Enhanced Online Continuous Brain-Control by Deep Learning-Based EEG Decoding
Objective: A growing amount of deep learning models for motor imagery (MI) decoding from electroencephalogram (EEG) have demonstrated their superiority over traditional machine learning approaches in offline dataset analysis. However, current online MI-based brain-computer interfaces (BCIs) still pr...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 33; pp. 2834 - 2846 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective: A growing amount of deep learning models for motor imagery (MI) decoding from electroencephalogram (EEG) have demonstrated their superiority over traditional machine learning approaches in offline dataset analysis. However, current online MI-based brain-computer interfaces (BCIs) still predominantly adopt machine learning decoders while falling short of high BCI performance. Yet, the generalization and advantages of deep learning-based EEG decoding in realistic BCI systems remain far unclear. Methods: We conduct a randomized and cross-session online MI-BCI study on 2D center-out tasks in 15 BCI-naive subjects. A newly proposed deep learning model named interactive frequency convolutional neural network (IFNet) is leveraged and rigorously compared with the prevailing benchmark namely filter-bank common spatial pattern (FBCSP) for online MI decoding. Results: Through extensive online analysis, the deep learning decoder consistently outperforms the classical counterpart across various performance metrics. In particular, IFNet significantly improves the average online task accuracy by 20% and 27% in two sessions compared with FBCSP, respectively. Moreover, a significant cross-session training effect is observed by the IFNet model (<inline-formula> <tex-math notation="LaTeX">{P}={0}.{017} </tex-math></inline-formula>) while not for the controlled method (<inline-formula> <tex-math notation="LaTeX">{P}={0}.{337} </tex-math></inline-formula>). Further offline evaluations also demonstrate the superior performance of IFNet over state-of-the-art deep learning models. Moreover, we present unique behavioral and neurophysiological insights underlying online brain-machine interaction. Conclusion: We present one of the first studies about online MI-BCIs using deep learning, achieving substantially enhanced online performance for continuous BCI control. Significance: This study suggests the good utility of deep learning in MI-BCIs and has implications for clinical applications such as stroke rehabilitation. |
---|---|
AbstractList | A growing amount of deep learning models for motor imagery (MI) decoding from electroencephalogram (EEG) have demonstrated their superiority over traditional machine learning approaches in offline dataset analysis. However, current online MI-based brain-computer interfaces (BCIs) still predominantly adopt machine learning decoders while falling short of high BCI performance. Yet, the generalization and advantages of deep learning-based EEG decoding in realistic BCI systems remain far unclear.OBJECTIVEA growing amount of deep learning models for motor imagery (MI) decoding from electroencephalogram (EEG) have demonstrated their superiority over traditional machine learning approaches in offline dataset analysis. However, current online MI-based brain-computer interfaces (BCIs) still predominantly adopt machine learning decoders while falling short of high BCI performance. Yet, the generalization and advantages of deep learning-based EEG decoding in realistic BCI systems remain far unclear.We conduct a randomized and cross-session online MI-BCI study with 2D center-out tasks in 15 BCI-naive subjects. A newly proposed deep learning model named interactive frequency convolutional neural network (IFNet) is leveraged and rigorously compared with the prevailing benchmark namely filter-bank common spatial pattern (FBCSP) for online MI decoding.METHODSWe conduct a randomized and cross-session online MI-BCI study with 2D center-out tasks in 15 BCI-naive subjects. A newly proposed deep learning model named interactive frequency convolutional neural network (IFNet) is leveraged and rigorously compared with the prevailing benchmark namely filter-bank common spatial pattern (FBCSP) for online MI decoding.Through extensive online analysis, the deep learning decoder consistently outperforms the classical counterpart across various performance metrics. In particular, IFNet significantly improves the average online task accuracy by 20% and 27% in two sessions compared with FBCSP, respectively. Moreover, a significant cross-session training effect is observed by the IFNet model (P = 0.017) while not for the controlled method (P = 0.337). Further offline evaluations also demonstrate the superior performance of IFNet over state-of-the-art deep learning models. Moreover, we present unique behavioral and neurophysiological insights underlying online brain-machine interaction.RESULTSThrough extensive online analysis, the deep learning decoder consistently outperforms the classical counterpart across various performance metrics. In particular, IFNet significantly improves the average online task accuracy by 20% and 27% in two sessions compared with FBCSP, respectively. Moreover, a significant cross-session training effect is observed by the IFNet model (P = 0.017) while not for the controlled method (P = 0.337). Further offline evaluations also demonstrate the superior performance of IFNet over state-of-the-art deep learning models. Moreover, we present unique behavioral and neurophysiological insights underlying online brain-machine interaction.We present one of the first studies about online MI-BCIs using deep learning, achieving substantially enhanced online performance for continuous BCI control.CONCLUSIONWe present one of the first studies about online MI-BCIs using deep learning, achieving substantially enhanced online performance for continuous BCI control.This study suggests the good utility of deep learning in MI-BCIs and has implications for clinical applications such as stroke rehabilitation.SIGNIFICANCEThis study suggests the good utility of deep learning in MI-BCIs and has implications for clinical applications such as stroke rehabilitation. A growing amount of deep learning models for motor imagery (MI) decoding from electroencephalogram (EEG) have demonstrated their superiority over traditional machine learning approaches in offline dataset analysis. However, current online MI-based brain-computer interfaces (BCIs) still predominantly adopt machine learning decoders while falling short of high BCI performance. Yet, the generalization and advantages of deep learning-based EEG decoding in realistic BCI systems remain far unclear. We conduct a randomized and cross-session online MI-BCI study on 2D center-out tasks in 15 BCI-naive subjects. A newly proposed deep learning model named interactive frequency convolutional neural network (IFNet) is leveraged and rigorously compared with the prevailing benchmark namely filter-bank common spatial pattern (FBCSP) for online MI decoding. Through extensive online analysis, the deep learning decoder consistently outperforms the classical counterpart across various performance metrics. In particular, IFNet significantly improves the average online task accuracy by 20% and 27% in two sessions compared with FBCSP, respectively. Moreover, a significant cross-session training effect is observed by the IFNet model ( ${P}={0}.{017}$ ) while not for the controlled method ( ${P}={0}.{337}$ ). Further offline evaluations also demonstrate the superior performance of IFNet over state-of-the-art deep learning models. Moreover, we present unique behavioral and neurophysiological insights underlying online brain-machine interaction. We present one of the first studies about online MI-BCIs using deep learning, achieving substantially enhanced online performance for continuous BCI control. This study suggests the good utility of deep learning in MI-BCIs and has implications for clinical applications such as stroke rehabilitation. Objective: A growing amount of deep learning models for motor imagery (MI) decoding from electroencephalogram (EEG) have demonstrated their superiority over traditional machine learning approaches in offline dataset analysis. However, current online MI-based brain-computer interfaces (BCIs) still predominantly adopt machine learning decoders while falling short of high BCI performance. Yet, the generalization and advantages of deep learning-based EEG decoding in realistic BCI systems remain far unclear. Methods: We conduct a randomized and cross-session online MI-BCI study on 2D center-out tasks in 15 BCI-naive subjects. A newly proposed deep learning model named interactive frequency convolutional neural network (IFNet) is leveraged and rigorously compared with the prevailing benchmark namely filter-bank common spatial pattern (FBCSP) for online MI decoding. Results: Through extensive online analysis, the deep learning decoder consistently outperforms the classical counterpart across various performance metrics. In particular, IFNet significantly improves the average online task accuracy by 20% and 27% in two sessions compared with FBCSP, respectively. Moreover, a significant cross-session training effect is observed by the IFNet model ( <tex-math notation="LaTeX">${P}={0}.{017}$ </tex-math>) while not for the controlled method ( <tex-math notation="LaTeX">${P}={0}.{337}$ </tex-math>). Further offline evaluations also demonstrate the superior performance of IFNet over state-of-the-art deep learning models. Moreover, we present unique behavioral and neurophysiological insights underlying online brain-machine interaction. Conclusion: We present one of the first studies about online MI-BCIs using deep learning, achieving substantially enhanced online performance for continuous BCI control. Significance: This study suggests the good utility of deep learning in MI-BCIs and has implications for clinical applications such as stroke rehabilitation. Objective: A growing amount of deep learning models for motor imagery (MI) decoding from electroencephalogram (EEG) have demonstrated their superiority over traditional machine learning approaches in offline dataset analysis. However, current online MI-based brain-computer interfaces (BCIs) still predominantly adopt machine learning decoders while falling short of high BCI performance. Yet, the generalization and advantages of deep learning-based EEG decoding in realistic BCI systems remain far unclear. Methods: We conduct a randomized and cross-session online MI-BCI study on 2D center-out tasks in 15 BCI-naive subjects. A newly proposed deep learning model named interactive frequency convolutional neural network (IFNet) is leveraged and rigorously compared with the prevailing benchmark namely filter-bank common spatial pattern (FBCSP) for online MI decoding. Results: Through extensive online analysis, the deep learning decoder consistently outperforms the classical counterpart across various performance metrics. In particular, IFNet significantly improves the average online task accuracy by 20% and 27% in two sessions compared with FBCSP, respectively. Moreover, a significant cross-session training effect is observed by the IFNet model (<inline-formula> <tex-math notation="LaTeX">{P}={0}.{017} </tex-math></inline-formula>) while not for the controlled method (<inline-formula> <tex-math notation="LaTeX">{P}={0}.{337} </tex-math></inline-formula>). Further offline evaluations also demonstrate the superior performance of IFNet over state-of-the-art deep learning models. Moreover, we present unique behavioral and neurophysiological insights underlying online brain-machine interaction. Conclusion: We present one of the first studies about online MI-BCIs using deep learning, achieving substantially enhanced online performance for continuous BCI control. Significance: This study suggests the good utility of deep learning in MI-BCIs and has implications for clinical applications such as stroke rehabilitation. |
Author | Yao, Lin Wang, Jiaheng Wang, Yueming |
Author_xml | – sequence: 1 givenname: Jiaheng orcidid: 0009-0005-0815-0518 surname: Wang fullname: Wang, Jiaheng organization: Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China – sequence: 2 givenname: Lin orcidid: 0000-0003-2065-7280 surname: Yao fullname: Yao, Lin email: lin.yao@zju.edu.cn organization: Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China – sequence: 3 givenname: Yueming orcidid: 0000-0001-7742-0722 surname: Wang fullname: Wang, Yueming organization: Nanhu Brain-Computer Interface Institute, Hangzhou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40690341$$D View this record in MEDLINE/PubMed |
BookMark | eNpFkUtvEzEUhS1URB_wBxBCs2QzwW-PlzQd2koRlaCsLT-ui6uJHTzJov8epwnt6lpH3znXuuccneSSAaGPBC8Iwfrr_Y9fP8cFxVQsmNCECv4GnREhhh5Tgk_2b8Z7zig-Refz_IgxUVKod-iUY6kx4-QMrcb8x2YPobvLU8rQLUveprwru7m7rDblfi_UMnXuqbsC2HQrsDWn_NBf2rnZxvG66b6EJr1Hb6OdZvhwnBfo9_fxfnnTr-6ub5ffVr1nmPKeDVI4rDyLfCAhUhVC-490KjhOpQA2aB814YMAywIh3EURNXcSg_KaR3aBbg-5odhHs6lpbeuTKTaZZ6HUB2PrNvkJjJPSuqCCAEW4D1bHCE4yryU4HaVvWV8OWZta_u5g3pp1mj1Mk83QjmAYZZSoQUrd0M9HdOfWEF4W_79mA-gB8LXMc4X4ghBs9pWZ58rMvjJzrKyZPh1MCQBeDQQPSnLG_gFNkpBw |
CODEN | ITNSB3 |
Cites_doi | 10.3389/frobt.2018.00130 10.1177/1550059414522229 10.3389/fnhum.2024.1429130 10.1088/1741-2552/aab2f2 10.1038/nature14539 10.1016/j.clinph.2008.06.001 10.1145/1961189.1961199 10.1016/j.bspc.2022.103496 10.1109/TCDS.2021.3079712 10.1109/TIM.2024.3481538 10.1088/1741-2560/10/4/046003 10.1038/nrneurol.2016.113 10.1109/TNSRE.2023.3323325 10.1088/1741-2552/abca17 10.1088/1741-2552/aaf12e 10.1109/TNSRE.2006.875557 10.1088/1741-2552/ac0584 10.3389/fnhum.2021.635777 10.1109/TCIAIG.2013.2253778 10.1093/pnasnexus/pgae145 10.1002/hbm.23730 10.1109/TNSRE.2023.3257319 10.1371/journal.pbio.2003787 10.1038/nrn.2016.164 10.1155/2021/8832686 10.1016/j.bspc.2021.103101 10.1088/1741-2560/8/2/025009 10.1109/TNSRE.2020.2981659 10.1109/TNSRE.2020.3039331 10.1109/TNSRE.2022.3230250 10.3390/signals4010004 10.1088/1741-2552/aace8c 10.1109/TBME.2008.923152 10.1109/TNSRE.2023.3330500 10.1088/1741-2560/7/3/036007 10.1109/TNSRE.2023.3329059 10.1016/j.tics.2021.04.003 10.1016/S1388-2457(02)00057-3 10.1088/1741-2552/ad152f 10.1093/gigascience/giz002 10.1088/1741-2552/ab0ab5 10.1088/1741-2560/3/1/R02 10.1038/d41586-021-00776-8 10.1109/TBME.2014.2312397 10.1371/journal.pbio.2006719 10.1109/TNSRE.2024.3502135 10.3389/fnins.2010.00198 10.1109/TNNLS.2023.3305621 10.1109/TNSRE.2005.848627 10.1371/journal.pone.0148886 10.1109/MSP.2008.4408441 10.1016/j.engappai.2022.105347 10.1126/science.1128115 10.1016/j.neuroimage.2007.01.051 10.1109/TNSRE.2025.3527629 10.1109/TNSRE.2023.3272372 10.3389/fnins.2020.591435 10.3389/fnins.2012.00039 10.1088/1741-2552/aadea0 10.1109/5.939829 10.1038/s41467-018-04673-z 10.1016/S1388-2457(99)00141-8 10.1109/TNNLS.2023.3319315 10.1162/NECO_a_00089 10.1109/TCYB.2021.3122969 10.1109/JPROC.2015.2407272 10.1038/srep38565 10.1109/TCDS.2020.3007453 10.3389/fnins.2012.00055 10.3389/fnins.2013.00267 10.1016/j.neunet.2020.12.013 10.1126/scirobotics.aaw6844 10.1088/1741-2552/abf8cb 10.1016/j.eng.2021.09.011 |
ContentType | Journal Article |
DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1109/TNSRE.2025.3591254 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 2846 |
ExternalDocumentID | oai_doaj_org_article_b66abd7d5e714cda9ffeb63c96eb9f6c 40690341 10_1109_TNSRE_2025_3591254 11087643 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: STI 2030—Major Projects grantid: 2021ZD0200400 – fundername: Key Research and Development Program of Zhejiang grantid: 2023C03003 – fundername: Project for Hangzhou Medical Disciplines of Excellence – fundername: Key Project for Hangzhou Medical Disciplines – fundername: Fundamental Research Funds for the Central Universities funderid: 10.13039/501100012226 – fundername: Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study grantid: SN-ZJU-SIAS-002 – fundername: National Natural Science Foundation of China grantid: 62336007 funderid: 10.13039/501100001809 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c3024-3865b07c3f481df27dd0696b7db4265e389cf91485ea3d114bf5f94b60e7c94f3 |
IEDL.DBID | DOA |
ISSN | 1534-4320 1558-0210 |
IngestDate | Wed Aug 27 01:06:01 EDT 2025 Tue Jul 22 17:01:52 EDT 2025 Sat Aug 02 01:40:59 EDT 2025 Wed Aug 06 19:11:28 EDT 2025 Wed Aug 27 01:45:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3024-3865b07c3f481df27dd0696b7db4265e389cf91485ea3d114bf5f94b60e7c94f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2065-7280 0009-0005-0815-0518 0000-0001-7742-0722 |
OpenAccessLink | https://doaj.org/article/b66abd7d5e714cda9ffeb63c96eb9f6c |
PMID | 40690341 |
PQID | 3232178669 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmed_primary_40690341 ieee_primary_11087643 proquest_miscellaneous_3232178669 doaj_primary_oai_doaj_org_article_b66abd7d5e714cda9ffeb63c96eb9f6c crossref_primary_10_1109_TNSRE_2025_3591254 |
PublicationCentury | 2000 |
PublicationDate | 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025-00-00 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Ang (ref22) 2012; 6 ref35 ref34 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 Mane (ref28) 2021 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref66 Sundararajan (ref72); 70 ref21 ref65 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref47 doi: 10.3389/frobt.2018.00130 – ident: ref17 doi: 10.1177/1550059414522229 – ident: ref41 doi: 10.3389/fnhum.2024.1429130 – volume: 70 start-page: 3319 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref72 article-title: Axiomatic attribution for deep networks – ident: ref20 doi: 10.1088/1741-2552/aab2f2 – ident: ref23 doi: 10.1038/nature14539 – ident: ref11 doi: 10.1016/j.clinph.2008.06.001 – ident: ref61 doi: 10.1145/1961189.1961199 – ident: ref55 doi: 10.1016/j.bspc.2022.103496 – ident: ref25 doi: 10.1109/TCDS.2021.3079712 – ident: ref53 doi: 10.1109/TIM.2024.3481538 – ident: ref31 doi: 10.1088/1741-2560/10/4/046003 – ident: ref2 doi: 10.1038/nrneurol.2016.113 – ident: ref68 doi: 10.1109/TNSRE.2023.3323325 – ident: ref69 doi: 10.1088/1741-2552/abca17 – ident: ref6 doi: 10.1088/1741-2552/aaf12e – ident: ref10 doi: 10.1109/TNSRE.2006.875557 – ident: ref66 doi: 10.1088/1741-2552/ac0584 – ident: ref44 doi: 10.3389/fnhum.2021.635777 – ident: ref16 doi: 10.1109/TCIAIG.2013.2253778 – year: 2021 ident: ref28 article-title: FBCNet: A multi-view convolutional neural network for brain-computer interface publication-title: arXiv:2104.01233 – ident: ref38 doi: 10.1093/pnasnexus/pgae145 – ident: ref26 doi: 10.1002/hbm.23730 – ident: ref29 doi: 10.1109/TNSRE.2023.3257319 – ident: ref33 doi: 10.1371/journal.pbio.2003787 – ident: ref71 doi: 10.1038/nrn.2016.164 – ident: ref50 doi: 10.1155/2021/8832686 – ident: ref56 doi: 10.1016/j.bspc.2021.103101 – ident: ref35 doi: 10.1088/1741-2560/8/2/025009 – ident: ref37 doi: 10.1109/TNSRE.2020.2981659 – ident: ref48 doi: 10.1109/TNSRE.2020.3039331 – ident: ref67 doi: 10.1109/TNSRE.2022.3230250 – ident: ref39 doi: 10.3390/signals4010004 – ident: ref27 doi: 10.1088/1741-2552/aace8c – ident: ref45 doi: 10.1109/TBME.2008.923152 – ident: ref40 doi: 10.1109/TNSRE.2023.3330500 – ident: ref30 doi: 10.1088/1741-2560/7/3/036007 – ident: ref32 doi: 10.1109/TNSRE.2023.3329059 – ident: ref3 doi: 10.1016/j.tics.2021.04.003 – ident: ref1 doi: 10.1016/S1388-2457(02)00057-3 – ident: ref59 doi: 10.1088/1741-2552/ad152f – ident: ref64 doi: 10.1093/gigascience/giz002 – ident: ref24 doi: 10.1088/1741-2552/ab0ab5 – ident: ref58 doi: 10.1088/1741-2560/3/1/R02 – ident: ref73 doi: 10.1038/d41586-021-00776-8 – ident: ref5 doi: 10.1109/TBME.2014.2312397 – ident: ref43 doi: 10.1371/journal.pbio.2006719 – ident: ref34 doi: 10.1109/TNSRE.2024.3502135 – ident: ref15 doi: 10.3389/fnins.2010.00198 – ident: ref52 doi: 10.1109/TNNLS.2023.3305621 – ident: ref9 doi: 10.1109/TNSRE.2005.848627 – ident: ref19 doi: 10.1371/journal.pone.0148886 – ident: ref21 doi: 10.1109/MSP.2008.4408441 – ident: ref57 doi: 10.1016/j.engappai.2022.105347 – ident: ref62 doi: 10.1126/science.1128115 – ident: ref70 doi: 10.1016/j.neuroimage.2007.01.051 – ident: ref54 doi: 10.1109/TNSRE.2025.3527629 – ident: ref51 doi: 10.1109/TNSRE.2023.3272372 – ident: ref49 doi: 10.3389/fnins.2020.591435 – volume: 6 start-page: 1 year: 2012 ident: ref22 article-title: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b publication-title: Frontiers Neurosci. doi: 10.3389/fnins.2012.00039 – ident: ref60 doi: 10.1088/1741-2552/aadea0 – ident: ref8 doi: 10.1109/5.939829 – ident: ref18 doi: 10.1038/s41467-018-04673-z – ident: ref7 doi: 10.1016/S1388-2457(99)00141-8 – ident: ref74 doi: 10.1109/TNNLS.2023.3319315 – ident: ref46 doi: 10.1162/NECO_a_00089 – ident: ref36 doi: 10.1109/TCYB.2021.3122969 – ident: ref4 doi: 10.1109/JPROC.2015.2407272 – ident: ref12 doi: 10.1038/srep38565 – ident: ref76 doi: 10.1109/TCDS.2020.3007453 – ident: ref63 doi: 10.3389/fnins.2012.00055 – ident: ref65 doi: 10.3389/fnins.2013.00267 – ident: ref75 doi: 10.1016/j.neunet.2020.12.013 – ident: ref13 doi: 10.1126/scirobotics.aaw6844 – ident: ref14 doi: 10.1088/1741-2552/abf8cb – ident: ref42 doi: 10.1016/j.eng.2021.09.011 |
SSID | ssj0017657 |
Score | 2.4386818 |
Snippet | Objective: A growing amount of deep learning models for motor imagery (MI) decoding from electroencephalogram (EEG) have demonstrated their superiority over... A growing amount of deep learning models for motor imagery (MI) decoding from electroencephalogram (EEG) have demonstrated their superiority over traditional... |
SourceID | doaj proquest pubmed crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 2834 |
SubjectTerms | Adult Algorithms Brain - physiology Brain modeling Brain-computer interface Brain-Computer Interfaces Decoding Deep Learning EEG Electroencephalography Electroencephalography - methods Female Hands Humans Imagination - physiology Iron Machine learning Male Manipulators motor imagery Neural Networks, Computer online continuous control Online Systems Support vector machines Training Young Adult |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoT1yAQoEARUYCLijbJH6tj92SUiHYQ9lKvVl-jAtCylawOcCvZ-wkS4tUiZtl5WXPON-MPfMNIa9D3TjP6lA20Vl0UFwsXcCWhRikBCnAp62Bz0t5es4_XoiLMVk958IAQA4-g1lq5rP8sPZ92io7TCHrCiF0h-yg5zYka22PDJTMtJ64gnnJWVNNGTKVPlwtv5y16As2YsaERkhP1XhSymfFeH0DkDJv_1ho5XabM2PPyX2ynL56CDn5Pus3buZ__0Po-N_DekDujVYoPRrUZo_cge4heXOdcZiuBroB-pae3SDzfkQ-td3XHDdAB55SmhiuvnX9uv9JF6niRHk8xL9T94u-B7iiI4nrZblAzAy0bT9gv18n2Nwn5yft6vi0HIsylJ4hnpepRqirlGeRo6kbGxUCTqR0KjgEewFoAPmo0ckSYFlAb8tFETV3sgLlNY_sMdnt1h08JRT_0ejD2rmVeIGywjZcRTZv0GJjLkRZkHeTZMzVwL1hss9SaZNFapJIzSjSgiyS8LZXJt7s3IFzbcZlaJyU1gUVBKia-2B1jOAk81qC01H6guwn-fx93SiagryadMHg-kuHKrYDnFfD0CSt1VxKXZAng5Js755U7NktT31O7qYRDDs6L8ju5kcPB2jjbNzLrNt_ACNs9e0 priority: 102 providerName: IEEE |
Title | Enhanced Online Continuous Brain-Control by Deep Learning-Based EEG Decoding |
URI | https://ieeexplore.ieee.org/document/11087643 https://www.ncbi.nlm.nih.gov/pubmed/40690341 https://www.proquest.com/docview/3232178669 https://doaj.org/article/b66abd7d5e714cda9ffeb63c96eb9f6c |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTlyqFmhJC8iVKBcUSGJ7vD6yEIpQy4EuEjfLT-glixAc-PeM7SyPQ8WFW2TZijMT-5vPj28I2fZtZx1rfd1Fa5Cg2Fhbj08mRA8QQASXlgb-nMHJBT-9FJcvUn2lM2FFHrgYbt8CGOulF0G23HmjYgwWmFMQrIrg0uyLmLcgU-P-gYSs8YnDmdecdc3iukyj9mdnf897JIad2GNCIb7zV5CUlfvHVCv_jzoz-hx_Ih_HsJEelO5-Jh_CsEJ-vpQIprOiD0B36Pkr9e1V8rsfrvNGPy3CojRJUv0b7pH002lKEVEflgPr1D7QoxBu6Ki6elVPEeQ87ftfWO7mCefWyMVxPzs8qccsCrVjCMB1SuppG-lY5Bibxk5634ACK71FdBYBIxYXFbIiEQzzSI9sFFFxC02QTvHIvpClYT6EdUJxUkXSaSYGsII0wnRcRjbpMMRi1keoyO7CkPqmiGXoTDIapbPZdTK7Hs1ekWmy9VPNJHSdC9D9enS_fsv9FVlLnnp-XZs09jiryI-F6zQOmLQLYoaAdtUMY8hWTgBURb4Wnz61TteAG8T1b-_Rte9kOX1uWa_ZIEt3t_dhEyOYO7uVf9atfNnwEWjv7bE |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcoALzwLhaSTKBWWb2Im9PnBg2y1but1D2Uq9uX4CQspWdCNU_gt_hd_GOI-FIvVYiZsV5SHbXzzf2DPfALxyOTWW5S6lwWh0UExIjcOW9sFx7nnpbdwaOJjxyVHx4bg8XoOfq1wY730TfOYHsdmc5buFreNW2VYMWRdoQrsYyn1__h09tLO3ezs4nZuU7o7n25O0KyKQWob2J401LU0mLAsFUrNAhXMZl9wIZ9A4lR4Ntg0SnYLSa-bQOzChDLIwPPPCyiIwfO81uI5Eo6RtetjqkELwRkgU14wiLRjN-pycTG7NZx8Px-h90nLASokkItb_iUmmGSvyCyawqRTQlXa5nOU21m73Nvzqx6kNcvk6qJdmYH_8IyH53w7kHbjV8Wzyrv0x7sKar-7B5t-aymTeCiqQ1-Twglz5fZiOq89NZARplVhJ1PD6UtWL-oyMYk2NdLuN8CfmnOx4f0o6mdpP6QhZgSPj8Xu8bheRGGzA0ZV09AGsV4vKPwKCVgi9dD3UHG8QutS0EIENKXJSZlzgCbzpkaBOW3UR1XhlmVQNhFSEkOoglMAogmV1Z1QGby7g3KpuoVGGc22ccKUXeWGdliF4w5mV3BsZuE1gI-Lhz-c6KCTwsseewhUmHhvpyuO4KoakOxdDzmUCD1tQrp7uIf34kre-gBuT-cFUTfdm-0_gZuxNu3_1FNaX32r_DBnd0jxv_isCJ1eNv9_-WlIZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Online+Continuous+Brain-Control+by+Deep+Learning-Based+EEG+Decoding&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Jiaheng+Wang&rft.au=Lin+Yao&rft.au=Yueming+Wang&rft.date=2025&rft.pub=IEEE&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=33&rft.spage=2834&rft.epage=2846&rft_id=info:doi/10.1109%2FTNSRE.2025.3591254&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b66abd7d5e714cda9ffeb63c96eb9f6c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |