Levitation of non-magnetizable droplet inside ferrofluid
The central theme of this work is that a stable levitation of a denser non-magnetizable liquid droplet, against gravity, inside a relatively lighter ferrofluid – a system barely considered in ferrohydrodynamics – is possible, and exhibits unique interfacial features; the stability of the levitation...
Saved in:
Published in | Journal of fluid mechanics Vol. 857; pp. 398 - 448 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
25.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The central theme of this work is that a stable levitation of a denser non-magnetizable liquid droplet, against gravity, inside a relatively lighter ferrofluid – a system barely considered in ferrohydrodynamics – is possible, and exhibits unique interfacial features; the stability of the levitation trajectory, however, is subject to an appropriate magnetic field modulation. We explore the shapes and the temporal dynamics of a plane non-magnetizable droplet levitating inside a ferrofluid against gravity due to a spatially complex, but systematically generated, magnetic field in two dimensions. The coupled set of Maxwell’s magnetostatic equations and the flow dynamic equations is integrated computationally, utilizing a conservative finite-volume-based second-order pressure projection algorithm combined with the front-tracking algorithm for the advection of the interface of the droplet. The dynamics of the droplet is studied under both the constant ferrofluid magnetic permeability assumption as well as for more realistic field-dependent permeability described by Langevin’s nonlinear magnetization model. Due to the non-homogeneous nature of the magnetic field, unique shapes of the droplet during its levitation, and at its steady state, are realized. The complete spatio-temporal response of the droplet is a function of the Laplace number
$La$
, the magnetic Laplace number
$La_{m}$
and the Galilei number
$Ga$
; through detailed simulations we separate out the individual roles played by these non-dimensional parameters. The effect of the viscosity ratio, the stability of the levitation path and the possibility of existence of multiple stable equilibrium states is investigated. We find, for certain conditions on the viscosity ratio, that there can be developments of cusps and singularities at the droplet surface; we also observe this phenomenon experimentally and compare with the simulations. Our simulations closely replicate the singular projection on the surface of the levitating droplet. Finally, we present a dynamical model for the vertical trajectory of the droplet. This model reveals a condition for the onset of levitation and the relation for the equilibrium levitation height. The linearization of the model around the steady state captures that the nature of the equilibrium point goes under a transition from being a spiral to a node depending upon the control parameters, which essentially means that the temporal route to the equilibrium can be either monotonic or undulating. The analytical model for the droplet trajectory is in close agreement with the detailed simulations. |
---|---|
AbstractList | The central theme of this work is that a stable levitation of a denser non-magnetizable liquid droplet, against gravity, inside a relatively lighter ferrofluid – a system barely considered in ferrohydrodynamics – is possible, and exhibits unique interfacial features; the stability of the levitation trajectory, however, is subject to an appropriate magnetic field modulation. We explore the shapes and the temporal dynamics of a plane non-magnetizable droplet levitating inside a ferrofluid against gravity due to a spatially complex, but systematically generated, magnetic field in two dimensions. The coupled set of Maxwell’s magnetostatic equations and the flow dynamic equations is integrated computationally, utilizing a conservative finite-volume-based second-order pressure projection algorithm combined with the front-tracking algorithm for the advection of the interface of the droplet. The dynamics of the droplet is studied under both the constant ferrofluid magnetic permeability assumption as well as for more realistic field-dependent permeability described by Langevin’s nonlinear magnetization model. Due to the non-homogeneous nature of the magnetic field, unique shapes of the droplet during its levitation, and at its steady state, are realized. The complete spatio-temporal response of the droplet is a function of the Laplace number
$La$
, the magnetic Laplace number
$La_{m}$
and the Galilei number
$Ga$
; through detailed simulations we separate out the individual roles played by these non-dimensional parameters. The effect of the viscosity ratio, the stability of the levitation path and the possibility of existence of multiple stable equilibrium states is investigated. We find, for certain conditions on the viscosity ratio, that there can be developments of cusps and singularities at the droplet surface; we also observe this phenomenon experimentally and compare with the simulations. Our simulations closely replicate the singular projection on the surface of the levitating droplet. Finally, we present a dynamical model for the vertical trajectory of the droplet. This model reveals a condition for the onset of levitation and the relation for the equilibrium levitation height. The linearization of the model around the steady state captures that the nature of the equilibrium point goes under a transition from being a spiral to a node depending upon the control parameters, which essentially means that the temporal route to the equilibrium can be either monotonic or undulating. The analytical model for the droplet trajectory is in close agreement with the detailed simulations. The central theme of this work is that a stable levitation of a denser non-magnetizable liquid droplet, against gravity, inside a relatively lighter ferrofluid – a system barely considered in ferrohydrodynamics – is possible, and exhibits unique interfacial features; the stability of the levitation trajectory, however, is subject to an appropriate magnetic field modulation. We explore the shapes and the temporal dynamics of a plane non-magnetizable droplet levitating inside a ferrofluid against gravity due to a spatially complex, but systematically generated, magnetic field in two dimensions. The coupled set of Maxwell’s magnetostatic equations and the flow dynamic equations is integrated computationally, utilizing a conservative finite-volume-based second-order pressure projection algorithm combined with the front-tracking algorithm for the advection of the interface of the droplet. The dynamics of the droplet is studied under both the constant ferrofluid magnetic permeability assumption as well as for more realistic field-dependent permeability described by Langevin’s nonlinear magnetization model. Due to the non-homogeneous nature of the magnetic field, unique shapes of the droplet during its levitation, and at its steady state, are realized. The complete spatio-temporal response of the droplet is a function of the Laplace number \(La\), the magnetic Laplace number \(La_{m}\) and the Galilei number \(Ga\); through detailed simulations we separate out the individual roles played by these non-dimensional parameters. The effect of the viscosity ratio, the stability of the levitation path and the possibility of existence of multiple stable equilibrium states is investigated. We find, for certain conditions on the viscosity ratio, that there can be developments of cusps and singularities at the droplet surface; we also observe this phenomenon experimentally and compare with the simulations. Our simulations closely replicate the singular projection on the surface of the levitating droplet. Finally, we present a dynamical model for the vertical trajectory of the droplet. This model reveals a condition for the onset of levitation and the relation for the equilibrium levitation height. The linearization of the model around the steady state captures that the nature of the equilibrium point goes under a transition from being a spiral to a node depending upon the control parameters, which essentially means that the temporal route to the equilibrium can be either monotonic or undulating. The analytical model for the droplet trajectory is in close agreement with the detailed simulations. |
Author | Das, Prasanta K. Singh, Chamkor Das, Arup K. |
Author_xml | – sequence: 1 givenname: Chamkor orcidid: 0000-0003-0689-1118 surname: Singh fullname: Singh, Chamkor organization: Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur 721302, India – sequence: 2 givenname: Arup K. orcidid: 0000-0002-2323-4745 surname: Das fullname: Das, Arup K. organization: Department of Mechanical and Industrial Engineering, Indian Institute of Technology, Roorkee 247667, India – sequence: 3 givenname: Prasanta K. orcidid: 0000-0003-3833-5116 surname: Das fullname: Das, Prasanta K. email: pkd@mech.iitkgp.ernet.in organization: Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur 721302, India |
BookMark | eNp1kM1Kw0AURgepYFvd-QABtybemUkyk6UUrULBja6H-S1TkkydpII-jc_ikzmlBUF0dTfn--69Z4YmfegtQpcYCgyY3WxcVxDAvGCUnqApLusmZ3VZTdAUgJAcYwJnaDYMGwBMoWFT1Kzsmx_l6EOfBZelwryT696O_kOq1mYmhm1rx69P3w_e2MzZGINrd96co1Mn28FeHOccvdzfPS8e8tXT8nFxu8o1BTLm2PFS1woId4prqJSmlDNN0imNMYpLpSpLTFWCBUVUaRtgJaMSA9McwNE5ujr0bmN43dlhFJuwi31aKUjq4DUltE4UOVA6hmGI1gl9fGuM0rcCg9grEkmR2CsSSVEKXf8KbaPvZHz_Dy-OuOxU9GZtf075M_ANYYN5pg |
CitedBy_id | crossref_primary_10_1007_s10665_024_10343_5 crossref_primary_10_1017_jfm_2021_245 crossref_primary_10_1038_s41598_024_82048_9 crossref_primary_10_1038_s41467_024_47727_1 crossref_primary_10_1016_j_jmmm_2024_172232 crossref_primary_10_1017_jfm_2020_1001 crossref_primary_10_1016_j_jmmm_2021_168300 crossref_primary_10_1016_j_ijmecsci_2025_109949 crossref_primary_10_1063_5_0067426 crossref_primary_10_1007_s40544_022_0616_7 crossref_primary_10_1016_j_jmmm_2023_170814 crossref_primary_10_1016_j_jmmm_2024_172615 crossref_primary_10_1017_jfm_2023_13 crossref_primary_10_1039_C9SM02224D |
Cites_doi | 10.1017/jfm.2012.594 10.1063/1.2204831 10.1063/1.3574001 10.1063/1.1138419 10.1017/S0022112088000667 10.1016/j.jmmm.2015.10.112 10.1016/0304-8853(93)91086-M 10.1016/j.jmmm.2007.02.128 10.1021/ja900920s 10.1017/S0022112092002015 10.1016/0304-8853(95)00348-7 10.1016/S0304-8853(99)00144-4 10.1109/TRANSDUCERS.2015.7180860 10.1017/S0022112010003551 10.1016/0304-8853(83)90395-5 10.1063/1.4908285 10.1021/la4032859 10.1098/rspa.1999.0316 10.1039/c3sm51860d 10.1021/la203931q 10.1038/22444 10.1017/jfm.2016.447 10.1016/j.jmmm.2004.11.055 10.1021/la201728f 10.1063/1.2929372 10.1016/0021-9991(92)90307-K 10.1021/acs.jpcb.5b02975 10.13052/rp-9788793237544 10.1016/S0304-8853(99)00026-8 10.1007/s10404-012-0979-6 10.1007/s10404-010-0754-5 10.1098/rspa.1964.0151 10.1021/jp0042967 10.1063/1.335021 10.1017/S0022112008002589 10.1126/science.1233775 10.1364/AO.54.001420 10.1038/210613a0 10.1021/jp905961t 10.1063/1.869441 10.1038/31619 10.1007/s10404-011-0784-7 10.1017/CBO9780511975264 10.1103/PhysRevLett.72.2705 10.1039/B513005K 10.1098/rspa.1969.0172 |
ContentType | Journal Article |
Copyright | 2018 Cambridge University Press |
Copyright_xml | – notice: 2018 Cambridge University Press |
DBID | AAYXX CITATION 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
DOI | 10.1017/jfm.2018.733 |
DatabaseName | CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student ProQuest Research Library Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Research Library Prep |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
DocumentTitleAlternate | C. Singh, A. K. Das and P. K. Das Levitation of non-magnetizable droplet inside ferrofluid |
EISSN | 1469-7645 |
EndPage | 448 |
ExternalDocumentID | 10_1017_jfm_2018_733 |
GroupedDBID | -2P -DZ -E. -~6 -~X .DC .FH 09C 09E 0E1 0R~ 29K 4.4 5GY 5VS 74X 74Y 7~V 88I 8FE 8FG 8FH 8G5 8R4 8R5 AAAZR AABES AABWE AACJH AAGFV AAKTX AAMNQ AARAB AASVR AAUIS AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABQTM ABQWD ABROB ABTCQ ABUWG ABVKB ABVZP ABXAU ABZCX ACBEA ACBMC ACDLN ACGFO ACGFS ACGOD ACIMK ACIWK ACUIJ ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADKIL ADVJH AEBAK AEHGV AEMTW AENEX AENGE AEUYN AEYYC AFFUJ AFKQG AFKRA AFLOS AFLVW AFRAH AFUTZ AFZFC AGABE AGBYD AGJUD AGLWM AHQXX AHRGI AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BHPHI BKSAR BLZWO BMAJL BPHCQ C0O CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC CS3 D-I DC4 DOHLZ DU5 DWQXO E.L EBS EJD F5P GNUQQ GUQSH HCIFZ HG- HST HZ~ I.6 I.7 IH6 IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L6V L98 LK5 LW7 M-V M2O M2P M7R M7S NIKVX O9- OYBOY P2P P62 PCBAR PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RNS ROL RR0 S0W S6- S6U SAAAG SC5 T9M TAE TN5 UT1 WFFJZ WH7 WQ3 WXU WYP ZE2 ZMEZD ZYDXJ ~02 -1F -2V -~N 6TJ 6~7 8WZ 9M5 A6W AANRG AATMM AAYXX ABDMP ABDPE ABFSI ABKAW ABVFV ABXHF ABZUI ACETC ACKIV ACRPL ADMLS ADNMO ADOVH AEBPU AEMFK AENCP AGQPQ AI. AKMAY ALEEW BESQT BQFHP CAG CCUQV CDIZJ CITATION COF H~9 I.9 KAFGG LHUNA NMFBF PHGZM PHGZT RIG VH1 VOH ZJOSE ZY4 ~V1 3V. 7TB 7U5 7UA 7XB 8FD 8FK C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c302t-1f84c6b028fb8c05bc3387c21209ddb8abb5e2d540e0b2b4e907473a107c800f3 |
IEDL.DBID | BENPR |
ISSN | 0022-1120 |
IngestDate | Sat Aug 16 09:12:01 EDT 2025 Thu Apr 24 23:12:21 EDT 2025 Tue Jul 01 03:01:14 EDT 2025 Tue Jan 21 06:25:00 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | drops and bubbles magnetic fluids interfacial flows (free surface) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c302t-1f84c6b028fb8c05bc3387c21209ddb8abb5e2d540e0b2b4e907473a107c800f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0689-1118 0000-0003-3833-5116 0000-0002-2323-4745 |
PQID | 2209863236 |
PQPubID | 34769 |
PageCount | 51 |
ParticipantIDs | proquest_journals_2209863236 crossref_citationtrail_10_1017_jfm_2018_733 crossref_primary_10_1017_jfm_2018_733 cambridge_journals_10_1017_jfm_2018_733 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-25 |
PublicationDateYYYYMMDD | 2018-12-25 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Journal of fluid mechanics |
PublicationTitleAlternate | J. Fluid Mech |
PublicationYear | 2018 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | 2013; 29 1992; 241 2015; 660 2010; 663 1988; 188 2011; 98 2009; 113 1999; 201 1999; 400 2016a; 28 2013; 8 2012; 13 1997; 9 1998; 393 2013; 9 2001; 105 1993; 122 2010; 22 2010; 20 2013; 716 2015; 86 2011b; 10 1999; 59 2016b; 94 1999; 455 2008; 20 1985; 56 2011; 27 1994; 72 2011a; 27 2007; 23 1985; 57 1966; 210 1964; 280 2016; 802 1992; 100 2015; 54 2011b; 23 2006; 6 2016; 93 2016; 401 2013; 341 2009; 131 1983; 39 2001; 329 2011a; 11 2007; 316 2005; 289 2006; 88 2014; 37 2013; 135 1995; 149 2015; 119 2008; 610 1969; 312 S0022112018007334_r48 S0022112018007334_r44 S0022112018007334_r45 Korlie (S0022112018007334_r25) 2008; 20 S0022112018007334_r41 Sandre (S0022112018007334_r43) 1999; 59 S0022112018007334_r59 S0022112018007334_r16 Singh (S0022112018007334_r47) 2016; 94 Liu (S0022112018007334_r31) 2014; 37 S0022112018007334_r18 S0022112018007334_r11 S0022112018007334_r55 S0022112018007334_r12 S0022112018007334_r56 S0022112018007334_r13 S0022112018007334_r57 S0022112018007334_r14 S0022112018007334_r58 Koh (S0022112018007334_r24) 2013; 135 S0022112018007334_r51 S0022112018007334_r52 S0022112018007334_r53 S0022112018007334_r10 Olaru (S0022112018007334_r35) 2013; 8 S0022112018007334_r54 Singh (S0022112018007334_r46) 2016; 28 S0022112018007334_r50 Gu (S0022112018007334_r15) 2016; 61 Ruyer-Quil (S0022112018007334_r42) 2001; 329 Liu (S0022112018007334_r30) 2011; 23 Jackson (S0022112018007334_r20) 2007; 23 Kim (S0022112018007334_r22) 2015; 660 S0022112018007334_r19 Huber (S0022112018007334_r17) 1996; 385 S0022112018007334_r26 Tan (S0022112018007334_r49) 2010; 20 S0022112018007334_r29 Chen (S0022112018007334_r8) 2010; 22 S0022112018007334_r23 S0022112018007334_r62 S0022112018007334_r63 S0022112018007334_r65 S0022112018007334_r21 S0022112018007334_r60 S0022112018007334_r61 S0022112018007334_r37 Limbach (S0022112018007334_r27) 2016 S0022112018007334_r38 S0022112018007334_r39 Lira (S0022112018007334_r28) 2016; 93 S0022112018007334_r9 S0022112018007334_r33 S0022112018007334_r34 S0022112018007334_r36 S0022112018007334_r32 Rosensweig (S0022112018007334_r40) 1985 S0022112018007334_r2 S0022112018007334_r3 Zhu (S0022112018007334_r64) 2013 S0022112018007334_r1 S0022112018007334_r6 S0022112018007334_r7 S0022112018007334_r4 S0022112018007334_r5 |
References_xml | – volume: 22 issue: 1 year: 2010 article-title: Ordered microdroplet formations of thin ferrofluid layer breakups publication-title: Phys. Fluids – volume: 59 start-page: 1736 issue: 2 year: 1999 article-title: Assembly of microscopic highly magnetic droplets: magnetic alignment versus viscous drag publication-title: Phys. Rev. E – volume: 341 start-page: 253 issue: 6143 year: 2013 end-page: 257 article-title: Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces publication-title: Science – volume: 20 issue: 20 year: 2008 article-title: Modeling bubbles and droplets in magnetic fluids publication-title: J. Phys.: Condens. Matter – volume: 37 start-page: 1 issue: 6 year: 2014 end-page: 9 article-title: Horizontal deflection of single particle in a paramagnetic fluid publication-title: Eur. Phys. J. E – volume: 86 issue: 3 year: 2015 article-title: An in-vacuo optical levitation trap for high-intensity laser interaction experiments with isolated microtargets publication-title: Rev. Sci. Instrum. – volume: 802 start-page: 245 year: 2016 end-page: 262 article-title: Dynamics of ferrofluid drop deformations under spatially uniform magnetic fields publication-title: J. Fluid Mech. – volume: 28 issue: 8 year: 2016a article-title: Flow restrictive and shear reducing effect of magnetization relaxation in ferrofluid cavity flow publication-title: Phys. Fluids – volume: 113 start-page: 13457 issue: 41 year: 2009 end-page: 13461 article-title: Interfacial tension oscillations without surfactant transfer publication-title: J. Phys. Chem. B – volume: 56 start-page: 2059 issue: 11 year: 1985 end-page: 2065 article-title: Compact acoustic levitation device for studies in fluid dynamics and material science in the laboratory and microgravity publication-title: Rev. Sci. Instrum. – volume: 610 start-page: 363 year: 2008 end-page: 380 article-title: Field-induced motion of ferrofluid droplets through immiscible viscous media publication-title: J. Fluid Mech. – volume: 57 start-page: 3605 issue: 8 year: 1985 end-page: 3608 article-title: Application of permanent magnets in accelerators and electron storage rings publication-title: J. Appl. Phys. – volume: 660 year: 2015 article-title: Energy harvester using contact-electrification of magnetic fluid droplets under oscillating magnetic field publication-title: J. Phys.: Conf. Ser. – volume: 312 start-page: 473 year: 1969 end-page: 494 article-title: A dielectric fluid drop an electric field publication-title: Proc. R. Soc. Lond. A – volume: 105 start-page: 4709 issue: 20 year: 2001 end-page: 4714 article-title: A numerical study of surface tension auto-oscillations. Effect of surfactant properties publication-title: J. Phys. Chem. B – volume: 329 start-page: 337 issue: 5 year: 2001 end-page: 342 article-title: Inertial corrections to the darcy law in a Hele-Shaw cell publication-title: C. R. Acad. Sci. Ser. II B – volume: 188 start-page: 133 year: 1988 end-page: 146 article-title: Breakup of fluid droplets in electric and magnetic fields publication-title: J. Fluid Mech. – volume: 455 start-page: 329 year: 1999 end-page: 347 article-title: Drops with conical ends in electric and magnetic fields publication-title: Proc. R. Soc. Lond. A – volume: 201 start-page: 300 issue: 1 year: 1999 end-page: 302 article-title: Dynamics of deformation of magnetic fluid flat drops in a homogeneous longitudinal magnetic field publication-title: J. Magn. Magn. Mater. – volume: 131 start-page: 10049 issue: 29 year: 2009 end-page: 10058 article-title: Measuring densities of solids and liquids using magnetic levitation: fundamentals publication-title: J. Am. Chem. Soc. – volume: 23 issue: 7 year: 2011b article-title: Numerical study of the formation process of ferrofluid droplets publication-title: Phys. Fluids – volume: 23 start-page: 389 issue: 4 year: 2007 end-page: 396 article-title: Confined ferrofluid droplet in crossed magnetic fields publication-title: Eur. Phys. J. E – volume: 98 issue: 13 year: 2011 article-title: Droplet spreading using low frequency vibration publication-title: Appl. Phys. Lett. – volume: 94 issue: 1 year: 2016b article-title: Single-mode instability of a ferrofluid-mercury interface under a nonuniform magnetic field publication-title: Phys. Rev. E – volume: 149 start-page: 104 issue: 1–2 year: 1995 end-page: 107 article-title: Study on single bubbles rising in magnetic fluid for small Weber number publication-title: J. Magn. Magn. Mater. – volume: 27 start-page: 14834 issue: 24 year: 2011a end-page: 14841 article-title: Nonlinear deformation of a ferrofluid droplet in a uniform magnetic field publication-title: Langmuir – volume: 20 issue: 5 year: 2008 article-title: An experimental study on Rosensweig instability of a ferrofluid droplet publication-title: Phys. Fluids – volume: 9 start-page: 3267 issue: 11 year: 1997 end-page: 3274 article-title: Shear instability of two-fluid parallel flow in a Hele-Shaw cell publication-title: Phys. Fluids – volume: 393 start-page: 749 issue: 6687 year: 1998 end-page: 750 article-title: Making water levitate publication-title: Nature – volume: 316 start-page: 273 issue: 2 year: 2007 end-page: 276 article-title: Levitation in paramagnetic liquids publication-title: J. Magn. Magn. Mater. – volume: 119 start-page: 6740 issue: 22 year: 2015 end-page: 6746 article-title: Mode pattern of internal flow in a water droplet on a vibrating hydrophobic surface publication-title: J. Phys. Chem. B – volume: 122 start-page: 259 issue: 1–3 year: 1993 end-page: 263 article-title: Effects of physical properties and geometry on shapes and stability of polarizable drops in external fields publication-title: J. Magn. Magn. Mater. – volume: 100 start-page: 25 issue: 1 year: 1992 end-page: 37 article-title: A front-tracking method for viscous, incompressible, multi-fluid flows publication-title: J. Comput. Phys. – volume: 6 start-page: 24 issue: 1 year: 2006 end-page: 38 article-title: Magnetism and microfluidics publication-title: Lab on a Chip – volume: 135 issue: 2 year: 2013 article-title: A digital micro magnetofluidic platform for lab-on-a-chip applications publication-title: Trans. ASME J. Fluids Engng – volume: 8 start-page: 904 issue: 2 year: 2013 end-page: 911 article-title: Maximizing the magnetic force generated by an actuator with non-magnetic body in a ferrofluid pre-magnetized by permanent magnets publication-title: Intl Rev. Elec. Eng. (IREE) – volume: 400 start-page: 323 issue: 6742 year: 1999 end-page: 324 article-title: Magnet levitation at your fingertips publication-title: Nature – volume: 54 start-page: 1420 issue: 6 year: 2015 end-page: 1425 article-title: Ferrofluid-based optofluidic switch using femtosecond laser-micromachined waveguides publication-title: Appl. Opt. – volume: 20 issue: 4 year: 2010 article-title: Formation and manipulation of ferrofluid droplets at a microfluidic t-junction publication-title: J. Micromech. Microengng – volume: 13 start-page: 625 issue: 4 year: 2012 end-page: 635 article-title: Microfluidic devices in superconducting magnets: on-chip free-flow diamagnetophoresis of polymer particles and bubbles publication-title: Microfluid. Nanofluid. – volume: 663 start-page: 358 year: 2010 end-page: 384 article-title: Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields publication-title: J. Fluid Mech. – volume: 11 start-page: 177 issue: 2 year: 2011a end-page: 187 article-title: Numerical and experimental investigations of the formation process of ferrofluid droplets publication-title: Microfluid. Nanofluid. – volume: 289 start-page: 188 year: 2005 end-page: 191 article-title: Theory, experiment, and simulations of a symmetric arrangement of quasi-two-dimensional magnetic fluid drops publication-title: J. Magn. Magn. Mater. – volume: 716 year: 2013 article-title: On the bubble shape in a magnetically compensated gravity environment publication-title: J. Fluid Mech. – volume: 10 start-page: 1233 issue: 6 year: 2011b end-page: 1245 article-title: Analytical model of microfluidic transport of non-magnetic particles in ferrofluids under the influence of a permanent magnet publication-title: Microfluid. Nanofluid. – volume: 210 start-page: 613 year: 1966 end-page: 614 article-title: Buoyancy and stable levitation of a magnetic body immersed in a magnetizable fluid publication-title: Nature – volume: 39 start-page: 48 issue: 1 year: 1983 end-page: 50 article-title: Bistability of ferrofluid magnetic drops under magnetic field publication-title: J. Magn. Magn. Mater. – volume: 93 issue: 1 year: 2016 article-title: Ferrofluid patterns in Hele-Shaw cells: exact, stable, stationary shape solutions publication-title: Phys. Rev. E – volume: 241 start-page: 215 year: 1992 end-page: 232 article-title: The shape of a magnetic liquid drop publication-title: J. Fluid Mech. – volume: 29 start-page: 13982 issue: 45 year: 2013 end-page: 13989 article-title: Deformation of ferrofluid marbles in the presence of a permanent magnet publication-title: Langmuir – volume: 401 start-page: 1054 year: 2016 end-page: 1059 article-title: Printing microstructures in a polymer matrix using a ferrofluid droplet publication-title: J. Magn. Magn. Mater. – volume: 72 start-page: 2705 issue: 17 year: 1994 end-page: 2708 article-title: Behavior of a magnetic fluid microdrop in a rotating magnetic field publication-title: Phys. Rev. Lett. – volume: 280 start-page: 383 year: 1964 end-page: 397 article-title: Disintegration of water drops in an electric field publication-title: Proc. R. Soc. Lond. A – volume: 27 start-page: 9644 issue: 15 year: 2011 end-page: 9653 article-title: Inkjet metrology II: resolved effects of ejection frequency, fluidic pressure, and droplet number on reproducible drop-on-demand dispensing publication-title: Langmuir – volume: 9 start-page: 9792 issue: 41 year: 2013 end-page: 9798 article-title: Ferrofluid droplet formation and breakup dynamics in a microfluidic flow-focusing device publication-title: Soft Matt. – volume: 88 issue: 20 year: 2006 article-title: Microfluidic mixing through electrowetting-induced droplet oscillations publication-title: Appl. Phys. Lett. – volume: 201 start-page: 281 issue: 1 year: 1999 end-page: 284 article-title: Numerical simulation of deformed single bubbles rising in magnetic fluid publication-title: J. Magn. Magn. Mater. – volume: 93 year: 2016 ident: S0022112018007334_r28 publication-title: Phys. Rev. E – ident: S0022112018007334_r10 doi: 10.1017/jfm.2012.594 – volume: 61 volume-title: Bulletin of the American Physical Society, APS March Meeting 2016 year: 2016 ident: S0022112018007334_r15 – ident: S0022112018007334_r33 doi: 10.1063/1.2204831 – ident: S0022112018007334_r59 doi: 10.1063/1.3574001 – ident: S0022112018007334_r52 doi: 10.1063/1.1138419 – ident: S0022112018007334_r45 doi: 10.1017/S0022112088000667 – ident: S0022112018007334_r11 doi: 10.1016/j.jmmm.2015.10.112 – ident: S0022112018007334_r60 doi: 10.1016/0304-8853(93)91086-M – ident: S0022112018007334_r9 doi: 10.1016/j.jmmm.2007.02.128 – ident: S0022112018007334_r32 doi: 10.1021/ja900920s – ident: S0022112018007334_r44 doi: 10.1017/S0022112092002015 – volume-title: 47th AIAA Plasmadynamics and Lasers Conference year: 2016 ident: S0022112018007334_r27 – ident: S0022112018007334_r54 doi: 10.1016/0304-8853(95)00348-7 – ident: S0022112018007334_r5 doi: 10.1016/S0304-8853(99)00144-4 – volume: 8 start-page: 904 year: 2013 ident: S0022112018007334_r35 publication-title: Intl Rev. Elec. Eng. (IREE) – ident: S0022112018007334_r21 doi: 10.1109/TRANSDUCERS.2015.7180860 – ident: S0022112018007334_r2 doi: 10.1017/S0022112010003551 – ident: S0022112018007334_r4 doi: 10.1016/0304-8853(83)90395-5 – volume: 329 start-page: 337 year: 2001 ident: S0022112018007334_r42 publication-title: C. R. Acad. Sci. Ser. II B – volume: 20 year: 2008 ident: S0022112018007334_r25 publication-title: J. Phys.: Condens. Matter – volume: 20 year: 2010 ident: S0022112018007334_r49 publication-title: J. Micromech. Microengng – volume: 23 start-page: 389 year: 2007 ident: S0022112018007334_r20 publication-title: Eur. Phys. J. E – ident: S0022112018007334_r37 doi: 10.1063/1.4908285 – volume: 94 year: 2016 ident: S0022112018007334_r47 publication-title: Phys. Rev. E – volume-title: Microfluidic Continuous-flow Manipulation of Particles and Cells Inside Ferrofluids year: 2013 ident: S0022112018007334_r64 – volume: 660 year: 2015 ident: S0022112018007334_r22 publication-title: J. Phys.: Conf. Ser. – ident: S0022112018007334_r34 doi: 10.1021/la4032859 – volume: 59 start-page: 1736 year: 1999 ident: S0022112018007334_r43 publication-title: Phys. Rev. E – ident: S0022112018007334_r48 doi: 10.1098/rspa.1999.0316 – ident: S0022112018007334_r62 doi: 10.1039/c3sm51860d – ident: S0022112018007334_r63 doi: 10.1021/la203931q – ident: S0022112018007334_r12 doi: 10.1038/22444 – ident: S0022112018007334_r41 doi: 10.1017/jfm.2016.447 – ident: S0022112018007334_r19 doi: 10.1016/j.jmmm.2004.11.055 – ident: S0022112018007334_r57 doi: 10.1021/la201728f – volume: 37 start-page: 1 year: 2014 ident: S0022112018007334_r31 publication-title: Eur. Phys. J. E – ident: S0022112018007334_r7 doi: 10.1063/1.2929372 – ident: S0022112018007334_r56 doi: 10.1016/0021-9991(92)90307-K – ident: S0022112018007334_r23 doi: 10.1021/acs.jpcb.5b02975 – ident: S0022112018007334_r6 doi: 10.13052/rp-9788793237544 – volume: 23 year: 2011 ident: S0022112018007334_r30 publication-title: Phys. Fluids – ident: S0022112018007334_r55 doi: 10.1016/S0304-8853(99)00026-8 – ident: S0022112018007334_r58 doi: 10.1007/s10404-012-0979-6 – ident: S0022112018007334_r65 doi: 10.1007/s10404-010-0754-5 – volume-title: Ferrohydrodynamics year: 1985 ident: S0022112018007334_r40 – ident: S0022112018007334_r50 doi: 10.1098/rspa.1964.0151 – volume: 135 year: 2013 ident: S0022112018007334_r24 publication-title: Trans. ASME J. Fluids Engng – ident: S0022112018007334_r26 doi: 10.1021/jp0042967 – ident: S0022112018007334_r16 doi: 10.1063/1.335021 – ident: S0022112018007334_r1 doi: 10.1017/S0022112008002589 – ident: S0022112018007334_r51 doi: 10.1126/science.1233775 – ident: S0022112018007334_r14 doi: 10.1364/AO.54.001420 – ident: S0022112018007334_r39 doi: 10.1038/210613a0 – ident: S0022112018007334_r61 doi: 10.1021/jp905961t – ident: S0022112018007334_r13 doi: 10.1063/1.869441 – ident: S0022112018007334_r18 doi: 10.1038/31619 – ident: S0022112018007334_r29 doi: 10.1007/s10404-011-0784-7 – ident: S0022112018007334_r53 doi: 10.1017/CBO9780511975264 – ident: S0022112018007334_r3 doi: 10.1103/PhysRevLett.72.2705 – ident: S0022112018007334_r36 doi: 10.1039/B513005K – volume: 22 year: 2010 ident: S0022112018007334_r8 publication-title: Phys. Fluids – volume: 385 start-page: 479 volume-title: Space Station Utilisation, Symposium Proceedings, Darmstadt year: 1996 ident: S0022112018007334_r17 – ident: S0022112018007334_r38 doi: 10.1098/rspa.1969.0172 – volume: 28 year: 2016 ident: S0022112018007334_r46 publication-title: Phys. Fluids |
SSID | ssj0013097 |
Score | 2.3667426 |
Snippet | The central theme of this work is that a stable levitation of a denser non-magnetizable liquid droplet, against gravity, inside a relatively lighter ferrofluid... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 398 |
SubjectTerms | Algorithms Computer simulation Cusps Deformation Dimensional stability Dimensions Droplets Dynamics Electric fields Ferrofluids Ferrohydrodynamics Gravitation Gravity Interface stability JFM Papers Levitation Magnetic field Magnetic fields Magnetic permeability Mathematical models Parameters Permeability Researchers Singularities Stability Steady state Studies Surfactants Trajectories Viscosity Viscosity ratio |
Title | Levitation of non-magnetizable droplet inside ferrofluid |
URI | https://www.cambridge.org/core/product/identifier/S0022112018007334/type/journal_article https://www.proquest.com/docview/2209863236 |
Volume | 857 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsNADLWACgkOLAVEWaocQBxQIJnsJ8TSghBUCKjUW5TZUFEp0IT_x04nLT2Uc0ZZPBP7eebZD-Ao87NEkqCJFFrS1o1jY9zJ7IQqfFjEMUMo2Rad8K7r3_eCntlwyw2tsvKJpaOWn4L2yM8Zc5I49JgXXnx926QaRaerRkJjEWrogmNMvmpXrc7T8_QcwUmiql84IgvHUN-pafS7pkJ0Nz6LSDR32lhhNkDN-ucy6LQ3YM2gRetyPL2bsKCGdVg3yNEy_2Veh9U_bQXrsFzSOkW-BfEDxr3xYbv1qS1M9e2P7G2oCuJyDZQlR8QfL6x-qdppaTVCtzz46ctt6LZbr9d3ttFKsIXnsMJ2deyLkCNa0DwWTsAF5p6RYFQaKyWPM84DxSTiM-Vwxn1FSXHkZZj9CcSM2tuBJXwJtQuW9nyuI1eyzPUw3DsJugQdJK4fIV5QmjXgZGKs1Kz4PB2zxaIUzZqSWVM0awNOK1OmwnwtKV8M5ow-noz-GrfamDPuoJqV6eOny2Pv_8v7sEI3IkYKCw5gqRj9qEPEFQVvwmLcvm1C7fLm8eGlaZbSL29ry_U |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LM8RAEO7yKIWDx6K8zYFyUCGZSTbJQSmFtVhOVLlF5qWotctulPKn_EbdeVgO3JwzNUl6erq_nvm6G2Az9dNYU0MTraymoxvXQb-TOjFl-PBQYoSQsy2u6s0b__w2uB2CjyoXhmiVlU3MDbXuKjoj3-PcjaO64KJ-8PziUNcoul2tWmgUanFh3t8wZOvvnx3j-m5x3ji5Pmo6ZVcBRwmXZ45nI1_VJfpVKyPlBlJhlBYqTkmkWssolTIwXCOSMa7k0jcUPoYixThJIbqyAucdhlFfiJh2VNQ4HdxauHFYVSdHHOOWRHsqUf1oKe3di3ZDatE7KOPw0x3-9Aa5i2vMwFSJTdlhoUyzMGQ6NZgucSorrUC_BpPfihjWYCwnkar-HEQt9LLF1T7rWtbpdpyn9L5jMmKOtQ3TPWKrZ-wh7xHKrOmhE2i_Puh5uPkXGS7ACH6EWQRmhS9t6GmeegLBhRujAbJB7PkhohNj-RJsfwkrKfdXPym4aWGCYk1IrAmKdQl2KlEmqvxb6rPR_mX01tfo56Kwxy_jVqtVGbx-oIzLfz_egPHm9WUraZ1dXazABE1KXBgerMJI1ns1a4hoMrmeqxGDu__W208WTwSG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Levitation+of+non-magnetizable+droplet+inside+ferrofluid&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Singh%2C+Chamkor&rft.au=Das%2C+Arup+K&rft.au=Das%2C+Prasanta+K&rft.date=2018-12-25&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=857&rft.spage=398&rft.epage=448&rft_id=info:doi/10.1017%2Fjfm.2018.733 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |