Levitation of non-magnetizable droplet inside ferrofluid

The central theme of this work is that a stable levitation of a denser non-magnetizable liquid droplet, against gravity, inside a relatively lighter ferrofluid – a system barely considered in ferrohydrodynamics – is possible, and exhibits unique interfacial features; the stability of the levitation...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 857; pp. 398 - 448
Main Authors Singh, Chamkor, Das, Arup K., Das, Prasanta K.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 25.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The central theme of this work is that a stable levitation of a denser non-magnetizable liquid droplet, against gravity, inside a relatively lighter ferrofluid – a system barely considered in ferrohydrodynamics – is possible, and exhibits unique interfacial features; the stability of the levitation trajectory, however, is subject to an appropriate magnetic field modulation. We explore the shapes and the temporal dynamics of a plane non-magnetizable droplet levitating inside a ferrofluid against gravity due to a spatially complex, but systematically generated, magnetic field in two dimensions. The coupled set of Maxwell’s magnetostatic equations and the flow dynamic equations is integrated computationally, utilizing a conservative finite-volume-based second-order pressure projection algorithm combined with the front-tracking algorithm for the advection of the interface of the droplet. The dynamics of the droplet is studied under both the constant ferrofluid magnetic permeability assumption as well as for more realistic field-dependent permeability described by Langevin’s nonlinear magnetization model. Due to the non-homogeneous nature of the magnetic field, unique shapes of the droplet during its levitation, and at its steady state, are realized. The complete spatio-temporal response of the droplet is a function of the Laplace number $La$ , the magnetic Laplace number $La_{m}$ and the Galilei number $Ga$ ; through detailed simulations we separate out the individual roles played by these non-dimensional parameters. The effect of the viscosity ratio, the stability of the levitation path and the possibility of existence of multiple stable equilibrium states is investigated. We find, for certain conditions on the viscosity ratio, that there can be developments of cusps and singularities at the droplet surface; we also observe this phenomenon experimentally and compare with the simulations. Our simulations closely replicate the singular projection on the surface of the levitating droplet. Finally, we present a dynamical model for the vertical trajectory of the droplet. This model reveals a condition for the onset of levitation and the relation for the equilibrium levitation height. The linearization of the model around the steady state captures that the nature of the equilibrium point goes under a transition from being a spiral to a node depending upon the control parameters, which essentially means that the temporal route to the equilibrium can be either monotonic or undulating. The analytical model for the droplet trajectory is in close agreement with the detailed simulations.
AbstractList The central theme of this work is that a stable levitation of a denser non-magnetizable liquid droplet, against gravity, inside a relatively lighter ferrofluid – a system barely considered in ferrohydrodynamics – is possible, and exhibits unique interfacial features; the stability of the levitation trajectory, however, is subject to an appropriate magnetic field modulation. We explore the shapes and the temporal dynamics of a plane non-magnetizable droplet levitating inside a ferrofluid against gravity due to a spatially complex, but systematically generated, magnetic field in two dimensions. The coupled set of Maxwell’s magnetostatic equations and the flow dynamic equations is integrated computationally, utilizing a conservative finite-volume-based second-order pressure projection algorithm combined with the front-tracking algorithm for the advection of the interface of the droplet. The dynamics of the droplet is studied under both the constant ferrofluid magnetic permeability assumption as well as for more realistic field-dependent permeability described by Langevin’s nonlinear magnetization model. Due to the non-homogeneous nature of the magnetic field, unique shapes of the droplet during its levitation, and at its steady state, are realized. The complete spatio-temporal response of the droplet is a function of the Laplace number $La$ , the magnetic Laplace number $La_{m}$ and the Galilei number $Ga$ ; through detailed simulations we separate out the individual roles played by these non-dimensional parameters. The effect of the viscosity ratio, the stability of the levitation path and the possibility of existence of multiple stable equilibrium states is investigated. We find, for certain conditions on the viscosity ratio, that there can be developments of cusps and singularities at the droplet surface; we also observe this phenomenon experimentally and compare with the simulations. Our simulations closely replicate the singular projection on the surface of the levitating droplet. Finally, we present a dynamical model for the vertical trajectory of the droplet. This model reveals a condition for the onset of levitation and the relation for the equilibrium levitation height. The linearization of the model around the steady state captures that the nature of the equilibrium point goes under a transition from being a spiral to a node depending upon the control parameters, which essentially means that the temporal route to the equilibrium can be either monotonic or undulating. The analytical model for the droplet trajectory is in close agreement with the detailed simulations.
The central theme of this work is that a stable levitation of a denser non-magnetizable liquid droplet, against gravity, inside a relatively lighter ferrofluid – a system barely considered in ferrohydrodynamics – is possible, and exhibits unique interfacial features; the stability of the levitation trajectory, however, is subject to an appropriate magnetic field modulation. We explore the shapes and the temporal dynamics of a plane non-magnetizable droplet levitating inside a ferrofluid against gravity due to a spatially complex, but systematically generated, magnetic field in two dimensions. The coupled set of Maxwell’s magnetostatic equations and the flow dynamic equations is integrated computationally, utilizing a conservative finite-volume-based second-order pressure projection algorithm combined with the front-tracking algorithm for the advection of the interface of the droplet. The dynamics of the droplet is studied under both the constant ferrofluid magnetic permeability assumption as well as for more realistic field-dependent permeability described by Langevin’s nonlinear magnetization model. Due to the non-homogeneous nature of the magnetic field, unique shapes of the droplet during its levitation, and at its steady state, are realized. The complete spatio-temporal response of the droplet is a function of the Laplace number \(La\), the magnetic Laplace number \(La_{m}\) and the Galilei number \(Ga\); through detailed simulations we separate out the individual roles played by these non-dimensional parameters. The effect of the viscosity ratio, the stability of the levitation path and the possibility of existence of multiple stable equilibrium states is investigated. We find, for certain conditions on the viscosity ratio, that there can be developments of cusps and singularities at the droplet surface; we also observe this phenomenon experimentally and compare with the simulations. Our simulations closely replicate the singular projection on the surface of the levitating droplet. Finally, we present a dynamical model for the vertical trajectory of the droplet. This model reveals a condition for the onset of levitation and the relation for the equilibrium levitation height. The linearization of the model around the steady state captures that the nature of the equilibrium point goes under a transition from being a spiral to a node depending upon the control parameters, which essentially means that the temporal route to the equilibrium can be either monotonic or undulating. The analytical model for the droplet trajectory is in close agreement with the detailed simulations.
Author Das, Prasanta K.
Singh, Chamkor
Das, Arup K.
Author_xml – sequence: 1
  givenname: Chamkor
  orcidid: 0000-0003-0689-1118
  surname: Singh
  fullname: Singh, Chamkor
  organization: Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur 721302, India
– sequence: 2
  givenname: Arup K.
  orcidid: 0000-0002-2323-4745
  surname: Das
  fullname: Das, Arup K.
  organization: Department of Mechanical and Industrial Engineering, Indian Institute of Technology, Roorkee 247667, India
– sequence: 3
  givenname: Prasanta K.
  orcidid: 0000-0003-3833-5116
  surname: Das
  fullname: Das, Prasanta K.
  email: pkd@mech.iitkgp.ernet.in
  organization: Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur 721302, India
BookMark eNp1kM1Kw0AURgepYFvd-QABtybemUkyk6UUrULBja6H-S1TkkydpII-jc_ikzmlBUF0dTfn--69Z4YmfegtQpcYCgyY3WxcVxDAvGCUnqApLusmZ3VZTdAUgJAcYwJnaDYMGwBMoWFT1Kzsmx_l6EOfBZelwryT696O_kOq1mYmhm1rx69P3w_e2MzZGINrd96co1Mn28FeHOccvdzfPS8e8tXT8nFxu8o1BTLm2PFS1woId4prqJSmlDNN0imNMYpLpSpLTFWCBUVUaRtgJaMSA9McwNE5ujr0bmN43dlhFJuwi31aKUjq4DUltE4UOVA6hmGI1gl9fGuM0rcCg9grEkmR2CsSSVEKXf8KbaPvZHz_Dy-OuOxU9GZtf075M_ANYYN5pg
CitedBy_id crossref_primary_10_1007_s10665_024_10343_5
crossref_primary_10_1017_jfm_2021_245
crossref_primary_10_1038_s41598_024_82048_9
crossref_primary_10_1038_s41467_024_47727_1
crossref_primary_10_1016_j_jmmm_2024_172232
crossref_primary_10_1017_jfm_2020_1001
crossref_primary_10_1016_j_jmmm_2021_168300
crossref_primary_10_1016_j_ijmecsci_2025_109949
crossref_primary_10_1063_5_0067426
crossref_primary_10_1007_s40544_022_0616_7
crossref_primary_10_1016_j_jmmm_2023_170814
crossref_primary_10_1016_j_jmmm_2024_172615
crossref_primary_10_1017_jfm_2023_13
crossref_primary_10_1039_C9SM02224D
Cites_doi 10.1017/jfm.2012.594
10.1063/1.2204831
10.1063/1.3574001
10.1063/1.1138419
10.1017/S0022112088000667
10.1016/j.jmmm.2015.10.112
10.1016/0304-8853(93)91086-M
10.1016/j.jmmm.2007.02.128
10.1021/ja900920s
10.1017/S0022112092002015
10.1016/0304-8853(95)00348-7
10.1016/S0304-8853(99)00144-4
10.1109/TRANSDUCERS.2015.7180860
10.1017/S0022112010003551
10.1016/0304-8853(83)90395-5
10.1063/1.4908285
10.1021/la4032859
10.1098/rspa.1999.0316
10.1039/c3sm51860d
10.1021/la203931q
10.1038/22444
10.1017/jfm.2016.447
10.1016/j.jmmm.2004.11.055
10.1021/la201728f
10.1063/1.2929372
10.1016/0021-9991(92)90307-K
10.1021/acs.jpcb.5b02975
10.13052/rp-9788793237544
10.1016/S0304-8853(99)00026-8
10.1007/s10404-012-0979-6
10.1007/s10404-010-0754-5
10.1098/rspa.1964.0151
10.1021/jp0042967
10.1063/1.335021
10.1017/S0022112008002589
10.1126/science.1233775
10.1364/AO.54.001420
10.1038/210613a0
10.1021/jp905961t
10.1063/1.869441
10.1038/31619
10.1007/s10404-011-0784-7
10.1017/CBO9780511975264
10.1103/PhysRevLett.72.2705
10.1039/B513005K
10.1098/rspa.1969.0172
ContentType Journal Article
Copyright 2018 Cambridge University Press
Copyright_xml – notice: 2018 Cambridge University Press
DBID AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/jfm.2018.733
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Research Library Prep
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
DocumentTitleAlternate C. Singh, A. K. Das and P. K. Das
Levitation of non-magnetizable droplet inside ferrofluid
EISSN 1469-7645
EndPage 448
ExternalDocumentID 10_1017_jfm_2018_733
GroupedDBID -2P
-DZ
-E.
-~6
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVKB
ABVZP
ABXAU
ABZCX
ACBEA
ACBMC
ACDLN
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADKIL
ADVJH
AEBAK
AEHGV
AEMTW
AENEX
AENGE
AEUYN
AEYYC
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFRAH
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AGLWM
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
EJD
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
I.7
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WYP
ZE2
ZMEZD
ZYDXJ
~02
-1F
-2V
-~N
6TJ
6~7
8WZ
9M5
A6W
AANRG
AATMM
AAYXX
ABDMP
ABDPE
ABFSI
ABKAW
ABVFV
ABXHF
ABZUI
ACETC
ACKIV
ACRPL
ADMLS
ADNMO
ADOVH
AEBPU
AEMFK
AENCP
AGQPQ
AI.
AKMAY
ALEEW
BESQT
BQFHP
CAG
CCUQV
CDIZJ
CITATION
COF
H~9
I.9
KAFGG
LHUNA
NMFBF
PHGZM
PHGZT
RIG
VH1
VOH
ZJOSE
ZY4
~V1
3V.
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c302t-1f84c6b028fb8c05bc3387c21209ddb8abb5e2d540e0b2b4e907473a107c800f3
IEDL.DBID BENPR
ISSN 0022-1120
IngestDate Sat Aug 16 09:12:01 EDT 2025
Thu Apr 24 23:12:21 EDT 2025
Tue Jul 01 03:01:14 EDT 2025
Tue Jan 21 06:25:00 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords drops and bubbles
magnetic fluids
interfacial flows (free surface)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c302t-1f84c6b028fb8c05bc3387c21209ddb8abb5e2d540e0b2b4e907473a107c800f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0689-1118
0000-0003-3833-5116
0000-0002-2323-4745
PQID 2209863236
PQPubID 34769
PageCount 51
ParticipantIDs proquest_journals_2209863236
crossref_citationtrail_10_1017_jfm_2018_733
crossref_primary_10_1017_jfm_2018_733
cambridge_journals_10_1017_jfm_2018_733
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-25
PublicationDateYYYYMMDD 2018-12-25
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-25
  day: 25
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2018
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2013; 29
1992; 241
2015; 660
2010; 663
1988; 188
2011; 98
2009; 113
1999; 201
1999; 400
2016a; 28
2013; 8
2012; 13
1997; 9
1998; 393
2013; 9
2001; 105
1993; 122
2010; 22
2010; 20
2013; 716
2015; 86
2011b; 10
1999; 59
2016b; 94
1999; 455
2008; 20
1985; 56
2011; 27
1994; 72
2011a; 27
2007; 23
1985; 57
1966; 210
1964; 280
2016; 802
1992; 100
2015; 54
2011b; 23
2006; 6
2016; 93
2016; 401
2013; 341
2009; 131
1983; 39
2001; 329
2011a; 11
2007; 316
2005; 289
2006; 88
2014; 37
2013; 135
1995; 149
2015; 119
2008; 610
1969; 312
S0022112018007334_r48
S0022112018007334_r44
S0022112018007334_r45
Korlie (S0022112018007334_r25) 2008; 20
S0022112018007334_r41
Sandre (S0022112018007334_r43) 1999; 59
S0022112018007334_r59
S0022112018007334_r16
Singh (S0022112018007334_r47) 2016; 94
Liu (S0022112018007334_r31) 2014; 37
S0022112018007334_r18
S0022112018007334_r11
S0022112018007334_r55
S0022112018007334_r12
S0022112018007334_r56
S0022112018007334_r13
S0022112018007334_r57
S0022112018007334_r14
S0022112018007334_r58
Koh (S0022112018007334_r24) 2013; 135
S0022112018007334_r51
S0022112018007334_r52
S0022112018007334_r53
S0022112018007334_r10
Olaru (S0022112018007334_r35) 2013; 8
S0022112018007334_r54
Singh (S0022112018007334_r46) 2016; 28
S0022112018007334_r50
Gu (S0022112018007334_r15) 2016; 61
Ruyer-Quil (S0022112018007334_r42) 2001; 329
Liu (S0022112018007334_r30) 2011; 23
Jackson (S0022112018007334_r20) 2007; 23
Kim (S0022112018007334_r22) 2015; 660
S0022112018007334_r19
Huber (S0022112018007334_r17) 1996; 385
S0022112018007334_r26
Tan (S0022112018007334_r49) 2010; 20
S0022112018007334_r29
Chen (S0022112018007334_r8) 2010; 22
S0022112018007334_r23
S0022112018007334_r62
S0022112018007334_r63
S0022112018007334_r65
S0022112018007334_r21
S0022112018007334_r60
S0022112018007334_r61
S0022112018007334_r37
Limbach (S0022112018007334_r27) 2016
S0022112018007334_r38
S0022112018007334_r39
Lira (S0022112018007334_r28) 2016; 93
S0022112018007334_r9
S0022112018007334_r33
S0022112018007334_r34
S0022112018007334_r36
S0022112018007334_r32
Rosensweig (S0022112018007334_r40) 1985
S0022112018007334_r2
S0022112018007334_r3
Zhu (S0022112018007334_r64) 2013
S0022112018007334_r1
S0022112018007334_r6
S0022112018007334_r7
S0022112018007334_r4
S0022112018007334_r5
References_xml – volume: 22
  issue: 1
  year: 2010
  article-title: Ordered microdroplet formations of thin ferrofluid layer breakups
  publication-title: Phys. Fluids
– volume: 59
  start-page: 1736
  issue: 2
  year: 1999
  article-title: Assembly of microscopic highly magnetic droplets: magnetic alignment versus viscous drag
  publication-title: Phys. Rev. E
– volume: 341
  start-page: 253
  issue: 6143
  year: 2013
  end-page: 257
  article-title: Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces
  publication-title: Science
– volume: 20
  issue: 20
  year: 2008
  article-title: Modeling bubbles and droplets in magnetic fluids
  publication-title: J. Phys.: Condens. Matter
– volume: 37
  start-page: 1
  issue: 6
  year: 2014
  end-page: 9
  article-title: Horizontal deflection of single particle in a paramagnetic fluid
  publication-title: Eur. Phys. J. E
– volume: 86
  issue: 3
  year: 2015
  article-title: An in-vacuo optical levitation trap for high-intensity laser interaction experiments with isolated microtargets
  publication-title: Rev. Sci. Instrum.
– volume: 802
  start-page: 245
  year: 2016
  end-page: 262
  article-title: Dynamics of ferrofluid drop deformations under spatially uniform magnetic fields
  publication-title: J. Fluid Mech.
– volume: 28
  issue: 8
  year: 2016a
  article-title: Flow restrictive and shear reducing effect of magnetization relaxation in ferrofluid cavity flow
  publication-title: Phys. Fluids
– volume: 113
  start-page: 13457
  issue: 41
  year: 2009
  end-page: 13461
  article-title: Interfacial tension oscillations without surfactant transfer
  publication-title: J. Phys. Chem. B
– volume: 56
  start-page: 2059
  issue: 11
  year: 1985
  end-page: 2065
  article-title: Compact acoustic levitation device for studies in fluid dynamics and material science in the laboratory and microgravity
  publication-title: Rev. Sci. Instrum.
– volume: 610
  start-page: 363
  year: 2008
  end-page: 380
  article-title: Field-induced motion of ferrofluid droplets through immiscible viscous media
  publication-title: J. Fluid Mech.
– volume: 57
  start-page: 3605
  issue: 8
  year: 1985
  end-page: 3608
  article-title: Application of permanent magnets in accelerators and electron storage rings
  publication-title: J. Appl. Phys.
– volume: 660
  year: 2015
  article-title: Energy harvester using contact-electrification of magnetic fluid droplets under oscillating magnetic field
  publication-title: J. Phys.: Conf. Ser.
– volume: 312
  start-page: 473
  year: 1969
  end-page: 494
  article-title: A dielectric fluid drop an electric field
  publication-title: Proc. R. Soc. Lond. A
– volume: 105
  start-page: 4709
  issue: 20
  year: 2001
  end-page: 4714
  article-title: A numerical study of surface tension auto-oscillations. Effect of surfactant properties
  publication-title: J. Phys. Chem. B
– volume: 329
  start-page: 337
  issue: 5
  year: 2001
  end-page: 342
  article-title: Inertial corrections to the darcy law in a Hele-Shaw cell
  publication-title: C. R. Acad. Sci. Ser. II B
– volume: 188
  start-page: 133
  year: 1988
  end-page: 146
  article-title: Breakup of fluid droplets in electric and magnetic fields
  publication-title: J. Fluid Mech.
– volume: 455
  start-page: 329
  year: 1999
  end-page: 347
  article-title: Drops with conical ends in electric and magnetic fields
  publication-title: Proc. R. Soc. Lond. A
– volume: 201
  start-page: 300
  issue: 1
  year: 1999
  end-page: 302
  article-title: Dynamics of deformation of magnetic fluid flat drops in a homogeneous longitudinal magnetic field
  publication-title: J. Magn. Magn. Mater.
– volume: 131
  start-page: 10049
  issue: 29
  year: 2009
  end-page: 10058
  article-title: Measuring densities of solids and liquids using magnetic levitation: fundamentals
  publication-title: J. Am. Chem. Soc.
– volume: 23
  issue: 7
  year: 2011b
  article-title: Numerical study of the formation process of ferrofluid droplets
  publication-title: Phys. Fluids
– volume: 23
  start-page: 389
  issue: 4
  year: 2007
  end-page: 396
  article-title: Confined ferrofluid droplet in crossed magnetic fields
  publication-title: Eur. Phys. J. E
– volume: 98
  issue: 13
  year: 2011
  article-title: Droplet spreading using low frequency vibration
  publication-title: Appl. Phys. Lett.
– volume: 94
  issue: 1
  year: 2016b
  article-title: Single-mode instability of a ferrofluid-mercury interface under a nonuniform magnetic field
  publication-title: Phys. Rev. E
– volume: 149
  start-page: 104
  issue: 1–2
  year: 1995
  end-page: 107
  article-title: Study on single bubbles rising in magnetic fluid for small Weber number
  publication-title: J. Magn. Magn. Mater.
– volume: 27
  start-page: 14834
  issue: 24
  year: 2011a
  end-page: 14841
  article-title: Nonlinear deformation of a ferrofluid droplet in a uniform magnetic field
  publication-title: Langmuir
– volume: 20
  issue: 5
  year: 2008
  article-title: An experimental study on Rosensweig instability of a ferrofluid droplet
  publication-title: Phys. Fluids
– volume: 9
  start-page: 3267
  issue: 11
  year: 1997
  end-page: 3274
  article-title: Shear instability of two-fluid parallel flow in a Hele-Shaw cell
  publication-title: Phys. Fluids
– volume: 393
  start-page: 749
  issue: 6687
  year: 1998
  end-page: 750
  article-title: Making water levitate
  publication-title: Nature
– volume: 316
  start-page: 273
  issue: 2
  year: 2007
  end-page: 276
  article-title: Levitation in paramagnetic liquids
  publication-title: J. Magn. Magn. Mater.
– volume: 119
  start-page: 6740
  issue: 22
  year: 2015
  end-page: 6746
  article-title: Mode pattern of internal flow in a water droplet on a vibrating hydrophobic surface
  publication-title: J. Phys. Chem. B
– volume: 122
  start-page: 259
  issue: 1–3
  year: 1993
  end-page: 263
  article-title: Effects of physical properties and geometry on shapes and stability of polarizable drops in external fields
  publication-title: J. Magn. Magn. Mater.
– volume: 100
  start-page: 25
  issue: 1
  year: 1992
  end-page: 37
  article-title: A front-tracking method for viscous, incompressible, multi-fluid flows
  publication-title: J. Comput. Phys.
– volume: 6
  start-page: 24
  issue: 1
  year: 2006
  end-page: 38
  article-title: Magnetism and microfluidics
  publication-title: Lab on a Chip
– volume: 135
  issue: 2
  year: 2013
  article-title: A digital micro magnetofluidic platform for lab-on-a-chip applications
  publication-title: Trans. ASME J. Fluids Engng
– volume: 8
  start-page: 904
  issue: 2
  year: 2013
  end-page: 911
  article-title: Maximizing the magnetic force generated by an actuator with non-magnetic body in a ferrofluid pre-magnetized by permanent magnets
  publication-title: Intl Rev. Elec. Eng. (IREE)
– volume: 400
  start-page: 323
  issue: 6742
  year: 1999
  end-page: 324
  article-title: Magnet levitation at your fingertips
  publication-title: Nature
– volume: 54
  start-page: 1420
  issue: 6
  year: 2015
  end-page: 1425
  article-title: Ferrofluid-based optofluidic switch using femtosecond laser-micromachined waveguides
  publication-title: Appl. Opt.
– volume: 20
  issue: 4
  year: 2010
  article-title: Formation and manipulation of ferrofluid droplets at a microfluidic t-junction
  publication-title: J. Micromech. Microengng
– volume: 13
  start-page: 625
  issue: 4
  year: 2012
  end-page: 635
  article-title: Microfluidic devices in superconducting magnets: on-chip free-flow diamagnetophoresis of polymer particles and bubbles
  publication-title: Microfluid. Nanofluid.
– volume: 663
  start-page: 358
  year: 2010
  end-page: 384
  article-title: Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields
  publication-title: J. Fluid Mech.
– volume: 11
  start-page: 177
  issue: 2
  year: 2011a
  end-page: 187
  article-title: Numerical and experimental investigations of the formation process of ferrofluid droplets
  publication-title: Microfluid. Nanofluid.
– volume: 289
  start-page: 188
  year: 2005
  end-page: 191
  article-title: Theory, experiment, and simulations of a symmetric arrangement of quasi-two-dimensional magnetic fluid drops
  publication-title: J. Magn. Magn. Mater.
– volume: 716
  year: 2013
  article-title: On the bubble shape in a magnetically compensated gravity environment
  publication-title: J. Fluid Mech.
– volume: 10
  start-page: 1233
  issue: 6
  year: 2011b
  end-page: 1245
  article-title: Analytical model of microfluidic transport of non-magnetic particles in ferrofluids under the influence of a permanent magnet
  publication-title: Microfluid. Nanofluid.
– volume: 210
  start-page: 613
  year: 1966
  end-page: 614
  article-title: Buoyancy and stable levitation of a magnetic body immersed in a magnetizable fluid
  publication-title: Nature
– volume: 39
  start-page: 48
  issue: 1
  year: 1983
  end-page: 50
  article-title: Bistability of ferrofluid magnetic drops under magnetic field
  publication-title: J. Magn. Magn. Mater.
– volume: 93
  issue: 1
  year: 2016
  article-title: Ferrofluid patterns in Hele-Shaw cells: exact, stable, stationary shape solutions
  publication-title: Phys. Rev. E
– volume: 241
  start-page: 215
  year: 1992
  end-page: 232
  article-title: The shape of a magnetic liquid drop
  publication-title: J. Fluid Mech.
– volume: 29
  start-page: 13982
  issue: 45
  year: 2013
  end-page: 13989
  article-title: Deformation of ferrofluid marbles in the presence of a permanent magnet
  publication-title: Langmuir
– volume: 401
  start-page: 1054
  year: 2016
  end-page: 1059
  article-title: Printing microstructures in a polymer matrix using a ferrofluid droplet
  publication-title: J. Magn. Magn. Mater.
– volume: 72
  start-page: 2705
  issue: 17
  year: 1994
  end-page: 2708
  article-title: Behavior of a magnetic fluid microdrop in a rotating magnetic field
  publication-title: Phys. Rev. Lett.
– volume: 280
  start-page: 383
  year: 1964
  end-page: 397
  article-title: Disintegration of water drops in an electric field
  publication-title: Proc. R. Soc. Lond. A
– volume: 27
  start-page: 9644
  issue: 15
  year: 2011
  end-page: 9653
  article-title: Inkjet metrology II: resolved effects of ejection frequency, fluidic pressure, and droplet number on reproducible drop-on-demand dispensing
  publication-title: Langmuir
– volume: 9
  start-page: 9792
  issue: 41
  year: 2013
  end-page: 9798
  article-title: Ferrofluid droplet formation and breakup dynamics in a microfluidic flow-focusing device
  publication-title: Soft Matt.
– volume: 88
  issue: 20
  year: 2006
  article-title: Microfluidic mixing through electrowetting-induced droplet oscillations
  publication-title: Appl. Phys. Lett.
– volume: 201
  start-page: 281
  issue: 1
  year: 1999
  end-page: 284
  article-title: Numerical simulation of deformed single bubbles rising in magnetic fluid
  publication-title: J. Magn. Magn. Mater.
– volume: 93
  year: 2016
  ident: S0022112018007334_r28
  publication-title: Phys. Rev. E
– ident: S0022112018007334_r10
  doi: 10.1017/jfm.2012.594
– volume: 61
  volume-title: Bulletin of the American Physical Society, APS March Meeting 2016
  year: 2016
  ident: S0022112018007334_r15
– ident: S0022112018007334_r33
  doi: 10.1063/1.2204831
– ident: S0022112018007334_r59
  doi: 10.1063/1.3574001
– ident: S0022112018007334_r52
  doi: 10.1063/1.1138419
– ident: S0022112018007334_r45
  doi: 10.1017/S0022112088000667
– ident: S0022112018007334_r11
  doi: 10.1016/j.jmmm.2015.10.112
– ident: S0022112018007334_r60
  doi: 10.1016/0304-8853(93)91086-M
– ident: S0022112018007334_r9
  doi: 10.1016/j.jmmm.2007.02.128
– ident: S0022112018007334_r32
  doi: 10.1021/ja900920s
– ident: S0022112018007334_r44
  doi: 10.1017/S0022112092002015
– volume-title: 47th AIAA Plasmadynamics and Lasers Conference
  year: 2016
  ident: S0022112018007334_r27
– ident: S0022112018007334_r54
  doi: 10.1016/0304-8853(95)00348-7
– ident: S0022112018007334_r5
  doi: 10.1016/S0304-8853(99)00144-4
– volume: 8
  start-page: 904
  year: 2013
  ident: S0022112018007334_r35
  publication-title: Intl Rev. Elec. Eng. (IREE)
– ident: S0022112018007334_r21
  doi: 10.1109/TRANSDUCERS.2015.7180860
– ident: S0022112018007334_r2
  doi: 10.1017/S0022112010003551
– ident: S0022112018007334_r4
  doi: 10.1016/0304-8853(83)90395-5
– volume: 329
  start-page: 337
  year: 2001
  ident: S0022112018007334_r42
  publication-title: C. R. Acad. Sci. Ser. II B
– volume: 20
  year: 2008
  ident: S0022112018007334_r25
  publication-title: J. Phys.: Condens. Matter
– volume: 20
  year: 2010
  ident: S0022112018007334_r49
  publication-title: J. Micromech. Microengng
– volume: 23
  start-page: 389
  year: 2007
  ident: S0022112018007334_r20
  publication-title: Eur. Phys. J. E
– ident: S0022112018007334_r37
  doi: 10.1063/1.4908285
– volume: 94
  year: 2016
  ident: S0022112018007334_r47
  publication-title: Phys. Rev. E
– volume-title: Microfluidic Continuous-flow Manipulation of Particles and Cells Inside Ferrofluids
  year: 2013
  ident: S0022112018007334_r64
– volume: 660
  year: 2015
  ident: S0022112018007334_r22
  publication-title: J. Phys.: Conf. Ser.
– ident: S0022112018007334_r34
  doi: 10.1021/la4032859
– volume: 59
  start-page: 1736
  year: 1999
  ident: S0022112018007334_r43
  publication-title: Phys. Rev. E
– ident: S0022112018007334_r48
  doi: 10.1098/rspa.1999.0316
– ident: S0022112018007334_r62
  doi: 10.1039/c3sm51860d
– ident: S0022112018007334_r63
  doi: 10.1021/la203931q
– ident: S0022112018007334_r12
  doi: 10.1038/22444
– ident: S0022112018007334_r41
  doi: 10.1017/jfm.2016.447
– ident: S0022112018007334_r19
  doi: 10.1016/j.jmmm.2004.11.055
– ident: S0022112018007334_r57
  doi: 10.1021/la201728f
– volume: 37
  start-page: 1
  year: 2014
  ident: S0022112018007334_r31
  publication-title: Eur. Phys. J. E
– ident: S0022112018007334_r7
  doi: 10.1063/1.2929372
– ident: S0022112018007334_r56
  doi: 10.1016/0021-9991(92)90307-K
– ident: S0022112018007334_r23
  doi: 10.1021/acs.jpcb.5b02975
– ident: S0022112018007334_r6
  doi: 10.13052/rp-9788793237544
– volume: 23
  year: 2011
  ident: S0022112018007334_r30
  publication-title: Phys. Fluids
– ident: S0022112018007334_r55
  doi: 10.1016/S0304-8853(99)00026-8
– ident: S0022112018007334_r58
  doi: 10.1007/s10404-012-0979-6
– ident: S0022112018007334_r65
  doi: 10.1007/s10404-010-0754-5
– volume-title: Ferrohydrodynamics
  year: 1985
  ident: S0022112018007334_r40
– ident: S0022112018007334_r50
  doi: 10.1098/rspa.1964.0151
– volume: 135
  year: 2013
  ident: S0022112018007334_r24
  publication-title: Trans. ASME J. Fluids Engng
– ident: S0022112018007334_r26
  doi: 10.1021/jp0042967
– ident: S0022112018007334_r16
  doi: 10.1063/1.335021
– ident: S0022112018007334_r1
  doi: 10.1017/S0022112008002589
– ident: S0022112018007334_r51
  doi: 10.1126/science.1233775
– ident: S0022112018007334_r14
  doi: 10.1364/AO.54.001420
– ident: S0022112018007334_r39
  doi: 10.1038/210613a0
– ident: S0022112018007334_r61
  doi: 10.1021/jp905961t
– ident: S0022112018007334_r13
  doi: 10.1063/1.869441
– ident: S0022112018007334_r18
  doi: 10.1038/31619
– ident: S0022112018007334_r29
  doi: 10.1007/s10404-011-0784-7
– ident: S0022112018007334_r53
  doi: 10.1017/CBO9780511975264
– ident: S0022112018007334_r3
  doi: 10.1103/PhysRevLett.72.2705
– ident: S0022112018007334_r36
  doi: 10.1039/B513005K
– volume: 22
  year: 2010
  ident: S0022112018007334_r8
  publication-title: Phys. Fluids
– volume: 385
  start-page: 479
  volume-title: Space Station Utilisation, Symposium Proceedings, Darmstadt
  year: 1996
  ident: S0022112018007334_r17
– ident: S0022112018007334_r38
  doi: 10.1098/rspa.1969.0172
– volume: 28
  year: 2016
  ident: S0022112018007334_r46
  publication-title: Phys. Fluids
SSID ssj0013097
Score 2.3667426
Snippet The central theme of this work is that a stable levitation of a denser non-magnetizable liquid droplet, against gravity, inside a relatively lighter ferrofluid...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 398
SubjectTerms Algorithms
Computer simulation
Cusps
Deformation
Dimensional stability
Dimensions
Droplets
Dynamics
Electric fields
Ferrofluids
Ferrohydrodynamics
Gravitation
Gravity
Interface stability
JFM Papers
Levitation
Magnetic field
Magnetic fields
Magnetic permeability
Mathematical models
Parameters
Permeability
Researchers
Singularities
Stability
Steady state
Studies
Surfactants
Trajectories
Viscosity
Viscosity ratio
Title Levitation of non-magnetizable droplet inside ferrofluid
URI https://www.cambridge.org/core/product/identifier/S0022112018007334/type/journal_article
https://www.proquest.com/docview/2209863236
Volume 857
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsNADLWACgkOLAVEWaocQBxQIJnsJ8TSghBUCKjUW5TZUFEp0IT_x04nLT2Uc0ZZPBP7eebZD-Ao87NEkqCJFFrS1o1jY9zJ7IQqfFjEMUMo2Rad8K7r3_eCntlwyw2tsvKJpaOWn4L2yM8Zc5I49JgXXnx926QaRaerRkJjEWrogmNMvmpXrc7T8_QcwUmiql84IgvHUN-pafS7pkJ0Nz6LSDR32lhhNkDN-ucy6LQ3YM2gRetyPL2bsKCGdVg3yNEy_2Veh9U_bQXrsFzSOkW-BfEDxr3xYbv1qS1M9e2P7G2oCuJyDZQlR8QfL6x-qdppaTVCtzz46ctt6LZbr9d3ttFKsIXnsMJ2deyLkCNa0DwWTsAF5p6RYFQaKyWPM84DxSTiM-Vwxn1FSXHkZZj9CcSM2tuBJXwJtQuW9nyuI1eyzPUw3DsJugQdJK4fIV5QmjXgZGKs1Kz4PB2zxaIUzZqSWVM0awNOK1OmwnwtKV8M5ow-noz-GrfamDPuoJqV6eOny2Pv_8v7sEI3IkYKCw5gqRj9qEPEFQVvwmLcvm1C7fLm8eGlaZbSL29ry_U
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LM8RAEO7yKIWDx6K8zYFyUCGZSTbJQSmFtVhOVLlF5qWotctulPKn_EbdeVgO3JwzNUl6erq_nvm6G2Az9dNYU0MTraymoxvXQb-TOjFl-PBQYoSQsy2u6s0b__w2uB2CjyoXhmiVlU3MDbXuKjoj3-PcjaO64KJ-8PziUNcoul2tWmgUanFh3t8wZOvvnx3j-m5x3ji5Pmo6ZVcBRwmXZ45nI1_VJfpVKyPlBlJhlBYqTkmkWssolTIwXCOSMa7k0jcUPoYixThJIbqyAucdhlFfiJh2VNQ4HdxauHFYVSdHHOOWRHsqUf1oKe3di3ZDatE7KOPw0x3-9Aa5i2vMwFSJTdlhoUyzMGQ6NZgucSorrUC_BpPfihjWYCwnkar-HEQt9LLF1T7rWtbpdpyn9L5jMmKOtQ3TPWKrZ-wh7xHKrOmhE2i_Puh5uPkXGS7ACH6EWQRmhS9t6GmeegLBhRujAbJB7PkhohNj-RJsfwkrKfdXPym4aWGCYk1IrAmKdQl2KlEmqvxb6rPR_mX01tfo56Kwxy_jVqtVGbx-oIzLfz_egPHm9WUraZ1dXazABE1KXBgerMJI1ns1a4hoMrmeqxGDu__W208WTwSG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Levitation+of+non-magnetizable+droplet+inside+ferrofluid&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Singh%2C+Chamkor&rft.au=Das%2C+Arup+K&rft.au=Das%2C+Prasanta+K&rft.date=2018-12-25&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=857&rft.spage=398&rft.epage=448&rft_id=info:doi/10.1017%2Fjfm.2018.733
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon