfaces... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Amplitude Amplitudes Coupled modes Coupling Experiments Growth rate Inertial confinement fusion Interfaces JFM Papers Modes Wavelengths |
Title | Mode coupling between two different interfaces of a gas layer subject to a shock |
URI | https://www.cambridge.org/core/product/identifier/S0022112024002325/type/journal_article https://www.proquest.com/docview/3031004073 |
Volume | 984 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LSsQwFL04DoIufIyK42PIQnEh1dqkabsSX6OIiviA2ZUkTRSRqU47-PvmdlKrC922oYWb5Obk5uQcgG2lucmMCj2TSOrZ_YbwYp5oTxplM0NkAYLBOuTNLb98YleDcOAKboWjVdY5sUrUWa6wRn5AUcPSjriIHr1_eOgahaerzkKjBW2bgmO7-WqfnN_e3TfnCH4S1XrhFln4jvqOotGvBi-iB2w_QOuRRljh9wL1Oz9Xi05_EeYdWiTHk-5dgik97MCCQ47EzcuiA3M_ZAU7MFPROlWxDHdodUZUPsZ7t8_EkbJI-ZmT2hmlJKgYMTJIzSK5IYI8i4K8CQvFSTGWWKYhZW4fFy82da7AU__88fTScx4KnqJ-UHo0Eb4WnGdUGrtWBYazMBQ8jIRMYqkTIak2IcsOKVcxy1gYHQbKxCKTtvOkDugqTA_zoV4DwhKjlaSKR9JuWlDZDfFSyCJmFAsC1YXd7yCmbiYU6YRFFqU23CmGO7Xh7sJeHeJUOSlydMR4-6P1znfr94kExx_tNuvean7fDJv1_19vwCx-qCLl0E2YLkdjvWXxRil70Ir7Fz1oH5_dXD_03BD7Aks51gI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV09T-QwEB0hEIIrgFtAx7cLEMUpsNiOkxQIIWBv-dQVINEF27FBJ7ThSFaIP8VvZCabsFBAR5tYiTKePD_bz28A1q1TPvM2DHxiRIDzDR3EKnGB8RaRIUKC4Gkd8vxCda_kyXV4PQIvzVkYklU2mFgBdZZbWiPfFuRhiRkXib2H_wFVjaLd1aaExiAtTt3zE07Zit3jQ-zfDc47R5cH3aCuKhBY0eZlIBLddlqpTBiP6M29kmGoVRhpk8TGJdoI50OZ7QhlY5nJMNrh1sc6M_g5xpHRAUL-mBQioT8q7vwZ7lq0k6hxJ0ce066F9mRR_c_TsXcutzgVOhnaOHwcDj-OBtUQ15mBqZqbsv1BMv2EEddrwXTNU1mNAkULfrwzMWzBeCUitcUs_KXCaszmfTrle8tqCRgrn3LW1GEpGflTPHoSgrHcM81udcHuNRJ_VvQNLQqxMsfLxR0C9RxcfUts52G0l_fcL2Ay8c4aYVVkcIpEPnLEzkIZSW8l53YBNt-CmNb_XZEONGtRiuFOKdwphnsBfjchTm1tfE71N-4_ab3x1vphYPjxSbvlpreGrx8m6eLXt9dgont5fpaeHV-cLsEkPbSSA4llGC0f-24FmU5pVqv0YnDz3fn8Crv7EF0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mode+coupling+between+two+different+interfaces+of+a+gas+layer+subject+to+a+shock&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Chen%2C+Chenren&rft.au=Wang%2C+He&rft.au=Zhai%2C+Zhigang&rft.au=Luo%2C+Xisheng&rft.date=2024-04-03&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=984&rft_id=info:doi/10.1017%2Fjfm.2024.232&rft.externalDocID=10_1017_jfm_2024_232 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |