Optical thermometry based on up-conversion luminescence of Tm3+ doped transparent Sr2YF7 glass ceramics
Tm3+/Yb3+ co-doped transparent glass ceramics (GC) containing Sr2YF7 nanocrystals were successfully manufactured by traditional melt-quenching technique. Their structural and up-conversion luminescent properties were systemically investigated through X-ray diffraction (XRD), transmission electron mi...
Saved in:
Published in | Journal of luminescence Vol. 192; pp. 303 - 309 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tm3+/Yb3+ co-doped transparent glass ceramics (GC) containing Sr2YF7 nanocrystals were successfully manufactured by traditional melt-quenching technique. Their structural and up-conversion luminescent properties were systemically investigated through X-ray diffraction (XRD), transmission electron microscope (TEM) and a series of spectroscopy methods. Tremendously enhanced up-conversion emissions with obvious Stark splitting and prolonged luminescence lifetime were observed after crystallization. These optical spectroscopy results manifest that Tm3+ ions have incorporated into the Sr2YF7 crystalline lattice with low phonon energy (~ 400cm−1) after heat-treatment. The 3F2,3 and 3H4 levels of Tm3+ can be explored as thermally coupled energy levels (TCEL) for temperature sensing because of their befitting energy gap (~ 2000cm−1). At the same time, the population of 1G4 state of Tm3+ is indirectly originated from 3H4 one. Therefore the temperature sensing performances of Tm3+ doped Sr2YF7 GC were investigated by fluorescence intensity ratio (FIR) between 3F2,3 → 3H6 and 1G4 → 3F4 up-conversion emissions of Tm3+. Results show that the theoretical maximum value of relative sensitivity SR-max is 1.16%K−1 at 428 K, and absolute sensitivity SA keeps increasing with temperature. Such Tm3+/Yb3+ co-doped Sr2YF7 GC may be excellent candidate for optical temperature sensors. |
---|---|
AbstractList | Tm3+/Yb3+ co-doped transparent glass ceramics (GC) containing Sr2YF7 nanocrystals were successfully manufactured by traditional melt-quenching technique. Their structural and up-conversion luminescent properties were systemically investigated through X-ray diffraction (XRD), transmission electron microscope (TEM) and a series of spectroscopy methods. Tremendously enhanced up-conversion emissions with obvious Stark splitting and prolonged luminescence lifetime were observed after crystallization. These optical spectroscopy results manifest that Tm3+ ions have incorporated into the Sr2YF7 crystalline lattice with low phonon energy (~ 400cm−1) after heat-treatment. The 3F2,3 and 3H4 levels of Tm3+ can be explored as thermally coupled energy levels (TCEL) for temperature sensing because of their befitting energy gap (~ 2000cm−1). At the same time, the population of 1G4 state of Tm3+ is indirectly originated from 3H4 one. Therefore the temperature sensing performances of Tm3+ doped Sr2YF7 GC were investigated by fluorescence intensity ratio (FIR) between 3F2,3 → 3H6 and 1G4 → 3F4 up-conversion emissions of Tm3+. Results show that the theoretical maximum value of relative sensitivity SR-max is 1.16%K−1 at 428 K, and absolute sensitivity SA keeps increasing with temperature. Such Tm3+/Yb3+ co-doped Sr2YF7 GC may be excellent candidate for optical temperature sensors. |
Author | Chen, LiPing Guo, Hai Zeng, QingGuang Hu, FangFang Wei, RongFei Chen, WeiPing |
Author_xml | – sequence: 1 givenname: WeiPing surname: Chen fullname: Chen, WeiPing organization: Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China – sequence: 2 givenname: FangFang surname: Hu fullname: Hu, FangFang organization: Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China – sequence: 3 givenname: RongFei surname: Wei fullname: Wei, RongFei organization: Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China – sequence: 4 givenname: QingGuang surname: Zeng fullname: Zeng, QingGuang organization: School of Applied Physics and Materials, Wu Yi University, Jiangmen, Guangdong 529020, China – sequence: 5 givenname: LiPing surname: Chen fullname: Chen, LiPing organization: Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China – sequence: 6 givenname: Hai surname: Guo fullname: Guo, Hai email: ghh@zjnu.cn organization: Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China |
BookMark | eNqFUE1LAzEUDFLBtvoPPOQuu-Zj3U08CFKsCoUerAdPIZt9W7PsF0la6L83tZ48KAw83vBmHjMzNOmHHhC6piSlhOa3Tdq0u872KSO0SEkEYWdoSkXBkkIIPkHTyLCEccov0Mz7hhDCpZBTtF2PwRrd4vAJrhs6CO6AS-2hwkOPd2Nihn4Pztu4ff8Ab6A3gIcabzp-g6thjLfB6d6P2kEf8JtjH8sCb1vtPTbgdGeNv0TntW49XP3MOXpfPm0WL8lq_fy6eFwlhhMWEkaLutK8yinkNJc815JKmgkgVAC7E5nMipJrnmdSkJoUlBtRlZEmrJRaVnyOspOvcYP3Dmo1Ottpd1CUqGNZqlGnstSxLEUiCIuy-18yY4MOMXVMZtv_xA8nMcRgewtOeWOPJVXWgQmqGuzfBl-AO4qg |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_1c05897 crossref_primary_10_1016_j_jallcom_2022_164402 crossref_primary_10_1111_jace_18805 crossref_primary_10_1016_j_matlet_2019_02_021 crossref_primary_10_1155_2020_8831332 crossref_primary_10_1016_j_jallcom_2017_12_260 crossref_primary_10_1016_j_jlumin_2020_117037 crossref_primary_10_1016_j_jlumin_2018_05_007 crossref_primary_10_1016_j_jallcom_2018_05_348 crossref_primary_10_1111_jace_16941 crossref_primary_10_1016_j_jallcom_2017_09_001 crossref_primary_10_1111_jace_16306 crossref_primary_10_1016_j_jlumin_2019_116971 crossref_primary_10_1063_5_0180228 crossref_primary_10_1016_j_jallcom_2025_179509 crossref_primary_10_1016_j_ceramint_2023_04_212 crossref_primary_10_1016_j_jre_2021_11_003 crossref_primary_10_1016_j_matlet_2023_134246 crossref_primary_10_1039_C9RA01088B crossref_primary_10_1016_j_jlumin_2019_01_024 crossref_primary_10_1016_j_ceramint_2018_09_212 crossref_primary_10_1016_j_jmst_2022_07_055 crossref_primary_10_1016_j_jnoncrysol_2018_10_041 crossref_primary_10_1016_j_jallcom_2020_155011 crossref_primary_10_1016_j_jlumin_2019_01_061 crossref_primary_10_1039_C8CP03808B crossref_primary_10_1016_j_optmat_2022_113389 crossref_primary_10_1016_j_jlumin_2024_120978 crossref_primary_10_1016_j_optmat_2018_06_028 crossref_primary_10_1016_j_ceramint_2021_08_123 crossref_primary_10_1016_j_ceramint_2019_11_081 crossref_primary_10_1016_j_jallcom_2021_162494 crossref_primary_10_1016_j_jlumin_2021_118490 crossref_primary_10_1016_j_optmat_2018_05_020 crossref_primary_10_1039_C9NJ01751H crossref_primary_10_1039_D4MA00926F crossref_primary_10_1016_j_jssc_2022_122927 crossref_primary_10_1016_j_ceramint_2022_09_302 crossref_primary_10_1016_j_ceramint_2021_09_049 crossref_primary_10_1039_D0TC01457E crossref_primary_10_1016_j_jlumin_2019_116807 crossref_primary_10_1039_C8RA00107C crossref_primary_10_1016_j_jallcom_2020_154011 crossref_primary_10_1016_j_jallcom_2021_159790 crossref_primary_10_1039_C8RA01245H crossref_primary_10_1016_j_jlumin_2017_10_014 crossref_primary_10_1016_j_optmat_2021_110840 crossref_primary_10_1016_j_optmat_2022_113313 crossref_primary_10_1016_j_jallcom_2018_05_323 crossref_primary_10_1007_s10854_019_00865_5 crossref_primary_10_1016_j_saa_2020_118627 crossref_primary_10_1016_j_sna_2018_10_039 crossref_primary_10_1016_j_jlumin_2023_120309 crossref_primary_10_1039_C7TC03873A crossref_primary_10_1111_jace_16480 crossref_primary_10_1016_j_jlumin_2019_116558 crossref_primary_10_1016_j_jallcom_2017_11_243 crossref_primary_10_1016_j_jlumin_2024_120556 crossref_primary_10_1039_C9NJ03969D crossref_primary_10_1016_j_jallcom_2021_158820 crossref_primary_10_1016_j_jallcom_2021_158986 crossref_primary_10_1016_j_sna_2018_11_043 crossref_primary_10_1016_j_jlumin_2019_116918 crossref_primary_10_1039_C7QI00497D crossref_primary_10_1016_j_jlumin_2023_119907 crossref_primary_10_1080_09500340_2023_2234505 crossref_primary_10_1016_j_optlastec_2024_111948 crossref_primary_10_1016_j_sna_2019_111628 crossref_primary_10_1016_j_ccr_2021_214040 crossref_primary_10_1016_j_jlumin_2020_117527 crossref_primary_10_1016_j_saa_2023_123333 crossref_primary_10_1039_D0TC03894F crossref_primary_10_1088_2053_1591_aaf525 crossref_primary_10_1016_j_jallcom_2017_11_201 crossref_primary_10_1016_j_jre_2021_09_014 crossref_primary_10_1111_jace_17867 crossref_primary_10_1016_j_optcom_2019_02_034 crossref_primary_10_1016_j_jallcom_2018_07_143 crossref_primary_10_1016_j_ceramint_2024_10_023 crossref_primary_10_1016_j_optcom_2020_126262 crossref_primary_10_1016_j_jallcom_2022_166094 crossref_primary_10_1016_j_jlumin_2018_06_028 crossref_primary_10_1016_j_radphyschem_2025_112672 crossref_primary_10_1016_j_optmat_2021_111803 crossref_primary_10_1364_OME_8_000041 crossref_primary_10_1016_j_jlumin_2019_116949 crossref_primary_10_1016_j_materresbull_2022_112031 crossref_primary_10_1016_j_jallcom_2017_12_169 crossref_primary_10_1016_j_jlumin_2019_05_057 crossref_primary_10_1016_j_ceramint_2020_07_134 crossref_primary_10_1016_j_saa_2019_117159 crossref_primary_10_1016_j_jallcom_2021_160849 |
Cites_doi | 10.1364/OE.21.021596 10.1007/s11051-014-2396-0 10.1016/j.ceramint.2015.07.034 10.1039/C6TC01841F 10.1016/j.snb.2015.01.136 10.1016/j.jallcom.2012.02.080 10.1021/jp048072q 10.1016/j.jlumin.2016.07.002 10.1016/j.optmat.2016.06.029 10.1038/srep45650 10.1016/j.snb.2014.06.074 10.1016/j.jallcom.2016.09.163 10.1039/C4NR02540G 10.1016/j.jallcom.2014.08.080 10.1364/OL.39.004164 10.1063/1.2969039 10.1039/C0JM02948C 10.1111/jace.12983 10.1007/s00340-013-5460-z 10.1016/j.snb.2012.07.009 10.1364/OE.20.018127 10.1039/C5RA27237H 10.1364/OE.24.022438 10.1016/j.snb.2015.06.132 10.1021/acs.inorgchem.6b03181 10.1002/adma.201601405 10.1021/nn100244a 10.1016/j.jlumin.2012.11.017 10.1039/C6CP05320C 10.1039/C6TC05203G 10.1364/OL.40.003607 10.1016/j.snb.2015.10.087 10.1039/C5TC00047E 10.1016/j.jallcom.2016.02.100 10.1016/j.jallcom.2016.02.138 10.1002/pssa.201329114 10.1063/1.1606526 10.1039/C6TC03946D 10.1016/j.jallcom.2015.02.170 10.1111/jace.13804 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. |
Copyright_xml | – notice: 2017 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jlumin.2017.07.002 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology Physics |
EISSN | 1872-7883 |
EndPage | 309 |
ExternalDocumentID | 10_1016_j_jlumin_2017_07_002 S002223131730981X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 3O- 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABEFU ABFNM ABFRF ABJNI ABMAC ABNEU ABTAH ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFO ACGFS ACNCT ACNNM ACRLP ADBBV ADECG ADEZE ADIYS ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A NDZJH NEJ O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSK SSM SSQ SSZ T5K UHS UNMZH UQL WH7 WUQ XFK XPP YQT ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c302t-217fda3d61e616936a919148e018e2584947b3a364980f0713c8db84902b9a9d3 |
IEDL.DBID | .~1 |
ISSN | 0022-2313 |
IngestDate | Tue Jul 01 03:44:00 EDT 2025 Thu Apr 24 23:08:25 EDT 2025 Fri Feb 23 02:27:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Optical thermometry Glass ceramics Up-conversion Sr2YF7:Tm3+/Yb3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c302t-217fda3d61e616936a919148e018e2584947b3a364980f0713c8db84902b9a9d3 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1016_j_jlumin_2017_07_002 crossref_citationtrail_10_1016_j_jlumin_2017_07_002 elsevier_sciencedirect_doi_10_1016_j_jlumin_2017_07_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2017 2017-12-00 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: December 2017 |
PublicationDecade | 2010 |
PublicationTitle | Journal of luminescence |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Chen, Kang, Zhang, Wang, Lv, Chen (bib28) 2017; 7 Wade, Collins, Baxter (bib1) 2003; 94 Ding, Zhang, Chen, Junhua Xi, Ji (bib6) 2016; 672 Chai, Li, Wang, Li, Yao (bib7) 2016; 24 Hao, Hu, Luo, Liu, Li, Wu (bib33) 2015; 41 Cao, Hu, Chen, Guo, Duan, Yin (bib23) 2017; 693 Xing, Yang, Ma, Wang (bib15) 2015; 221 Zhang, Ma, Li, Li, Huang, Yang (bib34) 2011; 21 Zhao, Yue, Jiang, Cui, Zhang, Yang (bib13) 2017; 5 Yang, Tu, Zheng, Liu, Huang, Ma (bib31) 2014; 6 Savchuk, Carvajal, Cascales, Massons, Aguilo, Diaz (bib38) 2016; 4 Li, Peng, Wondraczek, Zhao, Viana (bib25) 2015; 3 Xu, Zhang, Yang, Lu, Qiu, Yu (bib26) 2016; 28 Li, Cao, Wei, Yang, Guo (bib5) 2015; 98 Ma, Xu, Yang, Yang, Lin (bib29) 2012; 525 Chen, Liu, Wan, Chen (bib22) 2016; 672 Pandey, Rai (bib39) 2013; 113 Du, Ma, Qiang, Zhang, Wang (bib36) 2016; 18 Meng, Liu, Dai, Sun (bib21) 2016; 179 Xia, Du, Liao (bib30) 2013; 210 Qiao, Fan, Wang, Yang, Zhang (bib32) 2008; 104 Noculak, Fhui, Banski, Misiewicz, Podhorodecki (bib35) 2014; 16 Xu, Gao, Zheng, Zhang, Cao (bib3) 2012; 173 Xu, Gao, Zheng, Zhang, Cao (bib10) 2012; 20 Vetrone, Naccache, Zamarron, Juarranz de la Fuente, Sanz-Rodriguez, Martinez Maestro (bib2) 2010; 4 Pandey, Som, Kumar, Kumar, Kumar, Rai (bib40) 2014; 202 Cai, Zhao, Hu, Wei, Chen, Yin (bib12) 2017; 56 Cao, Li, Wang, Wei, Chen, Guo (bib16) 2016; 224 Chen, Wan, Zhou, Huang, Zhong, Ding (bib19) 2015; 638 Jiang, Zeng, Liao, Tian, Guo, Chen (bib11) 2014; 617 Guo, Dong, Yin, Zhang, Lou, Xia (bib37) 2004; 108 Chen, Shi, Tao, Ji, Zheng, Sang (bib18) 2016; 6 Tian, Tian, Cui, Huang, Wang, Chen (bib8) 2014; 39 Wei, Li, Yang, Chi, Guo (bib24) 2013; 137 Wang, Zheng, Xuan, Yan (bib4) 2013; 21 Chen, Wan, Zhou (bib9) 2015; 40 Wei, Yang, Li, Wang, Guo (bib27) 2014; 97 Cheng, Yang, Wang, Yang, Cheng (bib20) 2016; 58 Pereira, Kumar, Silva, Santos, Jaque, Jacinto (bib17) 2015; 213 Hu, Cao, Wei, Li, Cai, Guo (bib14) 2016; 4 Chen (10.1016/j.jlumin.2017.07.002_bib9) 2015; 40 Xu (10.1016/j.jlumin.2017.07.002_bib10) 2012; 20 Wang (10.1016/j.jlumin.2017.07.002_bib4) 2013; 21 Cao (10.1016/j.jlumin.2017.07.002_bib23) 2017; 693 Chen (10.1016/j.jlumin.2017.07.002_bib28) 2017; 7 Tian (10.1016/j.jlumin.2017.07.002_bib8) 2014; 39 Chen (10.1016/j.jlumin.2017.07.002_bib22) 2016; 672 Pandey (10.1016/j.jlumin.2017.07.002_bib39) 2013; 113 Ma (10.1016/j.jlumin.2017.07.002_bib29) 2012; 525 Cao (10.1016/j.jlumin.2017.07.002_bib16) 2016; 224 Wei (10.1016/j.jlumin.2017.07.002_bib27) 2014; 97 Li (10.1016/j.jlumin.2017.07.002_bib25) 2015; 3 Chen (10.1016/j.jlumin.2017.07.002_bib18) 2016; 6 Xia (10.1016/j.jlumin.2017.07.002_bib30) 2013; 210 Qiao (10.1016/j.jlumin.2017.07.002_bib32) 2008; 104 Savchuk (10.1016/j.jlumin.2017.07.002_bib38) 2016; 4 Cai (10.1016/j.jlumin.2017.07.002_bib12) 2017; 56 Xing (10.1016/j.jlumin.2017.07.002_bib15) 2015; 221 Pereira (10.1016/j.jlumin.2017.07.002_bib17) 2015; 213 Wade (10.1016/j.jlumin.2017.07.002_bib1) 2003; 94 Yang (10.1016/j.jlumin.2017.07.002_bib31) 2014; 6 Li (10.1016/j.jlumin.2017.07.002_bib5) 2015; 98 Zhao (10.1016/j.jlumin.2017.07.002_bib13) 2017; 5 Jiang (10.1016/j.jlumin.2017.07.002_bib11) 2014; 617 Chai (10.1016/j.jlumin.2017.07.002_bib7) 2016; 24 Cheng (10.1016/j.jlumin.2017.07.002_bib20) 2016; 58 Vetrone (10.1016/j.jlumin.2017.07.002_bib2) 2010; 4 Chen (10.1016/j.jlumin.2017.07.002_bib19) 2015; 638 Du (10.1016/j.jlumin.2017.07.002_bib36) 2016; 18 Wei (10.1016/j.jlumin.2017.07.002_bib24) 2013; 137 Ding (10.1016/j.jlumin.2017.07.002_bib6) 2016; 672 Hao (10.1016/j.jlumin.2017.07.002_bib33) 2015; 41 Zhang (10.1016/j.jlumin.2017.07.002_bib34) 2011; 21 Guo (10.1016/j.jlumin.2017.07.002_bib37) 2004; 108 Xu (10.1016/j.jlumin.2017.07.002_bib3) 2012; 173 Noculak (10.1016/j.jlumin.2017.07.002_bib35) 2014; 16 Pandey (10.1016/j.jlumin.2017.07.002_bib40) 2014; 202 Xu (10.1016/j.jlumin.2017.07.002_bib26) 2016; 28 Hu (10.1016/j.jlumin.2017.07.002_bib14) 2016; 4 Meng (10.1016/j.jlumin.2017.07.002_bib21) 2016; 179 |
References_xml | – volume: 179 start-page: 633 year: 2016 end-page: 638 ident: bib21 article-title: Study on optical temperature sensing properties of YVO publication-title: J. Lumin. – volume: 21 start-page: 717 year: 2011 end-page: 723 ident: bib34 article-title: Controllable and white upconversion luminescence in BaYF publication-title: J. Mater. Chem. – volume: 6 start-page: 21540 year: 2016 end-page: 21545 ident: bib18 article-title: Optical temperature sensing with minimized heating effect using core-shell upconversion nanoparticles publication-title: RSC Adv. – volume: 173 start-page: 250 year: 2012 end-page: 253 ident: bib3 article-title: An optical temperature sensor based on the upconversion luminescence from Tm publication-title: Sens. Actuators B Chem. – volume: 5 start-page: 1607 year: 2017 end-page: 1613 ident: bib13 article-title: Ratiometric dual-emitting MOF superset of dye thermometers with a tunable operating range and sensitivity publication-title: J. Mater. Chem. C – volume: 104 year: 2008 ident: bib32 article-title: Luminescence behavior of Er publication-title: J. Appl. Phys. – volume: 213 start-page: 65 year: 2015 end-page: 71 ident: bib17 article-title: Yb publication-title: Sens. Actuators B Chem. – volume: 224 start-page: 507 year: 2016 end-page: 513 ident: bib16 article-title: Optical thermometry based on up-conversion luminescence behavior of self-crystallized K publication-title: Sens. Actuators B Chem. – volume: 20 start-page: 18127 year: 2012 end-page: 18137 ident: bib10 article-title: Short-wavelength upconversion emissions in Ho publication-title: Opt. Express – volume: 58 start-page: 449 year: 2016 end-page: 453 ident: bib20 article-title: Up-conversion luminescence and optical temperature sensing behaviour of Yb publication-title: Opt. Mater. – volume: 18 start-page: 26894 year: 2016 end-page: 26899 ident: bib36 article-title: Emission in Gd publication-title: Phys. Chem. Chem. Phys. – volume: 98 start-page: 3824 year: 2015 end-page: 3830 ident: bib5 article-title: Optical thermometry based on up-conversion luminescence behavior of Er publication-title: J. Am. Ceram. Soc. – volume: 97 start-page: 2012 year: 2014 end-page: 2015 ident: bib27 article-title: Elaboration, structure, and intense upconversion in transparent KYb publication-title: J. Am. Ceram. Soc. – volume: 21 start-page: 21596 year: 2013 end-page: 21606 ident: bib4 article-title: Optical temperature sensing of NaYbF publication-title: Opt. Express – volume: 7 start-page: 45650 year: 2017 ident: bib28 article-title: Controllable optical modulation of blue/green up-conversion fluorescence from Tm publication-title: Sci. Rep. – volume: 39 start-page: 4164 year: 2014 end-page: 4167 ident: bib8 article-title: Excellent optical thermometry based on single-color fluorescence in spherical NaEuF publication-title: Opt. Lett. – volume: 41 start-page: 14130 year: 2015 end-page: 14136 ident: bib33 article-title: Preparation and properties of transparent cordierite-based glass-ceramics with high crystallinity publication-title: Ceram. Int. – volume: 525 start-page: 97 year: 2012 end-page: 102 ident: bib29 article-title: Solvothermal synthesis and tailored upconversion emission of monodisperse ultrasmall face-centered cubic Sr publication-title: J. Alloy. Compd. – volume: 6 start-page: 11098 year: 2014 end-page: 11105 ident: bib31 article-title: Lanthanide-doped Sr publication-title: Nanoscale – volume: 4 start-page: 3254 year: 2010 end-page: 3258 ident: bib2 article-title: Temperature sensing using fluorescent nanothermometers publication-title: ACS Nano – volume: 137 start-page: 70 year: 2013 end-page: 72 ident: bib24 article-title: Enhanced green upconversion in Tb publication-title: J. Lumin. – volume: 672 start-page: 117 year: 2016 end-page: 124 ident: bib6 article-title: Color-tunable luminescence, energy transfer and temperature sensing behavior of hexagonal NaYF publication-title: J. Alloy. Compd. – volume: 56 start-page: 4039 year: 2017 end-page: 4046 ident: bib12 article-title: Temperature sensing using thermal population of low-lying energy levels with (Sm publication-title: Inorg. Chem. – volume: 4 start-page: 9976 year: 2016 end-page: 9985 ident: bib14 article-title: Luminescence properties of Er publication-title: J. Mater. Chem. C – volume: 672 start-page: 380 year: 2016 end-page: 385 ident: bib22 article-title: A highly sensitive upconverting nano-glass-ceramic-based optical thermometer publication-title: J. Alloy. Compd. – volume: 108 start-page: 19205 year: 2004 end-page: 19209 ident: bib37 article-title: Visible upconversion in rare earth ion-doped Gd publication-title: J. Phys. Chem. B – volume: 40 start-page: 3607 year: 2015 end-page: 3610 ident: bib9 article-title: Optical spectroscopy of Cr publication-title: Opt. Lett. – volume: 16 start-page: 2396 year: 2014 ident: bib35 article-title: Yb publication-title: J. Nanopart. Res. – volume: 4 start-page: 6602 year: 2016 end-page: 6613 ident: bib38 article-title: Thermochromic upconversion nanoparticles for visual temperature sensors with high thermal, spatial and temporal resolution publication-title: J. Mater. Chem. C – volume: 693 start-page: 326 year: 2017 end-page: 331 ident: bib23 article-title: Optical thermometry based on up-conversion luminescence behavior of Er publication-title: J. Alloy. Compd. – volume: 113 start-page: 221 year: 2013 end-page: 225 ident: bib39 article-title: Optical thermometry using FIR of two close lying levels of different ions in Y publication-title: Appl. Phys. B – Lasers Opt. – volume: 617 start-page: 538 year: 2014 end-page: 541 ident: bib11 article-title: Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF publication-title: J. Alloy. Compd. – volume: 3 start-page: 3406 year: 2015 end-page: 3415 ident: bib25 article-title: Red to near infrared ultralong lasting luminescence from Mn publication-title: J. Mater. Chem. C – volume: 210 start-page: 1734 year: 2013 end-page: 1737 ident: bib30 article-title: Facile hydrothermal synthesis and upconversion luminescence of tetragonal Sr publication-title: Phys. Status Solidi A – volume: 24 start-page: 22438 year: 2016 end-page: 22447 ident: bib7 article-title: Color-tunable upconversion photoluminescence and highly performed optical temperature sensing in Er publication-title: Opt. Express – volume: 221 start-page: 458 year: 2015 end-page: 462 ident: bib15 article-title: Effect of crystallinity on the optical thermometry sensitivity of Tm publication-title: Sens. Actuators B Chem. – volume: 638 start-page: 21 year: 2015 end-page: 28 ident: bib19 article-title: Bulk glass ceramics containing Yb publication-title: J. Alloy. Compd. – volume: 28 start-page: 8045 year: 2016 end-page: 8050 ident: bib26 article-title: Phonon-assisted population inversion in lanthanide-doped upconversion Ba publication-title: Adv. Mater. – volume: 202 start-page: 1305 year: 2014 end-page: 1312 ident: bib40 article-title: Enhanced upconversion and temperature sensing study of Er publication-title: Sens. Actuators B Chem. – volume: 94 start-page: 4743 year: 2003 end-page: 4756 ident: bib1 article-title: Fluorescence intensity ratio technique for optical fiber point temperature sensing publication-title: J. Appl. Phys. – volume: 21 start-page: 21596 year: 2013 ident: 10.1016/j.jlumin.2017.07.002_bib4 article-title: Optical temperature sensing of NaYbF4: Tm3+ @ SiO2 core-shell micro-particles induced by infrared excitation publication-title: Opt. Express doi: 10.1364/OE.21.021596 – volume: 16 start-page: 2396 year: 2014 ident: 10.1016/j.jlumin.2017.07.002_bib35 article-title: Yb3+ and Tm3+ concentration-dependent structural and optical properties of hexagonal NaGdF4 nanocrystals publication-title: J. Nanopart. Res. doi: 10.1007/s11051-014-2396-0 – volume: 41 start-page: 14130 year: 2015 ident: 10.1016/j.jlumin.2017.07.002_bib33 article-title: Preparation and properties of transparent cordierite-based glass-ceramics with high crystallinity publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.07.034 – volume: 4 start-page: 6602 year: 2016 ident: 10.1016/j.jlumin.2017.07.002_bib38 article-title: Thermochromic upconversion nanoparticles for visual temperature sensors with high thermal, spatial and temporal resolution publication-title: J. Mater. Chem. C doi: 10.1039/C6TC01841F – volume: 213 start-page: 65 year: 2015 ident: 10.1016/j.jlumin.2017.07.002_bib17 article-title: Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2015.01.136 – volume: 525 start-page: 97 year: 2012 ident: 10.1016/j.jlumin.2017.07.002_bib29 article-title: Solvothermal synthesis and tailored upconversion emission of monodisperse ultrasmall face-centered cubic Sr2YF7 nanocrystals publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2012.02.080 – volume: 108 start-page: 19205 year: 2004 ident: 10.1016/j.jlumin.2017.07.002_bib37 article-title: Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals publication-title: J. Phys. Chem. B doi: 10.1021/jp048072q – volume: 179 start-page: 633 year: 2016 ident: 10.1016/j.jlumin.2017.07.002_bib21 article-title: Study on optical temperature sensing properties of YVO4:Er3+, Yb3+ nanocrystals publication-title: J. Lumin. doi: 10.1016/j.jlumin.2016.07.002 – volume: 58 start-page: 449 year: 2016 ident: 10.1016/j.jlumin.2017.07.002_bib20 article-title: Up-conversion luminescence and optical temperature sensing behaviour of Yb3+/Er3+ codoped CaWO4 material publication-title: Opt. Mater. doi: 10.1016/j.optmat.2016.06.029 – volume: 7 start-page: 45650 year: 2017 ident: 10.1016/j.jlumin.2017.07.002_bib28 article-title: Controllable optical modulation of blue/green up-conversion fluorescence from Tm3+ (Er3+) single-doped glass ceramics upon two-step excitation of two-wavelengths publication-title: Sci. Rep. doi: 10.1038/srep45650 – volume: 202 start-page: 1305 year: 2014 ident: 10.1016/j.jlumin.2017.07.002_bib40 article-title: Enhanced upconversion and temperature sensing study of Er3+-Yb3+ codoped tungsten-tellurite glass publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2014.06.074 – volume: 693 start-page: 326 year: 2017 ident: 10.1016/j.jlumin.2017.07.002_bib23 article-title: Optical thermometry based on up-conversion luminescence behavior of Er3+-doped KYb2F7 nano-crystals in bulk glass ceramics publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2016.09.163 – volume: 6 start-page: 11098 year: 2014 ident: 10.1016/j.jlumin.2017.07.002_bib31 article-title: Lanthanide-doped Sr2YF7 nanoparticles: controlled synthesis, optical spectroscopy and biodetection publication-title: Nanoscale doi: 10.1039/C4NR02540G – volume: 617 start-page: 538 year: 2014 ident: 10.1016/j.jlumin.2017.07.002_bib11 article-title: Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4:Yb3+/Er3+ nanocrystals publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2014.08.080 – volume: 39 start-page: 4164 year: 2014 ident: 10.1016/j.jlumin.2017.07.002_bib8 article-title: Excellent optical thermometry based on single-color fluorescence in spherical NaEuF4 phosphor publication-title: Opt. Lett. doi: 10.1364/OL.39.004164 – volume: 104 year: 2008 ident: 10.1016/j.jlumin.2017.07.002_bib32 article-title: Luminescence behavior of Er3+ doped glass ceramics containing Sr2RF7 (R = Y, Gd, La) nanocrystals publication-title: J. Appl. Phys. doi: 10.1063/1.2969039 – volume: 21 start-page: 717 year: 2011 ident: 10.1016/j.jlumin.2017.07.002_bib34 article-title: Controllable and white upconversion luminescence in BaYF5:Ln3+ (Ln = Yb, Er, Tm) nanocrystals publication-title: J. Mater. Chem. doi: 10.1039/C0JM02948C – volume: 97 start-page: 2012 year: 2014 ident: 10.1016/j.jlumin.2017.07.002_bib27 article-title: Elaboration, structure, and intense upconversion in transparent KYb2F7:Ho3+ glass-ceramics publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.12983 – volume: 113 start-page: 221 year: 2013 ident: 10.1016/j.jlumin.2017.07.002_bib39 article-title: Optical thermometry using FIR of two close lying levels of different ions in Y2O3:Ho3+-Tm3+-Yb3+ phosphor publication-title: Appl. Phys. B – Lasers Opt. doi: 10.1007/s00340-013-5460-z – volume: 173 start-page: 250 year: 2012 ident: 10.1016/j.jlumin.2017.07.002_bib3 article-title: An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2012.07.009 – volume: 20 start-page: 18127 year: 2012 ident: 10.1016/j.jlumin.2017.07.002_bib10 article-title: Short-wavelength upconversion emissions in Ho3+/Yb3+ codoped glass ceramic and the optical thermometry behavior publication-title: Opt. Express doi: 10.1364/OE.20.018127 – volume: 6 start-page: 21540 year: 2016 ident: 10.1016/j.jlumin.2017.07.002_bib18 article-title: Optical temperature sensing with minimized heating effect using core-shell upconversion nanoparticles publication-title: RSC Adv. doi: 10.1039/C5RA27237H – volume: 24 start-page: 22438 year: 2016 ident: 10.1016/j.jlumin.2017.07.002_bib7 article-title: Color-tunable upconversion photoluminescence and highly performed optical temperature sensing in Er3+/Yb3+ co-doped ZnWO4 publication-title: Opt. Express doi: 10.1364/OE.24.022438 – volume: 221 start-page: 458 year: 2015 ident: 10.1016/j.jlumin.2017.07.002_bib15 article-title: Effect of crystallinity on the optical thermometry sensitivity of Tm3+/Yb3+ codoped LiNbO3 crystal publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2015.06.132 – volume: 56 start-page: 4039 year: 2017 ident: 10.1016/j.jlumin.2017.07.002_bib12 article-title: Temperature sensing using thermal population of low-lying energy levels with (Sm0.01Gd0.99)VO4 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b03181 – volume: 28 start-page: 8045 year: 2016 ident: 10.1016/j.jlumin.2017.07.002_bib26 article-title: Phonon-assisted population inversion in lanthanide-doped upconversion Ba2LaF7 nanocrystals in glass-ceramics publication-title: Adv. Mater. doi: 10.1002/adma.201601405 – volume: 4 start-page: 3254 year: 2010 ident: 10.1016/j.jlumin.2017.07.002_bib2 article-title: Temperature sensing using fluorescent nanothermometers publication-title: ACS Nano doi: 10.1021/nn100244a – volume: 137 start-page: 70 year: 2013 ident: 10.1016/j.jlumin.2017.07.002_bib24 article-title: Enhanced green upconversion in Tb3+-Yb3+ co-doped oxyfluoride glass ceramics containing LaF3 nanocrystals publication-title: J. Lumin. doi: 10.1016/j.jlumin.2012.11.017 – volume: 18 start-page: 26894 year: 2016 ident: 10.1016/j.jlumin.2017.07.002_bib36 article-title: Emission in Gd6O5F8:Yb3+,Er3+ micro-particles for multimodal luminescence and temperature sensing upon 980 nm excitation publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP05320C – volume: 5 start-page: 1607 year: 2017 ident: 10.1016/j.jlumin.2017.07.002_bib13 article-title: Ratiometric dual-emitting MOF superset of dye thermometers with a tunable operating range and sensitivity publication-title: J. Mater. Chem. C doi: 10.1039/C6TC05203G – volume: 40 start-page: 3607 year: 2015 ident: 10.1016/j.jlumin.2017.07.002_bib9 article-title: Optical spectroscopy of Cr3+-doped transparent nano-glass ceramics for lifetime-based temperature sensing publication-title: Opt. Lett. doi: 10.1364/OL.40.003607 – volume: 224 start-page: 507 year: 2016 ident: 10.1016/j.jlumin.2017.07.002_bib16 article-title: Optical thermometry based on up-conversion luminescence behavior of self-crystallized K3YF6:Er3+ glass ceramics publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2015.10.087 – volume: 3 start-page: 3406 year: 2015 ident: 10.1016/j.jlumin.2017.07.002_bib25 article-title: Red to near infrared ultralong lasting luminescence from Mn2+-doped sodium gallium aluminum germanate glasses and (Al,Ga)-albite glass-ceramics publication-title: J. Mater. Chem. C doi: 10.1039/C5TC00047E – volume: 672 start-page: 117 year: 2016 ident: 10.1016/j.jlumin.2017.07.002_bib6 article-title: Color-tunable luminescence, energy transfer and temperature sensing behavior of hexagonal NaYF4:Ce3+/Tb3+/Eu3+ microcrystals publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2016.02.100 – volume: 672 start-page: 380 year: 2016 ident: 10.1016/j.jlumin.2017.07.002_bib22 article-title: A highly sensitive upconverting nano-glass-ceramic-based optical thermometer publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2016.02.138 – volume: 210 start-page: 1734 year: 2013 ident: 10.1016/j.jlumin.2017.07.002_bib30 article-title: Facile hydrothermal synthesis and upconversion luminescence of tetragonal Sr2LnF7:Yb3+/Er3+ (Ln = Y, Gd) nanocrystals publication-title: Phys. Status Solidi A doi: 10.1002/pssa.201329114 – volume: 94 start-page: 4743 year: 2003 ident: 10.1016/j.jlumin.2017.07.002_bib1 article-title: Fluorescence intensity ratio technique for optical fiber point temperature sensing publication-title: J. Appl. Phys. doi: 10.1063/1.1606526 – volume: 4 start-page: 9976 year: 2016 ident: 10.1016/j.jlumin.2017.07.002_bib14 article-title: Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion publication-title: J. Mater. Chem. C doi: 10.1039/C6TC03946D – volume: 638 start-page: 21 year: 2015 ident: 10.1016/j.jlumin.2017.07.002_bib19 article-title: Bulk glass ceramics containing Yb3+/Er3+: β-nagdf4 nanocrystals: phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2015.02.170 – volume: 98 start-page: 3824 year: 2015 ident: 10.1016/j.jlumin.2017.07.002_bib5 article-title: Optical thermometry based on up-conversion luminescence behavior of Er3+ -doped transparent Sr2YbF7 glass-ceramics publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.13804 |
SSID | ssj0003989 |
Score | 2.5073693 |
Snippet | Tm3+/Yb3+ co-doped transparent glass ceramics (GC) containing Sr2YF7 nanocrystals were successfully manufactured by traditional melt-quenching technique. Their... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 303 |
SubjectTerms | Glass ceramics Optical thermometry Sr2YF7:Tm3+/Yb3 Up-conversion |
Title | Optical thermometry based on up-conversion luminescence of Tm3+ doped transparent Sr2YF7 glass ceramics |
URI | https://dx.doi.org/10.1016/j.jlumin.2017.07.002 |
Volume | 192 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jIvoiOhXnx8iDbxLXNl2TPI7hmIrzwQ3mU2mTVCauLVv34It_u7m09QNBwcdeLxCu4X6X693vEDqHtFogXEp6ivnEFzQiEaOCyMSgXxxTT3Hod74bB6OpfzPrzRpoUPfCQFll5ftLn269dSXpVtbs5vM59PgCtrkGAKkjuDuDDnafwSm_fPss86CCi5oxHLTr9jlb4_VsHMAcWFBdZik8q-TKD3j6AjnDXbRTxYq4X25nDzV02kKb5fTI1xbaGtTD2ozUVnLK1T56us9tehpDZLfIFtq8x4BVCmcpXufE1pnbJBm2-7J8TlLjLMGTBb3AKsuNbmFJz6FTrMAPS-9xyLANtLHUSxhhvzpA0-HVZDAi1TQFIqnjFcTcPRIVURW4OgAGliASwO3GteNy7Zk4RPgsphENfMGdBC6vkqvYiB0vFpFQ9BA10yzVRwgzR9LEASo_7fuKeVz3zM2DS5YYiSdVG9HaiKGsqMZh4sVLWNeUPYel6UMwfejAP3CvjcjHqryk2vhDn9XfJ_x2ZEKDBr-uPP73yhO0DU9lPcspahbLtT4zUUkRd-yx66CN_vXtaPwO3SXgRA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVqhcUCkgChR8aE_INLGzsX3gUBVWW_o6dCstp5DYDtqK3UTbVKgX_hR_sDNOAlSVqITUqx-JM7ZmxpNvvgHYorBaamLJB04lPDEy57mShtsSrV9RSOE05TsfHaejs-TzZDBZgl99LgzBKjvd3-r0oK27lp1Omjv1dEo5vmTbYjSAMjI6nnTIygN_9QPvbRcf9j_iJm8LMfw03hvxrrQAtzISDUdHvHS5dGnsU6IjSXNDRGfaR7H2Ao2ySVQhc5kmRkcl3eSsdgU2R6IwuXESn_sAVhJUF1Q24f3PP7gSabTpKcppeX2-XgCVnaPGmRLtaqwCZ2gXzbllD_-yccM1eNw5p2y3_f4nsOTn6_CwLVd5tQ6re311OGwN0FF78RS-ndQhHs7IlZxVM4_9jIyjY9WcXdY8ANtDVI6FdQUCKetZVbLxTL5jrqpxbBNY1ik1rWGnC_FlqFjw7Jn1i3yGb3oGZ_ci4-ewPK_m_gUwFVlZRsQd6JPEKaH9AK862qoSW4R1GyB7IWa24zanEhvfsx7Edp61os9I9FlEP93FBvDfs-qW2-OO8arfn-zGGc3Q_Pxz5sv_nvkWVkfjo8PscP_44BU8op4WTPMalpvFpd9El6gp3oQjyODrfZ_5a8vAGTE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+thermometry+based+on+up-conversion+luminescence+of+Tm3%2B+doped+transparent+Sr2YF7+glass+ceramics&rft.jtitle=Journal+of+luminescence&rft.au=Chen%2C+WeiPing&rft.au=Hu%2C+FangFang&rft.au=Wei%2C+RongFei&rft.au=Zeng%2C+QingGuang&rft.date=2017-12-01&rft.issn=0022-2313&rft.volume=192&rft.spage=303&rft.epage=309&rft_id=info:doi/10.1016%2Fj.jlumin.2017.07.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jlumin_2017_07_002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2313&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2313&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2313&client=summon |