Mode coupling between two different interfaces of a gas layer subject to a shock

Shock-tube experiments and theoretical studies have been performed to highlight mode-coupling in an air–SF$_6$–air fluid layer. Initially, the two interfaces of the layer are designed as single mode with different basic modes. It is found that as the two perturbed interfaces become closer, interface...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 984
Main Authors Chen, Chenren, Wang, He, Zhai, Zhigang, Luo, Xisheng
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 03.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Shock-tube experiments and theoretical studies have been performed to highlight mode-coupling in an air–SF$_6$–air fluid layer. Initially, the two interfaces of the layer are designed as single mode with different basic modes. It is found that as the two perturbed interfaces become closer, interface coupling induces a different mode from the basic mode on each interface. Then mode coupling further generates new modes. Based on the linear model (Jacobs et al., J. Fluid Mech., vol. 295, 1995, pp. 23–42), a modified model is established by considering the different accelerations of two interfaces and the waves’ effects in the layer, and provides good predictions to the linear growth rates of the basic modes and the modes generated by interface coupling. It is observed that interface coupling behaves differently to the nonlinear growth of the basic modes, which can be characterized generally by the existing or modified nonlinear model. Moreover, a new modal model is established to quantify the mode-coupling effect in the layer. The mode-coupling effect on the amplitude growth is negligible for the basic modes, but is significant for the interface-coupling modes when the initial wavenumber of one interface is twice the wavenumber of the other interface. Finally, amplitude freeze-out of the second single-mode interface is achieved theoretically and experimentally through interface coupling. These findings may be helpful for designing the target in inertial confinement fusion to suppress the hydrodynamic instabilities.
AbstractList Shock-tube experiments and theoretical studies have been performed to highlight mode-coupling in an air–SF $_6$ –air fluid layer. Initially, the two interfaces of the layer are designed as single mode with different basic modes. It is found that as the two perturbed interfaces become closer, interface coupling induces a different mode from the basic mode on each interface. Then mode coupling further generates new modes. Based on the linear model (Jacobs et al. , J. Fluid Mech. , vol. 295, 1995, pp. 23–42), a modified model is established by considering the different accelerations of two interfaces and the waves’ effects in the layer, and provides good predictions to the linear growth rates of the basic modes and the modes generated by interface coupling. It is observed that interface coupling behaves differently to the nonlinear growth of the basic modes, which can be characterized generally by the existing or modified nonlinear model. Moreover, a new modal model is established to quantify the mode-coupling effect in the layer. The mode-coupling effect on the amplitude growth is negligible for the basic modes, but is significant for the interface-coupling modes when the initial wavenumber of one interface is twice the wavenumber of the other interface. Finally, amplitude freeze-out of the second single-mode interface is achieved theoretically and experimentally through interface coupling. These findings may be helpful for designing the target in inertial confinement fusion to suppress the hydrodynamic instabilities.
Shock-tube experiments and theoretical studies have been performed to highlight mode-coupling in an air–SF$_6$–air fluid layer. Initially, the two interfaces of the layer are designed as single mode with different basic modes. It is found that as the two perturbed interfaces become closer, interface coupling induces a different mode from the basic mode on each interface. Then mode coupling further generates new modes. Based on the linear model (Jacobs et al., J. Fluid Mech., vol. 295, 1995, pp. 23–42), a modified model is established by considering the different accelerations of two interfaces and the waves’ effects in the layer, and provides good predictions to the linear growth rates of the basic modes and the modes generated by interface coupling. It is observed that interface coupling behaves differently to the nonlinear growth of the basic modes, which can be characterized generally by the existing or modified nonlinear model. Moreover, a new modal model is established to quantify the mode-coupling effect in the layer. The mode-coupling effect on the amplitude growth is negligible for the basic modes, but is significant for the interface-coupling modes when the initial wavenumber of one interface is twice the wavenumber of the other interface. Finally, amplitude freeze-out of the second single-mode interface is achieved theoretically and experimentally through interface coupling. These findings may be helpful for designing the target in inertial confinement fusion to suppress the hydrodynamic instabilities.
ArticleNumber A38
Author Zhai, Zhigang
Wang, He
Luo, Xisheng
Chen, Chenren
Author_xml – sequence: 1
  givenname: Chenren
  surname: Chen
  fullname: Chen, Chenren
  organization: 1Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
– sequence: 2
  givenname: He
  orcidid: 0000-0002-6497-6673
  surname: Wang
  fullname: Wang, He
  organization: 1Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
– sequence: 3
  givenname: Zhigang
  orcidid: 0000-0002-0094-5210
  surname: Zhai
  fullname: Zhai, Zhigang
  email: sanjing@ustc.edu.cn
  organization: 1Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
– sequence: 4
  givenname: Xisheng
  orcidid: 0000-0002-4303-8290
  surname: Luo
  fullname: Luo, Xisheng
  email: sanjing@ustc.edu.cn
  organization: 1Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
BookMark eNp1kMtKAzEUhoNUsK3ufICAW2fMZS6dpRRvUNGFrkOSOakZ26QmGUrf3iktCKKrA4fvP-fnm6CR8w4QuqQkp4TWN51Z54ywImecnaAxLaomq6uiHKExIYxllDJyhiYxdoRQTpp6jF6ffQtY-36zsm6JFaQtgMNp63FrjYEALmHrEgQjNUTsDZZ4KSNeyR0EHHvVgU44-WEdP7z-PEenRq4iXBznFL3f373NH7PFy8PT_HaRaU5YyngjCciqarkyvGLMDDVLWZW1VM1MQSMVB1MWLeWVnhVtUdaUaTOTrTKNUsD4FF0d7m6C_-ohJtH5PrjhpeCEU0IKUvOBYgdKBx9jACO0TTJZ71KQdiUoEXtzYjAn9ubEYG4IXf8KbYJdy7D7D8-PuFyrYNsl_FT5M_AN5r6BAA
CitedBy_id crossref_primary_10_1007_s11433_024_2592_5
crossref_primary_10_1063_5_0215839
crossref_primary_10_1063_5_0243145
crossref_primary_10_1103_PhysRevFluids_10_023904
Cites_doi 10.1103/PhysRevLett.84.4353
10.1146/annurev-fluid-122109-160744
10.1017/jfm.2023.395
10.1103/PhysRevE.67.026307
10.1017/jfm.2018.628
10.1017/jfm.2023.161
10.1017/jfm.2021.438
10.1063/1.868889
10.1017/jfm.2020.620
10.1017/jfm.2023.578
10.1007/s11433-023-2162-0
10.1017/jfm.2023.3
10.1017/jfm.2022.357
10.1016/j.physd.2020.132838
10.1103/PhysRevA.31.410
10.1038/nphys3736
10.1063/1.868611
10.1007/BF01015969
10.1103/PhysRevLett.126.185001
10.1017/jfm.2022.945
10.1103/PhysRevLett.78.1920
10.1063/1.859603
10.1017/jfm.2019.330
10.1063/1.3276269
10.1063/5.0082945
10.2514/3.11696
10.1063/1.868091
10.1177/0954406217727305
10.1017/jfm.2023.9
10.1063/1.868898
10.1017/jfm.2015.641
10.1063/1.1447914
10.1146/annurev.fluid.31.1.495
10.1088/0741-3335/43/9/301
10.1002/cpa.3160130207
10.1017/S002211209500187X
10.1103/PhysRevLett.80.1654
10.1017/jfm.2020.732
10.1038/s41467-018-03548-7
10.1063/1.5053766
10.1063/1.4915303
10.1063/1.869202
10.1103/PhysRevE.92.013023
10.1063/1.871655
10.1017/jfm.2021.849
10.1103/PhysRevLett.70.583
10.1146/annurev.fluid.34.090101.162238
10.1063/1.1693980
10.1063/1.4865400
10.1103/PhysRevE.58.7410
10.1063/5.0132145
10.1103/PhysRevLett.73.545
10.1098/rspa.1950.0052
ContentType Journal Article
Copyright The Author(s), 2024. Published by Cambridge University Press
Copyright_xml – notice: The Author(s), 2024. Published by Cambridge University Press
DBID AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/jfm.2024.232
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Research Library Prep
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1469-7645
ExternalDocumentID 10_1017_jfm_2024_232
GroupedDBID -DZ
-E.
-~X
.DC
.FH
09C
09E
0E1
0R~
4.4
5GY
5VS
74X
74Y
7~V
8G5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABZCX
ACBEA
ACBMC
ACCHT
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADVJH
AEBAK
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKSM
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGOOT
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
BBLKV
BENPR
BGHMG
BHPHI
BLZWO
BMAJL
C0O
CBIIA
CCQAD
CFAFE
CHEAL
CJCSC
CS3
DOHLZ
DU5
E.L
EBS
F5P
HCIFZ
HG-
HST
HZ~
I.6
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L98
LW7
M-V
M2O
NIKVX
O9-
OYBOY
P2P
PYCCK
RAMDC
RCA
RNS
ROL
RR0
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZYDXJ
~02
29K
88I
8FE
8FG
8FH
8R4
8R5
AAYXX
ABUWG
ABVKB
ABVZP
ABXAU
ABXHF
ACDLN
ADMLS
AEUYN
AFKRA
AFZFC
AKMAY
AZQEC
BGLVJ
BKSAR
BPHCQ
CCPQU
CITATION
D-I
DWQXO
GNUQQ
GUQSH
L6V
LK5
M2P
M7R
M7S
P62
PCBAR
PHGZM
PHGZT
PQQKQ
PROAC
PTHSS
Q2X
S0W
3V.
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c302t-39a0ea66d3bf3622f6455a657ab98be9ab3ef54d136c84d45712cf8adbf9bbe23
IEDL.DBID BENPR
ISSN 0022-1120
IngestDate Sat Aug 16 19:51:16 EDT 2025
Tue Jul 01 03:01:44 EDT 2025
Thu Apr 24 22:51:07 EDT 2025
Thu Apr 04 09:35:08 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords shock waves
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c302t-39a0ea66d3bf3622f6455a657ab98be9ab3ef54d136c84d45712cf8adbf9bbe23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0094-5210
0000-0002-6497-6673
0000-0002-4303-8290
PQID 3031004073
PQPubID 34769
PageCount 25
ParticipantIDs proquest_journals_3031004073
crossref_citationtrail_10_1017_jfm_2024_232
crossref_primary_10_1017_jfm_2024_232
cambridge_journals_10_1017_jfm_2024_232
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-03
PublicationDateYYYYMMDD 2024-04-03
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-03
  day: 03
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2024
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2002; 14
2021; 928
2023; 35
2021; 126
2021; 920
1998; 80
2015; 106
2016; 786
1995; 295
1997; 9
2014; 21
2001; 43
2010; 22
2018; 9
2023; 66
2018; 853
1993; 70
1969; 4
1993; 31
2022; 34
2017; 723–725
1996; 3
1996; 8
2019; 871
1994; 73
1998; 58
1972; 15
1991; 3
2015; 92
2021; 423
1960; 13
2002; 34
2017; 720–722
2023; 965
2020; 905
2020; 904
2022; 953
2023; 969
2016; 12
2018; 25
1995; 7
2018; 232
1883; 14
1997; 78
2000; 84
2011; 43
1999; 31
2023; 956
2023; 955
1950; 201
1985; 31
2023; 959
2022; 941
1994; 6
2003; 67
S0022112024002325_ref49
S0022112024002325_ref43
S0022112024002325_ref44
S0022112024002325_ref41
S0022112024002325_ref47
S0022112024002325_ref48
S0022112024002325_ref45
S0022112024002325_ref46
S0022112024002325_ref40
S0022112024002325_ref7
S0022112024002325_ref8
S0022112024002325_ref9
S0022112024002325_ref3
S0022112024002325_ref4
S0022112024002325_ref5
S0022112024002325_ref6
S0022112024002325_ref18
S0022112024002325_ref19
S0022112024002325_ref1
S0022112024002325_ref16
S0022112024002325_ref17
S0022112024002325_ref2
S0022112024002325_ref10
S0022112024002325_ref11
S0022112024002325_ref52
S0022112024002325_ref53
S0022112024002325_ref14
S0022112024002325_ref15
S0022112024002325_ref56
S0022112024002325_ref12
S0022112024002325_ref13
S0022112024002325_ref50
S0022112024002325_ref51
Zhou (S0022112024002325_ref54) 2017; 720–722
S0022112024002325_ref29
S0022112024002325_ref27
S0022112024002325_ref28
S0022112024002325_ref21
S0022112024002325_ref22
S0022112024002325_ref20
S0022112024002325_ref25
S0022112024002325_ref26
S0022112024002325_ref23
S0022112024002325_ref24
Taylor (S0022112024002325_ref42) 1950; 201
S0022112024002325_ref38
S0022112024002325_ref39
S0022112024002325_ref32
Rayleigh (S0022112024002325_ref36) 1883; 14
S0022112024002325_ref33
S0022112024002325_ref30
S0022112024002325_ref31
S0022112024002325_ref37
Zhou (S0022112024002325_ref55) 2017; 723–725
S0022112024002325_ref34
S0022112024002325_ref35
References_xml – volume: 22
  start-page: 014104
  year: 2010
  article-title: Simulations and model of the nonlinear Richtmyer–Meshkov instability
  publication-title: Phys. Fluids
– volume: 9
  start-page: 1106
  year: 1997
  end-page: 1124
  article-title: Nonlinear theory of unstable fluid mixing driven by shock wave
  publication-title: Phys. Fluids
– volume: 723–725
  start-page: 1
  year: 2017
  end-page: 160
  article-title: Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II
  publication-title: Phys. Rep.
– volume: 15
  start-page: 753
  year: 1972
  end-page: 759
  article-title: Numerical investigation of the stability of a shock-accelerated interface between two fluids
  publication-title: Phys. Fluids
– volume: 786
  start-page: 47
  year: 2016
  end-page: 61
  article-title: Universality of finger growth in two-dimensional Rayleigh–Taylor and Richtmyer–Meshkov instabilities with all density ratios
  publication-title: J. Fluid Mech.
– volume: 959
  start-page: A37
  year: 2023
  article-title: Divergent Richtmyer–Meshkov instability on a heavy gas layer
  publication-title: J. Fluid Mech.
– volume: 43
  start-page: 117
  year: 2011
  end-page: 140
  article-title: Shock–bubble interactions
  publication-title: Annu. Rev. Fluid Mech.
– volume: 12
  start-page: 435
  year: 2016
  end-page: 448
  article-title: Inertial-confinement fusion with lasers
  publication-title: Nat. Phys.
– volume: 73
  start-page: 545
  year: 1994
  end-page: 548
  article-title: Multimode Rayleigh–Taylor experiments on Nova
  publication-title: Phys. Rev. Lett.
– volume: 80
  start-page: 1654
  year: 1998
  end-page: 1657
  article-title: Study of nonlinear evolution of single-mode and two-bubble interaction under Richtmyer–Meshkov instability
  publication-title: Phys. Rev. Lett.
– volume: 106
  start-page: 114103
  year: 2015
  article-title: Richtmyer–Meshkov evolution under steady shock conditions in the high-energy-density regime
  publication-title: Appl. Phys. Lett.
– volume: 31
  start-page: 495
  year: 1999
  end-page: 536
  article-title: Vortex paradigm for accelerated inhomogeneous flows: visiometrics for the Rayleigh–Taylor and Richtmyer–Meshkov environments
  publication-title: Annu. Rev. Fluid Mech.
– volume: 928
  start-page: A37
  year: 2021
  article-title: Richtmyer–Meshkov instability on two-dimensional multi-mode interfaces
  publication-title: J. Fluid Mech.
– volume: 78
  start-page: 1920
  year: 1997
  end-page: 1923
  article-title: Propagation of a rippled shock wave driven by nonuniform laser ablation
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 1107
  year: 1996
  end-page: 1118
  article-title: Instability of a plane centered rarefaction wave
  publication-title: Phys. Fluids
– volume: 905
  start-page: A5
  year: 2020
  article-title: Richtmyer–Meshkov instability on a dual-mode interface
  publication-title: J. Fluid Mech.
– volume: 13
  start-page: 297
  year: 1960
  end-page: 319
  article-title: Taylor instability in shock acceleration of compressible fluids
  publication-title: Commun. Pure Appl. Maths
– volume: 34
  start-page: 445
  year: 2002
  end-page: 468
  article-title: The Richtmyer–Meshkov instability
  publication-title: Annu. Rev. Fluid Mech.
– volume: 941
  start-page: A65
  year: 2022
  article-title: Shock-tube studies of single- and quasi-single-mode perturbation growth in Richtmyer–Meshkov flows with reshock
  publication-title: J. Fluid Mech.
– volume: 8
  start-page: 1269
  year: 1996
  end-page: 1292
  article-title: Numerical simulations of Richtmyer–Meshkov instabilities in finite-thickness fluid layers
  publication-title: Phys. Fluids
– volume: 3
  start-page: 3073
  year: 1996
  end-page: 3090
  article-title: Modal model for the nonlinear multimode Rayleigh–Taylor instability
  publication-title: Phys. Plasmas
– volume: 953
  start-page: A15
  year: 2022
  article-title: Experimental study on a light–heavy interface evolution induced by two successive shock waves
  publication-title: J. Fluid Mech.
– volume: 295
  start-page: 23
  year: 1995
  end-page: 42
  article-title: Nonlinear growth of the shock-accelerated instability of a thin fluid layer
  publication-title: J. Fluid Mech.
– volume: 955
  start-page: A40
  year: 2023
  article-title: Hydrodynamic instabilities of two successive slow/fast interfaces induced by a weak shock
  publication-title: J. Fluid Mech.
– volume: 853
  start-page: R2
  year: 2018
  article-title: An elaborate experiment on the single-mode Richtmyer–Meshkov instability
  publication-title: J. Fluid Mech.
– volume: 31
  start-page: 410
  year: 1985
  end-page: 419
  article-title: Richtmyer–Meshkov instabilities in stratified fluids
  publication-title: Phys. Rev. A
– volume: 25
  start-page: 122103
  year: 2018
  article-title: Theoretical study on finite-thickness effect on harmonics in Richtmyer–Meshkov instability for arbitrary Atwood numbers
  publication-title: Phys. Plasmas
– volume: 9
  start-page: 1564
  year: 2018
  article-title: How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants
  publication-title: Nat. Commun.
– volume: 14
  start-page: 170
  year: 1883
  end-page: 177
  article-title: Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density
  publication-title: Proc. Lond. Math. Soc.
– volume: 920
  start-page: A13
  year: 2021
  article-title: On shock-induced heavy-fluid-layer evolution
  publication-title: J. Fluid Mech.
– volume: 969
  start-page: R1
  year: 2023
  article-title: Attenuation of perturbation growth of single-mode $\textrm {SF}_6$–air interface through reflected rarefaction waves
  publication-title: J. Fluid Mech.
– volume: 423
  start-page: 132838
  year: 2021
  article-title: Rayleigh–Taylor and Richtmyer–Meshkov instabilities: a journey through scales
  publication-title: Physica D
– volume: 35
  start-page: 016106
  year: 2023
  article-title: High-amplitude effect on single-mode Richtmyer–Meshkov instability of a light–heavy interface
  publication-title: Phys. Fluids
– volume: 34
  start-page: 034106
  year: 2022
  article-title: The phase effect on the Richtmyer–Meshkov instability of a fluid layer
  publication-title: Phys. Fluids
– volume: 720–722
  start-page: 1
  year: 2017
  end-page: 136
  article-title: Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I
  publication-title: Phys. Rep.
– volume: 871
  start-page: 595
  year: 2019
  end-page: 635
  article-title: The transition to turbulence in shock-driven mixing: effects of Mach number and initial conditions
  publication-title: J. Fluid Mech.
– volume: 92
  start-page: 013023
  year: 2015
  article-title: Modal interactions between a large-wavelength inclined interface and small-wavelength multimode perturbations in a Richtmyer–Meshkov instability
  publication-title: Phys. Rev. E
– volume: 956
  start-page: R2
  year: 2023
  article-title: Freeze-out of perturbation growth of single-mode helium–air interface through reflected shock in Richtmyer–Meshkov flows
  publication-title: J. Fluid Mech.
– volume: 58
  start-page: 7410
  year: 1998
  end-page: 7418
  article-title: Vortex model for the nonlinear evolution of the multimode Richtmyer–Meshkov instability at low Atwood numbers
  publication-title: Phys. Rev. E
– volume: 904
  start-page: A3
  year: 2020
  article-title: The effect of initial conditions on mixing transition of the Richtmyer–Meshkov instability
  publication-title: J. Fluid Mech.
– volume: 70
  start-page: 583
  year: 1993
  end-page: 586
  article-title: Instability growth patterns of a shock-accelerated thin fluid layer
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 888
  year: 1995
  end-page: 890
  article-title: Rayleigh–Taylor and Richtmyer–Meshkov instabilities in finite-thickness fluid layers
  publication-title: Phys. Fluids
– volume: 201
  start-page: 192
  year: 1950
  end-page: 196
  article-title: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I
  publication-title: Proc. R. Soc. Lond. A
– volume: 965
  start-page: A8
  year: 2023
  article-title: Convergent Richtmyer–Meshkov instability on two-dimensional dual-mode interfaces
  publication-title: J. Fluid Mech.
– volume: 126
  start-page: 185001
  year: 2021
  article-title: Novel target designs to mitigate hydrodynamic instabilities growth in inertial confinement fusion
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 356
  year: 1994
  end-page: 368
  article-title: Freeze-out and the effect of compressibility in the Richtmyer–Meshkov instability
  publication-title: Phys. Fluids
– volume: 84
  start-page: 4353
  year: 2000
  end-page: 4356
  article-title: Validation of an instability growth model using particle image velocimetry measurements
  publication-title: Phys. Rev. Lett.
– volume: 232
  start-page: 2830
  year: 2018
  end-page: 2849
  article-title: Review of experimental Richtmyer–Meshkov instability in shock tube: from simple to complex
  publication-title: Proc. Inst. Mech. Engng C
– volume: 43
  start-page: 1169
  year: 2001
  end-page: 1179
  article-title: Reshocking at the non-linear stage of Richtmyer–Meshkov instability
  publication-title: Plasma Phys. Control. Fusion
– volume: 66
  start-page: 104701
  year: 2023
  article-title: Review on hydrodynamic instabilities of a shocked gas layer
  publication-title: Sci. China-Phys. Mech. Astron.
– volume: 67
  start-page: 026307
  year: 2003
  article-title: High initial amplitude and high Mach number effects on the evolution of the single-mode Richtmyer–Meshkov instability
  publication-title: Phys. Rev. E
– volume: 3
  start-page: 2349
  year: 1991
  end-page: 2355
  article-title: Weakly nonlinear hydrodynamic instabilities in inertial fusion
  publication-title: Phys. Fluids B
– volume: 14
  start-page: 1111
  year: 2002
  end-page: 1122
  article-title: Nonlinear regime of a multimode Richtmyer–Meshkov instability: a simplified perturbation theory
  publication-title: Phys. Fluids
– volume: 21
  start-page: 020501
  year: 2014
  article-title: Review of the national ignition campaign 2009–2012
  publication-title: Phys. Plasmas
– volume: 4
  start-page: 101
  year: 1969
  end-page: 104
  article-title: Instability of the interface of two gases accelerated by a shock wave
  publication-title: Fluid Dyn.
– volume: 31
  start-page: 854
  year: 1993
  end-page: 862
  article-title: Applications of shock-induced mixing to supersonic combustion
  publication-title: AIAA J.
– ident: S0022112024002325_ref33
  doi: 10.1103/PhysRevLett.84.4353
– ident: S0022112024002325_ref35
  doi: 10.1146/annurev-fluid-122109-160744
– ident: S0022112024002325_ref47
  doi: 10.1017/jfm.2023.395
– ident: S0022112024002325_ref40
  doi: 10.1103/PhysRevE.67.026307
– ident: S0022112024002325_ref21
  doi: 10.1017/jfm.2018.628
– ident: S0022112024002325_ref51
  doi: 10.1017/jfm.2023.161
– ident: S0022112024002325_ref16
  doi: 10.1017/jfm.2021.438
– ident: S0022112024002325_ref44
  doi: 10.1063/1.868889
– ident: S0022112024002325_ref23
  doi: 10.1017/jfm.2020.620
– ident: S0022112024002325_ref4
  doi: 10.1017/jfm.2023.578
– ident: S0022112024002325_ref18
  doi: 10.1007/s11433-023-2162-0
– ident: S0022112024002325_ref17
  doi: 10.1017/jfm.2023.3
– ident: S0022112024002325_ref8
  doi: 10.1017/jfm.2022.357
– ident: S0022112024002325_ref56
  doi: 10.1016/j.physd.2020.132838
– ident: S0022112024002325_ref27
  doi: 10.1103/PhysRevA.31.410
– ident: S0022112024002325_ref1
  doi: 10.1038/nphys3736
– ident: S0022112024002325_ref29
  doi: 10.1063/1.868611
– ident: S0022112024002325_ref25
  doi: 10.1007/BF01015969
– ident: S0022112024002325_ref34
  doi: 10.1103/PhysRevLett.126.185001
– ident: S0022112024002325_ref45
  doi: 10.1017/jfm.2022.945
– ident: S0022112024002325_ref10
  doi: 10.1103/PhysRevLett.78.1920
– ident: S0022112024002325_ref9
  doi: 10.1063/1.859603
– ident: S0022112024002325_ref31
  doi: 10.1017/jfm.2019.330
– ident: S0022112024002325_ref7
  doi: 10.1063/1.3276269
– ident: S0022112024002325_ref14
  doi: 10.1063/5.0082945
– ident: S0022112024002325_ref48
  doi: 10.2514/3.11696
– ident: S0022112024002325_ref28
  doi: 10.1063/1.868091
– ident: S0022112024002325_ref50
  doi: 10.1177/0954406217727305
– ident: S0022112024002325_ref5
  doi: 10.1017/jfm.2023.9
– ident: S0022112024002325_ref30
  doi: 10.1063/1.868898
– ident: S0022112024002325_ref52
  doi: 10.1017/jfm.2015.641
– ident: S0022112024002325_ref43
  doi: 10.1063/1.1447914
– ident: S0022112024002325_ref49
  doi: 10.1146/annurev.fluid.31.1.495
– ident: S0022112024002325_ref3
  doi: 10.1088/0741-3335/43/9/301
– ident: S0022112024002325_ref38
  doi: 10.1002/cpa.3160130207
– ident: S0022112024002325_ref11
  doi: 10.1017/S002211209500187X
– ident: S0022112024002325_ref41
  doi: 10.1103/PhysRevLett.80.1654
– ident: S0022112024002325_ref22
  doi: 10.1017/jfm.2020.732
– ident: S0022112024002325_ref13
  doi: 10.1038/s41467-018-03548-7
– ident: S0022112024002325_ref20
  doi: 10.1063/1.5053766
– ident: S0022112024002325_ref6
  doi: 10.1063/1.4915303
– ident: S0022112024002325_ref53
  doi: 10.1063/1.869202
– volume: 723–725
  start-page: 1
  year: 2017
  ident: S0022112024002325_ref55
  article-title: Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II
  publication-title: Phys. Rep.
– volume: 720–722
  start-page: 1
  year: 2017
  ident: S0022112024002325_ref54
  article-title: Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I
  publication-title: Phys. Rep.
– ident: S0022112024002325_ref24
  doi: 10.1103/PhysRevE.92.013023
– ident: S0022112024002325_ref32
  doi: 10.1063/1.871655
– ident: S0022112024002325_ref15
  doi: 10.1017/jfm.2021.849
– ident: S0022112024002325_ref12
  doi: 10.1103/PhysRevLett.70.583
– ident: S0022112024002325_ref2
  doi: 10.1146/annurev.fluid.34.090101.162238
– volume: 14
  start-page: 170
  year: 1883
  ident: S0022112024002325_ref36
  article-title: Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density
  publication-title: Proc. Lond. Math. Soc.
– ident: S0022112024002325_ref26
  doi: 10.1063/1.1693980
– ident: S0022112024002325_ref19
  doi: 10.1063/1.4865400
– ident: S0022112024002325_ref39
  doi: 10.1103/PhysRevE.58.7410
– ident: S0022112024002325_ref46
  doi: 10.1063/5.0132145
– ident: S0022112024002325_ref37
  doi: 10.1103/PhysRevLett.73.545
– volume: 201
  start-page: 192
  year: 1950
  ident: S0022112024002325_ref42
  article-title: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1950.0052
SSID ssj0013097
Score 2.476241
Snippet Shock-tube experiments and theoretical studies have been performed to highlight mode-coupling in an air–SF$_6$–air fluid layer. Initially, the two interfaces...
Shock-tube experiments and theoretical studies have been performed to highlight mode-coupling in an air–SF $_6$ –air fluid layer. Initially, the two interfaces...
Shock-tube experiments and theoretical studies have been performed to highlight mode-coupling in an air–SF\(_6\)–air fluid layer. Initially, the two interfaces...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Amplitude
Amplitudes
Coupled modes
Coupling
Experiments
Growth rate
Inertial confinement fusion
Interfaces
JFM Papers
Modes
Wavelengths
Title Mode coupling between two different interfaces of a gas layer subject to a shock
URI https://www.cambridge.org/core/product/identifier/S0022112024002325/type/journal_article
https://www.proquest.com/docview/3031004073
Volume 984
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LSsQwFL04DoIufIyK42PIQnEh1dqkabsSX6OIiviA2ZUkTRSRqU47-PvmdlKrC922oYWb5Obk5uQcgG2lucmMCj2TSOrZ_YbwYp5oTxplM0NkAYLBOuTNLb98YleDcOAKboWjVdY5sUrUWa6wRn5AUcPSjriIHr1_eOgahaerzkKjBW2bgmO7-WqfnN_e3TfnCH4S1XrhFln4jvqOotGvBi-iB2w_QOuRRljh9wL1Oz9Xi05_EeYdWiTHk-5dgik97MCCQ47EzcuiA3M_ZAU7MFPROlWxDHdodUZUPsZ7t8_EkbJI-ZmT2hmlJKgYMTJIzSK5IYI8i4K8CQvFSTGWWKYhZW4fFy82da7AU__88fTScx4KnqJ-UHo0Eb4WnGdUGrtWBYazMBQ8jIRMYqkTIak2IcsOKVcxy1gYHQbKxCKTtvOkDugqTA_zoV4DwhKjlaSKR9JuWlDZDfFSyCJmFAsC1YXd7yCmbiYU6YRFFqU23CmGO7Xh7sJeHeJUOSlydMR4-6P1znfr94kExx_tNuvean7fDJv1_19vwCx-qCLl0E2YLkdjvWXxRil70Ir7Fz1oH5_dXD_03BD7Aks51gI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV09T-QwEB0hEIIrgFtAx7cLEMUpsNiOkxQIIWBv-dQVINEF27FBJ7ThSFaIP8VvZCabsFBAR5tYiTKePD_bz28A1q1TPvM2DHxiRIDzDR3EKnGB8RaRIUKC4Gkd8vxCda_kyXV4PQIvzVkYklU2mFgBdZZbWiPfFuRhiRkXib2H_wFVjaLd1aaExiAtTt3zE07Zit3jQ-zfDc47R5cH3aCuKhBY0eZlIBLddlqpTBiP6M29kmGoVRhpk8TGJdoI50OZ7QhlY5nJMNrh1sc6M_g5xpHRAUL-mBQioT8q7vwZ7lq0k6hxJ0ce066F9mRR_c_TsXcutzgVOhnaOHwcDj-OBtUQ15mBqZqbsv1BMv2EEddrwXTNU1mNAkULfrwzMWzBeCUitcUs_KXCaszmfTrle8tqCRgrn3LW1GEpGflTPHoSgrHcM81udcHuNRJ_VvQNLQqxMsfLxR0C9RxcfUts52G0l_fcL2Ay8c4aYVVkcIpEPnLEzkIZSW8l53YBNt-CmNb_XZEONGtRiuFOKdwphnsBfjchTm1tfE71N-4_ab3x1vphYPjxSbvlpreGrx8m6eLXt9dgont5fpaeHV-cLsEkPbSSA4llGC0f-24FmU5pVqv0YnDz3fn8Crv7EF0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mode+coupling+between+two+different+interfaces+of+a+gas+layer+subject+to+a+shock&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Chen%2C+Chenren&rft.au=Wang%2C+He&rft.au=Zhai%2C+Zhigang&rft.au=Luo%2C+Xisheng&rft.date=2024-04-03&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=984&rft_id=info:doi/10.1017%2Fjfm.2024.232&rft.externalDocID=10_1017_jfm_2024_232
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon