Elevated low-frequency free-stream vortical disturbances eliminate boundary-layer separation

A steady two-dimensional boundary layer subject to an adverse streamwise pressure gradient usually separates. In this paper, we investigate how free-stream vortical disturbances (FSVD) of moderate level prevent the separation in such a boundary layer over a plate or concave wall. The focus is on phy...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 920
Main Authors Xu, Dongdong, Wu, Xuesong
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 08.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A steady two-dimensional boundary layer subject to an adverse streamwise pressure gradient usually separates. In this paper, we investigate how free-stream vortical disturbances (FSVD) of moderate level prevent the separation in such a boundary layer over a plate or concave wall. The focus is on physically realisable FSVD with sufficiently long wavelength (low frequency) as they have the most significant impact on the boundary layer. The FSVD intensity $\epsilon$ is taken to be small but nevertheless strong enough that the streaks or Görtler vortices generated in the boundary layer are fully nonlinear and can alter the mean-flow profile by an order-one amount. The excitation and evolution of streaks and Görtler vortices are governed by the nonlinear unsteady boundary-region equations supplemented by appropriate initial (upstream) and boundary (far-field) conditions, which describe appropriately the action of FSVD on the boundary layer. The flow variables are decomposed into two parts: the steady spanwise-averaged and the unsteady or spanwise-varying components. These two parts are coupled and are computed simultaneously. Numerical results show that the separation is eliminated when the FSVD level exceeds a critical intensity $\epsilon _c$. It is inferred that the strong nonlinear mean-flow distortion associated with the nonlinear streaks or Görtler vortices prevents the separation. The critical FSVD intensity $\epsilon _c$ depends on the streamwise curvature, the pressure gradient and the frequency of FSVD. The value of $\epsilon _c$ decreases significantly with the Görtler number, indicating that concave curvature inhibits separation. A higher $\epsilon _c$ is required to prevent the separation in the case of stronger adverse pressure gradient. Interestingly, unsteady FSVD with low frequencies are found to be more effective than steady ones in suppressing the separation.
AbstractList A steady two-dimensional boundary layer subject to an adverse streamwise pressure gradient usually separates. In this paper, we investigate how free-stream vortical disturbances (FSVD) of moderate level prevent the separation in such a boundary layer over a plate or concave wall. The focus is on physically realisable FSVD with sufficiently long wavelength (low frequency) as they have the most significant impact on the boundary layer. The FSVD intensity \(\epsilon\) is taken to be small but nevertheless strong enough that the streaks or Görtler vortices generated in the boundary layer are fully nonlinear and can alter the mean-flow profile by an order-one amount. The excitation and evolution of streaks and Görtler vortices are governed by the nonlinear unsteady boundary-region equations supplemented by appropriate initial (upstream) and boundary (far-field) conditions, which describe appropriately the action of FSVD on the boundary layer. The flow variables are decomposed into two parts: the steady spanwise-averaged and the unsteady or spanwise-varying components. These two parts are coupled and are computed simultaneously. Numerical results show that the separation is eliminated when the FSVD level exceeds a critical intensity \(\epsilon _c\). It is inferred that the strong nonlinear mean-flow distortion associated with the nonlinear streaks or Görtler vortices prevents the separation. The critical FSVD intensity \(\epsilon _c\) depends on the streamwise curvature, the pressure gradient and the frequency of FSVD. The value of \(\epsilon _c\) decreases significantly with the Görtler number, indicating that concave curvature inhibits separation. A higher \(\epsilon _c\) is required to prevent the separation in the case of stronger adverse pressure gradient. Interestingly, unsteady FSVD with low frequencies are found to be more effective than steady ones in suppressing the separation.
A steady two-dimensional boundary layer subject to an adverse streamwise pressure gradient usually separates. In this paper, we investigate how free-stream vortical disturbances (FSVD) of moderate level prevent the separation in such a boundary layer over a plate or concave wall. The focus is on physically realisable FSVD with sufficiently long wavelength (low frequency) as they have the most significant impact on the boundary layer. The FSVD intensity $\epsilon$ is taken to be small but nevertheless strong enough that the streaks or Görtler vortices generated in the boundary layer are fully nonlinear and can alter the mean-flow profile by an order-one amount. The excitation and evolution of streaks and Görtler vortices are governed by the nonlinear unsteady boundary-region equations supplemented by appropriate initial (upstream) and boundary (far-field) conditions, which describe appropriately the action of FSVD on the boundary layer. The flow variables are decomposed into two parts: the steady spanwise-averaged and the unsteady or spanwise-varying components. These two parts are coupled and are computed simultaneously. Numerical results show that the separation is eliminated when the FSVD level exceeds a critical intensity $\epsilon _c$ . It is inferred that the strong nonlinear mean-flow distortion associated with the nonlinear streaks or Görtler vortices prevents the separation. The critical FSVD intensity $\epsilon _c$ depends on the streamwise curvature, the pressure gradient and the frequency of FSVD. The value of $\epsilon _c$ decreases significantly with the Görtler number, indicating that concave curvature inhibits separation. A higher $\epsilon _c$ is required to prevent the separation in the case of stronger adverse pressure gradient. Interestingly, unsteady FSVD with low frequencies are found to be more effective than steady ones in suppressing the separation.
ArticleNumber A14
Author Wu, Xuesong
Xu, Dongdong
Author_xml – sequence: 1
  givenname: Dongdong
  orcidid: 0000-0001-6886-9157
  surname: Xu
  fullname: Xu, Dongdong
  organization: 1Department of Mechanics, Tianjin University, Tianjin 300072, PR China
– sequence: 2
  givenname: Xuesong
  orcidid: 0000-0002-3406-8017
  surname: Wu
  fullname: Wu, Xuesong
  email: x.wu@ic.ac.uk
  organization: 3School of Mechanical Engineering, Nantong University, Nantong 226019, PR China
BookMark eNp1kMtKAzEUhoNUsFZ3PsCAW2fMZabpLKXUCxTc6E4IZ5ITSZlLTdJK397UFgTR1cni_3O-852TUT_0SMgVowWjTN6ubFdwyllRluyEjFk5rXM5LasRGVPKec4Yp2fkPIQVpUzQWo7J26LFLUQ0WTt85tbjxwZ7vcvSC_MQPUKXbQcfnYY2My7EjW-g1xgybF3n-lTNmmHTG_C7vIUd-izgGjxEN_QX5NRCG_DyOCfk9X7xMn_Ml88PT_O7Za4F5TFnVFthONDaWl3ONJe0AdTIK6mNAWBWWG1EhRLKCquZ0aD3_KyaUqy0EBNyffh37YfEH6JaDRvfp5WKV0LWpSxrmVI3h5T2QwgerVp71yVuxaja-1PJn9r7U8lfivNfce3i91nRg2v_KxXHEnSNd-Ydf1D-LHwB0LeHzw
CitedBy_id crossref_primary_10_1017_jfm_2023_23
crossref_primary_10_1063_5_0184998
crossref_primary_10_1007_s00348_024_03837_6
crossref_primary_10_1016_j_expthermflusci_2024_111227
crossref_primary_10_1017_jfm_2023_53
Cites_doi 10.1007/BF01089710
10.1017/jfm.2018.489
10.1017/jfm.2020.767
10.1115/1.2910235
10.1017/S0022112087000892
10.1017/jfm.2020.438
10.1016/0021-9991(90)90106-B
10.2514/6.2017-0302
10.1017/jfm.2017.88
10.1115/1.2218517
10.1016/S0997-7546(98)80056-3
10.1017/S0022112008000864
10.1017/S0022112093000023
10.1017/jfm.2018.589
10.1007/s00348-017-2353-7
10.1098/rsta.2000.0706
10.1017/S0022112000002469
10.1016/0376-0421(64)90004-1
10.1017/jfm.2012.263
10.1063/1.5079536
10.1023/B:APPL.0000014928.69394.50
10.1115/1.2910032
10.1017/S0022112006002898
10.1098/rsta.2000.0704
10.1016/0376-0421(94)90003-5
10.1017/jfm.2014.123
10.1093/qjmam/1.1.43
10.1017/jfm.2018.91
10.1007/s11630-016-0851-1
10.1017/S0022112080000250
10.1017/S0022112099006138
10.1017/S0022112092003409
10.1017/jfm.2016.424
10.1017/S0022112098003504
10.1017/jfm.2016.318
10.1017/S0022112078002918
10.1017/S0022112088002137
10.1017/S0022112099008976
10.1017/jfm.2013.222
10.1146/annurev.fluid.29.1.245
10.1007/s11630-014-0697-3
10.1017/jfm.2013.504
10.1016/S0997-7546(02)01205-0
10.1017/S0022112000002354
10.1017/jfm.2011.224
10.1017/S0022112010001047
10.1017/jfm.2011.204
10.1088/0169-5983/44/4/045503
10.2514/1.J054820
10.1017/S0022112078002682
10.1017/S0022112001005766
10.2514/3.7748
10.2514/3.9739
10.2514/1.J056453
10.1007/s00348-013-1470-1
10.2514/6.2011-3292
10.1017/S0022112010000856
10.1007/BF01090696
10.1017/S002211200900634X
10.1115/1.2812949
10.1017/jfm.2013.421
10.1017/jfm.2018.809
10.1017/S0022112010004957
10.1007/s00348-018-2511-6
10.1017/jfm.2017.577
10.1002/sapm198267145
10.2514/1.565
10.1017/jfm.2017.217
10.1017/S0022112087002337
10.1017/jfm.2016.848
10.1007/BF01209044
10.1017/S0022112009007149
10.1017/jfm.2011.41
10.1146/annurev.fluid.39.050905.110135
10.1017/jfm.2017.572
10.2514/1.17518
10.1017/jfm.2020.157
10.1017/S0022112070001866
ContentType Journal Article
Copyright The Author(s), 2021. Published by Cambridge University Press
Copyright_xml – notice: The Author(s), 2021. Published by Cambridge University Press
DBID AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/jfm.2021.441
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database (ProQuest)
Engineering Database
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList Research Library Prep
CrossRef

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1469-7645
ExternalDocumentID 10_1017_jfm_2021_441
GroupedDBID -DZ
-E.
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABZCX
ACBEA
ACBMC
ACCHT
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADVJH
AEBAK
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGOOT
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZYDXJ
~02
AAYXX
ABVKB
ABVZP
ABXAU
ABXHF
ACDLN
ADMLS
AEUYN
AFZFC
AKMAY
CITATION
PHGZM
PHGZT
3V.
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c302t-10cf3d2a09ffc48c270baece257cddaa1f3fcd35e7a45e58dcac01301560e5c33
IEDL.DBID BENPR
ISSN 0022-1120
IngestDate Sat Aug 16 17:22:20 EDT 2025
Thu Apr 24 23:13:15 EDT 2025
Tue Jul 01 03:01:26 EDT 2025
Wed Mar 13 05:59:23 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords boundary layer stability
boundary layer separation
boundary layer receptivity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c302t-10cf3d2a09ffc48c270baece257cddaa1f3fcd35e7a45e58dcac01301560e5c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6886-9157
0000-0002-3406-8017
PQID 2537947497
PQPubID 34769
PageCount 41
ParticipantIDs proquest_journals_2537947497
crossref_primary_10_1017_jfm_2021_441
crossref_citationtrail_10_1017_jfm_2021_441
cambridge_journals_10_1017_jfm_2021_441
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-08
PublicationDateYYYYMMDD 2021-06-08
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-08
  day: 08
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2021
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2007; 39
2011; 677
2013; 728
1982; 17
2000; 410
1988; 193
1964; 5
2018; 841
2010; 660
1993; 246
2001; 426
2001; 428
2017; 830
2014; 23
2011; 671
2009; 634
1982; 67
1990; 86
1998; 17
2013; 54
2018; 855
1948; 1
2018; 850
1999; 380
1992; 114
2007; 571
1992; 237
2020; 892
2016; 797
2006; 128
1994; 30
2011; 682
2011; 681
2017; 813
2004; 42
1994; 116
2021; 906
2017; 817
2019; 31
2016; 801
2000; 358
2016; 54
1997; 29
2008; 602
2003; 71
1972; 7
2020; 900
2001; 446
1987; 25
2009; 629
2014; 747
2017; 829
1987; 177
1978; 89
2017; 58
1978; 87
2019; 858
2010; 655
2006; 44
2013; 732
2002; 21
2013; 734
1980; 98
2017; 56
2010; 132
1970; 44
1981; 16
1999; 397
1981; 19
2012; 44
2012; 711
2016; 25
2018; 59
2017; 820
1987; 182
S0022112021004419_ref60
S0022112021004419_ref61
S0022112021004419_ref62
S0022112021004419_ref63
S0022112021004419_ref20
S0022112021004419_ref64
S0022112021004419_ref65
S0022112021004419_ref21
S0022112021004419_ref22
S0022112021004419_ref66
S0022112021004419_ref67
S0022112021004419_ref23
S0022112021004419_ref24
S0022112021004419_ref68
S0022112021004419_ref25
S0022112021004419_ref69
S0022112021004419_ref26
S0022112021004419_ref27
S0022112021004419_ref28
S0022112021004419_ref29
S0022112021004419_ref50
S0022112021004419_ref51
S0022112021004419_ref52
S0022112021004419_ref53
S0022112021004419_ref54
S0022112021004419_ref10
S0022112021004419_ref55
S0022112021004419_ref11
S0022112021004419_ref12
S0022112021004419_ref56
S0022112021004419_ref13
S0022112021004419_ref57
S0022112021004419_ref14
S0022112021004419_ref58
S0022112021004419_ref59
S0022112021004419_ref15
S0022112021004419_ref16
S0022112021004419_ref17
S0022112021004419_ref18
S0022112021004419_ref19
S0022112021004419_ref80
S0022112021004419_ref81
S0022112021004419_ref82
S0022112021004419_ref83
S0022112021004419_ref40
S0022112021004419_ref84
S0022112021004419_ref41
S0022112021004419_ref42
S0022112021004419_ref43
S0022112021004419_ref44
S0022112021004419_ref45
S0022112021004419_ref46
S0022112021004419_ref47
S0022112021004419_ref48
S0022112021004419_ref49
S0022112021004419_ref8
S0022112021004419_ref9
S0022112021004419_ref7
S0022112021004419_ref70
S0022112021004419_ref4
S0022112021004419_ref71
S0022112021004419_ref5
S0022112021004419_ref72
S0022112021004419_ref2
S0022112021004419_ref73
S0022112021004419_ref30
S0022112021004419_ref74
S0022112021004419_ref3
S0022112021004419_ref31
S0022112021004419_ref75
S0022112021004419_ref1
S0022112021004419_ref76
S0022112021004419_ref32
S0022112021004419_ref77
S0022112021004419_ref33
S0022112021004419_ref78
S0022112021004419_ref34
S0022112021004419_ref35
S0022112021004419_ref79
S0022112021004419_ref36
S0022112021004419_ref37
S0022112021004419_ref38
S0022112021004419_ref39
Cebeci (S0022112021004419_ref6) 2005
References_xml – volume: 358
  start-page: 3229
  issue: 1777
  year: 2000
  end-page: 3246
  article-title: On the origins of unsteadiness and three-dimensionality in a laminar separation bubble
  publication-title: Phil. Trans. R. Soc. Lond. A
– volume: 21
  start-page: 495
  issue: 5
  year: 2002
  end-page: 509
  article-title: Investigations of time-growing instabilities in laminar separation bubbles
  publication-title: Eur. J. Mech. B/Fluids
– volume: 602
  start-page: 175
  year: 2008
  end-page: 207
  article-title: Direct numerical simulations of forced and unforced separation bubbles on an airfoil at incidence
  publication-title: J. Fluid Mech.
– volume: 98
  start-page: 473
  issue: 03
  year: 1980
  end-page: 508
  article-title: The effect of finite turbulence spatial scale on the amplification of turbulence by a contracting stream
  publication-title: J. Fluid Mech.
– volume: 25
  start-page: 195
  issue: 3
  year: 2016
  end-page: 206
  article-title: Free-stream turbulence effects on the boundary layer of a high-lift low-pressure-turbine blade
  publication-title: J. Therm. Sci.
– volume: 246
  start-page: 21
  year: 1993
  end-page: 41
  article-title: Three-dimensional boundary-layer instability and separation induced by small-amplitude streamwise vorticity in the upstream flow
  publication-title: J. Fluid Mech.
– volume: 681
  start-page: 370
  year: 2011
  end-page: 410
  article-title: Unsteady boundary-layer transition in low-pressure turbines
  publication-title: J. Fluid Mech.
– volume: 42
  start-page: 937
  issue: 5
  year: 2004
  end-page: 944
  article-title: Effect of spanwise-modulated disturbances on transition in a separated boundary layer
  publication-title: AIAA J.
– volume: 830
  start-page: 35
  year: 2017
  end-page: 62
  article-title: The impact of static and dynamic roughness elements on flow separation
  publication-title: J. Fluid Mech.
– volume: 59
  start-page: 52
  issue: 3
  year: 2018
  article-title: Effects of free-stream turbulence intensity on transition in a laminar separation bubble formed over an airfoil
  publication-title: Exp. Fluids
– volume: 67
  start-page: 45
  issue: 1
  year: 1982
  end-page: 61
  article-title: Marginal separation
  publication-title: Stud. Appl. Maths
– volume: 193
  start-page: 243
  year: 1988
  end-page: 266
  article-title: The nonlinear development of Görtler vortices in growing boundary layers
  publication-title: J. Fluid Mech.
– volume: 29
  start-page: 245
  issue: 1
  year: 1997
  end-page: 283
  article-title: Parabolized stability equations
  publication-title: Annu. Rev. Fluid Mech.
– volume: 54
  start-page: 1470
  issue: 2
  year: 2013
  article-title: On the challenges in experimental characterization of flow separation over airfoils at low Reynolds number
  publication-title: Exp. Fluids
– volume: 44
  start-page: 347
  issue: 2
  year: 1970
  end-page: 364
  article-title: Is the singularity at separation removable?
  publication-title: J. Fluid Mech.
– volume: 426
  start-page: 229
  year: 2001
  end-page: 262
  article-title: Effect on a laminar boundary layer of small-amplitude streamwise vorticity in the upstream flow
  publication-title: J. Fluid Mech.
– volume: 1
  start-page: 43
  issue: 1
  year: 1948
  end-page: 69
  article-title: On laminar boundary-layer flow near a position of separation
  publication-title: Q. J. Mech. Appl. Maths
– volume: 892
  start-page: A23
  year: 2020
  article-title: Optimal suppression of a separation bubble in a laminar boundary layer
  publication-title: J. Fluid Mech.
– volume: 128
  start-page: 668
  issue: 4
  year: 2006
  end-page: 678
  article-title: Direct numerical simulations of transitional flow in turbomachinery
  publication-title: ASME J. Turbomach.
– volume: 44
  start-page: 045503
  issue: 4
  year: 2012
  article-title: Nonlinear streak computation using boundary region equations
  publication-title: Fluid Dyn. Res.
– volume: 44
  start-page: 2217
  issue: 10
  year: 2006
  end-page: 2223
  article-title: Control of laminar separation bubbles using instability waves
  publication-title: AIAA J.
– volume: 682
  start-page: 66
  year: 2011
  end-page: 100
  article-title: Excitation of steady and unsteady Görtler vortices by free-stream vortical disturbances
  publication-title: J. Fluid Mech.
– volume: 671
  start-page: 1
  year: 2011
  end-page: 33
  article-title: The effect of small-amplitude convective disturbances on the size and bursting of a laminar separation bubble
  publication-title: J. Fluid Mech.
– volume: 86
  start-page: 376
  issue: 2
  year: 1990
  end-page: 413
  article-title: Numerical methods for hypersonic boundary layer stability
  publication-title: J. Comput. Phys.
– volume: 747
  start-page: 141
  year: 2014
  end-page: 185
  article-title: Direct numerical simulations of laminar separation bubbles: investigation of absolute instability and active flow control of transition to turbulence
  publication-title: J. Fluid Mech.
– volume: 17
  start-page: 145
  issue: 2
  year: 1998
  end-page: 164
  article-title: Local and global instability properties of separation bubbles
  publication-title: Euro. J. Mech. B/Fluids
– volume: 660
  start-page: 37
  year: 2010
  end-page: 54
  article-title: Mean flow deformation in a laminar separation bubble: separation and stability characteristics
  publication-title: J. Fluid Mech.
– volume: 655
  start-page: 280
  year: 2010
  end-page: 305
  article-title: Structural changes of laminar separation bubbles induced by global linear instability
  publication-title: J. Fluid Mech.
– volume: 634
  start-page: 165
  year: 2009
  end-page: 189
  article-title: Mechanisms for spatial steady three-dimensional disturbance growth in a non-parallel and separating boundary layer
  publication-title: J. Fluid Mech.
– volume: 114
  start-page: 313
  issue: 3
  year: 1992
  end-page: 321
  article-title: Boundary-layer transition in accelerating flows with intense freestream turbulence: Part 1. Disturbances upstream of transition onset
  publication-title: Trans. ASME J. Fluids Engng
– volume: 358
  start-page: 3193
  issue: 1777
  year: 2000
  end-page: 3205
  article-title: Experiments on a two-dimensional laminar separation bubble
  publication-title: Phil. Trans. R. Soc. Lond. A
– volume: 116
  start-page: 22
  year: 1994
  end-page: 28
  article-title: Comparison of the triple-deck theory, interactive boundary layer method, and Navier–Stokes computation for marginal separation
  publication-title: Trans. ASME J. Fluids Engng
– volume: 841
  start-page: 81
  year: 2018
  end-page: 108
  article-title: On the origin of spanwise vortex deformations in laminar separation bubbles
  publication-title: J. Fluid Mech.
– volume: 906
  start-page: A13
  year: 2021
  article-title: Self-excited primary and secondary instability of laminar separation bubbles
  publication-title: J. Fluid Mech.
– volume: 571
  start-page: 221
  year: 2007
  end-page: 233
  article-title: Three-dimensional transverse instabilities in detached boundary layers
  publication-title: J. Fluid Mech.
– volume: 89
  start-page: 433
  issue: 03
  year: 1978
  end-page: 468
  article-title: Unsteady vortical and entropic distortions of potential flows round arbitrary obstacles
  publication-title: J. Fluid Mech.
– volume: 177
  start-page: 133
  year: 1987
  end-page: 166
  article-title: Turbulence statistics in fully developed channel flow at low Reynolds number
  publication-title: J. Fluid Mech.
– volume: 734
  start-page: R4
  year: 2013
  article-title: The two classes of primary modal instability in laminar separation bubbles
  publication-title: J. Fluid Mech.
– volume: 17
  start-page: 33
  issue: 1
  year: 1982
  end-page: 41
  article-title: Asymptotic theory of short separation regions on the leading edge of a slender airfoil
  publication-title: Fluid Dyn.
– volume: 30
  start-page: 61
  issue: 1
  year: 1994
  end-page: 94
  article-title: Laminar boundary layer separation: instability and associated phenomena
  publication-title: Prog. Aerosp. Sci.
– volume: 858
  start-page: 714
  year: 2019
  end-page: 759
  article-title: Numerical investigation of laminar–turbulent transition in laminar separation bubbles: the effect of free-stream turbulence
  publication-title: J. Fluid Mech.
– volume: 397
  start-page: 119
  year: 1999
  end-page: 169
  article-title: Evolution of a wave packet into vortex loops in a laminar separation bubble
  publication-title: J. Fluid Mech.
– volume: 813
  start-page: 955
  year: 2017
  end-page: 990
  article-title: Steady and transient response of a laminar separation bubble to controlled disturbances
  publication-title: J. Fluid Mech.
– volume: 817
  start-page: 80
  year: 2017
  end-page: 121
  article-title: Nonlinear unsteady streaks engendered by the interaction of free-stream vorticity with a compressible boundary layer
  publication-title: J. Fluid Mech.
– volume: 797
  start-page: 683
  year: 2016
  end-page: 728
  article-title: Entrainment of short-wavelength free-stream vortical disturbances in compressible and incompressible boundary layers
  publication-title: J. Fluid Mech.
– volume: 87
  start-page: 33
  issue: 1
  year: 1978
  end-page: 54
  article-title: The continuous spectrum of the Orr–Sommerfeld equation. Part 1. the spectrum and the eigenfunctions
  publication-title: J. Fluid Mech.
– volume: 132
  start-page: 011004
  issue: 1
  year: 2010
  article-title: Transition mechanisms in separation bubbles under low-and elevated-freestream turbulence
  publication-title: Trans. ASME J. Turbomach.
– volume: 71
  start-page: 133
  issue: 1
  year: 2003
  end-page: 146
  article-title: A combined experimental/numerical study of unsteady phenomena in a laminar separation bubble
  publication-title: Flow Turbul. Combust.
– volume: 820
  start-page: 633
  year: 2017
  end-page: 666
  article-title: Response of a laminar separation bubble to impulsive forcing
  publication-title: J. Fluid Mech.
– volume: 39
  start-page: 107
  year: 2007
  end-page: 128
  article-title: Transition beneath vortical disturbances
  publication-title: Annu. Rev. Fluid Mech.
– volume: 58
  start-page: 66
  year: 2017
  article-title: Inspection of the dynamic properties of laminar separation bubbles: free-stream turbulence intensity effects for different Reynolds numbers
  publication-title: Exp. Fluids
– volume: 31
  start-page: 014103
  issue: 1
  year: 2019
  article-title: A geometrical criterion for absolute instability in separated boundary layers
  publication-title: Phys. Fluids
– volume: 728
  start-page: 58
  year: 2013
  end-page: 90
  article-title: Vortex formation and vortex breakup in a laminar separation bubble
  publication-title: J. Fluid Mech.
– volume: 19
  start-page: 79
  issue: 1
  year: 1981
  end-page: 85
  article-title: New, quasi-simultaneous method to calculate interacting boundary layers
  publication-title: AIAA J.
– volume: 829
  start-page: 681
  year: 2017
  end-page: 730
  article-title: Nonlinear evolution and secondary instability of steady and unsteady Görtler vortices induced by free-stream vortical disturbances
  publication-title: J. Fluid Mech.
– volume: 7
  start-page: 407
  issue: 3
  year: 1972
  end-page: 417
  article-title: Laminar separation
  publication-title: Fluid Dyn.
– volume: 446
  start-page: 271
  year: 2001
  end-page: 308
  article-title: The reduction and elimination of a closed separation region by free-stream turbulence
  publication-title: J. Fluid Mech.
– volume: 54
  start-page: 2295
  issue: 8
  year: 2016
  end-page: 2309
  article-title: Coherent structures in the transition process of a laminar separation bubble
  publication-title: AIAA J.
– volume: 732
  start-page: 616
  year: 2013
  end-page: 659
  article-title: On continuous spectra of the Orr–Sommerfeld/Squire equations and entrainment of free-stream vortical disturbances
  publication-title: J. Fluid Mech.
– volume: 16
  start-page: 835
  issue: 6
  year: 1981
  end-page: 843
  article-title: Singular solution of boundary layer equations which can be extended continuously through the point of zero surface friction
  publication-title: Fluid Dyn.
– volume: 428
  start-page: 185
  year: 2001
  end-page: 212
  article-title: Simulations of bypass transition
  publication-title: J. Fluid Mech.
– volume: 56
  start-page: 1335
  issue: 4
  year: 2017
  end-page: 1347
  article-title: Turbulence intensity effects on laminar separation bubbles formed over an airfoil
  publication-title: AIAA J.
– volume: 380
  start-page: 169
  year: 1999
  end-page: 203
  article-title: Effect of free-stream turbulence and other vortical disturbances on a laminar boundary layer
  publication-title: J. Fluid Mech.
– volume: 629
  start-page: 263
  year: 2009
  end-page: 298
  article-title: On the origin of the inflectional instability of a laminar separation bubble
  publication-title: J. Fluid Mech.
– volume: 5
  start-page: 70
  year: 1964
  end-page: 103
  article-title: Low-speed flows involving bubble separations
  publication-title: Prog. Aerosp. Sci.
– volume: 850
  start-page: 954
  year: 2018
  end-page: 983
  article-title: Role of Klebanoff modes in active flow control of separation: direct numerical simulations
  publication-title: J. Fluid Mech.
– volume: 182
  start-page: 255
  year: 1987
  end-page: 290
  article-title: The growth and breakdown of streamwise vortices in the presence of a wall
  publication-title: J. Fluid Mech.
– volume: 801
  start-page: 289
  year: 2016
  end-page: 321
  article-title: Numerical investigation of the role of free-stream turbulence in boundary-layer separation
  publication-title: J. Fluid Mech.
– volume: 855
  start-page: 351
  year: 2018
  end-page: 370
  article-title: The impact of dynamic roughness elements on marginally separated boundary layers
  publication-title: J. Fluid Mech.
– volume: 25
  start-page: 1033
  issue: 8
  year: 1987
  end-page: 1041
  article-title: Laminar separation bubble characteristics on an airfoil at low Reynolds numbers
  publication-title: AIAA J.
– volume: 677
  start-page: 1
  year: 2011
  end-page: 38
  article-title: Evolution and instability of unsteady nonlinear streaks generated by free-stream vortical disturbances
  publication-title: J. Fluid Mech.
– volume: 237
  start-page: 231
  year: 1992
  end-page: 260
  article-title: Distortion of a flat-plate boundary layer by free-stream vorticity normal to the plate
  publication-title: J. Fluid Mech.
– volume: 23
  start-page: 203
  issue: 3
  year: 2014
  end-page: 214
  article-title: Experimental investigation of flow instabilities in a laminar separation bubble
  publication-title: J. Therm. Sci.
– volume: 900
  start-page: A15
  year: 2020
  article-title: Görtler vortices and streaks in boundary layer subject to pressure gradient: excitation by free-stream vortical disturbances, nonlinear evolution and secondary instability
  publication-title: J. Fluid Mech.
– volume: 410
  start-page: 1
  year: 2000
  end-page: 28
  article-title: Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment
  publication-title: J. Fluid Mech.
– volume: 711
  start-page: 1
  year: 2012
  end-page: 26
  article-title: Discrete linear local eigenmodes in a separating laminar boundary layer
  publication-title: J. Fluid Mech.
– ident: S0022112021004419_ref60
  doi: 10.1007/BF01089710
– ident: S0022112021004419_ref25
  doi: 10.1017/jfm.2018.489
– ident: S0022112021004419_ref5
– ident: S0022112021004419_ref58
  doi: 10.1017/jfm.2020.767
– ident: S0022112021004419_ref27
  doi: 10.1115/1.2910235
– ident: S0022112021004419_ref34
  doi: 10.1017/S0022112087000892
– ident: S0022112021004419_ref80
  doi: 10.1017/jfm.2020.438
– ident: S0022112021004419_ref37
  doi: 10.1016/0021-9991(90)90106-B
– ident: S0022112021004419_ref84
  doi: 10.2514/6.2017-0302
– ident: S0022112021004419_ref38
  doi: 10.1017/jfm.2017.88
– ident: S0022112021004419_ref75
  doi: 10.1115/1.2218517
– ident: S0022112021004419_ref23
  doi: 10.1016/S0997-7546(98)80056-3
– ident: S0022112021004419_ref31
  doi: 10.1017/S0022112008000864
– ident: S0022112021004419_ref17
  doi: 10.1017/S0022112093000023
– ident: S0022112021004419_ref63
  doi: 10.1017/jfm.2018.589
– ident: S0022112021004419_ref64
  doi: 10.1007/s00348-017-2353-7
– ident: S0022112021004419_ref72
  doi: 10.1098/rsta.2000.0706
– ident: S0022112021004419_ref30
  doi: 10.1017/S0022112000002469
– ident: S0022112021004419_ref71
  doi: 10.1016/0376-0421(64)90004-1
– ident: S0022112021004419_ref41
  doi: 10.1017/jfm.2012.263
– ident: S0022112021004419_ref2
  doi: 10.1063/1.5079536
– ident: S0022112021004419_ref44
  doi: 10.1023/B:APPL.0000014928.69394.50
– ident: S0022112021004419_ref4
  doi: 10.1115/1.2910032
– ident: S0022112021004419_ref53
– ident: S0022112021004419_ref13
  doi: 10.1017/S0022112006002898
– ident: S0022112021004419_ref21
  doi: 10.1098/rsta.2000.0704
– ident: S0022112021004419_ref10
  doi: 10.1016/0376-0421(94)90003-5
– ident: S0022112021004419_ref12
  doi: 10.1017/jfm.2014.123
– ident: S0022112021004419_ref19
  doi: 10.1093/qjmam/1.1.43
– ident: S0022112021004419_ref49
  doi: 10.1017/jfm.2018.91
– ident: S0022112021004419_ref66
  doi: 10.1007/s11630-016-0851-1
– ident: S0022112021004419_ref16
  doi: 10.1017/S0022112080000250
– ident: S0022112021004419_ref74
  doi: 10.1017/S0022112099006138
– ident: S0022112021004419_ref18
  doi: 10.1017/S0022112092003409
– ident: S0022112021004419_ref3
  doi: 10.1017/jfm.2016.424
– ident: S0022112021004419_ref36
  doi: 10.1017/S0022112098003504
– ident: S0022112021004419_ref76
  doi: 10.1017/jfm.2016.318
– ident: S0022112021004419_ref20
  doi: 10.1017/S0022112078002918
– ident: S0022112021004419_ref22
  doi: 10.1017/S0022112088002137
– ident: S0022112021004419_ref1
  doi: 10.1017/S0022112099008976
– ident: S0022112021004419_ref42
  doi: 10.1017/jfm.2013.222
– ident: S0022112021004419_ref79
– ident: S0022112021004419_ref24
  doi: 10.1146/annurev.fluid.29.1.245
– ident: S0022112021004419_ref65
  doi: 10.1007/s11630-014-0697-3
– ident: S0022112021004419_ref52
– ident: S0022112021004419_ref57
  doi: 10.1017/jfm.2013.504
– volume-title: Modeling and Computation of Boundary-layer Flows: Laminar, Turbulent and Transitional Boundary Layers in Incompressible and Compressible Flows
  year: 2005
  ident: S0022112021004419_ref6
– ident: S0022112021004419_ref56
  doi: 10.1016/S0997-7546(02)01205-0
– ident: S0022112021004419_ref78
  doi: 10.1017/S0022112000002354
– ident: S0022112021004419_ref77
  doi: 10.1017/jfm.2011.224
– ident: S0022112021004419_ref45
  doi: 10.1017/S0022112010001047
– ident: S0022112021004419_ref7
  doi: 10.1017/jfm.2011.204
– ident: S0022112021004419_ref39
  doi: 10.1088/0169-5983/44/4/045503
– ident: S0022112021004419_ref35
  doi: 10.2514/1.J054820
– ident: S0022112021004419_ref15
  doi: 10.1017/S0022112078002682
– ident: S0022112021004419_ref32
  doi: 10.1017/S0022112001005766
– ident: S0022112021004419_ref14
– ident: S0022112021004419_ref73
  doi: 10.2514/3.7748
– ident: S0022112021004419_ref51
  doi: 10.2514/3.9739
– ident: S0022112021004419_ref28
  doi: 10.2514/1.J056453
– ident: S0022112021004419_ref50
  doi: 10.1007/s00348-013-1470-1
– ident: S0022112021004419_ref83
  doi: 10.2514/6.2011-3292
– ident: S0022112021004419_ref59
  doi: 10.1017/S0022112010000856
– ident: S0022112021004419_ref61
  doi: 10.1007/BF01090696
– ident: S0022112021004419_ref8
  doi: 10.1017/S002211200900634X
– ident: S0022112021004419_ref47
  doi: 10.1115/1.2812949
– ident: S0022112021004419_ref9
  doi: 10.1017/jfm.2013.421
– ident: S0022112021004419_ref26
  doi: 10.1017/jfm.2018.809
– ident: S0022112021004419_ref40
  doi: 10.1017/S0022112010004957
– ident: S0022112021004419_ref29
  doi: 10.1007/s00348-018-2511-6
– ident: S0022112021004419_ref62
  doi: 10.1017/jfm.2017.577
– ident: S0022112021004419_ref68
  doi: 10.1002/sapm198267145
– ident: S0022112021004419_ref46
  doi: 10.2514/1.565
– ident: S0022112021004419_ref48
  doi: 10.1017/jfm.2017.217
– ident: S0022112021004419_ref69
  doi: 10.1017/S0022112087002337
– ident: S0022112021004419_ref82
  doi: 10.1017/jfm.2016.848
– ident: S0022112021004419_ref70
  doi: 10.1007/BF01209044
– ident: S0022112021004419_ref43
  doi: 10.1017/S0022112009007149
– ident: S0022112021004419_ref54
  doi: 10.1017/jfm.2011.41
– ident: S0022112021004419_ref11
  doi: 10.1146/annurev.fluid.39.050905.110135
– ident: S0022112021004419_ref81
  doi: 10.1017/jfm.2017.572
– ident: S0022112021004419_ref55
  doi: 10.2514/1.17518
– ident: S0022112021004419_ref33
  doi: 10.1017/jfm.2020.157
– ident: S0022112021004419_ref67
  doi: 10.1017/S0022112070001866
SSID ssj0013097
Score 2.3991518
Snippet A steady two-dimensional boundary layer subject to an adverse streamwise pressure gradient usually separates. In this paper, we investigate how free-stream...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Boundary layers
Computational fluid dynamics
Concave walls
Curvature
Disturbances
Flow distortion
Flow profiles
Fluid flow
Friction
JFM Papers
Low frequencies
Pressure
Pressure distribution
Pressure gradients
Reynolds number
Rivers
Separation
Two dimensional boundary layer
Velocity
Vortices
Wavelength
Title Elevated low-frequency free-stream vortical disturbances eliminate boundary-layer separation
URI https://www.cambridge.org/core/product/identifier/S0022112021004419/type/journal_article
https://www.proquest.com/docview/2537947497
Volume 920
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS-QwFH74A2E9uDquqKuSg4sHiXaaZNKexJUZZWFlWVbwIJT8PEidajsq_vf70mYcPeit0JDCe3kvX19evg9g37iBVJnVVDBpKM-sp1roDANPOC0R8KuWMv_35eDiiv-6Ftex4NbEtsppTmwTta1MqJEfpzhZziXP5cn9Aw2qUeF0NUpozMMipuAMf74Wfw4v__ydnSMkuZzyhSOySGLreyCNvvXhInraP-JBDX5GrPB-g3qfn9tNZ7QKKxEtktPOvWsw58Y9-BqRI4lx2fRg-Q2tYA-W2rZO06zDzbB0T4gmLSmrZ-rrrm_6heCTo-GaiLojT1Xd1rOJRY8_1josg4a4spX7mjiiW-Gl-oWWCuE5aVzHFl6Nv8HVaPjv7IJGPQVqWJJOMOMaz2yqktx7wzOTykQrZxxGrbFWqb5n3lgmnFRcOJFZo0wwYbhs7YRhbAMWxtXYbQIRKccp-gONqZ4PmNS5l4kSieZScCPZFhy8GrSIUdEUXUeZLND0RTB9gabfgsOpuQsTacmDOkb5wegfr6PvOzqOD8btTD03-_xsCW1__vo7fAkTtR1h2Q4sTOpHt4vYY6L3YD4bne_FZfYffcjbIA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1VRVXhAHQBUSjgQysOyDQb2-vkgBCiXbafp1bqASn484DCpiTbVvun-I2MnaTbHtpbb5FiOdLkeWZsz7wHsGncSKrMaiqYNJRn1lMtdIYLTzgtMeFXkTL_6Hg0OeX7Z-JsCf71vTChrLL3idFR28qEM_LtFCfLueS5_Hr-lwbVqHC72ktotLA4cPMr3LI1X_Z28P9upel49-T7hHaqAtSwJJ2h3zGe2VQlufeGZyaViVbOOMSusVapoWfeWCacVFw4kVmjTLjeCy3HTphwAIou_xFnLA8rKhv_WNxaJLns2ckxj0m6QvtAUf3bh7b3dPiZB-35BY3D7XB4OxrEEDd-Dk-73JR8a8G0BktuOoBnXZ5KOi_QDODJDRLDAazEIlLTvICfu6W7xNzVkrK6or5uq7TnBJ8cDU0p6g-5rOp4ek4s4uui1gF0DXFlFBebOaKjzFM9p6XCzQBpXMtNXk1fwumD2PkVLE-rqXsNRKQcpxiONAYWPmJS514mSiSaS8GNZOvw8dqgRbcGm6KtX5MFmr4Ipi_Q9OvwqTd3YToS9KDFUd4xeut69HlL_nHHuI3-zy0-vwDsm_tff4DVycnRYXG4d3zwFh6HSWMtWrYBy7P6wr3DrGem30eoEfj10Nj-DxPkF9k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elevated+low-frequency+free-stream+vortical+disturbances+eliminate+boundary-layer+separation&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Xu%2C+Dongdong&rft.au=Wu%2C+Xuesong&rft.date=2021-06-08&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=920&rft_id=info:doi/10.1017%2Fjfm.2021.441&rft.externalDocID=10_1017_jfm_2021_441
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon