Enhanced Online Continuous Brain-Control by Deep Learning-Based EEG Decoding

Objective: A growing amount of deep learning models for motor imagery (MI) decoding from electroencephalogram (EEG) have demonstrated their superiority over traditional machine learning approaches in offline dataset analysis. However, current online MI-based brain-computer interfaces (BCIs) still pr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 33; pp. 2834 - 2846
Main Authors Wang, Jiaheng, Yao, Lin, Wang, Yueming
Format Journal Article
LanguageEnglish
Published United States IEEE 2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective: A growing amount of deep learning models for motor imagery (MI) decoding from electroencephalogram (EEG) have demonstrated their superiority over traditional machine learning approaches in offline dataset analysis. However, current online MI-based brain-computer interfaces (BCIs) still predominantly adopt machine learning decoders while falling short of high BCI performance. Yet, the generalization and advantages of deep learning-based EEG decoding in realistic BCI systems remain far unclear. Methods: We conduct a randomized and cross-session online MI-BCI study on 2D center-out tasks in 15 BCI-naive subjects. A newly proposed deep learning model named interactive frequency convolutional neural network (IFNet) is leveraged and rigorously compared with the prevailing benchmark namely filter-bank common spatial pattern (FBCSP) for online MI decoding. Results: Through extensive online analysis, the deep learning decoder consistently outperforms the classical counterpart across various performance metrics. In particular, IFNet significantly improves the average online task accuracy by 20% and 27% in two sessions compared with FBCSP, respectively. Moreover, a significant cross-session training effect is observed by the IFNet model (<inline-formula> <tex-math notation="LaTeX">{P}={0}.{017} </tex-math></inline-formula>) while not for the controlled method (<inline-formula> <tex-math notation="LaTeX">{P}={0}.{337} </tex-math></inline-formula>). Further offline evaluations also demonstrate the superior performance of IFNet over state-of-the-art deep learning models. Moreover, we present unique behavioral and neurophysiological insights underlying online brain-machine interaction. Conclusion: We present one of the first studies about online MI-BCIs using deep learning, achieving substantially enhanced online performance for continuous BCI control. Significance: This study suggests the good utility of deep learning in MI-BCIs and has implications for clinical applications such as stroke rehabilitation.
AbstractList A growing amount of deep learning models for motor imagery (MI) decoding from electroencephalogram (EEG) have demonstrated their superiority over traditional machine learning approaches in offline dataset analysis. However, current online MI-based brain-computer interfaces (BCIs) still predominantly adopt machine learning decoders while falling short of high BCI performance. Yet, the generalization and advantages of deep learning-based EEG decoding in realistic BCI systems remain far unclear.OBJECTIVEA growing amount of deep learning models for motor imagery (MI) decoding from electroencephalogram (EEG) have demonstrated their superiority over traditional machine learning approaches in offline dataset analysis. However, current online MI-based brain-computer interfaces (BCIs) still predominantly adopt machine learning decoders while falling short of high BCI performance. Yet, the generalization and advantages of deep learning-based EEG decoding in realistic BCI systems remain far unclear.We conduct a randomized and cross-session online MI-BCI study with 2D center-out tasks in 15 BCI-naive subjects. A newly proposed deep learning model named interactive frequency convolutional neural network (IFNet) is leveraged and rigorously compared with the prevailing benchmark namely filter-bank common spatial pattern (FBCSP) for online MI decoding.METHODSWe conduct a randomized and cross-session online MI-BCI study with 2D center-out tasks in 15 BCI-naive subjects. A newly proposed deep learning model named interactive frequency convolutional neural network (IFNet) is leveraged and rigorously compared with the prevailing benchmark namely filter-bank common spatial pattern (FBCSP) for online MI decoding.Through extensive online analysis, the deep learning decoder consistently outperforms the classical counterpart across various performance metrics. In particular, IFNet significantly improves the average online task accuracy by 20% and 27% in two sessions compared with FBCSP, respectively. Moreover, a significant cross-session training effect is observed by the IFNet model (P = 0.017) while not for the controlled method (P = 0.337). Further offline evaluations also demonstrate the superior performance of IFNet over state-of-the-art deep learning models. Moreover, we present unique behavioral and neurophysiological insights underlying online brain-machine interaction.RESULTSThrough extensive online analysis, the deep learning decoder consistently outperforms the classical counterpart across various performance metrics. In particular, IFNet significantly improves the average online task accuracy by 20% and 27% in two sessions compared with FBCSP, respectively. Moreover, a significant cross-session training effect is observed by the IFNet model (P = 0.017) while not for the controlled method (P = 0.337). Further offline evaluations also demonstrate the superior performance of IFNet over state-of-the-art deep learning models. Moreover, we present unique behavioral and neurophysiological insights underlying online brain-machine interaction.We present one of the first studies about online MI-BCIs using deep learning, achieving substantially enhanced online performance for continuous BCI control.CONCLUSIONWe present one of the first studies about online MI-BCIs using deep learning, achieving substantially enhanced online performance for continuous BCI control.This study suggests the good utility of deep learning in MI-BCIs and has implications for clinical applications such as stroke rehabilitation.SIGNIFICANCEThis study suggests the good utility of deep learning in MI-BCIs and has implications for clinical applications such as stroke rehabilitation.
A growing amount of deep learning models for motor imagery (MI) decoding from electroencephalogram (EEG) have demonstrated their superiority over traditional machine learning approaches in offline dataset analysis. However, current online MI-based brain-computer interfaces (BCIs) still predominantly adopt machine learning decoders while falling short of high BCI performance. Yet, the generalization and advantages of deep learning-based EEG decoding in realistic BCI systems remain far unclear. We conduct a randomized and cross-session online MI-BCI study on 2D center-out tasks in 15 BCI-naive subjects. A newly proposed deep learning model named interactive frequency convolutional neural network (IFNet) is leveraged and rigorously compared with the prevailing benchmark namely filter-bank common spatial pattern (FBCSP) for online MI decoding. Through extensive online analysis, the deep learning decoder consistently outperforms the classical counterpart across various performance metrics. In particular, IFNet significantly improves the average online task accuracy by 20% and 27% in two sessions compared with FBCSP, respectively. Moreover, a significant cross-session training effect is observed by the IFNet model ( ${P}={0}.{017}$ ) while not for the controlled method ( ${P}={0}.{337}$ ). Further offline evaluations also demonstrate the superior performance of IFNet over state-of-the-art deep learning models. Moreover, we present unique behavioral and neurophysiological insights underlying online brain-machine interaction. We present one of the first studies about online MI-BCIs using deep learning, achieving substantially enhanced online performance for continuous BCI control. This study suggests the good utility of deep learning in MI-BCIs and has implications for clinical applications such as stroke rehabilitation.
Objective: A growing amount of deep learning models for motor imagery (MI) decoding from electroencephalogram (EEG) have demonstrated their superiority over traditional machine learning approaches in offline dataset analysis. However, current online MI-based brain-computer interfaces (BCIs) still predominantly adopt machine learning decoders while falling short of high BCI performance. Yet, the generalization and advantages of deep learning-based EEG decoding in realistic BCI systems remain far unclear. Methods: We conduct a randomized and cross-session online MI-BCI study on 2D center-out tasks in 15 BCI-naive subjects. A newly proposed deep learning model named interactive frequency convolutional neural network (IFNet) is leveraged and rigorously compared with the prevailing benchmark namely filter-bank common spatial pattern (FBCSP) for online MI decoding. Results: Through extensive online analysis, the deep learning decoder consistently outperforms the classical counterpart across various performance metrics. In particular, IFNet significantly improves the average online task accuracy by 20% and 27% in two sessions compared with FBCSP, respectively. Moreover, a significant cross-session training effect is observed by the IFNet model ( <tex-math notation="LaTeX">${P}={0}.{017}$ </tex-math>) while not for the controlled method ( <tex-math notation="LaTeX">${P}={0}.{337}$ </tex-math>). Further offline evaluations also demonstrate the superior performance of IFNet over state-of-the-art deep learning models. Moreover, we present unique behavioral and neurophysiological insights underlying online brain-machine interaction. Conclusion: We present one of the first studies about online MI-BCIs using deep learning, achieving substantially enhanced online performance for continuous BCI control. Significance: This study suggests the good utility of deep learning in MI-BCIs and has implications for clinical applications such as stroke rehabilitation.
Objective: A growing amount of deep learning models for motor imagery (MI) decoding from electroencephalogram (EEG) have demonstrated their superiority over traditional machine learning approaches in offline dataset analysis. However, current online MI-based brain-computer interfaces (BCIs) still predominantly adopt machine learning decoders while falling short of high BCI performance. Yet, the generalization and advantages of deep learning-based EEG decoding in realistic BCI systems remain far unclear. Methods: We conduct a randomized and cross-session online MI-BCI study on 2D center-out tasks in 15 BCI-naive subjects. A newly proposed deep learning model named interactive frequency convolutional neural network (IFNet) is leveraged and rigorously compared with the prevailing benchmark namely filter-bank common spatial pattern (FBCSP) for online MI decoding. Results: Through extensive online analysis, the deep learning decoder consistently outperforms the classical counterpart across various performance metrics. In particular, IFNet significantly improves the average online task accuracy by 20% and 27% in two sessions compared with FBCSP, respectively. Moreover, a significant cross-session training effect is observed by the IFNet model (<inline-formula> <tex-math notation="LaTeX">{P}={0}.{017} </tex-math></inline-formula>) while not for the controlled method (<inline-formula> <tex-math notation="LaTeX">{P}={0}.{337} </tex-math></inline-formula>). Further offline evaluations also demonstrate the superior performance of IFNet over state-of-the-art deep learning models. Moreover, we present unique behavioral and neurophysiological insights underlying online brain-machine interaction. Conclusion: We present one of the first studies about online MI-BCIs using deep learning, achieving substantially enhanced online performance for continuous BCI control. Significance: This study suggests the good utility of deep learning in MI-BCIs and has implications for clinical applications such as stroke rehabilitation.
Author Yao, Lin
Wang, Jiaheng
Wang, Yueming
Author_xml – sequence: 1
  givenname: Jiaheng
  orcidid: 0009-0005-0815-0518
  surname: Wang
  fullname: Wang, Jiaheng
  organization: Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
– sequence: 2
  givenname: Lin
  orcidid: 0000-0003-2065-7280
  surname: Yao
  fullname: Yao, Lin
  email: lin.yao@zju.edu.cn
  organization: Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
– sequence: 3
  givenname: Yueming
  orcidid: 0000-0001-7742-0722
  surname: Wang
  fullname: Wang, Yueming
  organization: Nanhu Brain-Computer Interface Institute, Hangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40690341$$D View this record in MEDLINE/PubMed
BookMark eNpFkUtvEzEUhS1URB_wBxBCs2QzwW-PlzQd2koRlaCsLT-ui6uJHTzJov8epwnt6lpH3znXuuccneSSAaGPBC8Iwfrr_Y9fP8cFxVQsmNCECv4GnREhhh5Tgk_2b8Z7zig-Refz_IgxUVKod-iUY6kx4-QMrcb8x2YPobvLU8rQLUveprwru7m7rDblfi_UMnXuqbsC2HQrsDWn_NBf2rnZxvG66b6EJr1Hb6OdZvhwnBfo9_fxfnnTr-6ub5ffVr1nmPKeDVI4rDyLfCAhUhVC-490KjhOpQA2aB814YMAywIh3EURNXcSg_KaR3aBbg-5odhHs6lpbeuTKTaZZ6HUB2PrNvkJjJPSuqCCAEW4D1bHCE4yryU4HaVvWV8OWZta_u5g3pp1mj1Mk83QjmAYZZSoQUrd0M9HdOfWEF4W_79mA-gB8LXMc4X4ghBs9pWZ58rMvjJzrKyZPh1MCQBeDQQPSnLG_gFNkpBw
CODEN ITNSB3
Cites_doi 10.3389/frobt.2018.00130
10.1177/1550059414522229
10.3389/fnhum.2024.1429130
10.1088/1741-2552/aab2f2
10.1038/nature14539
10.1016/j.clinph.2008.06.001
10.1145/1961189.1961199
10.1016/j.bspc.2022.103496
10.1109/TCDS.2021.3079712
10.1109/TIM.2024.3481538
10.1088/1741-2560/10/4/046003
10.1038/nrneurol.2016.113
10.1109/TNSRE.2023.3323325
10.1088/1741-2552/abca17
10.1088/1741-2552/aaf12e
10.1109/TNSRE.2006.875557
10.1088/1741-2552/ac0584
10.3389/fnhum.2021.635777
10.1109/TCIAIG.2013.2253778
10.1093/pnasnexus/pgae145
10.1002/hbm.23730
10.1109/TNSRE.2023.3257319
10.1371/journal.pbio.2003787
10.1038/nrn.2016.164
10.1155/2021/8832686
10.1016/j.bspc.2021.103101
10.1088/1741-2560/8/2/025009
10.1109/TNSRE.2020.2981659
10.1109/TNSRE.2020.3039331
10.1109/TNSRE.2022.3230250
10.3390/signals4010004
10.1088/1741-2552/aace8c
10.1109/TBME.2008.923152
10.1109/TNSRE.2023.3330500
10.1088/1741-2560/7/3/036007
10.1109/TNSRE.2023.3329059
10.1016/j.tics.2021.04.003
10.1016/S1388-2457(02)00057-3
10.1088/1741-2552/ad152f
10.1093/gigascience/giz002
10.1088/1741-2552/ab0ab5
10.1088/1741-2560/3/1/R02
10.1038/d41586-021-00776-8
10.1109/TBME.2014.2312397
10.1371/journal.pbio.2006719
10.1109/TNSRE.2024.3502135
10.3389/fnins.2010.00198
10.1109/TNNLS.2023.3305621
10.1109/TNSRE.2005.848627
10.1371/journal.pone.0148886
10.1109/MSP.2008.4408441
10.1016/j.engappai.2022.105347
10.1126/science.1128115
10.1016/j.neuroimage.2007.01.051
10.1109/TNSRE.2025.3527629
10.1109/TNSRE.2023.3272372
10.3389/fnins.2020.591435
10.3389/fnins.2012.00039
10.1088/1741-2552/aadea0
10.1109/5.939829
10.1038/s41467-018-04673-z
10.1016/S1388-2457(99)00141-8
10.1109/TNNLS.2023.3319315
10.1162/NECO_a_00089
10.1109/TCYB.2021.3122969
10.1109/JPROC.2015.2407272
10.1038/srep38565
10.1109/TCDS.2020.3007453
10.3389/fnins.2012.00055
10.3389/fnins.2013.00267
10.1016/j.neunet.2020.12.013
10.1126/scirobotics.aaw6844
10.1088/1741-2552/abf8cb
10.1016/j.eng.2021.09.011
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1109/TNSRE.2025.3591254
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 2846
ExternalDocumentID oai_doaj_org_article_b66abd7d5e714cda9ffeb63c96eb9f6c
40690341
10_1109_TNSRE_2025_3591254
11087643
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: STI 2030—Major Projects
  grantid: 2021ZD0200400
– fundername: Key Research and Development Program of Zhejiang
  grantid: 2023C03003
– fundername: Project for Hangzhou Medical Disciplines of Excellence
– fundername: Key Project for Hangzhou Medical Disciplines
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 10.13039/501100012226
– fundername: Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study
  grantid: SN-ZJU-SIAS-002
– fundername: National Natural Science Foundation of China
  grantid: 62336007
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c3024-3865b07c3f481df27dd0696b7db4265e389cf91485ea3d114bf5f94b60e7c94f3
IEDL.DBID DOA
ISSN 1534-4320
1558-0210
IngestDate Wed Aug 27 01:06:01 EDT 2025
Tue Jul 22 17:01:52 EDT 2025
Sat Aug 02 01:40:59 EDT 2025
Wed Aug 06 19:11:28 EDT 2025
Wed Aug 27 01:45:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3024-3865b07c3f481df27dd0696b7db4265e389cf91485ea3d114bf5f94b60e7c94f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2065-7280
0009-0005-0815-0518
0000-0001-7742-0722
OpenAccessLink https://doaj.org/article/b66abd7d5e714cda9ffeb63c96eb9f6c
PMID 40690341
PQID 3232178669
PQPubID 23479
PageCount 13
ParticipantIDs pubmed_primary_40690341
ieee_primary_11087643
proquest_miscellaneous_3232178669
doaj_primary_oai_doaj_org_article_b66abd7d5e714cda9ffeb63c96eb9f6c
crossref_primary_10_1109_TNSRE_2025_3591254
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Ang (ref22) 2012; 6
ref35
ref34
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
Mane (ref28) 2021
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref66
Sundararajan (ref72); 70
ref21
ref65
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref47
  doi: 10.3389/frobt.2018.00130
– ident: ref17
  doi: 10.1177/1550059414522229
– ident: ref41
  doi: 10.3389/fnhum.2024.1429130
– volume: 70
  start-page: 3319
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref72
  article-title: Axiomatic attribution for deep networks
– ident: ref20
  doi: 10.1088/1741-2552/aab2f2
– ident: ref23
  doi: 10.1038/nature14539
– ident: ref11
  doi: 10.1016/j.clinph.2008.06.001
– ident: ref61
  doi: 10.1145/1961189.1961199
– ident: ref55
  doi: 10.1016/j.bspc.2022.103496
– ident: ref25
  doi: 10.1109/TCDS.2021.3079712
– ident: ref53
  doi: 10.1109/TIM.2024.3481538
– ident: ref31
  doi: 10.1088/1741-2560/10/4/046003
– ident: ref2
  doi: 10.1038/nrneurol.2016.113
– ident: ref68
  doi: 10.1109/TNSRE.2023.3323325
– ident: ref69
  doi: 10.1088/1741-2552/abca17
– ident: ref6
  doi: 10.1088/1741-2552/aaf12e
– ident: ref10
  doi: 10.1109/TNSRE.2006.875557
– ident: ref66
  doi: 10.1088/1741-2552/ac0584
– ident: ref44
  doi: 10.3389/fnhum.2021.635777
– ident: ref16
  doi: 10.1109/TCIAIG.2013.2253778
– year: 2021
  ident: ref28
  article-title: FBCNet: A multi-view convolutional neural network for brain-computer interface
  publication-title: arXiv:2104.01233
– ident: ref38
  doi: 10.1093/pnasnexus/pgae145
– ident: ref26
  doi: 10.1002/hbm.23730
– ident: ref29
  doi: 10.1109/TNSRE.2023.3257319
– ident: ref33
  doi: 10.1371/journal.pbio.2003787
– ident: ref71
  doi: 10.1038/nrn.2016.164
– ident: ref50
  doi: 10.1155/2021/8832686
– ident: ref56
  doi: 10.1016/j.bspc.2021.103101
– ident: ref35
  doi: 10.1088/1741-2560/8/2/025009
– ident: ref37
  doi: 10.1109/TNSRE.2020.2981659
– ident: ref48
  doi: 10.1109/TNSRE.2020.3039331
– ident: ref67
  doi: 10.1109/TNSRE.2022.3230250
– ident: ref39
  doi: 10.3390/signals4010004
– ident: ref27
  doi: 10.1088/1741-2552/aace8c
– ident: ref45
  doi: 10.1109/TBME.2008.923152
– ident: ref40
  doi: 10.1109/TNSRE.2023.3330500
– ident: ref30
  doi: 10.1088/1741-2560/7/3/036007
– ident: ref32
  doi: 10.1109/TNSRE.2023.3329059
– ident: ref3
  doi: 10.1016/j.tics.2021.04.003
– ident: ref1
  doi: 10.1016/S1388-2457(02)00057-3
– ident: ref59
  doi: 10.1088/1741-2552/ad152f
– ident: ref64
  doi: 10.1093/gigascience/giz002
– ident: ref24
  doi: 10.1088/1741-2552/ab0ab5
– ident: ref58
  doi: 10.1088/1741-2560/3/1/R02
– ident: ref73
  doi: 10.1038/d41586-021-00776-8
– ident: ref5
  doi: 10.1109/TBME.2014.2312397
– ident: ref43
  doi: 10.1371/journal.pbio.2006719
– ident: ref34
  doi: 10.1109/TNSRE.2024.3502135
– ident: ref15
  doi: 10.3389/fnins.2010.00198
– ident: ref52
  doi: 10.1109/TNNLS.2023.3305621
– ident: ref9
  doi: 10.1109/TNSRE.2005.848627
– ident: ref19
  doi: 10.1371/journal.pone.0148886
– ident: ref21
  doi: 10.1109/MSP.2008.4408441
– ident: ref57
  doi: 10.1016/j.engappai.2022.105347
– ident: ref62
  doi: 10.1126/science.1128115
– ident: ref70
  doi: 10.1016/j.neuroimage.2007.01.051
– ident: ref54
  doi: 10.1109/TNSRE.2025.3527629
– ident: ref51
  doi: 10.1109/TNSRE.2023.3272372
– ident: ref49
  doi: 10.3389/fnins.2020.591435
– volume: 6
  start-page: 1
  year: 2012
  ident: ref22
  article-title: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b
  publication-title: Frontiers Neurosci.
  doi: 10.3389/fnins.2012.00039
– ident: ref60
  doi: 10.1088/1741-2552/aadea0
– ident: ref8
  doi: 10.1109/5.939829
– ident: ref18
  doi: 10.1038/s41467-018-04673-z
– ident: ref7
  doi: 10.1016/S1388-2457(99)00141-8
– ident: ref74
  doi: 10.1109/TNNLS.2023.3319315
– ident: ref46
  doi: 10.1162/NECO_a_00089
– ident: ref36
  doi: 10.1109/TCYB.2021.3122969
– ident: ref4
  doi: 10.1109/JPROC.2015.2407272
– ident: ref12
  doi: 10.1038/srep38565
– ident: ref76
  doi: 10.1109/TCDS.2020.3007453
– ident: ref63
  doi: 10.3389/fnins.2012.00055
– ident: ref65
  doi: 10.3389/fnins.2013.00267
– ident: ref75
  doi: 10.1016/j.neunet.2020.12.013
– ident: ref13
  doi: 10.1126/scirobotics.aaw6844
– ident: ref14
  doi: 10.1088/1741-2552/abf8cb
– ident: ref42
  doi: 10.1016/j.eng.2021.09.011
SSID ssj0017657
Score 2.4386818
Snippet Objective: A growing amount of deep learning models for motor imagery (MI) decoding from electroencephalogram (EEG) have demonstrated their superiority over...
A growing amount of deep learning models for motor imagery (MI) decoding from electroencephalogram (EEG) have demonstrated their superiority over traditional...
SourceID doaj
proquest
pubmed
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 2834
SubjectTerms Adult
Algorithms
Brain - physiology
Brain modeling
Brain-computer interface
Brain-Computer Interfaces
Decoding
Deep Learning
EEG
Electroencephalography
Electroencephalography - methods
Female
Hands
Humans
Imagination - physiology
Iron
Machine learning
Male
Manipulators
motor imagery
Neural Networks, Computer
online continuous control
Online Systems
Support vector machines
Training
Young Adult
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoT1yAQoEARUYCLijbJH6tj92SUiHYQ9lKvVl-jAtCylawOcCvZ-wkS4tUiZtl5WXPON-MPfMNIa9D3TjP6lA20Vl0UFwsXcCWhRikBCnAp62Bz0t5es4_XoiLMVk958IAQA4-g1lq5rP8sPZ92io7TCHrCiF0h-yg5zYka22PDJTMtJ64gnnJWVNNGTKVPlwtv5y16As2YsaERkhP1XhSymfFeH0DkDJv_1ho5XabM2PPyX2ynL56CDn5Pus3buZ__0Po-N_DekDujVYoPRrUZo_cge4heXOdcZiuBroB-pae3SDzfkQ-td3XHDdAB55SmhiuvnX9uv9JF6niRHk8xL9T94u-B7iiI4nrZblAzAy0bT9gv18n2Nwn5yft6vi0HIsylJ4hnpepRqirlGeRo6kbGxUCTqR0KjgEewFoAPmo0ckSYFlAb8tFETV3sgLlNY_sMdnt1h08JRT_0ejD2rmVeIGywjZcRTZv0GJjLkRZkHeTZMzVwL1hss9SaZNFapJIzSjSgiyS8LZXJt7s3IFzbcZlaJyU1gUVBKia-2B1jOAk81qC01H6guwn-fx93SiagryadMHg-kuHKrYDnFfD0CSt1VxKXZAng5Js755U7NktT31O7qYRDDs6L8ju5kcPB2jjbNzLrNt_ACNs9e0
  priority: 102
  providerName: IEEE
Title Enhanced Online Continuous Brain-Control by Deep Learning-Based EEG Decoding
URI https://ieeexplore.ieee.org/document/11087643
https://www.ncbi.nlm.nih.gov/pubmed/40690341
https://www.proquest.com/docview/3232178669
https://doaj.org/article/b66abd7d5e714cda9ffeb63c96eb9f6c
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTlyqFmhJC8iVKBcUSGJ7vD6yEIpQy4EuEjfLT-glixAc-PeM7SyPQ8WFW2TZijMT-5vPj28I2fZtZx1rfd1Fa5Cg2Fhbj08mRA8QQASXlgb-nMHJBT-9FJcvUn2lM2FFHrgYbt8CGOulF0G23HmjYgwWmFMQrIrg0uyLmLcgU-P-gYSs8YnDmdecdc3iukyj9mdnf897JIad2GNCIb7zV5CUlfvHVCv_jzoz-hx_Ih_HsJEelO5-Jh_CsEJ-vpQIprOiD0B36Pkr9e1V8rsfrvNGPy3CojRJUv0b7pH002lKEVEflgPr1D7QoxBu6Ki6elVPEeQ87ftfWO7mCefWyMVxPzs8qccsCrVjCMB1SuppG-lY5Bibxk5634ACK71FdBYBIxYXFbIiEQzzSI9sFFFxC02QTvHIvpClYT6EdUJxUkXSaSYGsII0wnRcRjbpMMRi1keoyO7CkPqmiGXoTDIapbPZdTK7Hs1ekWmy9VPNJHSdC9D9enS_fsv9FVlLnnp-XZs09jiryI-F6zQOmLQLYoaAdtUMY8hWTgBURb4Wnz61TteAG8T1b-_Rte9kOX1uWa_ZIEt3t_dhEyOYO7uVf9atfNnwEWjv7bE
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcoALzwLhaSTKBWWb2Im9PnBg2y1but1D2Uq9uX4CQspWdCNU_gt_hd_GOI-FIvVYiZsV5SHbXzzf2DPfALxyOTWW5S6lwWh0UExIjcOW9sFx7nnpbdwaOJjxyVHx4bg8XoOfq1wY730TfOYHsdmc5buFreNW2VYMWRdoQrsYyn1__h09tLO3ezs4nZuU7o7n25O0KyKQWob2J401LU0mLAsFUrNAhXMZl9wIZ9A4lR4Ntg0SnYLSa-bQOzChDLIwPPPCyiIwfO81uI5Eo6RtetjqkELwRkgU14wiLRjN-pycTG7NZx8Px-h90nLASokkItb_iUmmGSvyCyawqRTQlXa5nOU21m73Nvzqx6kNcvk6qJdmYH_8IyH53w7kHbjV8Wzyrv0x7sKar-7B5t-aymTeCiqQ1-Twglz5fZiOq89NZARplVhJ1PD6UtWL-oyMYk2NdLuN8CfmnOx4f0o6mdpP6QhZgSPj8Xu8bheRGGzA0ZV09AGsV4vKPwKCVgi9dD3UHG8QutS0EIENKXJSZlzgCbzpkaBOW3UR1XhlmVQNhFSEkOoglMAogmV1Z1QGby7g3KpuoVGGc22ccKUXeWGdliF4w5mV3BsZuE1gI-Lhz-c6KCTwsseewhUmHhvpyuO4KoakOxdDzmUCD1tQrp7uIf34kre-gBuT-cFUTfdm-0_gZuxNu3_1FNaX32r_DBnd0jxv_isCJ1eNv9_-WlIZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Online+Continuous+Brain-Control+by+Deep+Learning-Based+EEG+Decoding&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Jiaheng+Wang&rft.au=Lin+Yao&rft.au=Yueming+Wang&rft.date=2025&rft.pub=IEEE&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=33&rft.spage=2834&rft.epage=2846&rft_id=info:doi/10.1109%2FTNSRE.2025.3591254&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b66abd7d5e714cda9ffeb63c96eb9f6c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon