Elevated low-frequency free-stream vortical disturbances eliminate boundary-layer separation
A steady two-dimensional boundary layer subject to an adverse streamwise pressure gradient usually separates. In this paper, we investigate how free-stream vortical disturbances (FSVD) of moderate level prevent the separation in such a boundary layer over a plate or concave wall. The focus is on phy...
Saved in:
Published in | Journal of fluid mechanics Vol. 920 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
08.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A steady two-dimensional boundary layer subject to an adverse streamwise pressure gradient usually separates. In this paper, we investigate how free-stream vortical disturbances (FSVD) of moderate level prevent the separation in such a boundary layer over a plate or concave wall. The focus is on physically realisable FSVD with sufficiently long wavelength (low frequency) as they have the most significant impact on the boundary layer. The FSVD intensity $\epsilon$ is taken to be small but nevertheless strong enough that the streaks or Görtler vortices generated in the boundary layer are fully nonlinear and can alter the mean-flow profile by an order-one amount. The excitation and evolution of streaks and Görtler vortices are governed by the nonlinear unsteady boundary-region equations supplemented by appropriate initial (upstream) and boundary (far-field) conditions, which describe appropriately the action of FSVD on the boundary layer. The flow variables are decomposed into two parts: the steady spanwise-averaged and the unsteady or spanwise-varying components. These two parts are coupled and are computed simultaneously. Numerical results show that the separation is eliminated when the FSVD level exceeds a critical intensity $\epsilon _c$. It is inferred that the strong nonlinear mean-flow distortion associated with the nonlinear streaks or Görtler vortices prevents the separation. The critical FSVD intensity $\epsilon _c$ depends on the streamwise curvature, the pressure gradient and the frequency of FSVD. The value of $\epsilon _c$ decreases significantly with the Görtler number, indicating that concave curvature inhibits separation. A higher $\epsilon _c$ is required to prevent the separation in the case of stronger adverse pressure gradient. Interestingly, unsteady FSVD with low frequencies are found to be more effective than steady ones in suppressing the separation. |
---|---|
AbstractList | A steady two-dimensional boundary layer subject to an adverse streamwise pressure gradient usually separates. In this paper, we investigate how free-stream vortical disturbances (FSVD) of moderate level prevent the separation in such a boundary layer over a plate or concave wall. The focus is on physically realisable FSVD with sufficiently long wavelength (low frequency) as they have the most significant impact on the boundary layer. The FSVD intensity \(\epsilon\) is taken to be small but nevertheless strong enough that the streaks or Görtler vortices generated in the boundary layer are fully nonlinear and can alter the mean-flow profile by an order-one amount. The excitation and evolution of streaks and Görtler vortices are governed by the nonlinear unsteady boundary-region equations supplemented by appropriate initial (upstream) and boundary (far-field) conditions, which describe appropriately the action of FSVD on the boundary layer. The flow variables are decomposed into two parts: the steady spanwise-averaged and the unsteady or spanwise-varying components. These two parts are coupled and are computed simultaneously. Numerical results show that the separation is eliminated when the FSVD level exceeds a critical intensity \(\epsilon _c\). It is inferred that the strong nonlinear mean-flow distortion associated with the nonlinear streaks or Görtler vortices prevents the separation. The critical FSVD intensity \(\epsilon _c\) depends on the streamwise curvature, the pressure gradient and the frequency of FSVD. The value of \(\epsilon _c\) decreases significantly with the Görtler number, indicating that concave curvature inhibits separation. A higher \(\epsilon _c\) is required to prevent the separation in the case of stronger adverse pressure gradient. Interestingly, unsteady FSVD with low frequencies are found to be more effective than steady ones in suppressing the separation. A steady two-dimensional boundary layer subject to an adverse streamwise pressure gradient usually separates. In this paper, we investigate how free-stream vortical disturbances (FSVD) of moderate level prevent the separation in such a boundary layer over a plate or concave wall. The focus is on physically realisable FSVD with sufficiently long wavelength (low frequency) as they have the most significant impact on the boundary layer. The FSVD intensity $\epsilon$ is taken to be small but nevertheless strong enough that the streaks or Görtler vortices generated in the boundary layer are fully nonlinear and can alter the mean-flow profile by an order-one amount. The excitation and evolution of streaks and Görtler vortices are governed by the nonlinear unsteady boundary-region equations supplemented by appropriate initial (upstream) and boundary (far-field) conditions, which describe appropriately the action of FSVD on the boundary layer. The flow variables are decomposed into two parts: the steady spanwise-averaged and the unsteady or spanwise-varying components. These two parts are coupled and are computed simultaneously. Numerical results show that the separation is eliminated when the FSVD level exceeds a critical intensity $\epsilon _c$ . It is inferred that the strong nonlinear mean-flow distortion associated with the nonlinear streaks or Görtler vortices prevents the separation. The critical FSVD intensity $\epsilon _c$ depends on the streamwise curvature, the pressure gradient and the frequency of FSVD. The value of $\epsilon _c$ decreases significantly with the Görtler number, indicating that concave curvature inhibits separation. A higher $\epsilon _c$ is required to prevent the separation in the case of stronger adverse pressure gradient. Interestingly, unsteady FSVD with low frequencies are found to be more effective than steady ones in suppressing the separation. |
ArticleNumber | A14 |
Author | Wu, Xuesong Xu, Dongdong |
Author_xml | – sequence: 1 givenname: Dongdong orcidid: 0000-0001-6886-9157 surname: Xu fullname: Xu, Dongdong organization: 1Department of Mechanics, Tianjin University, Tianjin 300072, PR China – sequence: 2 givenname: Xuesong orcidid: 0000-0002-3406-8017 surname: Wu fullname: Wu, Xuesong email: x.wu@ic.ac.uk organization: 3School of Mechanical Engineering, Nantong University, Nantong 226019, PR China |
BookMark | eNp1kMtKAzEUhoNUsFZ3PsCAW2fMZabpLKXUCxTc6E4IZ5ITSZlLTdJK397UFgTR1cni_3O-852TUT_0SMgVowWjTN6ubFdwyllRluyEjFk5rXM5LasRGVPKec4Yp2fkPIQVpUzQWo7J26LFLUQ0WTt85tbjxwZ7vcvSC_MQPUKXbQcfnYY2My7EjW-g1xgybF3n-lTNmmHTG_C7vIUd-izgGjxEN_QX5NRCG_DyOCfk9X7xMn_Ml88PT_O7Za4F5TFnVFthONDaWl3ONJe0AdTIK6mNAWBWWG1EhRLKCquZ0aD3_KyaUqy0EBNyffh37YfEH6JaDRvfp5WKV0LWpSxrmVI3h5T2QwgerVp71yVuxaja-1PJn9r7U8lfivNfce3i91nRg2v_KxXHEnSNd-Ydf1D-LHwB0LeHzw |
CitedBy_id | crossref_primary_10_1017_jfm_2023_23 crossref_primary_10_1063_5_0184998 crossref_primary_10_1007_s00348_024_03837_6 crossref_primary_10_1016_j_expthermflusci_2024_111227 crossref_primary_10_1017_jfm_2023_53 |
Cites_doi | 10.1007/BF01089710 10.1017/jfm.2018.489 10.1017/jfm.2020.767 10.1115/1.2910235 10.1017/S0022112087000892 10.1017/jfm.2020.438 10.1016/0021-9991(90)90106-B 10.2514/6.2017-0302 10.1017/jfm.2017.88 10.1115/1.2218517 10.1016/S0997-7546(98)80056-3 10.1017/S0022112008000864 10.1017/S0022112093000023 10.1017/jfm.2018.589 10.1007/s00348-017-2353-7 10.1098/rsta.2000.0706 10.1017/S0022112000002469 10.1016/0376-0421(64)90004-1 10.1017/jfm.2012.263 10.1063/1.5079536 10.1023/B:APPL.0000014928.69394.50 10.1115/1.2910032 10.1017/S0022112006002898 10.1098/rsta.2000.0704 10.1016/0376-0421(94)90003-5 10.1017/jfm.2014.123 10.1093/qjmam/1.1.43 10.1017/jfm.2018.91 10.1007/s11630-016-0851-1 10.1017/S0022112080000250 10.1017/S0022112099006138 10.1017/S0022112092003409 10.1017/jfm.2016.424 10.1017/S0022112098003504 10.1017/jfm.2016.318 10.1017/S0022112078002918 10.1017/S0022112088002137 10.1017/S0022112099008976 10.1017/jfm.2013.222 10.1146/annurev.fluid.29.1.245 10.1007/s11630-014-0697-3 10.1017/jfm.2013.504 10.1016/S0997-7546(02)01205-0 10.1017/S0022112000002354 10.1017/jfm.2011.224 10.1017/S0022112010001047 10.1017/jfm.2011.204 10.1088/0169-5983/44/4/045503 10.2514/1.J054820 10.1017/S0022112078002682 10.1017/S0022112001005766 10.2514/3.7748 10.2514/3.9739 10.2514/1.J056453 10.1007/s00348-013-1470-1 10.2514/6.2011-3292 10.1017/S0022112010000856 10.1007/BF01090696 10.1017/S002211200900634X 10.1115/1.2812949 10.1017/jfm.2013.421 10.1017/jfm.2018.809 10.1017/S0022112010004957 10.1007/s00348-018-2511-6 10.1017/jfm.2017.577 10.1002/sapm198267145 10.2514/1.565 10.1017/jfm.2017.217 10.1017/S0022112087002337 10.1017/jfm.2016.848 10.1007/BF01209044 10.1017/S0022112009007149 10.1017/jfm.2011.41 10.1146/annurev.fluid.39.050905.110135 10.1017/jfm.2017.572 10.2514/1.17518 10.1017/jfm.2020.157 10.1017/S0022112070001866 |
ContentType | Journal Article |
Copyright | The Author(s), 2021. Published by Cambridge University Press |
Copyright_xml | – notice: The Author(s), 2021. Published by Cambridge University Press |
DBID | AAYXX CITATION 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
DOI | 10.1017/jfm.2021.441 |
DatabaseName | CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student ProQuest Research Library Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database (ProQuest) Engineering Database Research Library (Corporate) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) |
DatabaseTitleList | Research Library Prep CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1469-7645 |
ExternalDocumentID | 10_1017_jfm_2021_441 |
GroupedDBID | -DZ -E. -~X .DC .FH 09C 09E 0E1 0R~ 29K 4.4 5GY 5VS 74X 74Y 7~V 88I 8FE 8FG 8FH 8G5 8R4 8R5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AANRG AARAB AASVR AAUIS AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABZCX ACBEA ACBMC ACCHT ACGFO ACGFS ACGOD ACIMK ACIWK ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADGEJ ADKIL ADOCW ADVJH AEBAK AEMTW AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFRAH AFUTZ AGABE AGBYD AGJUD AGOOT AHQXX AHRGI AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BHPHI BKSAR BLZWO BMAJL BPHCQ C0O CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC CS3 D-I DC4 DOHLZ DU5 DWQXO E.L EBS F5P GNUQQ GUQSH HCIFZ HG- HST HZ~ I.6 IH6 IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L6V L98 LK5 LW7 M-V M2O M2P M7R M7S NIKVX O9- OYBOY P2P P62 PCBAR PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RNS ROL RR0 S0W S6- S6U SAAAG SC5 T9M TAE TN5 UT1 WFFJZ WH7 WQ3 WXU WXY WYP ZYDXJ ~02 AAYXX ABVKB ABVZP ABXAU ABXHF ACDLN ADMLS AEUYN AFZFC AKMAY CITATION PHGZM PHGZT 3V. 7TB 7U5 7UA 7XB 8FD 8FK C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c302t-10cf3d2a09ffc48c270baece257cddaa1f3fcd35e7a45e58dcac01301560e5c33 |
IEDL.DBID | BENPR |
ISSN | 0022-1120 |
IngestDate | Sat Aug 16 17:22:20 EDT 2025 Thu Apr 24 23:13:15 EDT 2025 Tue Jul 01 03:01:26 EDT 2025 Wed Mar 13 05:59:23 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | boundary layer stability boundary layer separation boundary layer receptivity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c302t-10cf3d2a09ffc48c270baece257cddaa1f3fcd35e7a45e58dcac01301560e5c33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6886-9157 0000-0002-3406-8017 |
PQID | 2537947497 |
PQPubID | 34769 |
PageCount | 41 |
ParticipantIDs | proquest_journals_2537947497 crossref_primary_10_1017_jfm_2021_441 crossref_citationtrail_10_1017_jfm_2021_441 cambridge_journals_10_1017_jfm_2021_441 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-08 |
PublicationDateYYYYMMDD | 2021-06-08 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Journal of fluid mechanics |
PublicationTitleAlternate | J. Fluid Mech |
PublicationYear | 2021 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | 2007; 39 2011; 677 2013; 728 1982; 17 2000; 410 1988; 193 1964; 5 2018; 841 2010; 660 1993; 246 2001; 426 2001; 428 2017; 830 2014; 23 2011; 671 2009; 634 1982; 67 1990; 86 1998; 17 2013; 54 2018; 855 1948; 1 2018; 850 1999; 380 1992; 114 2007; 571 1992; 237 2020; 892 2016; 797 2006; 128 1994; 30 2011; 682 2011; 681 2017; 813 2004; 42 1994; 116 2021; 906 2017; 817 2019; 31 2016; 801 2000; 358 2016; 54 1997; 29 2008; 602 2003; 71 1972; 7 2020; 900 2001; 446 1987; 25 2009; 629 2014; 747 2017; 829 1987; 177 1978; 89 2017; 58 1978; 87 2019; 858 2010; 655 2006; 44 2013; 732 2002; 21 2013; 734 1980; 98 2017; 56 2010; 132 1970; 44 1981; 16 1999; 397 1981; 19 2012; 44 2012; 711 2016; 25 2018; 59 2017; 820 1987; 182 S0022112021004419_ref60 S0022112021004419_ref61 S0022112021004419_ref62 S0022112021004419_ref63 S0022112021004419_ref20 S0022112021004419_ref64 S0022112021004419_ref65 S0022112021004419_ref21 S0022112021004419_ref22 S0022112021004419_ref66 S0022112021004419_ref67 S0022112021004419_ref23 S0022112021004419_ref24 S0022112021004419_ref68 S0022112021004419_ref25 S0022112021004419_ref69 S0022112021004419_ref26 S0022112021004419_ref27 S0022112021004419_ref28 S0022112021004419_ref29 S0022112021004419_ref50 S0022112021004419_ref51 S0022112021004419_ref52 S0022112021004419_ref53 S0022112021004419_ref54 S0022112021004419_ref10 S0022112021004419_ref55 S0022112021004419_ref11 S0022112021004419_ref12 S0022112021004419_ref56 S0022112021004419_ref13 S0022112021004419_ref57 S0022112021004419_ref14 S0022112021004419_ref58 S0022112021004419_ref59 S0022112021004419_ref15 S0022112021004419_ref16 S0022112021004419_ref17 S0022112021004419_ref18 S0022112021004419_ref19 S0022112021004419_ref80 S0022112021004419_ref81 S0022112021004419_ref82 S0022112021004419_ref83 S0022112021004419_ref40 S0022112021004419_ref84 S0022112021004419_ref41 S0022112021004419_ref42 S0022112021004419_ref43 S0022112021004419_ref44 S0022112021004419_ref45 S0022112021004419_ref46 S0022112021004419_ref47 S0022112021004419_ref48 S0022112021004419_ref49 S0022112021004419_ref8 S0022112021004419_ref9 S0022112021004419_ref7 S0022112021004419_ref70 S0022112021004419_ref4 S0022112021004419_ref71 S0022112021004419_ref5 S0022112021004419_ref72 S0022112021004419_ref2 S0022112021004419_ref73 S0022112021004419_ref30 S0022112021004419_ref74 S0022112021004419_ref3 S0022112021004419_ref31 S0022112021004419_ref75 S0022112021004419_ref1 S0022112021004419_ref76 S0022112021004419_ref32 S0022112021004419_ref77 S0022112021004419_ref33 S0022112021004419_ref78 S0022112021004419_ref34 S0022112021004419_ref35 S0022112021004419_ref79 S0022112021004419_ref36 S0022112021004419_ref37 S0022112021004419_ref38 S0022112021004419_ref39 Cebeci (S0022112021004419_ref6) 2005 |
References_xml | – volume: 358 start-page: 3229 issue: 1777 year: 2000 end-page: 3246 article-title: On the origins of unsteadiness and three-dimensionality in a laminar separation bubble publication-title: Phil. Trans. R. Soc. Lond. A – volume: 21 start-page: 495 issue: 5 year: 2002 end-page: 509 article-title: Investigations of time-growing instabilities in laminar separation bubbles publication-title: Eur. J. Mech. B/Fluids – volume: 602 start-page: 175 year: 2008 end-page: 207 article-title: Direct numerical simulations of forced and unforced separation bubbles on an airfoil at incidence publication-title: J. Fluid Mech. – volume: 98 start-page: 473 issue: 03 year: 1980 end-page: 508 article-title: The effect of finite turbulence spatial scale on the amplification of turbulence by a contracting stream publication-title: J. Fluid Mech. – volume: 25 start-page: 195 issue: 3 year: 2016 end-page: 206 article-title: Free-stream turbulence effects on the boundary layer of a high-lift low-pressure-turbine blade publication-title: J. Therm. Sci. – volume: 246 start-page: 21 year: 1993 end-page: 41 article-title: Three-dimensional boundary-layer instability and separation induced by small-amplitude streamwise vorticity in the upstream flow publication-title: J. Fluid Mech. – volume: 681 start-page: 370 year: 2011 end-page: 410 article-title: Unsteady boundary-layer transition in low-pressure turbines publication-title: J. Fluid Mech. – volume: 42 start-page: 937 issue: 5 year: 2004 end-page: 944 article-title: Effect of spanwise-modulated disturbances on transition in a separated boundary layer publication-title: AIAA J. – volume: 830 start-page: 35 year: 2017 end-page: 62 article-title: The impact of static and dynamic roughness elements on flow separation publication-title: J. Fluid Mech. – volume: 59 start-page: 52 issue: 3 year: 2018 article-title: Effects of free-stream turbulence intensity on transition in a laminar separation bubble formed over an airfoil publication-title: Exp. Fluids – volume: 67 start-page: 45 issue: 1 year: 1982 end-page: 61 article-title: Marginal separation publication-title: Stud. Appl. Maths – volume: 193 start-page: 243 year: 1988 end-page: 266 article-title: The nonlinear development of Görtler vortices in growing boundary layers publication-title: J. Fluid Mech. – volume: 29 start-page: 245 issue: 1 year: 1997 end-page: 283 article-title: Parabolized stability equations publication-title: Annu. Rev. Fluid Mech. – volume: 54 start-page: 1470 issue: 2 year: 2013 article-title: On the challenges in experimental characterization of flow separation over airfoils at low Reynolds number publication-title: Exp. Fluids – volume: 44 start-page: 347 issue: 2 year: 1970 end-page: 364 article-title: Is the singularity at separation removable? publication-title: J. Fluid Mech. – volume: 426 start-page: 229 year: 2001 end-page: 262 article-title: Effect on a laminar boundary layer of small-amplitude streamwise vorticity in the upstream flow publication-title: J. Fluid Mech. – volume: 1 start-page: 43 issue: 1 year: 1948 end-page: 69 article-title: On laminar boundary-layer flow near a position of separation publication-title: Q. J. Mech. Appl. Maths – volume: 892 start-page: A23 year: 2020 article-title: Optimal suppression of a separation bubble in a laminar boundary layer publication-title: J. Fluid Mech. – volume: 128 start-page: 668 issue: 4 year: 2006 end-page: 678 article-title: Direct numerical simulations of transitional flow in turbomachinery publication-title: ASME J. Turbomach. – volume: 44 start-page: 045503 issue: 4 year: 2012 article-title: Nonlinear streak computation using boundary region equations publication-title: Fluid Dyn. Res. – volume: 44 start-page: 2217 issue: 10 year: 2006 end-page: 2223 article-title: Control of laminar separation bubbles using instability waves publication-title: AIAA J. – volume: 682 start-page: 66 year: 2011 end-page: 100 article-title: Excitation of steady and unsteady Görtler vortices by free-stream vortical disturbances publication-title: J. Fluid Mech. – volume: 671 start-page: 1 year: 2011 end-page: 33 article-title: The effect of small-amplitude convective disturbances on the size and bursting of a laminar separation bubble publication-title: J. Fluid Mech. – volume: 86 start-page: 376 issue: 2 year: 1990 end-page: 413 article-title: Numerical methods for hypersonic boundary layer stability publication-title: J. Comput. Phys. – volume: 747 start-page: 141 year: 2014 end-page: 185 article-title: Direct numerical simulations of laminar separation bubbles: investigation of absolute instability and active flow control of transition to turbulence publication-title: J. Fluid Mech. – volume: 17 start-page: 145 issue: 2 year: 1998 end-page: 164 article-title: Local and global instability properties of separation bubbles publication-title: Euro. J. Mech. B/Fluids – volume: 660 start-page: 37 year: 2010 end-page: 54 article-title: Mean flow deformation in a laminar separation bubble: separation and stability characteristics publication-title: J. Fluid Mech. – volume: 655 start-page: 280 year: 2010 end-page: 305 article-title: Structural changes of laminar separation bubbles induced by global linear instability publication-title: J. Fluid Mech. – volume: 634 start-page: 165 year: 2009 end-page: 189 article-title: Mechanisms for spatial steady three-dimensional disturbance growth in a non-parallel and separating boundary layer publication-title: J. Fluid Mech. – volume: 114 start-page: 313 issue: 3 year: 1992 end-page: 321 article-title: Boundary-layer transition in accelerating flows with intense freestream turbulence: Part 1. Disturbances upstream of transition onset publication-title: Trans. ASME J. Fluids Engng – volume: 358 start-page: 3193 issue: 1777 year: 2000 end-page: 3205 article-title: Experiments on a two-dimensional laminar separation bubble publication-title: Phil. Trans. R. Soc. Lond. A – volume: 116 start-page: 22 year: 1994 end-page: 28 article-title: Comparison of the triple-deck theory, interactive boundary layer method, and Navier–Stokes computation for marginal separation publication-title: Trans. ASME J. Fluids Engng – volume: 841 start-page: 81 year: 2018 end-page: 108 article-title: On the origin of spanwise vortex deformations in laminar separation bubbles publication-title: J. Fluid Mech. – volume: 906 start-page: A13 year: 2021 article-title: Self-excited primary and secondary instability of laminar separation bubbles publication-title: J. Fluid Mech. – volume: 571 start-page: 221 year: 2007 end-page: 233 article-title: Three-dimensional transverse instabilities in detached boundary layers publication-title: J. Fluid Mech. – volume: 89 start-page: 433 issue: 03 year: 1978 end-page: 468 article-title: Unsteady vortical and entropic distortions of potential flows round arbitrary obstacles publication-title: J. Fluid Mech. – volume: 177 start-page: 133 year: 1987 end-page: 166 article-title: Turbulence statistics in fully developed channel flow at low Reynolds number publication-title: J. Fluid Mech. – volume: 734 start-page: R4 year: 2013 article-title: The two classes of primary modal instability in laminar separation bubbles publication-title: J. Fluid Mech. – volume: 17 start-page: 33 issue: 1 year: 1982 end-page: 41 article-title: Asymptotic theory of short separation regions on the leading edge of a slender airfoil publication-title: Fluid Dyn. – volume: 30 start-page: 61 issue: 1 year: 1994 end-page: 94 article-title: Laminar boundary layer separation: instability and associated phenomena publication-title: Prog. Aerosp. Sci. – volume: 858 start-page: 714 year: 2019 end-page: 759 article-title: Numerical investigation of laminar–turbulent transition in laminar separation bubbles: the effect of free-stream turbulence publication-title: J. Fluid Mech. – volume: 397 start-page: 119 year: 1999 end-page: 169 article-title: Evolution of a wave packet into vortex loops in a laminar separation bubble publication-title: J. Fluid Mech. – volume: 813 start-page: 955 year: 2017 end-page: 990 article-title: Steady and transient response of a laminar separation bubble to controlled disturbances publication-title: J. Fluid Mech. – volume: 817 start-page: 80 year: 2017 end-page: 121 article-title: Nonlinear unsteady streaks engendered by the interaction of free-stream vorticity with a compressible boundary layer publication-title: J. Fluid Mech. – volume: 797 start-page: 683 year: 2016 end-page: 728 article-title: Entrainment of short-wavelength free-stream vortical disturbances in compressible and incompressible boundary layers publication-title: J. Fluid Mech. – volume: 87 start-page: 33 issue: 1 year: 1978 end-page: 54 article-title: The continuous spectrum of the Orr–Sommerfeld equation. Part 1. the spectrum and the eigenfunctions publication-title: J. Fluid Mech. – volume: 132 start-page: 011004 issue: 1 year: 2010 article-title: Transition mechanisms in separation bubbles under low-and elevated-freestream turbulence publication-title: Trans. ASME J. Turbomach. – volume: 71 start-page: 133 issue: 1 year: 2003 end-page: 146 article-title: A combined experimental/numerical study of unsteady phenomena in a laminar separation bubble publication-title: Flow Turbul. Combust. – volume: 820 start-page: 633 year: 2017 end-page: 666 article-title: Response of a laminar separation bubble to impulsive forcing publication-title: J. Fluid Mech. – volume: 39 start-page: 107 year: 2007 end-page: 128 article-title: Transition beneath vortical disturbances publication-title: Annu. Rev. Fluid Mech. – volume: 58 start-page: 66 year: 2017 article-title: Inspection of the dynamic properties of laminar separation bubbles: free-stream turbulence intensity effects for different Reynolds numbers publication-title: Exp. Fluids – volume: 31 start-page: 014103 issue: 1 year: 2019 article-title: A geometrical criterion for absolute instability in separated boundary layers publication-title: Phys. Fluids – volume: 728 start-page: 58 year: 2013 end-page: 90 article-title: Vortex formation and vortex breakup in a laminar separation bubble publication-title: J. Fluid Mech. – volume: 19 start-page: 79 issue: 1 year: 1981 end-page: 85 article-title: New, quasi-simultaneous method to calculate interacting boundary layers publication-title: AIAA J. – volume: 829 start-page: 681 year: 2017 end-page: 730 article-title: Nonlinear evolution and secondary instability of steady and unsteady Görtler vortices induced by free-stream vortical disturbances publication-title: J. Fluid Mech. – volume: 7 start-page: 407 issue: 3 year: 1972 end-page: 417 article-title: Laminar separation publication-title: Fluid Dyn. – volume: 446 start-page: 271 year: 2001 end-page: 308 article-title: The reduction and elimination of a closed separation region by free-stream turbulence publication-title: J. Fluid Mech. – volume: 54 start-page: 2295 issue: 8 year: 2016 end-page: 2309 article-title: Coherent structures in the transition process of a laminar separation bubble publication-title: AIAA J. – volume: 732 start-page: 616 year: 2013 end-page: 659 article-title: On continuous spectra of the Orr–Sommerfeld/Squire equations and entrainment of free-stream vortical disturbances publication-title: J. Fluid Mech. – volume: 16 start-page: 835 issue: 6 year: 1981 end-page: 843 article-title: Singular solution of boundary layer equations which can be extended continuously through the point of zero surface friction publication-title: Fluid Dyn. – volume: 428 start-page: 185 year: 2001 end-page: 212 article-title: Simulations of bypass transition publication-title: J. Fluid Mech. – volume: 56 start-page: 1335 issue: 4 year: 2017 end-page: 1347 article-title: Turbulence intensity effects on laminar separation bubbles formed over an airfoil publication-title: AIAA J. – volume: 380 start-page: 169 year: 1999 end-page: 203 article-title: Effect of free-stream turbulence and other vortical disturbances on a laminar boundary layer publication-title: J. Fluid Mech. – volume: 629 start-page: 263 year: 2009 end-page: 298 article-title: On the origin of the inflectional instability of a laminar separation bubble publication-title: J. Fluid Mech. – volume: 5 start-page: 70 year: 1964 end-page: 103 article-title: Low-speed flows involving bubble separations publication-title: Prog. Aerosp. Sci. – volume: 850 start-page: 954 year: 2018 end-page: 983 article-title: Role of Klebanoff modes in active flow control of separation: direct numerical simulations publication-title: J. Fluid Mech. – volume: 182 start-page: 255 year: 1987 end-page: 290 article-title: The growth and breakdown of streamwise vortices in the presence of a wall publication-title: J. Fluid Mech. – volume: 801 start-page: 289 year: 2016 end-page: 321 article-title: Numerical investigation of the role of free-stream turbulence in boundary-layer separation publication-title: J. Fluid Mech. – volume: 855 start-page: 351 year: 2018 end-page: 370 article-title: The impact of dynamic roughness elements on marginally separated boundary layers publication-title: J. Fluid Mech. – volume: 25 start-page: 1033 issue: 8 year: 1987 end-page: 1041 article-title: Laminar separation bubble characteristics on an airfoil at low Reynolds numbers publication-title: AIAA J. – volume: 677 start-page: 1 year: 2011 end-page: 38 article-title: Evolution and instability of unsteady nonlinear streaks generated by free-stream vortical disturbances publication-title: J. Fluid Mech. – volume: 237 start-page: 231 year: 1992 end-page: 260 article-title: Distortion of a flat-plate boundary layer by free-stream vorticity normal to the plate publication-title: J. Fluid Mech. – volume: 23 start-page: 203 issue: 3 year: 2014 end-page: 214 article-title: Experimental investigation of flow instabilities in a laminar separation bubble publication-title: J. Therm. Sci. – volume: 900 start-page: A15 year: 2020 article-title: Görtler vortices and streaks in boundary layer subject to pressure gradient: excitation by free-stream vortical disturbances, nonlinear evolution and secondary instability publication-title: J. Fluid Mech. – volume: 410 start-page: 1 year: 2000 end-page: 28 article-title: Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment publication-title: J. Fluid Mech. – volume: 711 start-page: 1 year: 2012 end-page: 26 article-title: Discrete linear local eigenmodes in a separating laminar boundary layer publication-title: J. Fluid Mech. – ident: S0022112021004419_ref60 doi: 10.1007/BF01089710 – ident: S0022112021004419_ref25 doi: 10.1017/jfm.2018.489 – ident: S0022112021004419_ref5 – ident: S0022112021004419_ref58 doi: 10.1017/jfm.2020.767 – ident: S0022112021004419_ref27 doi: 10.1115/1.2910235 – ident: S0022112021004419_ref34 doi: 10.1017/S0022112087000892 – ident: S0022112021004419_ref80 doi: 10.1017/jfm.2020.438 – ident: S0022112021004419_ref37 doi: 10.1016/0021-9991(90)90106-B – ident: S0022112021004419_ref84 doi: 10.2514/6.2017-0302 – ident: S0022112021004419_ref38 doi: 10.1017/jfm.2017.88 – ident: S0022112021004419_ref75 doi: 10.1115/1.2218517 – ident: S0022112021004419_ref23 doi: 10.1016/S0997-7546(98)80056-3 – ident: S0022112021004419_ref31 doi: 10.1017/S0022112008000864 – ident: S0022112021004419_ref17 doi: 10.1017/S0022112093000023 – ident: S0022112021004419_ref63 doi: 10.1017/jfm.2018.589 – ident: S0022112021004419_ref64 doi: 10.1007/s00348-017-2353-7 – ident: S0022112021004419_ref72 doi: 10.1098/rsta.2000.0706 – ident: S0022112021004419_ref30 doi: 10.1017/S0022112000002469 – ident: S0022112021004419_ref71 doi: 10.1016/0376-0421(64)90004-1 – ident: S0022112021004419_ref41 doi: 10.1017/jfm.2012.263 – ident: S0022112021004419_ref2 doi: 10.1063/1.5079536 – ident: S0022112021004419_ref44 doi: 10.1023/B:APPL.0000014928.69394.50 – ident: S0022112021004419_ref4 doi: 10.1115/1.2910032 – ident: S0022112021004419_ref53 – ident: S0022112021004419_ref13 doi: 10.1017/S0022112006002898 – ident: S0022112021004419_ref21 doi: 10.1098/rsta.2000.0704 – ident: S0022112021004419_ref10 doi: 10.1016/0376-0421(94)90003-5 – ident: S0022112021004419_ref12 doi: 10.1017/jfm.2014.123 – ident: S0022112021004419_ref19 doi: 10.1093/qjmam/1.1.43 – ident: S0022112021004419_ref49 doi: 10.1017/jfm.2018.91 – ident: S0022112021004419_ref66 doi: 10.1007/s11630-016-0851-1 – ident: S0022112021004419_ref16 doi: 10.1017/S0022112080000250 – ident: S0022112021004419_ref74 doi: 10.1017/S0022112099006138 – ident: S0022112021004419_ref18 doi: 10.1017/S0022112092003409 – ident: S0022112021004419_ref3 doi: 10.1017/jfm.2016.424 – ident: S0022112021004419_ref36 doi: 10.1017/S0022112098003504 – ident: S0022112021004419_ref76 doi: 10.1017/jfm.2016.318 – ident: S0022112021004419_ref20 doi: 10.1017/S0022112078002918 – ident: S0022112021004419_ref22 doi: 10.1017/S0022112088002137 – ident: S0022112021004419_ref1 doi: 10.1017/S0022112099008976 – ident: S0022112021004419_ref42 doi: 10.1017/jfm.2013.222 – ident: S0022112021004419_ref79 – ident: S0022112021004419_ref24 doi: 10.1146/annurev.fluid.29.1.245 – ident: S0022112021004419_ref65 doi: 10.1007/s11630-014-0697-3 – ident: S0022112021004419_ref52 – ident: S0022112021004419_ref57 doi: 10.1017/jfm.2013.504 – volume-title: Modeling and Computation of Boundary-layer Flows: Laminar, Turbulent and Transitional Boundary Layers in Incompressible and Compressible Flows year: 2005 ident: S0022112021004419_ref6 – ident: S0022112021004419_ref56 doi: 10.1016/S0997-7546(02)01205-0 – ident: S0022112021004419_ref78 doi: 10.1017/S0022112000002354 – ident: S0022112021004419_ref77 doi: 10.1017/jfm.2011.224 – ident: S0022112021004419_ref45 doi: 10.1017/S0022112010001047 – ident: S0022112021004419_ref7 doi: 10.1017/jfm.2011.204 – ident: S0022112021004419_ref39 doi: 10.1088/0169-5983/44/4/045503 – ident: S0022112021004419_ref35 doi: 10.2514/1.J054820 – ident: S0022112021004419_ref15 doi: 10.1017/S0022112078002682 – ident: S0022112021004419_ref32 doi: 10.1017/S0022112001005766 – ident: S0022112021004419_ref14 – ident: S0022112021004419_ref73 doi: 10.2514/3.7748 – ident: S0022112021004419_ref51 doi: 10.2514/3.9739 – ident: S0022112021004419_ref28 doi: 10.2514/1.J056453 – ident: S0022112021004419_ref50 doi: 10.1007/s00348-013-1470-1 – ident: S0022112021004419_ref83 doi: 10.2514/6.2011-3292 – ident: S0022112021004419_ref59 doi: 10.1017/S0022112010000856 – ident: S0022112021004419_ref61 doi: 10.1007/BF01090696 – ident: S0022112021004419_ref8 doi: 10.1017/S002211200900634X – ident: S0022112021004419_ref47 doi: 10.1115/1.2812949 – ident: S0022112021004419_ref9 doi: 10.1017/jfm.2013.421 – ident: S0022112021004419_ref26 doi: 10.1017/jfm.2018.809 – ident: S0022112021004419_ref40 doi: 10.1017/S0022112010004957 – ident: S0022112021004419_ref29 doi: 10.1007/s00348-018-2511-6 – ident: S0022112021004419_ref62 doi: 10.1017/jfm.2017.577 – ident: S0022112021004419_ref68 doi: 10.1002/sapm198267145 – ident: S0022112021004419_ref46 doi: 10.2514/1.565 – ident: S0022112021004419_ref48 doi: 10.1017/jfm.2017.217 – ident: S0022112021004419_ref69 doi: 10.1017/S0022112087002337 – ident: S0022112021004419_ref82 doi: 10.1017/jfm.2016.848 – ident: S0022112021004419_ref70 doi: 10.1007/BF01209044 – ident: S0022112021004419_ref43 doi: 10.1017/S0022112009007149 – ident: S0022112021004419_ref54 doi: 10.1017/jfm.2011.41 – ident: S0022112021004419_ref11 doi: 10.1146/annurev.fluid.39.050905.110135 – ident: S0022112021004419_ref81 doi: 10.1017/jfm.2017.572 – ident: S0022112021004419_ref55 doi: 10.2514/1.17518 – ident: S0022112021004419_ref33 doi: 10.1017/jfm.2020.157 – ident: S0022112021004419_ref67 doi: 10.1017/S0022112070001866 |
SSID | ssj0013097 |
Score | 2.3991518 |
Snippet | A steady two-dimensional boundary layer subject to an adverse streamwise pressure gradient usually separates. In this paper, we investigate how free-stream... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Boundary layers Computational fluid dynamics Concave walls Curvature Disturbances Flow distortion Flow profiles Fluid flow Friction JFM Papers Low frequencies Pressure Pressure distribution Pressure gradients Reynolds number Rivers Separation Two dimensional boundary layer Velocity Vortices Wavelength |
Title | Elevated low-frequency free-stream vortical disturbances eliminate boundary-layer separation |
URI | https://www.cambridge.org/core/product/identifier/S0022112021004419/type/journal_article https://www.proquest.com/docview/2537947497 |
Volume | 920 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS-QwFH74A2E9uDquqKuSg4sHiXaaZNKexJUZZWFlWVbwIJT8PEidajsq_vf70mYcPeit0JDCe3kvX19evg9g37iBVJnVVDBpKM-sp1roDANPOC0R8KuWMv_35eDiiv-6Ftex4NbEtsppTmwTta1MqJEfpzhZziXP5cn9Aw2qUeF0NUpozMMipuAMf74Wfw4v__ydnSMkuZzyhSOySGLreyCNvvXhInraP-JBDX5GrPB-g3qfn9tNZ7QKKxEtktPOvWsw58Y9-BqRI4lx2fRg-Q2tYA-W2rZO06zDzbB0T4gmLSmrZ-rrrm_6heCTo-GaiLojT1Xd1rOJRY8_1josg4a4spX7mjiiW-Gl-oWWCuE5aVzHFl6Nv8HVaPjv7IJGPQVqWJJOMOMaz2yqktx7wzOTykQrZxxGrbFWqb5n3lgmnFRcOJFZo0wwYbhs7YRhbAMWxtXYbQIRKccp-gONqZ4PmNS5l4kSieZScCPZFhy8GrSIUdEUXUeZLND0RTB9gabfgsOpuQsTacmDOkb5wegfr6PvOzqOD8btTD03-_xsCW1__vo7fAkTtR1h2Q4sTOpHt4vYY6L3YD4bne_FZfYffcjbIA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1VRVXhAHQBUSjgQysOyDQb2-vkgBCiXbafp1bqASn484DCpiTbVvun-I2MnaTbHtpbb5FiOdLkeWZsz7wHsGncSKrMaiqYNJRn1lMtdIYLTzgtMeFXkTL_6Hg0OeX7Z-JsCf71vTChrLL3idFR28qEM_LtFCfLueS5_Hr-lwbVqHC72ktotLA4cPMr3LI1X_Z28P9upel49-T7hHaqAtSwJJ2h3zGe2VQlufeGZyaViVbOOMSusVapoWfeWCacVFw4kVmjTLjeCy3HTphwAIou_xFnLA8rKhv_WNxaJLns2ckxj0m6QvtAUf3bh7b3dPiZB-35BY3D7XB4OxrEEDd-Dk-73JR8a8G0BktuOoBnXZ5KOi_QDODJDRLDAazEIlLTvICfu6W7xNzVkrK6or5uq7TnBJ8cDU0p6g-5rOp4ek4s4uui1gF0DXFlFBebOaKjzFM9p6XCzQBpXMtNXk1fwumD2PkVLE-rqXsNRKQcpxiONAYWPmJS514mSiSaS8GNZOvw8dqgRbcGm6KtX5MFmr4Ipi_Q9OvwqTd3YToS9KDFUd4xeut69HlL_nHHuI3-zy0-vwDsm_tff4DVycnRYXG4d3zwFh6HSWMtWrYBy7P6wr3DrGem30eoEfj10Nj-DxPkF9k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elevated+low-frequency+free-stream+vortical+disturbances+eliminate+boundary-layer+separation&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Xu%2C+Dongdong&rft.au=Wu%2C+Xuesong&rft.date=2021-06-08&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=920&rft_id=info:doi/10.1017%2Fjfm.2021.441&rft.externalDocID=10_1017_jfm_2021_441 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |