Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage
A focus of battery research has been the development of a range of lithium, sodium, and potassium cathodes, but improving anode materials is also an important goal. Silicon has shown some promise for replacing graphite because of its exceptional capacity, but the dramatic volume change during lithia...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 370; no. 6513; pp. 192 - 197 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
The American Association for the Advancement of Science
09.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A focus of battery research has been the development of a range of lithium, sodium, and potassium cathodes, but improving anode materials is also an important goal. Silicon has shown some promise for replacing graphite because of its exceptional capacity, but the dramatic volume change during lithiation-delithiation processes often leads to failure. Jin
et al.
developed a composite that is made of black phosphorous and graphite in its core and covered with swollen polyaniline. In contrast to previous efforts, bonding between the carbon and phosphorous allows for a high charging rate without sacrifices in capacity and cycling stability.
Science
, this issue p.
192
Black phosphorus composites with engineered interfaces deliver high capacity, high rate capability, and long cycle life.
High-rate lithium (Li) ion batteries that can be charged in minutes and store enough energy for a 350-mile driving range are highly desired for all-electric vehicles. A high charging rate usually leads to sacrifices in capacity and cycling stability. We report use of black phosphorus (BP) as the active anode for high-rate, high-capacity Li storage. The formation of covalent bonds with graphitic carbon restrains edge reconstruction in layered BP particles to ensure open edges for fast Li
+
entry; the coating of the covalently bonded BP-graphite particles with electrolyte-swollen polyaniline yields a stable solid–electrolyte interphase and inhibits the continuous growth of poorly conducting Li fluorides and carbonates to ensure efficient Li
+
transport. The resultant composite anode demonstrates an excellent combination of capacity, rate, and cycling endurance. |
---|---|
AbstractList | High-rate lithium (Li) ion batteries that can be charged in minutes and store enough energy for a 350-mile driving range are highly desired for all-electric vehicles. A high charging rate usually leads to sacrifices in capacity and cycling stability. We report use of black phosphorus (BP) as the active anode for high-rate, high-capacity Li storage. The formation of covalent bonds with graphitic carbon restrains edge reconstruction in layered BP particles to ensure open edges for fast Li+ entry; the coating of the covalently bonded BP-graphite particles with electrolyte-swollen polyaniline yields a stable solid-electrolyte interphase and inhibits the continuous growth of poorly conducting Li fluorides and carbonates to ensure efficient Li+ transport. The resultant composite anode demonstrates an excellent combination of capacity, rate, and cycling endurance.High-rate lithium (Li) ion batteries that can be charged in minutes and store enough energy for a 350-mile driving range are highly desired for all-electric vehicles. A high charging rate usually leads to sacrifices in capacity and cycling stability. We report use of black phosphorus (BP) as the active anode for high-rate, high-capacity Li storage. The formation of covalent bonds with graphitic carbon restrains edge reconstruction in layered BP particles to ensure open edges for fast Li+ entry; the coating of the covalently bonded BP-graphite particles with electrolyte-swollen polyaniline yields a stable solid-electrolyte interphase and inhibits the continuous growth of poorly conducting Li fluorides and carbonates to ensure efficient Li+ transport. The resultant composite anode demonstrates an excellent combination of capacity, rate, and cycling endurance. A focus of battery research has been the development of a range of lithium, sodium, and potassium cathodes, but improving anode materials is also an important goal. Silicon has shown some promise for replacing graphite because of its exceptional capacity, but the dramatic volume change during lithiation-delithiation processes often leads to failure. Jin et al. developed a composite that is made of black phosphorous and graphite in its core and covered with swollen polyaniline. In contrast to previous efforts, bonding between the carbon and phosphorous allows for a high charging rate without sacrifices in capacity and cycling stability. Science , this issue p. 192 Black phosphorus composites with engineered interfaces deliver high capacity, high rate capability, and long cycle life. High-rate lithium (Li) ion batteries that can be charged in minutes and store enough energy for a 350-mile driving range are highly desired for all-electric vehicles. A high charging rate usually leads to sacrifices in capacity and cycling stability. We report use of black phosphorus (BP) as the active anode for high-rate, high-capacity Li storage. The formation of covalent bonds with graphitic carbon restrains edge reconstruction in layered BP particles to ensure open edges for fast Li + entry; the coating of the covalently bonded BP-graphite particles with electrolyte-swollen polyaniline yields a stable solid–electrolyte interphase and inhibits the continuous growth of poorly conducting Li fluorides and carbonates to ensure efficient Li + transport. The resultant composite anode demonstrates an excellent combination of capacity, rate, and cycling endurance. Engineering phosphorous anodesA focus of battery research has been the development of a range of lithium, sodium, and potassium cathodes, but improving anode materials is also an important goal. Silicon has shown some promise for replacing graphite because of its exceptional capacity, but the dramatic volume change during lithiation-delithiation processes often leads to failure. Jin et al. developed a composite that is made of black phosphorous and graphite in its core and covered with swollen polyaniline. In contrast to previous efforts, bonding between the carbon and phosphorous allows for a high charging rate without sacrifices in capacity and cycling stability.Science, this issue p. 192High-rate lithium (Li) ion batteries that can be charged in minutes and store enough energy for a 350-mile driving range are highly desired for all-electric vehicles. A high charging rate usually leads to sacrifices in capacity and cycling stability. We report use of black phosphorus (BP) as the active anode for high-rate, high-capacity Li storage. The formation of covalent bonds with graphitic carbon restrains edge reconstruction in layered BP particles to ensure open edges for fast Li+ entry; the coating of the covalently bonded BP-graphite particles with electrolyte-swollen polyaniline yields a stable solid–electrolyte interphase and inhibits the continuous growth of poorly conducting Li fluorides and carbonates to ensure efficient Li+ transport. The resultant composite anode demonstrates an excellent combination of capacity, rate, and cycling endurance. |
Author | Lu, Ying-Rui Chan, Ting-Shan Ji, Hengxing Duan, Xiangfeng Yan, Wensheng Wang, Haiyun Goodenough, John B. Li, Wangda Qi, Zhikai Xin, Sen Xie, Huanyu Jin, Hongchang Zhang, Taiming Zhu, Jian Chuang, Chenghao Wu, Xiaojun Wan, Yangyang |
Author_xml | – sequence: 1 givenname: Hongchang orcidid: 0000-0002-3717-2696 surname: Jin fullname: Jin, Hongchang organization: Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China – sequence: 2 givenname: Sen surname: Xin fullname: Xin, Sen organization: CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China., Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA – sequence: 3 givenname: Chenghao orcidid: 0000-0001-8161-1521 surname: Chuang fullname: Chuang, Chenghao organization: Department of Physics, Tamkang University, Tamsui 251, New Taipei City, Taiwan – sequence: 4 givenname: Wangda orcidid: 0000-0001-8103-4285 surname: Li fullname: Li, Wangda organization: Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA – sequence: 5 givenname: Haiyun orcidid: 0000-0003-1345-2690 surname: Wang fullname: Wang, Haiyun organization: Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China – sequence: 6 givenname: Jian orcidid: 0000-0001-9852-1645 surname: Zhu fullname: Zhu, Jian organization: State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China – sequence: 7 givenname: Huanyu orcidid: 0000-0003-1470-1951 surname: Xie fullname: Xie, Huanyu organization: Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China – sequence: 8 givenname: Taiming orcidid: 0000-0002-0623-652X surname: Zhang fullname: Zhang, Taiming organization: Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China – sequence: 9 givenname: Yangyang surname: Wan fullname: Wan, Yangyang organization: Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China – sequence: 10 givenname: Zhikai orcidid: 0000-0002-0985-8316 surname: Qi fullname: Qi, Zhikai organization: Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China – sequence: 11 givenname: Wensheng surname: Yan fullname: Yan, Wensheng organization: National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China – sequence: 12 givenname: Ying-Rui orcidid: 0000-0002-6002-5627 surname: Lu fullname: Lu, Ying-Rui organization: National Synchrotron Radiation Research Center, 300 Hsinchu, Taiwan – sequence: 13 givenname: Ting-Shan orcidid: 0000-0001-5220-1611 surname: Chan fullname: Chan, Ting-Shan organization: National Synchrotron Radiation Research Center, 300 Hsinchu, Taiwan – sequence: 14 givenname: Xiaojun orcidid: 0000-0003-3606-1211 surname: Wu fullname: Wu, Xiaojun organization: Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China – sequence: 15 givenname: John B. orcidid: 0000-0001-9350-3034 surname: Goodenough fullname: Goodenough, John B. organization: Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA – sequence: 16 givenname: Hengxing orcidid: 0000-0003-2851-9878 surname: Ji fullname: Ji, Hengxing organization: Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China – sequence: 17 givenname: Xiangfeng orcidid: 0000-0002-4321-6288 surname: Duan fullname: Duan, Xiangfeng organization: Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA |
BookMark | eNp1kL1PwzAQxS1UJNrCzGqJhSWtY-fLI1R8SZVYYI5c-9K4JHawHVD_ewztVInhdCe93zvdvRmaGGsAoeuULNKUFksvNRgJCyG-8iqjZ2iaEp4nnBI2QVNCWJFUpMwv0Mz7HSFR42yKNvedkB94aK2P5UaPpe0H63UAj791aDGYrTYADhTWJoBrhIxSYx1u9bZNnAhwmKQYhNRhj7to02OPfbBObOESnTei83B17HP0_vjwtnpO1q9PL6u7dSIZoSGhRZ7xiktVMl4VsuSqBLbJFZWy2GSEqAoUUVlDq6jwUhWUN6SsFOUlo1kh2RzdHvYOzn6O4EPday-h64QBO_qaZhnnOWMpiejNCbqzozPxuj8qJynjLFL5gZLOeu-gqeN7ImhrghO6q1NS_yZfH5Ovj8lH3_LENzjdC7f_1_ED2BSMiQ |
CitedBy_id | crossref_primary_10_1002_sstr_202100122 crossref_primary_10_1002_adma_202107262 crossref_primary_10_1039_D3CE00205E crossref_primary_10_1016_j_jcis_2024_10_195 crossref_primary_10_2139_ssrn_3979635 crossref_primary_10_1002_adma_202202892 crossref_primary_10_1016_j_jallcom_2022_166220 crossref_primary_10_1002_aenm_202202660 crossref_primary_10_1002_aenm_202100864 crossref_primary_10_1016_j_chempr_2021_06_008 crossref_primary_10_1016_j_cej_2022_137924 crossref_primary_10_1002_anie_202214828 crossref_primary_10_1021_acsami_2c11132 crossref_primary_10_1007_s40820_022_00790_z crossref_primary_10_1007_s11426_023_1853_x crossref_primary_10_1021_jacs_3c14619 crossref_primary_10_1016_j_flatc_2021_100259 crossref_primary_10_1007_s12274_022_4833_1 crossref_primary_10_1039_D3TC00338H crossref_primary_10_1016_j_carbon_2024_119533 crossref_primary_10_1002_smll_202401204 crossref_primary_10_2139_ssrn_4088114 crossref_primary_10_1021_acs_jpcc_4c01211 crossref_primary_10_1021_acsanm_3c05103 crossref_primary_10_1016_j_ijhydene_2023_12_084 crossref_primary_10_1016_j_jpowsour_2021_230342 crossref_primary_10_1021_acsaem_4c01618 crossref_primary_10_1021_acsnano_2c05172 crossref_primary_10_1021_acsnano_2c07472 crossref_primary_10_1016_j_mattod_2023_06_022 crossref_primary_10_1016_j_compscitech_2022_109668 crossref_primary_10_1021_acscatal_4c06854 crossref_primary_10_1002_adma_202305317 crossref_primary_10_1016_j_commatsci_2024_113467 crossref_primary_10_1016_j_esci_2024_100328 crossref_primary_10_1039_D1SC01266E crossref_primary_10_1016_j_nanoen_2023_109020 crossref_primary_10_1007_s40145_022_0643_x crossref_primary_10_1360_TB_2023_0887 crossref_primary_10_1016_j_mtsust_2022_100226 crossref_primary_10_1063_1674_0068_cjcp2304035 crossref_primary_10_1103_PhysRevMaterials_5_024005 crossref_primary_10_1016_j_jechem_2024_11_065 crossref_primary_10_1016_j_jallcom_2023_172291 crossref_primary_10_1002_adma_202203617 crossref_primary_10_1039_D1DT02133H crossref_primary_10_1088_2515_7655_abf722 crossref_primary_10_1149_1945_7111_ac18e5 crossref_primary_10_1002_aenm_202003270 crossref_primary_10_1007_s40820_024_01560_9 crossref_primary_10_1021_acsnano_2c09679 crossref_primary_10_1002_ange_202416992 crossref_primary_10_1016_j_cej_2024_151507 crossref_primary_10_1016_j_colsurfa_2023_132524 crossref_primary_10_1016_j_est_2023_106915 crossref_primary_10_3390_en14144223 crossref_primary_10_1016_j_envpol_2024_123522 crossref_primary_10_1007_s11664_022_09706_4 crossref_primary_10_1149_2162_8777_ac5eb2 crossref_primary_10_1016_j_compositesb_2022_110308 crossref_primary_10_1002_adma_202314054 crossref_primary_10_1016_j_jallcom_2022_166022 crossref_primary_10_1016_j_polymer_2021_123573 crossref_primary_10_1021_acsnano_0c09898 crossref_primary_10_1002_aenm_202201130 crossref_primary_10_1002_adfm_202411651 crossref_primary_10_1039_D4TA01608D crossref_primary_10_1016_j_chphma_2021_09_005 crossref_primary_10_1093_nsr_nwad118 crossref_primary_10_1002_smll_202311782 crossref_primary_10_1016_j_jcis_2022_03_120 crossref_primary_10_1016_j_nanoen_2024_109792 crossref_primary_10_1021_acsami_1c22915 crossref_primary_10_1038_s41467_023_39384_7 crossref_primary_10_1002_aenm_202201015 crossref_primary_10_1021_acsmaterialslett_3c00199 crossref_primary_10_1002_advs_202200740 crossref_primary_10_1016_j_jallcom_2022_168331 crossref_primary_10_1002_aenm_202201141 crossref_primary_10_1002_anie_202215968 crossref_primary_10_1039_D1QM00627D crossref_primary_10_1038_s41467_024_52949_4 crossref_primary_10_3390_molecules27207033 crossref_primary_10_1016_j_cclet_2021_08_013 crossref_primary_10_1021_acsami_2c15947 crossref_primary_10_1021_acsnano_2c05014 crossref_primary_10_1016_j_apcatb_2021_120211 crossref_primary_10_1021_jacs_2c04176 crossref_primary_10_1039_D3EE00073G crossref_primary_10_1002_eom2_12452 crossref_primary_10_1002_advs_202105213 crossref_primary_10_1002_adma_202007952 crossref_primary_10_1007_s12274_021_3560_3 crossref_primary_10_1088_1674_1056_abff26 crossref_primary_10_1016_j_cej_2021_128744 crossref_primary_10_1021_acsami_1c20406 crossref_primary_10_1088_2515_7655_abf2da crossref_primary_10_1039_D0NA01019G crossref_primary_10_1016_j_cej_2024_158006 crossref_primary_10_1016_j_cej_2025_160846 crossref_primary_10_1002_er_8461 crossref_primary_10_1016_j_est_2023_110197 crossref_primary_10_1002_aesr_202100088 crossref_primary_10_1021_acsnano_2c08776 crossref_primary_10_1016_j_jechem_2023_01_027 crossref_primary_10_1002_advs_202409404 crossref_primary_10_1016_j_egyr_2022_03_130 crossref_primary_10_1007_s10854_023_11712_z crossref_primary_10_1016_j_mtphys_2022_100895 crossref_primary_10_1002_adfm_202400779 crossref_primary_10_1002_smll_202105572 crossref_primary_10_1002_adfm_202410451 crossref_primary_10_1002_anie_202315122 crossref_primary_10_1002_aenm_202202937 crossref_primary_10_1016_j_ensm_2024_103696 crossref_primary_10_1016_j_nanoen_2024_110356 crossref_primary_10_1016_j_cej_2023_146997 crossref_primary_10_1039_D4DT03185G crossref_primary_10_1002_adfm_202300795 crossref_primary_10_1126_sciadv_adq0655 crossref_primary_10_1021_acs_jpcc_4c05893 crossref_primary_10_1039_D1NR07987E crossref_primary_10_1039_D4EE00970C crossref_primary_10_1002_smll_202402483 crossref_primary_10_1021_acs_jpcc_2c02083 crossref_primary_10_1016_j_jcis_2023_04_005 crossref_primary_10_1039_D2CS01018F crossref_primary_10_1002_anie_202416992 crossref_primary_10_1007_s40820_022_00924_3 crossref_primary_10_1002_adma_202100113 crossref_primary_10_1016_j_cej_2022_140250 crossref_primary_10_1002_ange_202117851 crossref_primary_10_1021_acsami_1c18755 crossref_primary_10_1002_adfm_202101886 crossref_primary_10_1002_ange_202407551 crossref_primary_10_1016_j_est_2024_111632 crossref_primary_10_1016_j_cej_2024_151151 crossref_primary_10_1002_adfm_202203522 crossref_primary_10_1088_2053_1583_ad7271 crossref_primary_10_1088_2752_5724_ac4263 crossref_primary_10_1002_adfm_202409097 crossref_primary_10_1016_j_elecom_2021_107095 crossref_primary_10_1016_j_mseb_2022_116198 crossref_primary_10_1016_j_mseb_2023_117002 crossref_primary_10_1016_j_nanoen_2021_106591 crossref_primary_10_1002_advs_202307052 crossref_primary_10_1002_adsu_202100075 crossref_primary_10_1002_anie_202318663 crossref_primary_10_1002_batt_202200031 crossref_primary_10_1021_acs_nanolett_2c03038 crossref_primary_10_1021_acs_nanolett_1c04238 crossref_primary_10_1002_ange_202102368 crossref_primary_10_52396_JUSTC_2022_0105 crossref_primary_10_1016_j_cej_2025_161692 crossref_primary_10_1021_acsami_0c20721 crossref_primary_10_1021_acs_langmuir_0c02613 crossref_primary_10_1016_j_jpowsour_2021_229979 crossref_primary_10_1002_ange_202214828 crossref_primary_10_1039_D0CS00187B crossref_primary_10_1039_D1TA06481A crossref_primary_10_1021_acsami_2c01494 crossref_primary_10_1007_s10570_024_06128_9 crossref_primary_10_1002_smll_202300556 crossref_primary_10_1016_j_jpowsour_2022_232087 crossref_primary_10_1007_s40820_023_01026_4 crossref_primary_10_1002_adfm_202110016 crossref_primary_10_1002_adma_202308675 crossref_primary_10_1016_j_jcis_2023_04_039 crossref_primary_10_1016_j_electacta_2021_138735 crossref_primary_10_1002_aenm_202304408 crossref_primary_10_1021_acsnano_4c08258 crossref_primary_10_1016_j_nantod_2021_101349 crossref_primary_10_1016_j_apsusc_2021_149666 crossref_primary_10_1016_j_jcis_2021_07_135 crossref_primary_10_1002_cssc_202300312 crossref_primary_10_1016_j_nanoen_2022_107829 crossref_primary_10_1021_acsnano_0c10370 crossref_primary_10_1039_D2EE02742A crossref_primary_10_1002_cplu_202100393 crossref_primary_10_1002_smll_202105825 crossref_primary_10_1002_ange_202416047 crossref_primary_10_1016_j_nanoen_2022_106972 crossref_primary_10_1002_adma_202109356 crossref_primary_10_1016_j_xcrp_2022_100862 crossref_primary_10_1021_jacs_4c01711 crossref_primary_10_1038_s41560_023_01414_5 crossref_primary_10_1002_ange_202104671 crossref_primary_10_5796_electrochemistry_21_00132 crossref_primary_10_1016_j_cej_2021_132146 crossref_primary_10_1016_j_cej_2025_160355 crossref_primary_10_1021_acsenergylett_3c01134 crossref_primary_10_1016_j_matlet_2023_134376 crossref_primary_10_1016_j_apsusc_2023_157449 crossref_primary_10_1016_j_jechem_2022_07_032 crossref_primary_10_1016_j_jelechem_2023_117889 crossref_primary_10_1021_acs_chemrev_3c00646 crossref_primary_10_1039_D3DT04328B crossref_primary_10_1016_j_mtcomm_2022_104957 crossref_primary_10_1039_D4EE00407H crossref_primary_10_1002_aenm_202401832 crossref_primary_10_1016_j_cej_2024_155811 crossref_primary_10_1002_adfm_202110444 crossref_primary_10_1039_D0DT03911J crossref_primary_10_1016_j_chempr_2021_11_022 crossref_primary_10_1002_smll_202301574 crossref_primary_10_1016_j_nanoen_2025_110665 crossref_primary_10_1021_acsenergylett_1c00285 crossref_primary_10_1364_PRJ_483172 crossref_primary_10_1016_j_cej_2023_146801 crossref_primary_10_1038_s41467_022_33790_z crossref_primary_10_1002_smll_202102233 crossref_primary_10_2139_ssrn_3978514 crossref_primary_10_1016_j_jallcom_2022_167622 crossref_primary_10_1007_s11426_023_1918_0 crossref_primary_10_1002_adma_202416748 crossref_primary_10_1016_j_electacta_2023_143510 crossref_primary_10_1021_accountsmr_0c00070 crossref_primary_10_1002_cphc_202100832 crossref_primary_10_1021_acsnano_4c00881 crossref_primary_10_1039_D2TA09502E crossref_primary_10_1039_D2EE00358A crossref_primary_10_1021_acsaem_1c01638 crossref_primary_10_1039_D2NA00097K crossref_primary_10_1021_acsnano_0c10121 crossref_primary_10_1021_acsami_4c11060 crossref_primary_10_3390_agriculture13122262 crossref_primary_10_1039_D2SU00047D crossref_primary_10_1002_anie_202113576 crossref_primary_10_34133_2021_9754145 crossref_primary_10_1016_j_pnsc_2023_02_004 crossref_primary_10_1002_ange_202318663 crossref_primary_10_1007_s11581_022_04866_z crossref_primary_10_1021_acsanm_4c04473 crossref_primary_10_1002_aenm_202403640 crossref_primary_10_1016_j_jechem_2021_08_016 crossref_primary_10_1039_D2GC00727D crossref_primary_10_1007_s40820_021_00710_7 crossref_primary_10_1002_aenm_202002891 crossref_primary_10_1002_cjoc_202100936 crossref_primary_10_1016_j_surfin_2024_104347 crossref_primary_10_3390_molecules28135062 crossref_primary_10_1002_adma_202208514 crossref_primary_10_1002_inf2_12225 crossref_primary_10_1021_acsnano_3c07424 crossref_primary_10_1016_j_jssc_2023_124172 crossref_primary_10_1039_D4NJ03807J crossref_primary_10_1002_aenm_202102137 crossref_primary_10_1002_smll_202208282 crossref_primary_10_1002_ijch_202300169 crossref_primary_10_1002_adfm_202410948 crossref_primary_10_1007_s40820_022_00829_1 crossref_primary_10_1103_PhysRevB_106_024114 crossref_primary_10_1007_s40820_023_01265_5 crossref_primary_10_1002_adem_202100450 crossref_primary_10_1016_j_ceramint_2022_10_150 crossref_primary_10_1021_acsami_4c13036 crossref_primary_10_2139_ssrn_4072783 crossref_primary_10_1021_acsaem_1c00459 crossref_primary_10_1021_acsmaterialslett_4c01427 crossref_primary_10_1002_aenm_202302735 crossref_primary_10_1021_acsanm_4c06328 crossref_primary_10_1016_j_electacta_2022_141590 crossref_primary_10_1002_adfm_202107246 crossref_primary_10_1016_j_carbon_2021_07_053 crossref_primary_10_1002_adfm_202416361 crossref_primary_10_1007_s42114_021_00301_5 crossref_primary_10_1002_adfm_202200796 crossref_primary_10_1002_ange_202110373 crossref_primary_10_1021_acsnano_2c01038 crossref_primary_10_1021_acsaem_1c03739 crossref_primary_10_1002_adma_202301772 crossref_primary_10_1007_s42452_024_05716_5 crossref_primary_10_1002_adfm_202209283 crossref_primary_10_1016_j_cej_2021_130366 crossref_primary_10_1002_smsc_202200015 crossref_primary_10_1039_D1CP01509E crossref_primary_10_1002_adma_202104638 crossref_primary_10_1002_ange_202113313 crossref_primary_10_1002_smll_202007676 crossref_primary_10_1021_acsami_4c06205 crossref_primary_10_1002_admi_202201941 crossref_primary_10_1002_ente_202402067 crossref_primary_10_1002_smll_202007431 crossref_primary_10_1002_cey2_319 crossref_primary_10_1016_j_cclet_2021_04_025 crossref_primary_10_1021_acsnano_2c01200 crossref_primary_10_1016_j_spmi_2021_106966 crossref_primary_10_2139_ssrn_4095745 crossref_primary_10_1002_adma_202409278 crossref_primary_10_1002_advs_202300506 crossref_primary_10_1039_D3EE02392C crossref_primary_10_1002_adfm_202103067 crossref_primary_10_1016_j_jcis_2024_05_235 crossref_primary_10_1002_anie_202110373 crossref_primary_10_1021_acsanm_4c02388 crossref_primary_10_1021_acs_jpcc_4c06158 crossref_primary_10_1021_acsami_4c06693 crossref_primary_10_3390_molecules27185845 crossref_primary_10_1021_acsami_3c16942 crossref_primary_10_1016_j_jpowsour_2023_233650 crossref_primary_10_1021_acsaem_1c01259 crossref_primary_10_1016_j_jechem_2022_09_020 crossref_primary_10_1007_s11426_024_2265_9 crossref_primary_10_1039_D1TA10612K crossref_primary_10_1002_anie_202113313 crossref_primary_10_1021_acsami_1c16946 crossref_primary_10_1021_jacs_2c11264 crossref_primary_10_1088_1361_6528_acd121 crossref_primary_10_1016_j_electacta_2022_140596 crossref_primary_10_1002_smll_202302029 crossref_primary_10_1016_j_electacta_2022_141327 crossref_primary_10_1002_ange_202113576 crossref_primary_10_1016_j_diamond_2022_109610 crossref_primary_10_1002_ange_202215968 crossref_primary_10_1007_s11426_020_9882_8 crossref_primary_10_1016_j_matlet_2023_134542 crossref_primary_10_5796_electrochemistry_23_00038 crossref_primary_10_1002_admi_202102283 crossref_primary_10_1016_j_est_2023_109526 crossref_primary_10_1016_j_cclet_2021_11_030 crossref_primary_10_1021_acsami_5c00799 crossref_primary_10_1016_j_jpowsour_2024_235000 crossref_primary_10_1002_ange_202315122 crossref_primary_10_1002_cey2_460 crossref_primary_10_1002_slct_202203329 crossref_primary_10_1016_j_jechem_2023_05_002 crossref_primary_10_1016_j_cej_2022_140003 crossref_primary_10_1002_adma_202106704 crossref_primary_10_1002_smll_202304677 crossref_primary_10_1002_adma_202101259 crossref_primary_10_1016_j_apsusc_2022_152756 crossref_primary_10_1002_adfm_202102047 crossref_primary_10_1021_acsanm_4c00396 crossref_primary_10_1039_D2CC06392A crossref_primary_10_1021_acs_jpclett_2c03321 crossref_primary_10_1021_acs_chemrev_3c00389 crossref_primary_10_1016_j_cej_2023_141504 crossref_primary_10_1021_acs_chemmater_2c01798 crossref_primary_10_1038_s41467_023_35983_6 crossref_primary_10_1039_D1SC04202E crossref_primary_10_1002_adfm_202407246 crossref_primary_10_1063_5_0257063 crossref_primary_10_1002_aesr_202100022 crossref_primary_10_1002_est2_607 crossref_primary_10_1007_s11244_024_02008_5 crossref_primary_10_1021_acsnano_1c07414 crossref_primary_10_1021_acsanm_2c04583 crossref_primary_10_1021_acsphotonics_3c00598 crossref_primary_10_1039_D2CP05255E crossref_primary_10_1016_j_ensm_2023_102894 crossref_primary_10_1016_j_jallcom_2023_171827 crossref_primary_10_1002_advs_202201116 crossref_primary_10_1007_s12274_021_3974_y crossref_primary_10_1007_s12598_022_02135_6 crossref_primary_10_1016_j_jcis_2024_09_218 crossref_primary_10_1002_adma_202402961 crossref_primary_10_1007_s12274_023_5499_z crossref_primary_10_2139_ssrn_4118141 crossref_primary_10_1021_acs_nanolett_3c00656 crossref_primary_10_1016_j_jpowsour_2022_231686 crossref_primary_10_1002_celc_202300706 crossref_primary_10_1016_j_ceramint_2024_04_237 crossref_primary_10_1002_cey2_654 crossref_primary_10_1016_j_carbon_2021_10_026 crossref_primary_10_1021_acsami_3c10751 crossref_primary_10_1039_D4TA00950A crossref_primary_10_1016_j_ensm_2020_11_025 crossref_primary_10_1021_acsanm_4c02001 crossref_primary_10_1021_acs_inorgchem_4c02819 crossref_primary_10_1002_adsu_202200301 crossref_primary_10_1016_j_ensm_2023_102794 crossref_primary_10_1021_acs_chemmater_1c03727 crossref_primary_10_1002_smll_202105130 crossref_primary_10_1002_adfm_202306862 crossref_primary_10_1016_j_jcis_2024_09_113 crossref_primary_10_1002_aenm_202103888 crossref_primary_10_1002_adfm_202308929 crossref_primary_10_1016_j_mtener_2021_100662 crossref_primary_10_1002_adma_202211690 crossref_primary_10_1002_smtd_202400460 crossref_primary_10_1002_anie_202117851 crossref_primary_10_1016_j_apsusc_2021_150093 crossref_primary_10_1016_j_cej_2022_136232 crossref_primary_10_1002_anie_202407551 crossref_primary_10_1016_j_cej_2022_136593 crossref_primary_10_1039_D3EE02048G crossref_primary_10_1016_j_mtnano_2023_100344 crossref_primary_10_1016_j_cej_2022_135149 crossref_primary_10_1021_jacs_4c03680 crossref_primary_10_1016_j_apcatb_2022_121930 crossref_primary_10_1021_acsanm_4c01435 crossref_primary_10_1016_j_electacta_2021_139697 crossref_primary_10_1016_j_nanoen_2022_107145 crossref_primary_10_1002_smtd_202201390 crossref_primary_10_1021_acsanm_3c05944 crossref_primary_10_1002_batt_202100053 crossref_primary_10_1002_adma_202414904 crossref_primary_10_1080_15435075_2025_2483447 crossref_primary_10_1002_anie_202102368 crossref_primary_10_1016_j_cej_2025_159927 crossref_primary_10_1021_jacs_4c03691 crossref_primary_10_3390_nano13061060 crossref_primary_10_1021_acsnano_3c08712 crossref_primary_10_1016_j_jcis_2022_05_111 crossref_primary_10_1016_j_ijhydene_2024_03_126 crossref_primary_10_1002_anie_202416047 crossref_primary_10_1016_j_jclepro_2023_136246 crossref_primary_10_1021_acsami_3c08109 crossref_primary_10_1007_s10008_022_05192_0 crossref_primary_10_1021_acsami_3c17064 crossref_primary_10_1016_j_mtphys_2024_101396 crossref_primary_10_1002_adfm_202101059 crossref_primary_10_1016_j_jallcom_2021_160261 crossref_primary_10_1039_D3CP04650H crossref_primary_10_1002_anie_202104671 crossref_primary_10_1007_s12613_023_2598_5 crossref_primary_10_1016_j_jcis_2022_11_135 crossref_primary_10_1080_02508060_2021_2005332 crossref_primary_10_1016_j_ensm_2022_07_022 crossref_primary_10_1016_j_mtphys_2022_100812 crossref_primary_10_1016_j_coelec_2021_100840 crossref_primary_10_1039_D0MA01016B crossref_primary_10_1002_adma_202005924 crossref_primary_10_1016_j_joule_2023_12_022 crossref_primary_10_1021_acsanm_1c02356 crossref_primary_10_1002_adfm_202112074 crossref_primary_10_1016_j_mattod_2022_08_013 crossref_primary_10_1016_j_jpowsour_2023_233719 crossref_primary_10_1002_adfm_202304407 |
Cites_doi | 10.1002/adma.200602592 10.1038/nenergy.2016.97 10.1038/nenergy.2015.29 10.1063/1.3136860 10.1088/1361-6463/aa5583 10.1063/1.4975062 10.1016/j.jpowsour.2005.05.084 10.1103/PhysRevB.50.10457 10.1126/science.aao2808 10.1103/PhysRevB.54.11169 10.1109/JPROC.2012.2190170 10.1021/nl904132v 10.1021/acs.chemmater.5b04208 10.1039/b904250d 10.1073/pnas.1416581112 10.1038/s41565-018-0284-y 10.1103/PhysRevB.50.17953 10.1021/nl502865s 10.1021/nl501617j 10.1126/sciadv.1600021 10.1016/0368-2048(85)80085-2 10.1016/j.synthmet.2013.06.004 10.1107/S1600536807008422 10.1126/science.1213003 10.1002/app.1995.070550304 10.1002/anie.201410108 10.1016/S0379-6779(98)00193-3 10.1038/nmat2612 10.1021/acs.accounts.7b00450 10.1146/annurev-conmatphys-070909-103919 10.1038/s41586-018-0347-0 10.1016/S0368-2048(98)00423-X 10.1149/2.0081514jes 10.1021/ja3091438 10.1038/ncomms12191 10.1126/science.aan6814 10.1021/nl504336h 10.1021/jp074464w 10.1126/science.aal4373 10.1038/nenergy.2016.113 10.1126/science.aam5852 10.1016/0927-0256(96)00008-0 10.1021/jacs.8b02156 10.1088/0953-8984/21/10/104214 10.1149/1.1792242 10.1524/zkri.1981.155.3-4.307 |
ContentType | Journal Article |
Copyright | Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. |
Copyright_xml | – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. |
DBID | AAYXX CITATION 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.aav5842 |
DatabaseName | CrossRef Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 197 |
ExternalDocumentID | 10_1126_science_aav5842 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c302t-2654989cd73986c79d7e3b5d2cc6b400d8ed0d4f289d797d629f078d2973246c3 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Fri Jul 11 12:37:32 EDT 2025 Fri Jul 25 10:41:05 EDT 2025 Tue Jul 01 01:35:19 EDT 2025 Thu Apr 24 22:55:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6513 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c302t-2654989cd73986c79d7e3b5d2cc6b400d8ed0d4f289d797d629f078d2973246c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1345-2690 0000-0001-8103-4285 0000-0002-3717-2696 0000-0003-2851-9878 0000-0002-4321-6288 0000-0002-6002-5627 0000-0001-8161-1521 0000-0003-1470-1951 0000-0002-0985-8316 0000-0003-3606-1211 0000-0001-5220-1611 0000-0001-9852-1645 0000-0001-9350-3034 0000-0002-0623-652X |
PQID | 2449501393 |
PQPubID | 1256 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2449953310 proquest_journals_2449501393 crossref_citationtrail_10_1126_science_aav5842 crossref_primary_10_1126_science_aav5842 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-09 20201009 |
PublicationDateYYYYMMDD | 2020-10-09 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationYear | 2020 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 Lipson H. S. (e_1_3_2_19_2) 1942; 181 |
References_xml | – ident: e_1_3_2_8_2 doi: 10.1002/adma.200602592 – ident: e_1_3_2_27_2 doi: 10.1038/nenergy.2016.97 – ident: e_1_3_2_25_2 doi: 10.1038/nenergy.2015.29 – ident: e_1_3_2_45_2 doi: 10.1063/1.3136860 – ident: e_1_3_2_15_2 doi: 10.1088/1361-6463/aa5583 – ident: e_1_3_2_34_2 doi: 10.1063/1.4975062 – ident: e_1_3_2_50_2 doi: 10.1016/j.jpowsour.2005.05.084 – ident: e_1_3_2_49_2 doi: 10.1103/PhysRevB.50.10457 – ident: e_1_3_2_7_2 doi: 10.1126/science.aao2808 – ident: e_1_3_2_38_2 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_3_2_10_2 doi: 10.1109/JPROC.2012.2190170 – ident: e_1_3_2_14_2 doi: 10.1021/nl904132v – ident: e_1_3_2_21_2 doi: 10.1021/acs.chemmater.5b04208 – ident: e_1_3_2_28_2 doi: 10.1039/b904250d – ident: e_1_3_2_9_2 doi: 10.1073/pnas.1416581112 – ident: e_1_3_2_36_2 doi: 10.1038/s41565-018-0284-y – ident: e_1_3_2_40_2 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_3_2_46_2 doi: 10.1021/nl502865s – ident: e_1_3_2_11_2 doi: 10.1021/nl501617j – ident: e_1_3_2_26_2 doi: 10.1126/sciadv.1600021 – ident: e_1_3_2_47_2 doi: 10.1016/0368-2048(85)80085-2 – ident: e_1_3_2_44_2 – volume: 181 start-page: 101 year: 1942 ident: e_1_3_2_19_2 article-title: The structure of graphite publication-title: Proc. R. Soc. A – ident: e_1_3_2_41_2 – ident: e_1_3_2_17_2 doi: 10.1016/j.synthmet.2013.06.004 – ident: e_1_3_2_30_2 doi: 10.1107/S1600536807008422 – ident: e_1_3_2_3_2 doi: 10.1126/science.1213003 – ident: e_1_3_2_35_2 doi: 10.1002/app.1995.070550304 – ident: e_1_3_2_16_2 doi: 10.1002/anie.201410108 – ident: e_1_3_2_51_2 doi: 10.1016/S0379-6779(98)00193-3 – ident: e_1_3_2_43_2 doi: 10.1038/nmat2612 – ident: e_1_3_2_4_2 doi: 10.1021/acs.accounts.7b00450 – ident: e_1_3_2_18_2 doi: 10.1146/annurev-conmatphys-070909-103919 – ident: e_1_3_2_22_2 doi: 10.1038/s41586-018-0347-0 – ident: e_1_3_2_33_2 doi: 10.1016/S0368-2048(98)00423-X – ident: e_1_3_2_6_2 doi: 10.1149/2.0081514jes – ident: e_1_3_2_2_2 doi: 10.1021/ja3091438 – ident: e_1_3_2_31_2 doi: 10.1038/ncomms12191 – ident: e_1_3_2_20_2 doi: 10.1126/science.aan6814 – ident: e_1_3_2_13_2 doi: 10.1021/nl504336h – ident: e_1_3_2_42_2 doi: 10.1021/jp074464w – ident: e_1_3_2_24_2 doi: 10.1126/science.aal4373 – ident: e_1_3_2_5_2 doi: 10.1038/nenergy.2016.113 – ident: e_1_3_2_23_2 doi: 10.1126/science.aam5852 – ident: e_1_3_2_39_2 doi: 10.1016/0927-0256(96)00008-0 – ident: e_1_3_2_37_2 doi: 10.1021/jacs.8b02156 – ident: e_1_3_2_32_2 doi: 10.1088/0953-8984/21/10/104214 – ident: e_1_3_2_12_2 doi: 10.1149/1.1792242 – ident: e_1_3_2_29_2 doi: 10.1524/zkri.1981.155.3-4.307 – ident: e_1_3_2_48_2 doi: 10.1103/PhysRevB.50.10457 |
SSID | ssj0009593 |
Score | 2.706344 |
Snippet | A focus of battery research has been the development of a range of lithium, sodium, and potassium cathodes, but improving anode materials is also an important... Engineering phosphorous anodesA focus of battery research has been the development of a range of lithium, sodium, and potassium cathodes, but improving anode... High-rate lithium (Li) ion batteries that can be charged in minutes and store enough energy for a 350-mile driving range are highly desired for all-electric... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 192 |
SubjectTerms | Anodes Batteries Carbon Carbonates Cathodes Charging Covalent bonds Electric vehicles Electrode materials Electrolytes Fluorides Graphite Interfaces Lithium Phosphorus Polyanilines Stability Storage batteries |
Title | Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage |
URI | https://www.proquest.com/docview/2449501393 https://www.proquest.com/docview/2449953310 |
Volume | 370 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKJiReEBsgygYyEg9DU6okTpz4sStM1QS8sIm-RYnt0EmQTG0zCf4w_j7O9uVHgUqDh0aR7Tht7_Pd2f58R8hrzVJesCT3Sq6EB_6_9IpApp7U0tdchFJa8viHj3x-FV0s4sVo9HPAWmo2xUT--Ou5kv-RKpSBXM0p2X-QbNcpFMA9yBeuIGG43knGdvXt9GZZr-GzataWIG5YWBoPrWmMNqiVjQuxKi0ByzALTZhiz4SJcHcSbKa0WSTgsevm26khTebbPKFWDYBP2u3zDKTbERanjlbQsgzwscGSw4WLWzCvqy_23HFbvnDln_rTabNlg-vZsyX8lmVetzXvLQvhM9TikgKuXMA01ey7i6E2xmDIzhY5Beyb3JGhz4YamrncIghFHgdsoHIDl0sPrXfg2L5_GoZBKks9yfNbcLzC3ga2-_6_mcaOsGinSiHPsIMMO7hH9kOYnoB-3Z-evT073xnuGYNKDY5rtd9h2x_adgesj3P5iDzEyQmdOqQdkJGuDsl9l670-yE5QFGu6QlGK3_zmBQWhLQHIe1BSA0IaQ9C2oOQAlpoB0K6BUKKIKQIwifk6vzd5WzuYeIOTzI_3HghjyORCqkSJlIuE6ESzYpYwcjnBRgNlWrlq6iEyb5KRKJ4KEpwVZXJoxZGXLKnZK-qK_2M0DDWYHNUGvAijpTMoYXIOZiZlEld8mRMJu3fl0mMam-Sq3zNdohsTE66B25cQJfdTY9beWQ46tcZuMMiNvMmNiavumrQyWajLa903bg2hrYd-M_v_rYj8qAfJMdkb7Nq9AtweDfFS0TXL09rs7Q |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Black+phosphorus+composites+with+engineered+interfaces+for+high-rate+high-capacity+lithium+storage&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Jin%2C+Hongchang&rft.au=Xin%2C+Sen&rft.au=Chuang%2C+Chenghao&rft.au=Li%2C+Wangda&rft.date=2020-10-09&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=370&rft.issue=6513&rft.spage=192&rft.epage=197&rft_id=info:doi/10.1126%2Fscience.aav5842&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_aav5842 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |