Optical thermometry based on up-conversion luminescence of Tm3+ doped transparent Sr2YF7 glass ceramics

Tm3+/Yb3+ co-doped transparent glass ceramics (GC) containing Sr2YF7 nanocrystals were successfully manufactured by traditional melt-quenching technique. Their structural and up-conversion luminescent properties were systemically investigated through X-ray diffraction (XRD), transmission electron mi...

Full description

Saved in:
Bibliographic Details
Published inJournal of luminescence Vol. 192; pp. 303 - 309
Main Authors Chen, WeiPing, Hu, FangFang, Wei, RongFei, Zeng, QingGuang, Chen, LiPing, Guo, Hai
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tm3+/Yb3+ co-doped transparent glass ceramics (GC) containing Sr2YF7 nanocrystals were successfully manufactured by traditional melt-quenching technique. Their structural and up-conversion luminescent properties were systemically investigated through X-ray diffraction (XRD), transmission electron microscope (TEM) and a series of spectroscopy methods. Tremendously enhanced up-conversion emissions with obvious Stark splitting and prolonged luminescence lifetime were observed after crystallization. These optical spectroscopy results manifest that Tm3+ ions have incorporated into the Sr2YF7 crystalline lattice with low phonon energy (~ 400cm−1) after heat-treatment. The 3F2,3 and 3H4 levels of Tm3+ can be explored as thermally coupled energy levels (TCEL) for temperature sensing because of their befitting energy gap (~ 2000cm−1). At the same time, the population of 1G4 state of Tm3+ is indirectly originated from 3H4 one. Therefore the temperature sensing performances of Tm3+ doped Sr2YF7 GC were investigated by fluorescence intensity ratio (FIR) between 3F2,3 → 3H6 and 1G4 → 3F4 up-conversion emissions of Tm3+. Results show that the theoretical maximum value of relative sensitivity SR-max is 1.16%K−1 at 428 K, and absolute sensitivity SA keeps increasing with temperature. Such Tm3+/Yb3+ co-doped Sr2YF7 GC may be excellent candidate for optical temperature sensors.
AbstractList Tm3+/Yb3+ co-doped transparent glass ceramics (GC) containing Sr2YF7 nanocrystals were successfully manufactured by traditional melt-quenching technique. Their structural and up-conversion luminescent properties were systemically investigated through X-ray diffraction (XRD), transmission electron microscope (TEM) and a series of spectroscopy methods. Tremendously enhanced up-conversion emissions with obvious Stark splitting and prolonged luminescence lifetime were observed after crystallization. These optical spectroscopy results manifest that Tm3+ ions have incorporated into the Sr2YF7 crystalline lattice with low phonon energy (~ 400cm−1) after heat-treatment. The 3F2,3 and 3H4 levels of Tm3+ can be explored as thermally coupled energy levels (TCEL) for temperature sensing because of their befitting energy gap (~ 2000cm−1). At the same time, the population of 1G4 state of Tm3+ is indirectly originated from 3H4 one. Therefore the temperature sensing performances of Tm3+ doped Sr2YF7 GC were investigated by fluorescence intensity ratio (FIR) between 3F2,3 → 3H6 and 1G4 → 3F4 up-conversion emissions of Tm3+. Results show that the theoretical maximum value of relative sensitivity SR-max is 1.16%K−1 at 428 K, and absolute sensitivity SA keeps increasing with temperature. Such Tm3+/Yb3+ co-doped Sr2YF7 GC may be excellent candidate for optical temperature sensors.
Author Chen, LiPing
Guo, Hai
Zeng, QingGuang
Hu, FangFang
Wei, RongFei
Chen, WeiPing
Author_xml – sequence: 1
  givenname: WeiPing
  surname: Chen
  fullname: Chen, WeiPing
  organization: Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
– sequence: 2
  givenname: FangFang
  surname: Hu
  fullname: Hu, FangFang
  organization: Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
– sequence: 3
  givenname: RongFei
  surname: Wei
  fullname: Wei, RongFei
  organization: Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
– sequence: 4
  givenname: QingGuang
  surname: Zeng
  fullname: Zeng, QingGuang
  organization: School of Applied Physics and Materials, Wu Yi University, Jiangmen, Guangdong 529020, China
– sequence: 5
  givenname: LiPing
  surname: Chen
  fullname: Chen, LiPing
  organization: Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
– sequence: 6
  givenname: Hai
  surname: Guo
  fullname: Guo, Hai
  email: ghh@zjnu.cn
  organization: Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
BookMark eNqFUE1LAzEUDFLBtvoPPOQuu-Zj3U08CFKsCoUerAdPIZt9W7PsF0la6L83tZ48KAw83vBmHjMzNOmHHhC6piSlhOa3Tdq0u872KSO0SEkEYWdoSkXBkkIIPkHTyLCEccov0Mz7hhDCpZBTtF2PwRrd4vAJrhs6CO6AS-2hwkOPd2Nihn4Pztu4ff8Ab6A3gIcabzp-g6thjLfB6d6P2kEf8JtjH8sCb1vtPTbgdGeNv0TntW49XP3MOXpfPm0WL8lq_fy6eFwlhhMWEkaLutK8yinkNJc815JKmgkgVAC7E5nMipJrnmdSkJoUlBtRlZEmrJRaVnyOspOvcYP3Dmo1Ottpd1CUqGNZqlGnstSxLEUiCIuy-18yY4MOMXVMZtv_xA8nMcRgewtOeWOPJVXWgQmqGuzfBl-AO4qg
CitedBy_id crossref_primary_10_1021_acs_jpcc_1c05897
crossref_primary_10_1016_j_jallcom_2022_164402
crossref_primary_10_1111_jace_18805
crossref_primary_10_1016_j_matlet_2019_02_021
crossref_primary_10_1155_2020_8831332
crossref_primary_10_1016_j_jallcom_2017_12_260
crossref_primary_10_1016_j_jlumin_2020_117037
crossref_primary_10_1016_j_jlumin_2018_05_007
crossref_primary_10_1016_j_jallcom_2018_05_348
crossref_primary_10_1111_jace_16941
crossref_primary_10_1016_j_jallcom_2017_09_001
crossref_primary_10_1111_jace_16306
crossref_primary_10_1016_j_jlumin_2019_116971
crossref_primary_10_1063_5_0180228
crossref_primary_10_1016_j_jallcom_2025_179509
crossref_primary_10_1016_j_ceramint_2023_04_212
crossref_primary_10_1016_j_jre_2021_11_003
crossref_primary_10_1016_j_matlet_2023_134246
crossref_primary_10_1039_C9RA01088B
crossref_primary_10_1016_j_jlumin_2019_01_024
crossref_primary_10_1016_j_ceramint_2018_09_212
crossref_primary_10_1016_j_jmst_2022_07_055
crossref_primary_10_1016_j_jnoncrysol_2018_10_041
crossref_primary_10_1016_j_jallcom_2020_155011
crossref_primary_10_1016_j_jlumin_2019_01_061
crossref_primary_10_1039_C8CP03808B
crossref_primary_10_1016_j_optmat_2022_113389
crossref_primary_10_1016_j_jlumin_2024_120978
crossref_primary_10_1016_j_optmat_2018_06_028
crossref_primary_10_1016_j_ceramint_2021_08_123
crossref_primary_10_1016_j_ceramint_2019_11_081
crossref_primary_10_1016_j_jallcom_2021_162494
crossref_primary_10_1016_j_jlumin_2021_118490
crossref_primary_10_1016_j_optmat_2018_05_020
crossref_primary_10_1039_C9NJ01751H
crossref_primary_10_1039_D4MA00926F
crossref_primary_10_1016_j_jssc_2022_122927
crossref_primary_10_1016_j_ceramint_2022_09_302
crossref_primary_10_1016_j_ceramint_2021_09_049
crossref_primary_10_1039_D0TC01457E
crossref_primary_10_1016_j_jlumin_2019_116807
crossref_primary_10_1039_C8RA00107C
crossref_primary_10_1016_j_jallcom_2020_154011
crossref_primary_10_1016_j_jallcom_2021_159790
crossref_primary_10_1039_C8RA01245H
crossref_primary_10_1016_j_jlumin_2017_10_014
crossref_primary_10_1016_j_optmat_2021_110840
crossref_primary_10_1016_j_optmat_2022_113313
crossref_primary_10_1016_j_jallcom_2018_05_323
crossref_primary_10_1007_s10854_019_00865_5
crossref_primary_10_1016_j_saa_2020_118627
crossref_primary_10_1016_j_sna_2018_10_039
crossref_primary_10_1016_j_jlumin_2023_120309
crossref_primary_10_1039_C7TC03873A
crossref_primary_10_1111_jace_16480
crossref_primary_10_1016_j_jlumin_2019_116558
crossref_primary_10_1016_j_jallcom_2017_11_243
crossref_primary_10_1016_j_jlumin_2024_120556
crossref_primary_10_1039_C9NJ03969D
crossref_primary_10_1016_j_jallcom_2021_158820
crossref_primary_10_1016_j_jallcom_2021_158986
crossref_primary_10_1016_j_sna_2018_11_043
crossref_primary_10_1016_j_jlumin_2019_116918
crossref_primary_10_1039_C7QI00497D
crossref_primary_10_1016_j_jlumin_2023_119907
crossref_primary_10_1080_09500340_2023_2234505
crossref_primary_10_1016_j_optlastec_2024_111948
crossref_primary_10_1016_j_sna_2019_111628
crossref_primary_10_1016_j_ccr_2021_214040
crossref_primary_10_1016_j_jlumin_2020_117527
crossref_primary_10_1016_j_saa_2023_123333
crossref_primary_10_1039_D0TC03894F
crossref_primary_10_1088_2053_1591_aaf525
crossref_primary_10_1016_j_jallcom_2017_11_201
crossref_primary_10_1016_j_jre_2021_09_014
crossref_primary_10_1111_jace_17867
crossref_primary_10_1016_j_optcom_2019_02_034
crossref_primary_10_1016_j_jallcom_2018_07_143
crossref_primary_10_1016_j_ceramint_2024_10_023
crossref_primary_10_1016_j_optcom_2020_126262
crossref_primary_10_1016_j_jallcom_2022_166094
crossref_primary_10_1016_j_jlumin_2018_06_028
crossref_primary_10_1016_j_radphyschem_2025_112672
crossref_primary_10_1016_j_optmat_2021_111803
crossref_primary_10_1364_OME_8_000041
crossref_primary_10_1016_j_jlumin_2019_116949
crossref_primary_10_1016_j_materresbull_2022_112031
crossref_primary_10_1016_j_jallcom_2017_12_169
crossref_primary_10_1016_j_jlumin_2019_05_057
crossref_primary_10_1016_j_ceramint_2020_07_134
crossref_primary_10_1016_j_saa_2019_117159
crossref_primary_10_1016_j_jallcom_2021_160849
Cites_doi 10.1364/OE.21.021596
10.1007/s11051-014-2396-0
10.1016/j.ceramint.2015.07.034
10.1039/C6TC01841F
10.1016/j.snb.2015.01.136
10.1016/j.jallcom.2012.02.080
10.1021/jp048072q
10.1016/j.jlumin.2016.07.002
10.1016/j.optmat.2016.06.029
10.1038/srep45650
10.1016/j.snb.2014.06.074
10.1016/j.jallcom.2016.09.163
10.1039/C4NR02540G
10.1016/j.jallcom.2014.08.080
10.1364/OL.39.004164
10.1063/1.2969039
10.1039/C0JM02948C
10.1111/jace.12983
10.1007/s00340-013-5460-z
10.1016/j.snb.2012.07.009
10.1364/OE.20.018127
10.1039/C5RA27237H
10.1364/OE.24.022438
10.1016/j.snb.2015.06.132
10.1021/acs.inorgchem.6b03181
10.1002/adma.201601405
10.1021/nn100244a
10.1016/j.jlumin.2012.11.017
10.1039/C6CP05320C
10.1039/C6TC05203G
10.1364/OL.40.003607
10.1016/j.snb.2015.10.087
10.1039/C5TC00047E
10.1016/j.jallcom.2016.02.100
10.1016/j.jallcom.2016.02.138
10.1002/pssa.201329114
10.1063/1.1606526
10.1039/C6TC03946D
10.1016/j.jallcom.2015.02.170
10.1111/jace.13804
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jlumin.2017.07.002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
Physics
EISSN 1872-7883
EndPage 309
ExternalDocumentID 10_1016_j_jlumin_2017_07_002
S002223131730981X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
3O-
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
NDZJH
NEJ
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSK
SSM
SSQ
SSZ
T5K
UHS
UNMZH
UQL
WH7
WUQ
XFK
XPP
YQT
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c302t-217fda3d61e616936a919148e018e2584947b3a364980f0713c8db84902b9a9d3
IEDL.DBID .~1
ISSN 0022-2313
IngestDate Tue Jul 01 03:44:00 EDT 2025
Thu Apr 24 23:08:25 EDT 2025
Fri Feb 23 02:27:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Optical thermometry
Glass ceramics
Up-conversion
Sr2YF7:Tm3+/Yb3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c302t-217fda3d61e616936a919148e018e2584947b3a364980f0713c8db84902b9a9d3
PageCount 7
ParticipantIDs crossref_primary_10_1016_j_jlumin_2017_07_002
crossref_citationtrail_10_1016_j_jlumin_2017_07_002
elsevier_sciencedirect_doi_10_1016_j_jlumin_2017_07_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2017
2017-12-00
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: December 2017
PublicationDecade 2010
PublicationTitle Journal of luminescence
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chen, Kang, Zhang, Wang, Lv, Chen (bib28) 2017; 7
Wade, Collins, Baxter (bib1) 2003; 94
Ding, Zhang, Chen, Junhua Xi, Ji (bib6) 2016; 672
Chai, Li, Wang, Li, Yao (bib7) 2016; 24
Hao, Hu, Luo, Liu, Li, Wu (bib33) 2015; 41
Cao, Hu, Chen, Guo, Duan, Yin (bib23) 2017; 693
Xing, Yang, Ma, Wang (bib15) 2015; 221
Zhang, Ma, Li, Li, Huang, Yang (bib34) 2011; 21
Zhao, Yue, Jiang, Cui, Zhang, Yang (bib13) 2017; 5
Yang, Tu, Zheng, Liu, Huang, Ma (bib31) 2014; 6
Savchuk, Carvajal, Cascales, Massons, Aguilo, Diaz (bib38) 2016; 4
Li, Peng, Wondraczek, Zhao, Viana (bib25) 2015; 3
Xu, Zhang, Yang, Lu, Qiu, Yu (bib26) 2016; 28
Li, Cao, Wei, Yang, Guo (bib5) 2015; 98
Ma, Xu, Yang, Yang, Lin (bib29) 2012; 525
Chen, Liu, Wan, Chen (bib22) 2016; 672
Pandey, Rai (bib39) 2013; 113
Du, Ma, Qiang, Zhang, Wang (bib36) 2016; 18
Meng, Liu, Dai, Sun (bib21) 2016; 179
Xia, Du, Liao (bib30) 2013; 210
Qiao, Fan, Wang, Yang, Zhang (bib32) 2008; 104
Noculak, Fhui, Banski, Misiewicz, Podhorodecki (bib35) 2014; 16
Xu, Gao, Zheng, Zhang, Cao (bib3) 2012; 173
Xu, Gao, Zheng, Zhang, Cao (bib10) 2012; 20
Vetrone, Naccache, Zamarron, Juarranz de la Fuente, Sanz-Rodriguez, Martinez Maestro (bib2) 2010; 4
Pandey, Som, Kumar, Kumar, Kumar, Rai (bib40) 2014; 202
Cai, Zhao, Hu, Wei, Chen, Yin (bib12) 2017; 56
Cao, Li, Wang, Wei, Chen, Guo (bib16) 2016; 224
Chen, Wan, Zhou, Huang, Zhong, Ding (bib19) 2015; 638
Jiang, Zeng, Liao, Tian, Guo, Chen (bib11) 2014; 617
Guo, Dong, Yin, Zhang, Lou, Xia (bib37) 2004; 108
Chen, Shi, Tao, Ji, Zheng, Sang (bib18) 2016; 6
Tian, Tian, Cui, Huang, Wang, Chen (bib8) 2014; 39
Wei, Li, Yang, Chi, Guo (bib24) 2013; 137
Wang, Zheng, Xuan, Yan (bib4) 2013; 21
Chen, Wan, Zhou (bib9) 2015; 40
Wei, Yang, Li, Wang, Guo (bib27) 2014; 97
Cheng, Yang, Wang, Yang, Cheng (bib20) 2016; 58
Pereira, Kumar, Silva, Santos, Jaque, Jacinto (bib17) 2015; 213
Hu, Cao, Wei, Li, Cai, Guo (bib14) 2016; 4
Chen (10.1016/j.jlumin.2017.07.002_bib9) 2015; 40
Xu (10.1016/j.jlumin.2017.07.002_bib10) 2012; 20
Wang (10.1016/j.jlumin.2017.07.002_bib4) 2013; 21
Cao (10.1016/j.jlumin.2017.07.002_bib23) 2017; 693
Chen (10.1016/j.jlumin.2017.07.002_bib28) 2017; 7
Tian (10.1016/j.jlumin.2017.07.002_bib8) 2014; 39
Chen (10.1016/j.jlumin.2017.07.002_bib22) 2016; 672
Pandey (10.1016/j.jlumin.2017.07.002_bib39) 2013; 113
Ma (10.1016/j.jlumin.2017.07.002_bib29) 2012; 525
Cao (10.1016/j.jlumin.2017.07.002_bib16) 2016; 224
Wei (10.1016/j.jlumin.2017.07.002_bib27) 2014; 97
Li (10.1016/j.jlumin.2017.07.002_bib25) 2015; 3
Chen (10.1016/j.jlumin.2017.07.002_bib18) 2016; 6
Xia (10.1016/j.jlumin.2017.07.002_bib30) 2013; 210
Qiao (10.1016/j.jlumin.2017.07.002_bib32) 2008; 104
Savchuk (10.1016/j.jlumin.2017.07.002_bib38) 2016; 4
Cai (10.1016/j.jlumin.2017.07.002_bib12) 2017; 56
Xing (10.1016/j.jlumin.2017.07.002_bib15) 2015; 221
Pereira (10.1016/j.jlumin.2017.07.002_bib17) 2015; 213
Wade (10.1016/j.jlumin.2017.07.002_bib1) 2003; 94
Yang (10.1016/j.jlumin.2017.07.002_bib31) 2014; 6
Li (10.1016/j.jlumin.2017.07.002_bib5) 2015; 98
Zhao (10.1016/j.jlumin.2017.07.002_bib13) 2017; 5
Jiang (10.1016/j.jlumin.2017.07.002_bib11) 2014; 617
Chai (10.1016/j.jlumin.2017.07.002_bib7) 2016; 24
Cheng (10.1016/j.jlumin.2017.07.002_bib20) 2016; 58
Vetrone (10.1016/j.jlumin.2017.07.002_bib2) 2010; 4
Chen (10.1016/j.jlumin.2017.07.002_bib19) 2015; 638
Du (10.1016/j.jlumin.2017.07.002_bib36) 2016; 18
Wei (10.1016/j.jlumin.2017.07.002_bib24) 2013; 137
Ding (10.1016/j.jlumin.2017.07.002_bib6) 2016; 672
Hao (10.1016/j.jlumin.2017.07.002_bib33) 2015; 41
Zhang (10.1016/j.jlumin.2017.07.002_bib34) 2011; 21
Guo (10.1016/j.jlumin.2017.07.002_bib37) 2004; 108
Xu (10.1016/j.jlumin.2017.07.002_bib3) 2012; 173
Noculak (10.1016/j.jlumin.2017.07.002_bib35) 2014; 16
Pandey (10.1016/j.jlumin.2017.07.002_bib40) 2014; 202
Xu (10.1016/j.jlumin.2017.07.002_bib26) 2016; 28
Hu (10.1016/j.jlumin.2017.07.002_bib14) 2016; 4
Meng (10.1016/j.jlumin.2017.07.002_bib21) 2016; 179
References_xml – volume: 179
  start-page: 633
  year: 2016
  end-page: 638
  ident: bib21
  article-title: Study on optical temperature sensing properties of YVO
  publication-title: J. Lumin.
– volume: 21
  start-page: 717
  year: 2011
  end-page: 723
  ident: bib34
  article-title: Controllable and white upconversion luminescence in BaYF
  publication-title: J. Mater. Chem.
– volume: 6
  start-page: 21540
  year: 2016
  end-page: 21545
  ident: bib18
  article-title: Optical temperature sensing with minimized heating effect using core-shell upconversion nanoparticles
  publication-title: RSC Adv.
– volume: 173
  start-page: 250
  year: 2012
  end-page: 253
  ident: bib3
  article-title: An optical temperature sensor based on the upconversion luminescence from Tm
  publication-title: Sens. Actuators B Chem.
– volume: 5
  start-page: 1607
  year: 2017
  end-page: 1613
  ident: bib13
  article-title: Ratiometric dual-emitting MOF superset of dye thermometers with a tunable operating range and sensitivity
  publication-title: J. Mater. Chem. C
– volume: 104
  year: 2008
  ident: bib32
  article-title: Luminescence behavior of Er
  publication-title: J. Appl. Phys.
– volume: 213
  start-page: 65
  year: 2015
  end-page: 71
  ident: bib17
  article-title: Yb
  publication-title: Sens. Actuators B Chem.
– volume: 224
  start-page: 507
  year: 2016
  end-page: 513
  ident: bib16
  article-title: Optical thermometry based on up-conversion luminescence behavior of self-crystallized K
  publication-title: Sens. Actuators B Chem.
– volume: 20
  start-page: 18127
  year: 2012
  end-page: 18137
  ident: bib10
  article-title: Short-wavelength upconversion emissions in Ho
  publication-title: Opt. Express
– volume: 58
  start-page: 449
  year: 2016
  end-page: 453
  ident: bib20
  article-title: Up-conversion luminescence and optical temperature sensing behaviour of Yb
  publication-title: Opt. Mater.
– volume: 18
  start-page: 26894
  year: 2016
  end-page: 26899
  ident: bib36
  article-title: Emission in Gd
  publication-title: Phys. Chem. Chem. Phys.
– volume: 98
  start-page: 3824
  year: 2015
  end-page: 3830
  ident: bib5
  article-title: Optical thermometry based on up-conversion luminescence behavior of Er
  publication-title: J. Am. Ceram. Soc.
– volume: 97
  start-page: 2012
  year: 2014
  end-page: 2015
  ident: bib27
  article-title: Elaboration, structure, and intense upconversion in transparent KYb
  publication-title: J. Am. Ceram. Soc.
– volume: 21
  start-page: 21596
  year: 2013
  end-page: 21606
  ident: bib4
  article-title: Optical temperature sensing of NaYbF
  publication-title: Opt. Express
– volume: 7
  start-page: 45650
  year: 2017
  ident: bib28
  article-title: Controllable optical modulation of blue/green up-conversion fluorescence from Tm
  publication-title: Sci. Rep.
– volume: 39
  start-page: 4164
  year: 2014
  end-page: 4167
  ident: bib8
  article-title: Excellent optical thermometry based on single-color fluorescence in spherical NaEuF
  publication-title: Opt. Lett.
– volume: 41
  start-page: 14130
  year: 2015
  end-page: 14136
  ident: bib33
  article-title: Preparation and properties of transparent cordierite-based glass-ceramics with high crystallinity
  publication-title: Ceram. Int.
– volume: 525
  start-page: 97
  year: 2012
  end-page: 102
  ident: bib29
  article-title: Solvothermal synthesis and tailored upconversion emission of monodisperse ultrasmall face-centered cubic Sr
  publication-title: J. Alloy. Compd.
– volume: 6
  start-page: 11098
  year: 2014
  end-page: 11105
  ident: bib31
  article-title: Lanthanide-doped Sr
  publication-title: Nanoscale
– volume: 4
  start-page: 3254
  year: 2010
  end-page: 3258
  ident: bib2
  article-title: Temperature sensing using fluorescent nanothermometers
  publication-title: ACS Nano
– volume: 137
  start-page: 70
  year: 2013
  end-page: 72
  ident: bib24
  article-title: Enhanced green upconversion in Tb
  publication-title: J. Lumin.
– volume: 672
  start-page: 117
  year: 2016
  end-page: 124
  ident: bib6
  article-title: Color-tunable luminescence, energy transfer and temperature sensing behavior of hexagonal NaYF
  publication-title: J. Alloy. Compd.
– volume: 56
  start-page: 4039
  year: 2017
  end-page: 4046
  ident: bib12
  article-title: Temperature sensing using thermal population of low-lying energy levels with (Sm
  publication-title: Inorg. Chem.
– volume: 4
  start-page: 9976
  year: 2016
  end-page: 9985
  ident: bib14
  article-title: Luminescence properties of Er
  publication-title: J. Mater. Chem. C
– volume: 672
  start-page: 380
  year: 2016
  end-page: 385
  ident: bib22
  article-title: A highly sensitive upconverting nano-glass-ceramic-based optical thermometer
  publication-title: J. Alloy. Compd.
– volume: 108
  start-page: 19205
  year: 2004
  end-page: 19209
  ident: bib37
  article-title: Visible upconversion in rare earth ion-doped Gd
  publication-title: J. Phys. Chem. B
– volume: 40
  start-page: 3607
  year: 2015
  end-page: 3610
  ident: bib9
  article-title: Optical spectroscopy of Cr
  publication-title: Opt. Lett.
– volume: 16
  start-page: 2396
  year: 2014
  ident: bib35
  article-title: Yb
  publication-title: J. Nanopart. Res.
– volume: 4
  start-page: 6602
  year: 2016
  end-page: 6613
  ident: bib38
  article-title: Thermochromic upconversion nanoparticles for visual temperature sensors with high thermal, spatial and temporal resolution
  publication-title: J. Mater. Chem. C
– volume: 693
  start-page: 326
  year: 2017
  end-page: 331
  ident: bib23
  article-title: Optical thermometry based on up-conversion luminescence behavior of Er
  publication-title: J. Alloy. Compd.
– volume: 113
  start-page: 221
  year: 2013
  end-page: 225
  ident: bib39
  article-title: Optical thermometry using FIR of two close lying levels of different ions in Y
  publication-title: Appl. Phys. B – Lasers Opt.
– volume: 617
  start-page: 538
  year: 2014
  end-page: 541
  ident: bib11
  article-title: Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF
  publication-title: J. Alloy. Compd.
– volume: 3
  start-page: 3406
  year: 2015
  end-page: 3415
  ident: bib25
  article-title: Red to near infrared ultralong lasting luminescence from Mn
  publication-title: J. Mater. Chem. C
– volume: 210
  start-page: 1734
  year: 2013
  end-page: 1737
  ident: bib30
  article-title: Facile hydrothermal synthesis and upconversion luminescence of tetragonal Sr
  publication-title: Phys. Status Solidi A
– volume: 24
  start-page: 22438
  year: 2016
  end-page: 22447
  ident: bib7
  article-title: Color-tunable upconversion photoluminescence and highly performed optical temperature sensing in Er
  publication-title: Opt. Express
– volume: 221
  start-page: 458
  year: 2015
  end-page: 462
  ident: bib15
  article-title: Effect of crystallinity on the optical thermometry sensitivity of Tm
  publication-title: Sens. Actuators B Chem.
– volume: 638
  start-page: 21
  year: 2015
  end-page: 28
  ident: bib19
  article-title: Bulk glass ceramics containing Yb
  publication-title: J. Alloy. Compd.
– volume: 28
  start-page: 8045
  year: 2016
  end-page: 8050
  ident: bib26
  article-title: Phonon-assisted population inversion in lanthanide-doped upconversion Ba
  publication-title: Adv. Mater.
– volume: 202
  start-page: 1305
  year: 2014
  end-page: 1312
  ident: bib40
  article-title: Enhanced upconversion and temperature sensing study of Er
  publication-title: Sens. Actuators B Chem.
– volume: 94
  start-page: 4743
  year: 2003
  end-page: 4756
  ident: bib1
  article-title: Fluorescence intensity ratio technique for optical fiber point temperature sensing
  publication-title: J. Appl. Phys.
– volume: 21
  start-page: 21596
  year: 2013
  ident: 10.1016/j.jlumin.2017.07.002_bib4
  article-title: Optical temperature sensing of NaYbF4: Tm3+ @ SiO2 core-shell micro-particles induced by infrared excitation
  publication-title: Opt. Express
  doi: 10.1364/OE.21.021596
– volume: 16
  start-page: 2396
  year: 2014
  ident: 10.1016/j.jlumin.2017.07.002_bib35
  article-title: Yb3+ and Tm3+ concentration-dependent structural and optical properties of hexagonal NaGdF4 nanocrystals
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-014-2396-0
– volume: 41
  start-page: 14130
  year: 2015
  ident: 10.1016/j.jlumin.2017.07.002_bib33
  article-title: Preparation and properties of transparent cordierite-based glass-ceramics with high crystallinity
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2015.07.034
– volume: 4
  start-page: 6602
  year: 2016
  ident: 10.1016/j.jlumin.2017.07.002_bib38
  article-title: Thermochromic upconversion nanoparticles for visual temperature sensors with high thermal, spatial and temporal resolution
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC01841F
– volume: 213
  start-page: 65
  year: 2015
  ident: 10.1016/j.jlumin.2017.07.002_bib17
  article-title: Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2015.01.136
– volume: 525
  start-page: 97
  year: 2012
  ident: 10.1016/j.jlumin.2017.07.002_bib29
  article-title: Solvothermal synthesis and tailored upconversion emission of monodisperse ultrasmall face-centered cubic Sr2YF7 nanocrystals
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2012.02.080
– volume: 108
  start-page: 19205
  year: 2004
  ident: 10.1016/j.jlumin.2017.07.002_bib37
  article-title: Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp048072q
– volume: 179
  start-page: 633
  year: 2016
  ident: 10.1016/j.jlumin.2017.07.002_bib21
  article-title: Study on optical temperature sensing properties of YVO4:Er3+, Yb3+ nanocrystals
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2016.07.002
– volume: 58
  start-page: 449
  year: 2016
  ident: 10.1016/j.jlumin.2017.07.002_bib20
  article-title: Up-conversion luminescence and optical temperature sensing behaviour of Yb3+/Er3+ codoped CaWO4 material
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2016.06.029
– volume: 7
  start-page: 45650
  year: 2017
  ident: 10.1016/j.jlumin.2017.07.002_bib28
  article-title: Controllable optical modulation of blue/green up-conversion fluorescence from Tm3+ (Er3+) single-doped glass ceramics upon two-step excitation of two-wavelengths
  publication-title: Sci. Rep.
  doi: 10.1038/srep45650
– volume: 202
  start-page: 1305
  year: 2014
  ident: 10.1016/j.jlumin.2017.07.002_bib40
  article-title: Enhanced upconversion and temperature sensing study of Er3+-Yb3+ codoped tungsten-tellurite glass
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2014.06.074
– volume: 693
  start-page: 326
  year: 2017
  ident: 10.1016/j.jlumin.2017.07.002_bib23
  article-title: Optical thermometry based on up-conversion luminescence behavior of Er3+-doped KYb2F7 nano-crystals in bulk glass ceramics
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2016.09.163
– volume: 6
  start-page: 11098
  year: 2014
  ident: 10.1016/j.jlumin.2017.07.002_bib31
  article-title: Lanthanide-doped Sr2YF7 nanoparticles: controlled synthesis, optical spectroscopy and biodetection
  publication-title: Nanoscale
  doi: 10.1039/C4NR02540G
– volume: 617
  start-page: 538
  year: 2014
  ident: 10.1016/j.jlumin.2017.07.002_bib11
  article-title: Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4:Yb3+/Er3+ nanocrystals
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2014.08.080
– volume: 39
  start-page: 4164
  year: 2014
  ident: 10.1016/j.jlumin.2017.07.002_bib8
  article-title: Excellent optical thermometry based on single-color fluorescence in spherical NaEuF4 phosphor
  publication-title: Opt. Lett.
  doi: 10.1364/OL.39.004164
– volume: 104
  year: 2008
  ident: 10.1016/j.jlumin.2017.07.002_bib32
  article-title: Luminescence behavior of Er3+ doped glass ceramics containing Sr2RF7 (R = Y, Gd, La) nanocrystals
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2969039
– volume: 21
  start-page: 717
  year: 2011
  ident: 10.1016/j.jlumin.2017.07.002_bib34
  article-title: Controllable and white upconversion luminescence in BaYF5:Ln3+ (Ln = Yb, Er, Tm) nanocrystals
  publication-title: J. Mater. Chem.
  doi: 10.1039/C0JM02948C
– volume: 97
  start-page: 2012
  year: 2014
  ident: 10.1016/j.jlumin.2017.07.002_bib27
  article-title: Elaboration, structure, and intense upconversion in transparent KYb2F7:Ho3+ glass-ceramics
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.12983
– volume: 113
  start-page: 221
  year: 2013
  ident: 10.1016/j.jlumin.2017.07.002_bib39
  article-title: Optical thermometry using FIR of two close lying levels of different ions in Y2O3:Ho3+-Tm3+-Yb3+ phosphor
  publication-title: Appl. Phys. B – Lasers Opt.
  doi: 10.1007/s00340-013-5460-z
– volume: 173
  start-page: 250
  year: 2012
  ident: 10.1016/j.jlumin.2017.07.002_bib3
  article-title: An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2012.07.009
– volume: 20
  start-page: 18127
  year: 2012
  ident: 10.1016/j.jlumin.2017.07.002_bib10
  article-title: Short-wavelength upconversion emissions in Ho3+/Yb3+ codoped glass ceramic and the optical thermometry behavior
  publication-title: Opt. Express
  doi: 10.1364/OE.20.018127
– volume: 6
  start-page: 21540
  year: 2016
  ident: 10.1016/j.jlumin.2017.07.002_bib18
  article-title: Optical temperature sensing with minimized heating effect using core-shell upconversion nanoparticles
  publication-title: RSC Adv.
  doi: 10.1039/C5RA27237H
– volume: 24
  start-page: 22438
  year: 2016
  ident: 10.1016/j.jlumin.2017.07.002_bib7
  article-title: Color-tunable upconversion photoluminescence and highly performed optical temperature sensing in Er3+/Yb3+ co-doped ZnWO4
  publication-title: Opt. Express
  doi: 10.1364/OE.24.022438
– volume: 221
  start-page: 458
  year: 2015
  ident: 10.1016/j.jlumin.2017.07.002_bib15
  article-title: Effect of crystallinity on the optical thermometry sensitivity of Tm3+/Yb3+ codoped LiNbO3 crystal
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2015.06.132
– volume: 56
  start-page: 4039
  year: 2017
  ident: 10.1016/j.jlumin.2017.07.002_bib12
  article-title: Temperature sensing using thermal population of low-lying energy levels with (Sm0.01Gd0.99)VO4
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b03181
– volume: 28
  start-page: 8045
  year: 2016
  ident: 10.1016/j.jlumin.2017.07.002_bib26
  article-title: Phonon-assisted population inversion in lanthanide-doped upconversion Ba2LaF7 nanocrystals in glass-ceramics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601405
– volume: 4
  start-page: 3254
  year: 2010
  ident: 10.1016/j.jlumin.2017.07.002_bib2
  article-title: Temperature sensing using fluorescent nanothermometers
  publication-title: ACS Nano
  doi: 10.1021/nn100244a
– volume: 137
  start-page: 70
  year: 2013
  ident: 10.1016/j.jlumin.2017.07.002_bib24
  article-title: Enhanced green upconversion in Tb3+-Yb3+ co-doped oxyfluoride glass ceramics containing LaF3 nanocrystals
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2012.11.017
– volume: 18
  start-page: 26894
  year: 2016
  ident: 10.1016/j.jlumin.2017.07.002_bib36
  article-title: Emission in Gd6O5F8:Yb3+,Er3+ micro-particles for multimodal luminescence and temperature sensing upon 980 nm excitation
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP05320C
– volume: 5
  start-page: 1607
  year: 2017
  ident: 10.1016/j.jlumin.2017.07.002_bib13
  article-title: Ratiometric dual-emitting MOF superset of dye thermometers with a tunable operating range and sensitivity
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC05203G
– volume: 40
  start-page: 3607
  year: 2015
  ident: 10.1016/j.jlumin.2017.07.002_bib9
  article-title: Optical spectroscopy of Cr3+-doped transparent nano-glass ceramics for lifetime-based temperature sensing
  publication-title: Opt. Lett.
  doi: 10.1364/OL.40.003607
– volume: 224
  start-page: 507
  year: 2016
  ident: 10.1016/j.jlumin.2017.07.002_bib16
  article-title: Optical thermometry based on up-conversion luminescence behavior of self-crystallized K3YF6:Er3+ glass ceramics
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2015.10.087
– volume: 3
  start-page: 3406
  year: 2015
  ident: 10.1016/j.jlumin.2017.07.002_bib25
  article-title: Red to near infrared ultralong lasting luminescence from Mn2+-doped sodium gallium aluminum germanate glasses and (Al,Ga)-albite glass-ceramics
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC00047E
– volume: 672
  start-page: 117
  year: 2016
  ident: 10.1016/j.jlumin.2017.07.002_bib6
  article-title: Color-tunable luminescence, energy transfer and temperature sensing behavior of hexagonal NaYF4:Ce3+/Tb3+/Eu3+ microcrystals
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2016.02.100
– volume: 672
  start-page: 380
  year: 2016
  ident: 10.1016/j.jlumin.2017.07.002_bib22
  article-title: A highly sensitive upconverting nano-glass-ceramic-based optical thermometer
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2016.02.138
– volume: 210
  start-page: 1734
  year: 2013
  ident: 10.1016/j.jlumin.2017.07.002_bib30
  article-title: Facile hydrothermal synthesis and upconversion luminescence of tetragonal Sr2LnF7:Yb3+/Er3+ (Ln = Y, Gd) nanocrystals
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.201329114
– volume: 94
  start-page: 4743
  year: 2003
  ident: 10.1016/j.jlumin.2017.07.002_bib1
  article-title: Fluorescence intensity ratio technique for optical fiber point temperature sensing
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1606526
– volume: 4
  start-page: 9976
  year: 2016
  ident: 10.1016/j.jlumin.2017.07.002_bib14
  article-title: Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC03946D
– volume: 638
  start-page: 21
  year: 2015
  ident: 10.1016/j.jlumin.2017.07.002_bib19
  article-title: Bulk glass ceramics containing Yb3+/Er3+: β-nagdf4 nanocrystals: phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2015.02.170
– volume: 98
  start-page: 3824
  year: 2015
  ident: 10.1016/j.jlumin.2017.07.002_bib5
  article-title: Optical thermometry based on up-conversion luminescence behavior of Er3+ -doped transparent Sr2YbF7 glass-ceramics
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.13804
SSID ssj0003989
Score 2.5073693
Snippet Tm3+/Yb3+ co-doped transparent glass ceramics (GC) containing Sr2YF7 nanocrystals were successfully manufactured by traditional melt-quenching technique. Their...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 303
SubjectTerms Glass ceramics
Optical thermometry
Sr2YF7:Tm3+/Yb3
Up-conversion
Title Optical thermometry based on up-conversion luminescence of Tm3+ doped transparent Sr2YF7 glass ceramics
URI https://dx.doi.org/10.1016/j.jlumin.2017.07.002
Volume 192
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jIvoiOhXnx8iDbxLXNl2TPI7hmIrzwQ3mU2mTVCauLVv34It_u7m09QNBwcdeLxCu4X6X693vEDqHtFogXEp6ivnEFzQiEaOCyMSgXxxTT3Hod74bB6OpfzPrzRpoUPfCQFll5ftLn269dSXpVtbs5vM59PgCtrkGAKkjuDuDDnafwSm_fPss86CCi5oxHLTr9jlb4_VsHMAcWFBdZik8q-TKD3j6AjnDXbRTxYq4X25nDzV02kKb5fTI1xbaGtTD2ozUVnLK1T56us9tehpDZLfIFtq8x4BVCmcpXufE1pnbJBm2-7J8TlLjLMGTBb3AKsuNbmFJz6FTrMAPS-9xyLANtLHUSxhhvzpA0-HVZDAi1TQFIqnjFcTcPRIVURW4OgAGliASwO3GteNy7Zk4RPgsphENfMGdBC6vkqvYiB0vFpFQ9BA10yzVRwgzR9LEASo_7fuKeVz3zM2DS5YYiSdVG9HaiKGsqMZh4sVLWNeUPYel6UMwfejAP3CvjcjHqryk2vhDn9XfJ_x2ZEKDBr-uPP73yhO0DU9lPcspahbLtT4zUUkRd-yx66CN_vXtaPwO3SXgRA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVqhcUCkgChR8aE_INLGzsX3gUBVWW_o6dCstp5DYDtqK3UTbVKgX_hR_sDNOAlSVqITUqx-JM7ZmxpNvvgHYorBaamLJB04lPDEy57mShtsSrV9RSOE05TsfHaejs-TzZDBZgl99LgzBKjvd3-r0oK27lp1Omjv1dEo5vmTbYjSAMjI6nnTIygN_9QPvbRcf9j_iJm8LMfw03hvxrrQAtzISDUdHvHS5dGnsU6IjSXNDRGfaR7H2Ao2ySVQhc5kmRkcl3eSsdgU2R6IwuXESn_sAVhJUF1Q24f3PP7gSabTpKcppeX2-XgCVnaPGmRLtaqwCZ2gXzbllD_-yccM1eNw5p2y3_f4nsOTn6_CwLVd5tQ6re311OGwN0FF78RS-ndQhHs7IlZxVM4_9jIyjY9WcXdY8ANtDVI6FdQUCKetZVbLxTL5jrqpxbBNY1ik1rWGnC_FlqFjw7Jn1i3yGb3oGZ_ci4-ewPK_m_gUwFVlZRsQd6JPEKaH9AK862qoSW4R1GyB7IWa24zanEhvfsx7Edp61os9I9FlEP93FBvDfs-qW2-OO8arfn-zGGc3Q_Pxz5sv_nvkWVkfjo8PscP_44BU8op4WTPMalpvFpd9El6gp3oQjyODrfZ_5a8vAGTE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+thermometry+based+on+up-conversion+luminescence+of+Tm3%2B+doped+transparent+Sr2YF7+glass+ceramics&rft.jtitle=Journal+of+luminescence&rft.au=Chen%2C+WeiPing&rft.au=Hu%2C+FangFang&rft.au=Wei%2C+RongFei&rft.au=Zeng%2C+QingGuang&rft.date=2017-12-01&rft.issn=0022-2313&rft.volume=192&rft.spage=303&rft.epage=309&rft_id=info:doi/10.1016%2Fj.jlumin.2017.07.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jlumin_2017_07_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2313&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2313&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2313&client=summon